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Scaling approach to tight-binding transport in realistic graphene devices:
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Ultraclean graphene sheets encapsulated between hexagonal boron nitride crystals host two-dimensional
electron systems in which low-temperature transport is solely limited by the sample size. We revisit the theoretical
problem of carrying out microscopic calculations of nonlocal ballistic transport in such micron-scale devices.
By employing the Landauer-Büttiker scattering theory, we propose a scaling approach to tight-binding nonlocal
transport in realistic graphene devices. We test our numerical method against experimental data on transverse
magnetic focusing (TMF), a textbook example of nonlocal ballistic transport in the presence of a transverse
magnetic field. This comparison enables a clear physical interpretation of all the observed features of the TMF
signal, including its oscillating sign.
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I. INTRODUCTION

The ability to fabricate ultraclean graphene sheets by
encapsulation in hexagonal boron nitride crystals [1–4] allows
the investigation of ballistic transport in a large range of
temperatures up to the hydrodynamic temperature scale [4,5]
Thydro. At T � Thydro, the mean-free path for electron-electron
collisions �ee becomes shorter than the mean-free path � for
momentum nonconserving scattering and inelastic electron-
electron collisions need to be taken into account in any
theoretical description of transport.

At temperatures T � Thydro, however, electrons in encap-
sulated graphene sheets propagate over distances of the order
of several microns without experiencing elastic or inelastic
scattering events. In this situation, transport properties can
be determined by utilizing exact single-particle quantum
approaches, combining, e.g., tight-binding Hamiltonians with
Kubo formulas [6,7] or Landauer-Büttiker scattering theory
[8–10].

Graphene Hall bars fabricated by van der Waals assembly
techniques and used in quantum transport experiments have
characteristic linear dimensions of tens of microns, rendering
brute-force numerical calculations time consuming or, simply,
unfeasible. In Ref. [10] a convenient scaling scheme for two-
terminal numerical transport simulations within Landauer-
Büttiker scattering theory has been proposed. In such a scheme,
the tight-binding parameters for real graphene [11], namely the
hopping energy t0 and the lattice spacing a0, are replaced with
rescaled ones, t̃0 and ã0, such that the bulk band structure E(k)
remains invariant, i.e., E(k) = (3/2)t0a0k = (3/2)t̃0ã0k, with
k the magnitude of the momentum. This yields the scaling
condition ã0 = a0sf and t̃0 = t0/sf , which applies only when
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the massless Dirac (linear) approximation is valid, where
sf is the scaling factor. Restrictions for the validity of the
scaling procedure, in terms of a maximum scaling factor,
are derived on the basis of the bulk band structure. As an
example, this scaling procedure has been used [10] to simulate
the two-terminal conductance, measured on a large crystal,
using a scaling factor up to 100.

In this article we develop a scaling procedure suitable
for graphene micron-sized ribbons, which is valid also in
the presence of many electrodes (see Fig. 1) and therefore
useful to describe nonlocal ballistic transport experiments.
This procedure is based on the exact band structure of graphene
ribbons (rather than on the bulk massless Dirac fermion
band structure), and uses the Fermi energy as key scaling
parameter. In brief, a geometrical downward scaling of the
size of the structure, from the realistic laboratory scale to
the computationally feasible scale, is accompanied by an
upward scaling of the Fermi energy in such a way that the
number of electronic modes responsible for transport is left
unchanged.

As an application of the proposed scaling procedure, we
study in detail the case of transverse magnetic focusing
(TMF), which has been extensively explored in the past, in
metals [12] and in ultraclean semiconductor heterostructures
[13–18] fabricated by molecular beam epitaxy. Here, we
focus on TMF in single-layer graphene [3,19], comparing our
quantum mechanical numerical calculations with experimental
results in ultraclean encapsulated monolayer samples.

Our paper is organized as following. In Sec. II we present
our scaling approach. In Sec. III we summarize our main
numerical results on TMF in single-layer graphene, while
Sec. IV is devoted to a detailed analysis of the numerical
results. In particular, Sec. IV includes a study of the depen-
dence of TMF on the carrier density, temperature, and presence
of nonideal edges, as well as a comparison with experimental
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FIG. 1. Pictorial representation of the five- and four-terminal
graphene Hall bar setups considered in this work. Leads are labeled
by numbers. Here, W is the width of the horizontal zigzag leads, w

is the width of the vertical armchair leads, d is the center-to-center
distance between them, L1 is the distance between lead 1 and the
center of lead 2, and L2 is the distance between the center of lead
3 and lead 4, for panels (b) and (d), or the distance between the
center of lead 4 and lead 3, for panel (f). The red dotted line (red
cross) in panel (d) [panel (f)] indicates the axis (center) of symmetry
of the setup. In this article, all leads have been taken to be semi-
infinite.

data. A brief summary and our main conclusions are reported in
Sec. V.

