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Interplay between anisotropy and spatial dispersion in metamaterial waveguides
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We analyze the spectrum of waveguide modes of an arbitrary uniaxial anisotropic metamaterial slab with
nonlocal electromagnetic response whose permittivity tensor could be described within the Drude approximation.
Spatial dispersion was introduced within the hydrodynamical model. By considering both anisotropy and spatial
dispersion as perturbations, we distinguish their effect on the spectrum of the slab and analyze lifting of the
degeneracy of eigenmodes at plasma frequency in detail. Spatial dispersion is shown to result in a break of the
singularity in the density of optical states in the hyperbolic regime and in suppression of negative dispersion
induced by anisotropy. We demonstrate that the interplay of spatial dispersion and anisotropy can bring light to
a complete stop at certain frequencies.
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I. INTRODUCTION

The electromagnetic response of metamaterials in the
simplest case is described by an effective permittivity and
permeability, ε and μ. Spatial inhomogeneity and the retar-
dation effect result in dependence of the effective parameters
on the frequency ω and the wave vector k of the incident
wave. Anisotropic, chiral, and bianisotropic metamaterials are
described by tensorial effective parameters ε̂(ω,k) and μ̂(ω,k).
The specific form of ε̂(ω,k) and μ̂(ω,k) depends on the design
of metamaterials. However, in the case of the long-wavelength
limit (|k|L � 1, where L is the characteristic period of the
structure), the local electromagnetic response can be often
described in the framework of the Drude approach [1–11],

ε(ω) = ε∞

[
1 − �2

ω(ω + iγ )

]
. (1)

Here, ε∞ is the permittivity of a host material, γ is the
damping parameter, and � is the resonance frequency (plasma
frequency) of a metamaterial. In isotropic metamaterials,
the resonance frequency � is degenerated [4,12]. Structural
anisotropy, i.e., the anisotropy of meta-atoms or the lattice of a
metamaterial, can lift the degeneracy and dramatically change
its properties. For example, the anisotropy of effective masses
of charge carriers in conducting layers of periodic metal-
dielectric structures results in the appearance of additional
allowed energy bands for photons [13]. The hyperbolic regime
of metamaterial characterized by a singular density of optical
states can be reached for media with anisotropic plasma
frequency [7]. The structural anisotropy can be simply tailored
at the fabrication stage.

Along with a structural anisotropy, it is possible to distin-
guish the anisotropy induced by spatial dispersion when an
incident electromagnetic wave creates a preferential direction
parallel to the wave vector k, which plays the role of an optical
axis [14,15]. Usually, in natural media, spatial dispersion
is essential only in the vicinity of resonances (interband
transitions, exciton absorption, plasmon excitation, etc.) and
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can be neglected far from them [16,17]. In contrast to that,
spatial dispersion in artificial media can be essential even in
the long-wavelength limit [18].

In the present paper, we analyze and compare the effects
of the spatial dispersion and structural anisotropy on the
spectrum of a metamaterial slab. We describe the dielectric
function of the slab within the Drude approximation. It is a
quite general approach, which is being used for many types
of metamaterials from split-ring resonator based structures
to wire and multilayer media [4,6,7,9,10,19]. Anisotropy
of the slab is introduced through the anisotropy of the
plasma frequency. Spatial dispersion is considered within
the hydrodynamical approximation. In order to distinguish
the effects of spatial dispersion and structural anisotropy, we
consider them as perturbations [20]. In contrast to the previous
works related to the nonlocal response of metamaterials, we
focus on the interplay between the anisotropy and the spatial
dispersion [21–25]. Particularly, we show that such interplay
can lead light to a complete stop at certain frequencies.

The paper is organized as follows. In Sec. II A, we briefly
discuss the spectrum of a bulk isotropic metamaterial. In
Secs. II B and II C, we consistently analyze spectra of isotropic
and anisotropic metamaterial slabs, neglecting any spatial
dispersion effects. In Secs. II D and II E, we study the effects of
nonlocal electromagnetic response on the waveguide spectra
of isotropic and anisotropic metamaterial slabs, respectively.
In Sec. III, we analyze the case of a finite dielectric contrast
between the cladding layers and the slab. In Sec. IV, we discuss
the figure of merit and dissipation spectra. Finally, in Sec.V,
we summarize our major results.

