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Effective mass of elementary excitations in Galilean-invariant integrable models
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We study low-energy excitations of one-dimensional Galilean-invariant models integrable by Bethe ansatz and
characterized by nonsingular two-particle scattering phase shifts. We prove that the curvature of the excitation
spectra is described by the recently proposed phenomenological expression for the effective mass. Our results
apply to such models as the repulsive Lieb-Liniger model and the hyperbolic Calogero-Sutherland model.
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I. INTRODUCTION

The concept of elementary excitations [1] plays a funda-
mental role in our understanding of low-temperature physics
of quantum systems. Although the interaction between the
constituent particles in these systems may be strong, long-lived
weakly interacting elementary excitations often suffice to
completely describe the low-lying excited states. In one dimen-
sion, the nature and properties of such elementary excitations
can be studied in the framework of a phenomenological
hydrodynamic description [2–4], similar to that originally
developed in the theory of superfluidity [1].

In this paper we consider single component Galilean-
invariant one-dimensional quantum liquids. For such systems,
the hydrodynamic theory [2–4] predicts the existence of two
branches of elementary excitations with spectra [5]

ε±(p) = v|p| ± p2

2m∗
+ · · · , (1.1)

parametrized by the velocity v and the effective mass m∗. The
velocity is given by [1,2]

v =
√

n0

m

dμ

dn0
, (1.2)

where n0 is the mean density of the constituent particles, m is
their mass, and μ is the chemical potential. The effective mass
satisfies [6,7]

m

m∗
= 1

2v
√

K

d(vn0)

dn0
. (1.3)

The Luttinger-liquid parameter K in Eq. (1.3) is defined [2] as
K = vF /v, where vF = π�n0/m. (The notation reflects the
fact that for noninteracting fermions vF coincides with the
Fermi velocity.)

Although in principle the phenomenological expressions
(1.1)–(1.3) are expected to hold for a wide range of one-
dimensional systems, their applicability to any given system is
by no means guaranteed. In fact, Eq. (1.1) fails for the exactly
solvable Calogero-Sutherland model [8] in which the interac-
tion potential falls off as inverse square of the distance between
particles. In this model, spectra of the two excitation branches
ε±(p) are characterized by different effective masses [8]. This
peculiar feature is due to the singularity in the two-particle
scattering phase shift, which in turn originates in the slow
long-distance decay of the interaction potential. Accordingly,

it is plausible that the Calogero-Sutherland model represents
an exception rather than the rule. It is therefore important to
check the applicability of Eqs. (1.1)–(1.3) to other exactly
solvable models.

A relation for the effective mass similar to Eq. (1.3) holds
for an antiferromagnetic spin chain in a magnetic field [6].
In the case of Galilean-invariant systems, the validity of
Eqs. (1.1)–(1.3) is supported by the available in the literature
results for the repulsive Lieb-Liniger model [8–10] and for the
hyperbolic Calogero-Sutherland model [8,11,12]. The validity
of the phenomenological expression (1.2) for the velocity was
proven for the Lieb-Liniger model in Ref. [10]; the proof in
fact applies [8] to both models. For the Lieb-Liniger model,
the result (1.3) for the effective mass was verified analytically
for both very weak [13,14] and very strong [15] repulsion, and
confirmed numerically [16] for any repulsion strength. For the
hyperbolic Calogero-Sutherland model, Eq. (1.3) was shown
to hold in the limit of a strong short-range repulsion [14,17],
when the model is equivalent [8,12,14] to the quantum Toda
model [18].

In this paper, we demonstrate the applicability of
Eqs. (1.1)–(1.3) to Galilean-invariant Bethe ansatz-integrable
models with nonsingular scattering phase shifts, including
both the repulsive Lieb-Liniger model and the hyperbolic
Calogero-Sutherland model, regardless of the choice of their
parameters. In Sec. II we review the phenomenology of
one-dimensional quantum liquids, including the derivation of
Eqs. (1.1)–(1.3). In Sec. III we use Bethe ansatz to evaluate
the low-energy excitation spectra and prove the validity of
Eq. (1.3). The results are discussed in Sec. IV.

II. ONE-DIMENSIONAL QUANTUM LIQUID

The hydrodynamic description [2–4] of a one-
dimensional quantum liquid is formulated in terms of
two bosonic fields, ϕ(x) and ϑ(x), obeying the commuta-
tion relations [∂xϕ,ϑ(y)] = −iπδ(x − y) and [ϕ(x),ϕ(y)] =
[ϑ(x),ϑ(y)] = 0. In terms of these fields, the particle density
n(x) and momentum per particle κ(x) are given by [2,19]

n(x) = n0 + 1

π
∂xϕ, κ(x) = −�∂xϑ, (2.1)

The field ϕ obeys the periodic boundary condition ϕ(x + L) =
ϕ(x), where L is the size of the system. We impose a
similar condition on the field ϑ as well, ϑ(x + L) = ϑ(x),
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which restricts our consideration to excitations near the zero-
momentum ground state.