II. THEORETICAL FRAMEWORK
AND SCALING PROCEDURE

The systems under investigation are multiterminal graphene
Hall bars similar to the ones sketched in Fig. 1. A rectangular
graphene zigzag strip, of width W , is attached either to
5 [Figs. 1(a)–1(b)] or 4 [Figs. 1(c)–1(d) and 1(e)–1(f)]
electrodes and exposed to a perpendicular magnetic field B.
The horizontal leads [labeled 1 and 4 in Figs. 1(a)–1(d),
and 1 and 3 in Figs. 1(e)–1(f)] have the same width W

of the ribbon, while the vertical ones have width w � W .
In our calculations below, all leads have been taken to be
semi-infinite. Moreover, the vertical terminals are separated
by a center-to-center distance d, while the distance be-
tween the left (right) horizontal electrode and the leftmost
(rightmost) vertical electrode is L1 (L2) [see Figs. 1(b),
1(d), and 1(f)]. The total length of the ribbon is therefore
L = L1 + d + L2.

In all setups a nonlocal resistance R21,34 is measured by
applying a current bias between lead 1 and 2 and measuring
the voltage that develops between lead 3 and 4. We therefore
define

R21,34 = V3 − V4

I2
, (1)

where Ii is the current flowing in lead i and Vi is the voltage
relative to lead i. As we mentioned in the Introduction, in
high-quality encapsulated graphene we can safely assume that
low-temperature transport is coherent and neglect inelastic
scattering sources. For the sake of simplicity, we also neglect
elastic scattering sources: our work does not therefore deal
with carrier density inhomogeneities near the charge neutrality
point.

The single-particle tight-binding Hamiltonian reads

H = εF

∑
i

c
†
i ci − t0

∑
〈i,j〉

c
†
i cj , (2)

where εF is the Fermi energy, measured with respect to
the Dirac point (εF = 0), and t0 � 2.8 eV is the nearest-
neighbor hopping energy (the symbol 〈i,j 〉 denotes, as usual,
nearest-neighbor sites i and j ). We remind the reader that
electron-electron interactions, which are not included in our
model Hamiltonian (2), enhance the value of the Fermi velocity
[20] vF with respect to the bare noninteracting tight-binding
value vF,0 = (3/2)t0a0 � 0.9 × 106 m/s. Note also that the
samples considered in this paper present a large misalignment
angle between the lattice orientation of hexagonal boron nitride
and graphene, so that no energy gap develops in the energy
spectrum and Eq. (2) does not need to be modified.

The nonlocal resistance R21,34 can be calculated starting
from the linear-response current-voltage relation obtained
within the Landauer-Büttiker scattering approach and given
by [21,22]

Ii = 2e2

h

⎡
⎣(Ni − Tii)Vi −

∑
j �=i

TijVj

⎤
⎦, (3)

at zero temperature. R21,34 is obtained by imposing that I1 =
I2, I3 = I4 = I5 = 0, and solving Eq. (3) for V3 and V4. In
Eq. (3) Tij is the transmission coefficient at the Fermi energy
for electrons injected from lead j to be transmitted into lead i,
satisfying the identity

Ni =
∑

j

Tij =
∑

j

Tji, (4)

Ni being the number of open channels in lead i.
The transmission coefficients Tij will be numerically

calculated using KWANT [9], a toolkit which implements
a wave-function matching technique. We assume that no
magnetic field is present in the leads.

Since the computation time scales roughly with the third
power of the linear size of the system [9], a one-to-one
simulation of a large-size sample, of the order of a few
micrometers, is prohibitively time consuming. For this reason,
the development of scaling procedures, which allow us to
calculate accurately the transmission coefficients on a much
smaller sized system, is of great interest.
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FIG. 2. (a) Two examples of band structures of armchair leads.
Energies are measured in eV, while ky is measured in units of a =
a0

√
3. On the left, w = 24.4 nm and εF = 1.01 eV; on the right, w̃ =

10.8 nm and ε̃F = 2.05 eV. (b) Schematic representation of the scaling
procedure. In the input box we have the parameters characterizing
the real sample: W , L, w, d , B, εF, and T (where T is temperature).
Noc is the number of open channels in a reference lead of the real
sample. Quantities denoted by a tilde refer to the rescaled system.
The parameters s and s ′ are the geometric and energy scaling factors,
respectively. The rescaled parameters are used to calculate nonlocal
resistances. In this work we focus on the quantity R21,34 defined in
Eq. (1).

Here we develop a procedure which is based on the
observation that the band structure of a graphene nanoribbon
varies little if its width is decreased by a scaling factor s and,
at the same time, the Fermi energy is increased by a suitable
and, in principle, different factor s ′ [23]. This is graphically
exemplified in Fig. 2(a) where the band structures [24,25] of
two armchair nanoribbons of different width (scaled by a factor
s � 2.26) are plotted side by side. The two plots resemble each
other as long as the Fermi energy of the narrower nanoribbon
is increased by a suitable factor s ′. The notion of “suitability”
will be clarified below. Note that this works as long as the Fermi
energy in the right panel of Fig. 2(a) satisfies the inequality
ε̃F < t0. Given a certain Fermi energy εF relative to the actual

sample, this sets a limitation on the maximum scaling factor s

applicable.
The scaling procedure is schematized in Fig. 2(b). The

“input” block contains all the parameters characterizing the
actual sample one is interested in simulating. The scaling
algorithm proceeds as following. (i) One starts by choosing the
size w̃ of the vertical leads of the rescaled system used in the
calculations; (ii) one then defines the geometric scaling factor
s (blue arrow), i.e., the original width w of the vertical leads
in units of w̃; the procedure of geometric scaling, although
applied to all the sample, is based on the vertical leads in
Fig. 1 since those are the narrowest ones; (iii) by knowing
w and εF, one proceeds by calculating the number of open
channels in the actual sample (red arrow), which we denote by
Noc; (iv) one then determines the energy scaling factor s ′ by
imposing that the number of open channels Ñoc in the rescaled
system equals Noc (white arrows); (v) the rescaled parameters
(denoted by a tilde) are used to determine the transmission
coefficients of the rescaled system and therefore the nonlocal
resistance R21,34.