II. GUIDED MODES DISPERSION

A. Bulk metamaterial

Before turning to the problem of a metamaterial slab, let us
briefly consider the eigenmode spectrum of a bulk isotropic
metamaterial with an arbitrary scalar permittivity ε(ω,k).

Spatial and time Fourier transform of Maxwell’s equation
∇ · D = 0 in the isotropic case yields

ε(ω,k)[k · E(ω,k)] = 0. (2)
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Equation (2) has two solutions: (i) transversal electromagnetic
waves satisfying the condition E⊥k and (ii) longitudinal waves
satisfying the equation ε(ω,k) = 0 [26]. The longitudinal
waves are pure electric (H = 0) [14]. In plasma, metal or
semiconductor, they represent oscillations of charge carrier
density and are often called bulk plasma waves or Langmuir
waves [27,28]. In a medium with local electromagnetic
response, the frequency of Langmuir waves does not depend
on both the direction and absolute value of the wave vector
k. Thus, Langmuir waves form an infinite set of degenerated
modes with zero group velocity.

Spatial dispersion results in a dependence of the frequency
of the longitudinal wave on the absolute value of k, but not on
its direction. So, the degeneracy is lifted only partially. Total
lift of the degeneracy demands the existence of an additional
preferential direction not parallel to k. In a bulk medium, it can
be induced, for example, by an external magnetic field or by
anisotropy of the effective mass of carriers [8,29]. In the case
of a slab, the preferential direction is naturally determined by
the normal to the slab’s interfaces.

B. Isotropic slab

Let us consider a metamaterial slab (with thickness a)
with local isotropic electromagnetic response described in
the framework of the Drude approach [see Eq. (1)]. The
spectrum of such a slab consists of three types of eigenmodes:
(i) bulk waveguide modes formed due to total reflection of
electromagnetic waves from the slab boundaries, (ii) two
surface modes formed due to constructive and destructive
interference of the surface waves localized at the slab’s
boundaries, and (iii) Langmuir modes formed due to reflection
of pure electric longitudinal waves from the slab’s boundaries.
The properties of the bulk and surface modes are well
documented (see, e.g., Refs. [30–34]), so we mainly focus
on the properties of the Langmuir ones. The latter are TM
polarized only and, therefore, have two components of electric
field satisfying the equation

Ex = − i

kz

∂Ez

∂x
. (3)

Here, kz is the lateral component of the wave vector. As in
infinite metamaterial, the Langmuir modes do not satisfy the
Helmholtz equation, being at the same time a solution of
the Maxwell’s equation divD = 0. Straightforward analysis
of the Maxwell’s equations and matching conditions at the
boundaries shows that the electric field of the Langmuir modes
is completely confined in the slab and does not penetrate into
the cladding layers independently of their permittivity. The
frequency of the Langmuir modes does not depend on kz and
coincides with plasma frequency of the slab � as in a bulk
metamaterial. Therefore, in an isotropic metamaterial slab,
Langmuir waves represent a degenerated set of eigenmodes
with zero group velocity. Introducing the losses (γ �= 0) into
the slab does lift the degeneracy, making the frequency a
complex value ω ≈ � − iγ /2.

An example of the mode structure of an isotropic metama-
terial slab is shown in Fig. 2(a). For the sake of simplicity,
the cladding layers are assumed to be perfectly conducting

FIG. 1. Metamaterial slab with plasma core and arbitrary
cladding layers. Guided modes propagate along the z axis.

[31,35]. The case of a finite dielectric contrast between the
cladding layers and the slab is considered further in Sec. II E.