Note that the rescaled magnetic field B̃ is given by B̃ = s2B

to make sure that the flux is invariant under geometric scaling.

III. NUMERICAL RESULTS FOR TMF

In this section we present numerical results based on the
scaling procedure described above. We have decided to focus
our attention on TMF.

We consider the 5-terminal setup in Figs. 1(a) and 1(b). For
an armchair lead of width w = 0.37 μm and a Fermi energy
εF = 66.86 meV, we find a numberNoc of open channels given
by Noc = 27. This should be compared with the approximate
formula

Noc � int

[
(2w + a0)

2εF

hvF

]
, (5)

which was derived by using the Dirac equation with appro-
priate boundary conditions [26]. For the parameters reported
above, Eq. (5) yields Noc = 26. The difference is due to
residual finite-size effects that are not captured by Eq. (5).

To prove the effectiveness of the scaling procedure, we have
compared the transmission T32 and the nonlocal resistance
R21,34 at zero temperature for increasing values of the scaling
parameter s in Fig. 3. The transmission T32, plotted in Fig. 3(a)
as a function of the magnetic field B, relative to electrons
injected from lead 2 and arriving in lead 3, is the most relevant
since it determines the main peak in the nonlocal resistance
(see Sec. IV).

First, we notice that all curves in Fig. 3(a) do not show
important quantitative differences up to s � 34, at least for
fields as large as 0.3 T. Similarly, Fig. 3(b) shows that the
nonlocal resistance R21,34 is only weakly sensitive to the
scaling factor s. We also checked that the scaling procedure
works well when the graphene Hall bar is an armchair ribbon,
so that the vertical leads have zigzag edges. In Fig. 3(c) we
compare the nonlocal resistances R21,34 of armchair (solid
line) and zigzag (dashed line) ribbons using approximatively
the same geometric scaling factor s � 29.5. Note that the two
curves have the same behavior, the main focusing peak being
virtually identical.
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FIG. 3. (a) and (b) Numerical results for the transmission T32—
panel (a)—and the nonlocal resistance R21,34—panel (b)—are plotted
versus the applied magnetic field B (in teslas). Different curves
refer to different values of the geometric scaling factor s in the 5-
terminal setup sketched in Figs. 1(a) and 1(b). The scaling procedure
works well for s � 34. Numerical data presented in this figure
were obtained for the following choice of parameters: W = 2 μm,
L1 = L2 = 1.5 μm, w = 0.37 μm, d = 1 μm, εF = 66.86 meV, and
Noc = 27. (c) Nonlocal resistance R21,34 versus B for an armchair
(solid line, scaling factor s = 29.50, number of open channels in lead
2: Noc = 25) and a zigzag (dashed line, scaling factor s = 29.49,
number of open channels in lead 2: Noc = 27) ribbon. The energy
scaling factor is s ′ = 21.06 in both cases.

In Fig. 4 we also present how the energy scaling factor
s ′ depends on s for different values of the Fermi energy εF.
As expected, the plot shows that s ′ tends to deviate from s

for large values of s and more rapidly for large values of εF.
We note that the functional dependence of s ′ on s is crucial.
It makes sure that the position of the focusing peaks in the
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FIG. 4. Trend of the ratio s ′/s versus the geometric scale factor
s for three different values of the unscaled Fermi energy εF. For the
largest Fermi energy (εF = 100 meV), s = 36.68 is the maximum
value for which the scaling procedure can be applied (i.e., the number
of channels in the vertical leads can be kept fixed).

nonlocal resistance R21,34—see Sec. IV—is insensitive to the
geometric scaling factor s. Imposing that the rescaled system
and the original one have the same number of open channels
in the injection lead—Ñoc = Noc through the parameter s ′—
guarantees that the rescaled-system band structure faithfully
reflects the original one.

IV. DETAILED ANALYSIS OF THE NUMERICAL RESULTS

In this section we analyze the origin of the different peaks
exhibited by the nonlocal resistance as a function of B and the
origin of the sign of R21,34 at zero magnetic field.

For the sake of simplicity, we consider the 4-terminal setup
in Figs. 1(c) and 1(d), where the zero-temperature nonlocal
resistance is given by the following analytical expression
[21,22]:

R21,34 = h

2e2

T32T41 − T42T31

D
, (6)

where

D ≡ (α11α22 − α12α21)S, (7)

S ≡ T13 + T14 + T23 + T24 = T31 + T41 + T32 + T42, (8)

α11 = 2e2

h

[
T1 − (T13 + T14)(T41 + T31)

S

]
, (9)

α12 = −2e2

h

T14T23 − T13T24

S
, (10)

α21 = −2e2

h

T32T41 − T42T31

S
, (11)

α22 = 2e2

h

[
T4 − (T14 + T24)(T41 + T42)

S

]
, (12)
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and

Ti =
∑
j �=i

Tij . (13)

We start by discussing the behavior of the different trans-
mission coefficients Tij as functions of the applied magnetic
field in terms of a semiclassical picture and then see how they
combine to give rise to the nonlocal resistance R21,34 with the
aid of Eq. (6).