C. Anisotropic slab

Let us consider a metamaterial slab with uniaxial
anisotropic permittivity with the optical axis parallel to the
x direction (see Fig. 1). The permittivity tensor in this case is
given by

ε̂s(ω) =
⎛
⎝ε‖(ω) 0 0

0 ε⊥(ω) 0
0 0 ε⊥(ω)

⎞
⎠. (4)

Here, indices ‖ and ⊥ correspond to directions along and
across the optical axis. We suppose that the tensor components
have Drude dispersion [see Eq. (1)] with different plasma
frequencies �⊥ and �‖. Parameter ε∞ is supposed to be
isotropic.

The Helmholtz equation for the TM-polarized modes inside
the slab is reduced to the following:

ε‖
∂2Ex

∂x2
+ ε⊥

(
ε‖

ω2

c2
− k2

z

)
Ex = 0. (5)

Analytical expression for the dispersion of the Langmuir
and bulk waveguide modes can be straightforwardly obtained
from Eq. (5) in the case of a perfect electric conductor
boundary condition,

k2
z = ε‖

(
ω2

c2
− π2n2

a2ε⊥

)
. (6)

Here, n = 0,1,2, . . . is an integer mode number. Figure 2(b)
shows the dispersion of Langmuir and bulk waveguide modes
for the case �⊥ > �‖. One can see that the degeneracy for
the Langmuir modes is lifted. Their spectrum is sandwiched
between plasma frequencies �⊥ and �‖, where ε‖ε⊥ < 0 and
the metamaterial slab exhibits the properties of a hyperbolic
medium [36,37]. The density of states for the Langmuir modes
is singular for any frequency �‖ < ω < �⊥ as all of the modes
[except one corresponding to ε⊥(ω) = 0] have the common
frequency cutoff �‖ and the common horizontal asymptote
ω = �⊥. Only the fundamental Langmuir mode (n = 0) is
pure electrical. The rest of the Langmuir modes have nonzero
magnetic field and, therefore, nonzero Poynting vector. Their
group velocity vg = ∂ω/∂kz can be found from Eq. (6). In the
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FIG. 2. Dispersion of TM-polarized guided modes propagating inside the metamaterial slab with metal claddings. Red solid lines show the
dispersion of fast conventional waveguide modes; blue solid lines picture the dispersion of slow Langmuir modes. Black dashed lines represent
the light lines ω = ckz/

√
ε∞ and ω = Cvkz/

√
ε∞, which describe the asymptotical behavior of fast and slow modes correspondingly. Black

horizontal solid lines show plasma frequencies �‖a/2πc and �⊥a/2πc. The insets describe the regime, i.e., the magnitude of anisotropy (δ�)
and nonlocal effects (α). The parameters are α = 0.1, ε∞ = 12.

case of �‖ > �⊥, the dispersion of the Langmuir modes is
negative [see Fig. 2(c)].

In spite of the existence of the analytical expression for the
dispersion [see Eq. (6)], a simpler way to analyze the spectrum
of the Langmuir modes and to gain deep insight into how the
anisotropy lifts the degeneracy is to consider the anisotropy
as a perturbation. Let us take the difference between plasma
frequencies along the ‖ and ⊥ directions as a perturbation
parameter (δ� = �⊥ − �‖) assuming that |δ�| � �‖,�⊥.

Using the perturbation theory for the case of a degenerate
spectrum, one can find the set of zeroth-order eigenfunctions
whose modification under the action of the small applied
perturbation is small,

Ez = E0 sin
(πnx

a

)
, Ex = −E0

iπn

akz

cos
(πnx

a

)
. (7)

Here, n = 0,1,2, . . . is the mode number as in Eq. (6). It
follows from Eq. (7) that the Langmuir modes are nearly
longitudinal if n � kza and nearly transversal if n 	 kza.

Perturbation to the eigenfrequency of Langmuir mode δωn

is readily found as

δωn = δ�
k2
z

k2
z + (

πn
a

)2 . (8)

On can see that perturbation theory works for all mode numbers
n for both short- and long-wavelength limits as |δωn| � |δ�|
for all kz. Equation (8) also predicts the right sign of group
velocity for the Langmuir modes.

As was mentioned earlier, in the case of an anisotropic
slab, the Langmuir modes are not pure electric waves. Their
magnetic field is given by

Hy = −2iδ�ε∞E0

(
πn
a

)
c
[
k2
z + (

πn
a

)2] cos
(πnx

a

)
. (9)

One can see that the magnetic field does not vanish at the
slab’s boundaries and, therefore, penetrates inside the cladding
layers.

D. Isotropic slab with effects of nonlocality

The problem of spatial dispersion has a long history and is
still being discussed [16,18,38–46]. The main stumbling block
of the spatial dispersion problem is the additional boundary
condition (ABC). Indeed, the presence of an additional wave
due to nonlocal response requires an ABC to determine the
amplitude of the longitudinal wave. We will discuss the
appropriate choice of the ABC below.

In the presence of a weak nonlocality, electric induction D
can be expressed through electric field E as (see, e.g., Ref. [40])

D = εs(ω)E + C1grad(divE) + C2rot(rotE). (10)

The second term affects only the transversal waves, while the
first one affects only the longitudinal waves. The coefficients
C1 and C2 can have a frequency dependence, which is deter-
mined by the particular physical model. We will analyze the
spatial dispersion within the hydrodynamical approximation
which takes into account only the first two terms of Eq. (10).
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This approximation is often used for the description of plasma
oscillations in condensed-matter systems including wire media
and nanoparticle composites [47–52]. It describes the motion
of the charges by the Euler equation that results in the following
dependence of D on E:

D = ε̂sE + C
v2

ω(ω + iγ )
grad(divE). (11)

Here, C is a numerical constant and v is the mean velocity of
the chaotic motion of charges. In the case of nondegenerate
plasma, v represents the thermal velocity of carriers and C =
1/3 [44]. In the case of degenerate plasma, v is the Fermi
velocity and C = 3/5 [44]. For now, we put γ = 0. The effect
of losses will be considered further in Sec. IV.

Let us note that as follows from Eq. (11), the nonlocal
response is of the order of (vk/ω)2. Therefore, it is significant
only for the modes with low phase velocity ω/k comparable
with characteristic velocity of carriers v, i.e., only for the
Langmuir and surface modes.

Substitution of electrical displacement D from Eq. (11) into
the Maxwell’s equations yields the Helmholtz equation of the
fourth order for TM-polarized waves,[

α
∂2

∂x2
+ α

(
ks
x

)2
][

∂2

∂x2
+ (

kf
x

)2
]
Ex = 0, (12)

(
ks
x

)2 = εsω
2

αc2
− k2

z , (13)

(
kf
x

)2 = εsω
2

c2
− k2

z . (14)

The wave-vector components kf
x and ks

x correspond to the
fast (waveguide) and slow (Langmuir) modes, respectively.
The parameter α = Cv2/c2 is the dimensionless quantity
characterizing the spatial dispersion.

By virtue of symmetry, the general solution inside the slab
can be divided into symmetric and antisymmetric:

Ex(x) = A

{
cos

(
kf
xx

)
sin

(
kf
xx

)
}

+ B

{
cos

(
ks
xx

)
sin

(
ks
xx

)
}

. (15)

The magnetic field is nonzero only for the fast modes,

Hy(x) = A
εsω

ckz

{
cos

(
kf
xx

)
sin

(
kf
xx

)
}

. (16)

In the general case, eigenmodes represent a superposition
of fast and slow modes. The ratio between the amplitudes A

and B is determined from the ABC. The ABC depend on the
model used to describe the spatial dispersion and, generally
speaking, they should be determined microscopically [42,53].
Correct ABC is not a matter of choice, but can be derived
from the nonlocal hydrodynamic equations, at least for a
given equilibrium free-electron density profile. In the case
of dielectric claddings, we assume that the equilibrium free-
electron density of the core has a step profile, i.e., it is constant
inside the core and abruptly drops to zero at the boundary
[44,52,54]. Under this assumption, the continuity equation
readily gives the ABC,

J · n̂ = 0, (17)

stating that the normal component of the induced current
density J vanishes at the boundary. In terms of normal
components of electric fields, Eq. (17) can be rewritten as

ε∞Es
x = εcE

c
x, (18)

where Es
x,E

c
x are the field components inside the slab and

the claddings, respectively, and εc is the permittivity of the
cladding layers.