Within a simple classical picture [16,27], which will be
corroborated below in Sec. IV A, electrons entering the Hall
bar from a given electrode undergo a cyclotron motion
with radius rc = m∗vF/(eB) and specular reflections at the
boundaries of the Hall bar. In graphene, the cyclotron radius
for weak magnetic fields can be written as

rc = εF

eBvF
, (14)

where m∗ = �kF/vF is the effective electron mass in doped
graphene [11,28].

We denote by B
(2N)
32 the field values for which the center-

to-center distance d between contacts 2 and 3 is an integer
multiple of 2rc, i.e.,

d = 2N
εF

eB
(2N)
32 vF

(15)

with N = 1,2 corresponding to the trajectories shown in
Fig. 5(a). The transmission coefficients T41 (solid curve), T32

(dotted curve), and T42 (dashed curve) are plotted, as functions
of B, in Fig. 5(b).

Regarding the transmission probability T32, Fig. 5(b) shows
that for B � B

(2)
32 (marked by a blue vertical line) T32

exhibits a relative maximum, which stems from the “direct”
trajectory with no bounces between leads 2 and 3 [blue line
in Fig. 5(a)]. On the other hand, for magnetic fields larger
than B = B

(4)
32 (marked by a green vertical line), T32 exhibits

a series of downward jumps—see Fig. 5(c)—a prelude to the
eventual onset of the integer quantum Hall effect. Within the
semiclassical interpretation, one expects that electrons exiting
lead 2 can either reach lead 3 or be reflected back to lead
2. Therefore, T32 slowly decreases from its maximum value
according to T32 � Noc − T22, where Noc is the number of
open channels in lead 2. Indeed, for a fixed value of εF, the
reflection coefficient T22 for lead 2 increases with increasing B

(not shown). The slow power-law decay of T32 for B > B
(4)
32 is

due to trajectories with one or more bounces (skipping orbits)
between leads 2 and 3. The trajectory with one bounce is
depicted by a green line in Fig. 5(a). T32 decreases in steps till
its lowest value, T32 = 1, which is reached at fields above 4 T.
In this case, leads 2 and 3 are connected by a single quantum
Hall edge state. Note, finally, that T32 goes to zero for large
enough negative B, since all electrons injected from lead 2 are
in this case diverted by the Lorentz force towards lead 1.

The transmission coefficient T42 is characterized by a dip
occurring at B = B

(2)
32 , stemming from the fact that electrons

injected from lead 2 tend to be collected mostly by lead 3 at the
value of B that corresponds to the cyclotron orbit connecting
leads 2 and 3. We note that T42 goes to zero at negative values
of B—the corresponding trajectories being deflected towards
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FIG. 5. (a) Classical electron trajectories for two values, B (2)
32 and

B
(4)
32 , of the perpendicular magnetic field. (b) Numerical results for

the transmission coefficients T41 (solid line), T32 (dotted line), and
T42 (dashed-dotted line) are plotted versus the applied magnetic field
B (in teslas) for the 4-terminal setup in Figs. 1(c) and 1(d), with
s = 10.23. We have plotted only three transmission coefficients since
T31(B) = T42(B). This is because the system depicted in Fig. 1(d)
is symmetric under reflection about the dotted red line in Fig. 1(d).
(c) Numerical results for the transmission coefficient T32 are plotted
versus B for the 4-terminal setup in Figs. 1(c) and 1(d), with s =
20.05. In the inset, T32 is plotted for B � 0.4 T, clearly showing the
transition to the integer quantum Hall regime (for the largest values
of B considered, T32 = 1). Parameters as in Fig. 3.

lead 1—and at large positive values of B—such that the small
radius of the skipping orbits forces electrons injected from
lead 2 to end up in the same lead. This fact together with the
dip occurring at B = B

(2)
32 gives rise to two broad peaks in T42

that we denote by B
(1)
42 and B

(3)
42 .

Notice furthermore that T31(B) = T42(B) since the system
sketched in Fig. 1(d) is symmetric under reflection about the
dotted red line in Fig. 1(d) and that T41 is mainly characterized
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FIG. 6. Numerically calculated nonlocal resistance R21,34 (solid
line) versus magnetic field B (in teslas) for the 4-terminal setup
in Figs. 1(c) and 1(d). The dotted and dash-dotted lines represent,
respectively, the two terms T32T41/D and T42T31/D entering the
mathematical expression of the nonlocal resistance R21,34—see
Eq. (6). Parameters as in Fig. 3.

by a single large peak around B = 0, since electrons injected
from lead 1 have higher probability to reach lead 4 for small
fields. The slight deviation of the maximum of T41 from B = 0
towards a negative value can be attributed to the fact that leads
2 and 3, positioned on the bottom of the Hall bar, take away
electrons at small and positive values of B at the expense
of T41.

As a result of Eq. (6), which expresses the nonlocal
resistance R21,34 in terms of the transmission probabilities,
the two peaks in Fig. 6 (where R21,34 is plotted as a function
of the magnetic field) at B � B

(2)
32 and B � B

(4)
32 stem from

the two features in T32 discussed above and are therefore
genuine focusing peaks of the nonlocal resistance R21,34. On
the contrary, the origin of the two deep negative minima in
R21,34 is related to the two broad peaks in T42.