However, if the penetration of the modes into the cladding
layers is weak or the claddings are made of perfect electric
conductor, we can use a rough model and neglect the
interaction between the fast and the slow modes. Therefore,
the wave vectors kf

x and ks
x can be quantized independently as

πn/a. Dispersions of the waveguide and Langmuir modes are
given by

(
ωf

n

)2 = �2 + c2

ε∞

[
k2
z +

(
πn

a

)2
]
, (19)

(
ωs

n

)2 = �2 + αc2

ε∞

[
k2
z +

(
πn

a

)2
]
. (20)

Their plot is shown in Fig. 2(d) by red and blue lines,
respectively.

One can see that the degeneracy of Langmuir modes is
lifted. Moreover, spatial dispersion results in dependence of
their cutoff frequencies on the mode number n. Therefore,
the singularity in the density of optical states is destroyed
because there is only a finite number of the modes at any fixed
frequency ω.

Let us note that the Poynting vector S defined as c
8π

Re[E ×
H] is zero for the Langmuir modes as they are pure electric
modes. However, their group velocity is nonzero. There is
no contradiction because the Langmuir modes transfer the
energy accumulated by electron gas due to its compression
and expansion, while fast waveguide modes transfer energy
due to nonzero electric and magnetic fields [43]. Therefore,
we have different mechanisms of the energy transfer for the
Langmuir and waveguide modes.

As mentioned above, we neglect the interaction between
the Langmuir and waveguide modes and, therefore, avoid
consideration of ABCs. Accounting for an interaction between
the Langmuir and waveguide modes results in the appearance
of anticrossing between their dispersion curves [55,56]. In a
symmetric waveguide, the interaction is possible only between
modes of the same parity. The strength of the splitting depends
on the ABCs and is calculated for the case of dielectric
claddings below.

E. Anisotropic slab with effects of nonlocality

Now let us take into account both anisotropy of the
slab and nonlocality within the hydrodynamical approach.
The Helmholtz equation for the TM-polarized wave in this
case can be obtained straightforwardly from the Maxwell’s
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equations:

α
∂2

∂x2

[
∂2Ex

∂x2
+

(
ε⊥ω2

c2
− k2

z

)
Ex

]
+

(
ε‖ω2

c2
− αk2

z

)
∂2Ex

∂x2

+
(

ε⊥ω2

c2
− αk2

z

)(
ε‖ω2

c2
− k2

z

)
Ex = 0. (21)

Equation (21) can be written in the compact form using the
substitution Ex ∝ e±ikxx ,

ω2

(1 − α)c2
= k2

x

ε⊥(ω,k)
+ k2

z

ε‖(ω,k)
. (22)

Here, we use the following notations:

ε⊥,‖(ω,k) = ε⊥,‖(ω) − α
c2

(
k2
x + k2

z

)
ω2

. (23)

Equation (22) is biquadratic. Its solutions ±kf
x and ±ks

x

correspond to the slow and the fast modes with symmet-
ric and antisymmetric field distribution. Dispersion of the
eigenmodes depends on the boundary conditions which define
the quantization rule for kf

x and ks
x . As in the previous

section, we will quantize kf
x and ks

x independently as πn/a

assuming that the interaction between slow and fast modes is
vanishingly small and penetration depth of the modes in the
slab claddings is negligible. The dispersions ωf,s

n (kz) found
from Eq. (22) for the cases �‖ < �⊥ and �‖ > �⊥ are shown
in Figs. 2(e) and 2(f), respectively. The analytical expressions
for ωf,s

n are cumbersome and not convenient for analysis.
The compact expressions can be obtained within perturbation
theory assuming that |δ�| � �‖,⊥ and v � c, and reveal
particular contributions of anisotropy and nonlocal effects:

(
ωf

n

)2 = �2

[
1 + 2δ�

�

π2n2

a2

π2n2

a2 + k2
z

]
+ c2

ε∞

[
k2
z + π2n2

a2

]
,

(24)

(
ωs

n

)2 = �2

[
1 + 2δ�

�

k2
z

π2n2

a2 + k2
z

]
+ αc2

ε∞

[
k2
z + π2n2

a2

]
.