We finally stress that the positivity of R21,34 at B ≈ 0 is due
to the large value—see Fig. 5(b)—of T41 for small (positive
and negative) values of B, which originates from the fact that
leads 1 and 4 are much wider than leads 2 and 3. Note, however,
that an additional contact—such as terminal 5 in Figs. 1(a) and
1(b)—present on the upper side of the Hall bar can serve as
an electron drain. This may significantly affect the discussed
picture at B ≈ 0 assuming that W is much smaller than the
mean-free path �, so that even negative values of R21,34 can
be found, depending on the relative size and position of the
extra contact. However, if W is larger than �, negative values
of the nonlocal resistance R21,34 (termed “vicinity” resistance
in Ref. [4]) in zero magnetic field cannot be explained within
a single-particle ballistic approach [4]. As we will see below
in Sec. IV E, elastic disorder at the edges is not able to change
the clean-limit picture. Negative values of R21,34 (which occur
only at sufficiently large temperatures) have been attributed to
hydrodynamic viscous flow [4,5].

To further emphasize the relation between transmission co-
efficients and nonlocal resistance, in Fig. 6 we plot separately
the two terms appearing in Eq. (6) along with R21,34. The plot
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FIG. 7. (a) Numerically calculated transmission coefficients T41

(solid line), T32 (dotted line), T42 (dashed line), and T31 (dashed-dotted
line) are plotted versus the applied magnetic field B (in teslas) for
the 4-terminal setup in Figs. 1(e) and 1(f), with s = 10.23. Note
that T41(−B) = T32(B) because the system depicted in Fig. 1(f) has
an inversion-symmetry center, marked by a red cross in Fig. 1(f).
(b) Nonlocal resistance R21,34 relative to the transmissions in panel
(a). Parameters as in Fig. 3.

makes clear that the term T32T41/D determines the occurrence
of the positive peaks, while the term T42T31/D is responsible
for the appearance of the two negative dips. This interpretation
of the negative dips is in agreement with earlier theoretical
work [27], based on a semiclassical billiard model, where
TMF in a geometry identical to that in Figs. 1(c) and 1(d) was
discussed.

We now turn to an analysis of nonlocal ballistic magneto-
transport in the 4-terminal setup sketched in Figs. 1(e) and 1(f),
with the two vertical leads placed on opposite sides of the
Hall bar. The relevant transmission coefficients are plotted
in Fig. 7(a) as functions of the magnetic field. Note that T31

(dash-dotted line) and T42 (dashed line) respect the following
symmetry: T31(B) = T31(−B) and T42(B) = T42(−B). Also,
we note that T32(B) = T41(−B). This is because the system
depicted in Fig. 1(f) has an inversion-symmetry center, marked
by a red cross in Fig. 1(f). The transmission coefficient between
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the two widest electrodes of the system, T31, is however much
larger than T42 and shows a smooth bell-like shape, which
decreases slowly with increasing magnitude of B. On the
contrary, T42 shows spiky features (not visible on the scale of
the plot), possibly arising from quantum interference effects,
and goes rapidly to zero at a value of the field (|B| � B(0)) that
yields a cyclotron radius equal to W/2, i.e.,

B(0) = 2εF

eWvF
. (16)

This is due to the fact that electrons injected from lead 2 cannot
reach lead 4 for B � ±B(0), being deflected towards lead 3
(lead 1). This is confirmed by the behavior of T32 (dotted line),
which increases for increasing B, reaching a constant value
for B � B(0), close to the number of open channels in lead
2 (Noc = 27). Notice also that T32 is negligible only when
B � −B(0). The nonlocal resistance R21,34 can be calculated
using Eq. (6). Numerical results are reported in Fig. 7(b) as a
function of B. It turns out that R21,34 resembles very closely the
shape of T42, but with a negative sign since R21,34 is dominated
by the term T42T31/D at all values of B. It is worthwhile
noticing that in our simulations R21,34 is never positive since for
B � −B(0), when T42 becomes negligible, T32 gets negligible
too.

A. Classical trajectory model

To further investigate the classical nature of the main
features in the nonlocal resistance R21,34, we have developed
a model based on fully classical trajectories, which allows us
to calculate the transmission probabilities between electrodes.

The model is detailed as follows:
(1) We assume that electrons move in the Hall bar

according to the classical equations of a charged particle in
a transverse magnetic field.

(2) In a given electrode, electrons are emitted from Mp

equidistant points.
(3) From each such point, Me electrons are emitted with

an isotropic distribution of angles with a fixed magnitude of
velocity (equal to the Fermi velocity vF).

(4) The number of electrons Mij (with i,j = 1,2,3,4)
arriving in electrode i when emitted from electrode j is
determined by the classical equations (notice that Mij �
MpMe).

(5) The transmission probabilities T ij are defined by
normalizing the coefficients Mij as follows:

T ij = αiβjMij , (17)

where αi and βj are numerical coefficients determined by
imposing the following conditions:∑

i

T ij = Nj (18)

and ∑
j

T ij = Ni. (19)

Here, Ni is the number of open channels in lead i as defined
in the tight-binding quantum model; see Sec. II.

−0.1 0.0 0.1 0.2 0.3 0.4
B [Tesla]

−100

−50

0

50

100

150

200

R
2
1
,3

4
[Ω

]

CTM

FIG. 8. Numerically calculated nonlocal resistance R21,34 for the
4-terminal setup in Figs. 1(c) and 1(d) as a function of B calculated
using the classical trajectory model (CTM; red dashed line). The black
line is the result obtained with the quantum tight-binding model (same
curve plotted in Fig. 6). We take the following parameters: Me = 100
and Mp = 500. Sample parameters are the same as in Fig. 3.

(6) The nonlocal resistance R21,34 is finally calculated
substituting the transmission probabilities T ij in Eq. (6).

Notice that the conditions (18) and (19) express particle
current conservation within the scattering approach used in
the quantum model of Sec. II. In Fig. 8 we plot the nonlocal
resistance obtained with this method as a function of B (red
dashed line), along with the result obtained with the quantum
model of Sec. II (black solid line). Figure 8 shows that the main
features of R21,34, in particular the two peaks for B > 0 and
the two negative minima, are well reproduced by the classical
trajectory model. This result confirms the classical nature of
the main features of R21,34, phase coherence playing a little
role.

B. Carrier density dependence

So far we have seen that the main features of the nonlocal
resistance can be explained on a classical level. This is due to
the fact that the value of the Fermi energy used for the plot in
Fig. 6, εF = 66.86 meV, corresponds to the relatively highly
doped graphene sheet used in the measurements (see below).
One expects, however, that quantum effects become more
important by decreasing the carrier density (i.e., the Fermi
energy), thus moving to a regime where a few electronic modes
are involved in transport. Upon decreasing density, however,
also disorder becomes important, which we here have decided
to neglect.

Figure 9 shows the evolution of the nonlocal resistance
versus magnetic field, at zero temperature, as the Fermi
energy is decreased. Starting from Fig. 9(a), relative to
εF = 66.86 meV, one observes that the value of the resistance
increases while the focusing peaks “degrade,” but still persist
for εF = 27.74 meV [Fig. 9(b)] and for εF = 13.37 meV
[Fig. 9(c)], with peak positions shifting in agreement with
Eq. (14). By further lowering εF, Fig. 9(d) shows that for
εF = 2.97 meV the nonlocal resistance presents a completely
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FIG. 9. Numerically calculated nonlocal resistance R21,34 versus
applied magnetic field B at different values of the Fermi energy [(a)
εF = 66.86 meV, (b) εF = 27.74 meV, (c) εF = 13.37 meV, and (d)
εF = 2.97 meV] for the 4-terminal setup in Figs. 1(c) and 1(d). The
scaling factor used for the calculations is s = 10.23, while the sample
parameters are the same as in Fig. 3. The number of open channels in
the leads depends on εF. In leads 2 and 3 the number of open channels
is (a) Noc = 27, (b) Noc = 11, (c) Noc = 5, and (d) Noc = 1. Notice
that the scales (in both the resistance and field axes) are different in the
various panels. The focusing peaks remain located where predicted
by the classical analysis in panels (a), (b), and (c).

different structure which cannot be understood in classical
terms. Notice, in particular, that in this latter case the number
of open channels in leads 2 and 3 (N2 and N3), the narrowest
in the system, is equal to 1. Since focusing peaks are still
distinguishable when N2 = N3 = 5—εF = 13.37 meV as in
Fig. 9(c)—we can conclude that the quantum regime sets in
when the number of open channels is close to 1. A complete
analysis of the quantum regime and the interplay between
electron-hole puddles and quantum interference, though, is
beyond the scope of the present article.

C. Thermal smearing of the Fermi surface

In this section we analyze the impact of the smearing of the
Fermi surface due to finite-temperature effects on TMF.

Within the scattering approach in the linear-response
regime, the effect of a finite temperature T is taken into account
by replacing in Eqs. (6)–(12) the transmissions probabilities
Tij , evaluated at the Fermi energy, with the following energy
integrals:

〈T 〉ij =
∫ ∞

−∞
Tij (E)

(
−∂f (E)

∂E

)
dE, (20)

where f (E) = {exp[E/(kBT )] + 1}−1 is the Fermi distribu-
tion function at temperature T .

Plots of the nonlocal resistance R21,34 as a function of the
magnetic field B and for different values of T are reported
in Fig. 10. As expected, the nonlocal resistance becomes
smoother for increasing values of T and the height of the
focusing peaks decreases as T increases. Notice, however,
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FIG. 10. Numerically calculated nonlocal resistance R21,34 ver-
sus applied magnetic field B at different temperatures T =
0, 25, 50, 75, 100, 125, 150 K for the system depicted in Figs. 1(c)
and 1(d). The scaling factor used for the simulations is s = 20.05
and all other parameters are the same as for Fig. 3. Note that the
temperature needs to be rescaled with the energy scaling factor
s ′. Data in this plot are just meant to give the reader an idea of
the magnitude of Fermi-surface smearing effects on TMF signals.
As shown in Ref. [4], nonlocal electrical signals at temperatures
T � Thydro, defined in Sec. I, are sensitive to electron-electron
interactions, which are not included in the numerical calculations
presented in this work.

that the first peak for positive values of B, which is not related
to focusing, is hardly affected by temperature. This behavior
can be understood on classical terms from the fact that, at
finite temperatures, electrons contributing to 〈T 〉ij are emitted
at different energies, according to Eq. (20), and thus move
at different cyclotron radii. More precisely, the values of the
cyclotron radii will be distributed around the zero-temperature
value [Eq. (14)] with a width proportional to temperature and
given by

δrc = kBT

eBvF
. (21)

In other words, with increasing temperature a larger range of
values for the cyclotron radius contributes to all transmissions
〈T 〉ij so that they become nonvanishing on a larger interval
of values of B. As a result, the focusing effect is blurred. The
nonlocal resistance diminishes in magnitude at all fields with
increasing temperature and remains finite for larger values
of B.