(25)

One can see that in contrast to anisotropy, spatial dispersion
affects only the Langmuir modes. Simple analysis of Eq. (25)
yields that Langmuir modes exhibit negative dispersion if
δ� < 0 for kz < k∗

z , where

k∗
z = πn

a

(
n∗

n
− 1

)1/2

. (26)

Here, n∗ is the maximal index of the Langmuir mode for
which negative dispersion exists,

n∗ = a

π

√
2�|δ�|ε∞

αc2
. (27)

Spatial dispersion and anisotropy contribute counteract-
ingly into the energy flow for the Langmuir modes. Therefore,
the flows of electromagnetic and mechanic energy can com-
pletely compensate each other and bring the Langmuir mode to
a complete stop. Slow light can be observed at the frequency

ωs
n(k∗

z ). This allows one to reach the cavity regime without
mirrors similarly to distributed feedback cavities [57,58].

It should be mentioned that anisotropy does not affect
the fundamental Langmuir mode (n = 0), so it remains pure
electric (Hy = 0) and longitudinal (Ex = 0). Dispersion of the
main Langmuir mode is determined by equation ε⊥(ω,kz) = 0.
Therefore, it is always positive. For other Langmuir modes, the
frequency bandwidth 
ω of negative dispersion depends on
the mode number n as


ω = ωs
n(0) − ωs

n(k∗
z ) ≈ |δ�|

( n

n∗ − 1
)2

. (28)

III. EFFECT OF CLADDING LAYERS

In the previous sections, we neglected the penetration
depth of the field inside the cladding layers assuming that
the dielectric contrast between them and the metamaterial
slab is infinitely high. Within this assumption, kf

x and ks
x can

be quantized independently as πn/a. Here, we analyze the
effect of the finite dielectric contrast on the dispersion of the
eigenmodes.

A finite dielectric contrast results in the appearance of two
surface waves in the spectrum forming due to constructive and
destructive interference of surface plasmon-polariton (SPP)
modes localized at the slab interfaces. The electromagnetic
properties of SPPs are well documented and we do not focus
on them [8,32–34,59–61].

Penetration of the modes inside the cladding layers effec-
tively changes the thickness of the slab. The correction to kf

x

in the isotropic case within the assumption of high dielectric
contrast (|εs/εc| 	 1) can be derived from the expression for
the Goos-Hanchen shift [62–67]:

δkf
x,n = − εcεsω

2/c2√
k2
z − εcω2/c2

2πn

εs(ω)k2
z a

2 − εcπ2n2
. (29)

Here, εc is the permittivity of the cladding layers. One can see
that in the case of metal cladding layers εc < 0, the correction is
purely real and positive which corresponds to a negative Goos-
Haanchen shift. However, in the case of dielectric cladding
layers, εc > 0, the correction is real under light line ε

1/2
c ω/c =

kz and imaginary above the light line where the modes are
leaky.

It should be mentioned that in the isotropic case and
when we neglect the mixing between the Langmuir and
waveguide modes, the cladding layers do not affect the
dispersion of the Langmuir modes at all since they are perfectly
confined inside the slab. Therefore, in the framework of this
approach, the Langmuir modes remain nonleaky above the
light line of the cladding layers, in sharp contrast to the
waveguide modes. However, a deeper analysis shows that
the Langmuir modes penetrate into the cladding layers and
have leakage losses above the light line. It occurs because of
their mixing with waveguide modes which is determined by
the ABC [see Eq. (18)]. Detailed analysis of the interaction
between Langmuir and waveguide modes and their coupling
in the presence of an appropriate ABC is presented in the
Supplemental Material [56].