Note that in Fig. 10 the peaks occurring at B = B
(1)
42 and

B = B
(2)
32 remain distinguishable at all temperatures, although

the decrease of their height is nearly exponential with T .
The peaks occurring at B = B

(3)
42 and B = B

(4)
32 , however, are

more strongly affected, eventually disappearing for the largest
temperatures considered.

In this section we have analyzed only Fermi-surface
smearing effects induced by a finite temperature. In reality,
also inelastic collisions between electrons and agents external
to the 2D electron system (e.g., acoustic phonons) play a
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role in determining the magnitude of the nonlocal signal
in a TMF experiment. Our results in Fig. 10 clearly show
that Fermi-surface smearing effects play a non-negligible
role and must be taken into account in any serious com-
parison between microscopic theoretical predictions and
experiments.

D. Experimental data versus numerical calculations

We have carried out transport experiments on Hall bar
devices with two current and four potential probes (two
potential probes on each side). To achieve mean-free paths
� larger than the sample size, graphene was encapsulated in
hexagonal boron nitride [1]. Fabrication details can be found
in the Supplemental Material of Ref. [4].

The characteristic geometrical details of our devices (Hall
bar width W , distance d between current and potential probes,
and width w of the probes) are the same as in the numerical
calculations discussed in Sec. III. A standard low-frequency
ac technique was employed for measurements of the B-field
dependence of the 4-probe resistance in a commercial cryostat
with a superconducting magnet.

Typical TMF experimental traces are shown in Fig. 11.
It compares the measurements with our Landauer-Büttiker
calculations. In order to do so, we use the parameters reported
in the caption of Fig. 11. As for the scaling factor, we use
s = 20.05, while the value of the rescaled Fermi energy has
been slightly adjusted, with respect to the value ε̃F dictated
by the scaling procedure, in order to fit the position of the
main peak in the nonlocal resistance. The value used for the
numerical calculations is ε̃′

F = 1.37 eV, whereas the value
obtained from the scaling procedure is ε̃F = 1.31 eV, thus
differing only by less than 5%. This adjustment is justified
by the fact that the value of the Fermi energy εF—see input
box in Fig. 2—is inferred from the experimental value of the
carrier density n, assuming the usual massless Dirac fermion
relation εF = �vF

√
π |n|, which is only approximately valid

for the vertical lead of width w = 0.37 μm that is used in
our algorithm to calculate the number of open channels Noc.
Such small discrepancies, �5%, may stem from a variety
of reasons including the nature of edges (zigzag, armchair,
or a combination), electron-hole asymmetry [29], quantum
confinement, etc. Note, moreover, that we allow only ε̃F as
a “fit” parameter, while taking as the hopping energy value
(see discussion in Sec. II) its bare noninteracting tight-binding
value t0.

In Fig. 11 the measured nonlocal resistance R21,34 (empty
circles) as a function of B is plotted along with the numerical
result (solid line) for the 4-terminal setups in Figs. 1(c)
and 1(d), panel (a), and in Figs. 1(e) and 1(f), panel (b).
The comparison reveals good agreement such that the main
features of R21,34 are reproduced as well as its absolute value.
In particular, the main peak in Fig. 11(a) is nearly perfectly
reproduced, while the right peak is in the correct position,
although exhibiting a smaller height. The position and shape
of the left dip is also well captured, but not its amplitude.
Regarding Fig. 11(b), our calculations reproduce the presence
of a single minimum at zero field, but with a larger amplitude
and with no additional oscillations. These discrepancies may
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FIG. 11. Comparison between experimental results (empty cir-
cles) and results from numerical calculations (solid line) for the
nonlocal resistance R21,34 at T = 25 K. Panel (a) refers to the
setup in Fig. 1(c) while panel (b) refers to the setup in Fig. 1(e).
Sample parameters are W = 2 μm, L1 = 1.5 μm, L2 = 3.5 μm,
w = 0.37 μm, d = 1 μm, and a carrier density n = 0.4 × 1012 cm−2.

be imputed to the actual detailed structure of the sample,
disorder, and other nonidealities.

E. The role of nonideal edges

In this section we discuss the consequences of possible
imperfections present at the edges of the Hall bar. We focus
on their impact on the nonlocal resistance R21,34 at B = 0.
Our aim here is to show that the conclusions drawn above in
Sec. IV on the positivity of R21,34 at B = 0 are robust against
structural disorder at the edges.