It is important to note that the physics underlying our
method of stopping the light qualitatively differs from the
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FIG. 3. Dispersion of TM-polarized guided modes propagating
inside the metamaterial slab with dielectric claddings with constant
permittivity εc. Red solid lines show the dispersion of fast conven-
tional waveguide modes, blue solid lines picture the dispersion of
slow Langmuir modes, and green solid lines show the dispersion of
slow surface plasmon-polariton modes. Black horizontal solid lines
show plasma frequencies �‖a/2πc and �⊥a/2πc. Black dashed
lines represent the light lines ω = ckz/

√
ε∞ and ω = Cvkz/

√
ε∞,

which describe the asymptotical behavior of fast and slow modes
correspondingly. The black inclined solid line represents the light
line ω = ckz/

√
εc, which separates the region of leaky and stable

modes. The parameters are α = 0.1, ε∞ = 12, εc = 1.

well-known approach used in planar waveguides. Usually, one
considers a metal slab with dielectric claddings (or a dielectric
slab with metal claddings) where the Goos-Haanchen shift is
negative because of different direction of energy flow in the
claddings and the core. For certain waveguide parameters,
the positive and the negative flows can cancel each other,
forming a closed-loop energy vortex associated with zero
group velocity [67]. Quite contrary, in our approach, the slow
light regime exists even for a waveguide with claddings made
of perfect electric conductor. It happens because we reach the
cancellation of mechanical and electromagnetic energy flows,
which both exist inside the core layer.

The dispersion ω(kz) of TM-polarized modes inside the
anisotropic plasma slab with dielectric claddings (εc > 0) in
the presence of spatial dispersion is shown in Fig. 3. Parameters
of the structure are described in the caption of the figure. Fast,
slow, and surface modes are shown with red, blue, and green
lines, respectively.

IV. LOSSES

Dissipation spectra of the waveguide and surface modes are
well documented (see, e.g., Refs. [68–70]), so here we focus
on the Langmuir modes only. We include loss in our model
by setting the damping rate γ in Eq. (1) to a finite nonzero
value. In general, lossy structures support two sets of solutions,
namely, complex–wave-vector modes and an alternative set
of complex-frequency modes [71]. The latter are shown to
retain the point of zero group velocity even in the presence

of losses [72]. We will discuss this interesting phenomenon
further. Within this section, we calculate the figure of merit
and show how the spectrum of Langmuir modes modifies in
the presence of finite γ . A detailed description of the numerical
method used to calculate the modal characteristics is presented
in the Supplemental Material [56].

We consider the case of an anisotropic metamaterial slab
with a nonlocal electromagnetic response. For the sake of
simplicity, we assume that the claddings are made of a perfect
electric conductor and that the waveguide and Langmuir modes
are not coupled. First, we study the set of modes with real
frequency ω and complex longitudinal propagation constant
kz. This approach describes the attenuation of the wave packet
with its passage through the material. In this case, the figure
of merit (FOM) can be introduced as

η(ω) = Re(kz)

Im(kz)
. (30)

The meaning of such defined η(ω) is the free path measured
in wavelength units. The analytical expression for η(ω) of
the Langmuir modes in the hyperbolic regime neglecting the
spatial dispersion can be carried out straightforwardly from
Eqs. (22) and (23),

η(ω) = 2

γω

∣∣∣∣∣ (ω2 − �2
⊥)(ω2 − �2

‖)

�2
‖ − �2

⊥

∣∣∣∣∣. (31)

One can see that the FOM reaches the maximum value

ηmax = |�⊥ − �‖|
γ

at ω∗ =
√

�2
‖ + �2

⊥
2

. (32)

The comparison of η(ω) with the results of the numerical
simulations [Figs. 4(a) and 4(b)] shows that Eq. (31) works
well for high mode numbers (n 	 1).

Propagation of the Langmuir modes at high frequencies
(ω > �⊥,‖) is possible only in a spatially dispersive media.
In this case, the anisotropy is not essential (ε⊥ ≈ ε‖) and the
FOM can be estimated from Eqs. (22) and (23) as

η(ω) = 2

γω
(ω2 − �2

⊥). (33)

The comparison of this expression with the results of numerical
simulations [Figs. 4(a) and 4(b)] shows that it works well for
low mode numbers n.

Modal characteristics of complex-k solutions with quan-
tization number n = 1 are shown in Fig. 4(c) for the case
of low losses and in Fig. 4(d) for the case of high losses.
Real parts ω[Re(kz)] and imaginary parts ω[Im(kz)] are shown
with solid and dashed lines, respectively. One can see that
a backbending occurs in the modal dispersion curve around
the point where the group velocity would have been zero in
a loss-free waveguide. Indeed, the propagation loss (which
is inverse to the propagation length) would tend to infinity
at the stopping point. Thus, the dissipative losses prevent the
stopping of complex-k waves in realistic waveguides [73]. The
increase of losses [see the transition from Fig. 4(c) to Fig. 4(d)]
results in dramatic increase of Im(kz). It follows that the modal
decay length is shorter than the wavelength in the propagation
direction and the concept of group velocity is no longer a good
measure of propagation in this region of the dispersion curve.
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FIG. 4. Effects of losses in the anisotropic metamaterial slab with nonlocal electromagnetic response and with the claddings made of perfect
electric conductor. (a),(b) Dependence of complex-k figure of merit η on the frequency ω. Black solid lines represent numerical calculations.
Blue dashed lines represent data from analytical expressions (31) and (33). The parameters are γ a/2πc = 0.1, ε∞ = 12. (a) Dependence of η

on ω for different mode numbers n. Parameter α is assumed to be equal to 0.001. (b) Dependence of η on ω for different α. Mode number n

is assumed to be equal to 3. (c)–(f) Dispersion diagram of the n = 1 (c),(d) complex-k and (e),(f) complex-ω modes. Solid lines represent real
parts, while the dashed lines show the corresponding imaginary parts of dispersion, i.e., (c),(d) ω[Im(kz)] and (e),(f) Im[ω(kz)]. The parameters
are α = 0.1, �‖a/2πc = 0.08, �⊥a/2πc = 0.01, ε∞ = 12. Here, γ̃ = γ a/2πc is the dimensionless damping parameter. The complex-ω state
retains the zero-group-velocity point independently of γ .

Also the definition of FOM [see Eq. (30)] becomes ill defined
because of essential smearing of the wave package.

Next, we switch to another set of solutions with real kz and
complex ω. Such a description is suitable for modes that do not
spatially decay, but change uniformly in space as a function of
time. In this case, the figure of merit could be redefined as

η(kz) = Re(ω)

Im(ω)
. (34)

The spectrum of real Re[ω(kz)] and imaginary Im[ω(kz)]
parts of complex-ω solutions is shown in Fig. 4(e) for the case
of low losses and in Fig. 4(f) for high losses. As above, real
and imaginary parts are shown with solid and dashed lines,
respectively. Importantly, dispersion curves in the slow light
regime do not exhibit backbending when loss is present, thus
retaining points where the group velocity goes to zero [72].
This is explained by the fact that since the loss is defined
purely in time, it has no dependence on the propagation
speed and remains finite at the stopped light point. However,
the possibility of complete stop of light for realistic lossy
materials is still being discussed [74,75]. One can also note that
dispersion curves are barely changed when loss is increased
[see the transition from Fig. 4(e) to Fig. 4(f)].

V. SUMMARY

In this paper, we developed the theory of an anisotropic
metamaterial waveguide with nonlocal electromagnetic re-
sponse. Anisotropy and spatial dispersion were taken into

account as perturbation that allows one to distinguish their
effect on the waveguide spectrum.

It was shown that the anisotropy of plasma oscillations lifts
the degeneracy of the Langmuir modes, while keeping their
density of states singular. On the contrary, even small spatial
dispersion destroys the singularity.

Spatial dispersion and anisotropy can make oppositely
directed contributions into the energy flow for the Langmuir
modes. Such interplay can bring light to a complete stop. This
allows one to reach the cavity regime without any mirrors,
similar to distributed feedback cavities.

We have shown that the Langmuir modes in an isotropic
waveguide are perfectly confined even above the light line of
the cladding layers. They may become leaky either because
of anisotropy of the waveguide or because of the resonance
mixing with leaky modes, which occurs due to the spatial
dispersion effects.
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