Edge imperfections are implemented by carving indepen-
dently the two horizontal edges using an algorithm which,
at random, adds or removes two rows of atoms from each
sublattice (taking care of avoiding dangling bonds) of length
corresponding to a number of sites MR, which is also randomly
chosen in the range [MR,min,MR,max]. An example of the
resulting nanoribbon is presented in Fig. 12(a). A constraint is
imposed on the maximum nanoribbon width, which is set by
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FIG. 12. Numerical results for the nonlocal resistance in zero
magnetic field and for nonideal edges. (a) Example of a graphene
ribbon with nonideal edges, with MR,min = 2 and MR,max = 6.
(b) Histogram of the nonlocal resistances at zero magnetic field
(B = 0) obtained for 100 different random configurations. The
relative mean value is R21,34 = 18.50 	 with standard deviation equal
to 
R21,34 = 4.65 	. (c) Mean value and standard deviation as a
function of the number of random configurations. The scaling factor
used for the simulations is s = 20.05, MR,min = 2 and MR,max = 6,
and all other parameters are the same as in Fig. 3.

W . The histogram in Fig. 12(b) shows the values obtained for
the nonlocal resistance of 100 different random configurations
for MR,min = 2 and MR,max = 6. The mean value turns out to be
R21,34 = 18.50 	 with standard deviation equal to 
R21,34 =
4.65 	 (for comparison, recall that for the corresponding ideal

nanoribbon one finds R21,34 = 20.69 	, well within a standard
deviation). Figure 12(c), on the other hand, shows the evolution
of the mean value and standard deviation of nonlocal resistance
with increasing number of random configurations, proving that
convergence is obtained already with 60 configurations. We
additionally mention that mean value and standard deviation
of R21,34 do not significantly change if MR varies in a larger
range of values. Namely, for MR,min = 4 and MR,max = 10 we
find R21,34 = 19.72 	 and 
R21,34 = 6.49 	.

V. CONCLUSIONS

In this report we have proposed a scaling procedure, based
on the tight-binding approach and Landauer-Büttiker theory,
for transport calculations in ultraclean graphene devices of
realistic size.

The procedure is based on the exact band structure of
graphene ribbons, and uses the Fermi energy as key scaling
parameter. We have demonstrated the effectiveness of the
procedure by calculating the nonlocal resistance of a realistic
5-terminal setup in the presence of a magnetic field. In such
a transverse magnetic focusing setup, we have compared
the nonlocal resistance as a function of magnetic field for
increasing values of the scaling factor, proving that this
approach is particularly suitable for micron-sized ribbons and
in the presence of many electrodes.

The case of transverse magnetic focusing has been further
analyzed in realistic 4-terminal setups, where the structure of
the nonlocal resistance as a function of magnetic field has been
explained in terms of classical cyclotron orbits. Moreover, we
have addressed the dependence of the nonlocal resistance on
the carrier density and temperature and studied the impact of
disorder at the edges of the ribbon.

Finally, we have compared the results of our scaling
approach with experimental data in high-quality encapsulated
samples finding good agreement. The main features, as well
as the absolute value of the nonlocal resistance, are well
reproduced using the actual experimental parameters.

In the future, we plan to investigate more complicated
setups where finite-size effects dominate transport. Also, the
performance of the present scaling approach in the ballistic-
to-diffusive crossover due to randomly distributed impurities
remains to be understood.

ACKNOWLEDGMENTS

This work was supported by the EU Horizon 2020 Re-
search and Innovation Programme under Grant Agreement
No. 696656 “GrapheneCore1,” the EU project “ThermiQ,”
the EU project COST Action MP1209 “Thermodynamics in
the quantum regime,” the EU project COST Action MP1201
“NanoSC,” and the SNS internal project “Thermoelectricity in
nanodevices.” Free software (www.gnu.org , www.python.org)
was used.

[1] A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell,
R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K.
Watanabe, T. Taniguchi, and A. K. Geim, Nano Lett. 11, 2396
(2011).

[2] L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T.
Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo,
P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, Science 342,
614 (2013).

115441-10

http://www.gnu.org
http://www.python.org
http://dx.doi.org/10.1021/nl200758b
http://dx.doi.org/10.1021/nl200758b
http://dx.doi.org/10.1021/nl200758b
http://dx.doi.org/10.1021/nl200758b
http://dx.doi.org/10.1126/science.1244358
http://dx.doi.org/10.1126/science.1244358
http://dx.doi.org/10.1126/science.1244358
http://dx.doi.org/10.1126/science.1244358


SCALING APPROACH TO TIGHT-BINDING TRANSPORT . . . PHYSICAL REVIEW B 94, 115441 (2016)

[3] T. Taychatanapat, K. Watanabe, T. Taniguchi, and P. Jarillo-
Herrero, Nat. Phys. 9, 225 (2013).

[4] D. A. Bandurin, I. Torre, R. K. Kumar, M. Ben Shalom, A.
Tomadin, A. Principi, G. H. Auton, E. Khestanova, K. S.
Novoselov, I. V. Grigorieva, L. A. Ponomarenko, A. K. Geim,
and M. Polini, Science 351, 1055 (2016).

[5] I. Torre, A. Tomadin, A. K. Geim, and M. Polini, Phys. Rev. B
92, 165433 (2015).

[6] S. Yuan, H. De Raedt, and M. I. Katsnelson, Phys. Rev. B 82,
115448 (2010).

[7] S. Roche, N. Leconte, F. Ortmanna, A. Lherbier, D. Soriano,
and J.-C. Charlier, Solid. State Commun. 152, 1404 (2012).
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