The total momentum of the liquid reads

P =
∫ L

0
dx n(x)κ(x) = − �

π

∫ L

0
dx (∂xϕ)(∂xϑ), (2.2)

and the Hamiltonian is given by

H = 1

2m

∫ L

0
dx n(x)κ2(x) + U [n]. (2.3)

The first term in the right-hand side of Eq. (2.3) represents the
kinetic energy of the liquid. It has the universal form set by
the Galilean invariance. On the other hand, U [n] is a model-
dependent functional of density that depends on interactions.

For low-energy excitations, deviations of the density from
its mean are small, and the Hamiltonian can be expanded in ∂xϕ

and higher-order derivatives of ϕ. With ϕ - and ϑ -independent
constant dropped, the leading contribution in the resulting
gradient expansion includes operators of scaling dimension 2,

H0 = �vF

2π

∫ L

0
dx[(∂xϑ)2 + α(∂xϕ)2]. (2.4)

The first term in Eq. (2.4) comes from the kinetic energy, and its
coefficient is universal. The model-dependent coefficient α in
the second term can be related to the velocity of the excitations
[2]. Indeed, Heisenberg equations of motion ∂tϕ = −vF ∂xϑ

and ∂tϑ = −αvF ∂xϕ show that both fields propagate with
velocity v = α1/2 vF . This gives α = K−2 and brings Eq. (2.4)
into the standard Luttinger-liquid form [2,4,7]

H0 = �v

2π

∫ L

0
dx[K(∂xϑ)2 + K−1(∂xϕ)2]. (2.5)

The velocity can be found by considering the change of the
ground state energy per length E0 caused by a small change
of density n0 → n0 + δn0, which amounts to the shift ∂xϕ →
∂xϕ + πδn0. Substitution into Eq. (2.5) shows that δE0 =
1
2v2(m/n0)(δn0)2, leading to Eq. (1.2) with μ = dE0/dn0.

The next contribution in the gradient expansion contains
operators of scaling dimension 3,

H1 = �
2

2πm

∫ L

0
dx[(∂xϕ)(∂xϑ)2 + β(∂xϕ)3]. (2.6)

Similar to Eq. (2.4), the first term in Eq. (2.6) comes from the
kinetic energy and is universal, whereas the model-dependent
coefficient β in the second term can be expressed in terms
of macroscopic parameters [7,19] by considering a change
of density n0 → n0 + δn0. The change leads to a first-order in
δn0 correction to the coefficient of the second term in Eq. (2.5),
yielding the relation

β = m

3π�

d(v/K)

dn0
. (2.7)

At this point, it is convenient to switch from ϕ and ϑ to the
right- and left-moving fields

ϕ±(x) = 1√
K

ϕ(x) ∓
√

K ϑ(x), (2.8)

obeying the commutation relations [∂xϕ±,ϕ∓(y)] = 0 and
[∂xϕ±,ϕ±(y)] = ±2πiδ(x − y). Both the total momentum

(2.2) and the Luttinger-liquid Hamiltonian (2.5) are chiral,
i.e., diagonal in the basis of the right- and left-movers,

P = P+ + P−, H0 = v(P+ − P−), (2.9)

where

P± = ± �

4π

∫
dx (∂xϕ±)2 (2.10)

are the momenta of the right- and left-moving excitations.
The next-order contribution in the gradient expansion, H1

[see Eqs. (2.6) and (2.7)], is the sum of the chiral part

H̃1 = �
2

12πm∗

∫ L

0
dx[(∂xϕ+)3 + (∂xϕ−)3] (2.11)

and a nonchiral part that includes integrals of (∂xϕ±)2(∂xϕ∓).
In Eq. (2.11), m∗ has units of mass and satisfies m/m∗ =
(3/4)K−1/2(1 + βK2). With β given by Eq. (2.7), this gives
Eq. (1.3).

In order to see that m∗ indeed represents the effective mass
of the elementary excitations, we focus on the chiral terms in
H0 + H1,

H̃ = H+ + H−, (2.12a)

H± = ± vP± + �
2

12πm∗

∫ L

0
dx (∂xϕ±)3, (2.12b)

treating the remainder of the Hamiltonian as a perturbation.
Because the four operators P±,H± commute, it is sufficient to
consider the right-movers only. Although the Hamiltonian H+
is not quadratic, it can be diagonalized [4,5] with the help of
the well-known mapping [2,4,20] between one-dimensional
bosons and fermions. In terms of such effective fermions,
the right-moving bosons are described by the noninteracting
Hamiltonian [4]

H+ = vP+ + �
2

2m∗

∫ L

0
dx :(∂xψ)†(∂xψ):, (2.13a)

P+ =− i�

∫ L

0
dx :ψ†(x)∂xψ(x):, (2.13b)

and the boundary condition ϕ+(x) = ϕ+(x + L) translates to
δN+ = ∫ L

0 dx :ψ†(x)ψ(x): = 0. In Eqs. (2.13), the fermionic
field is given by ψ(x) = L−1/2e iϕ+(x), with the right-hand side
of this expression understood as being normal ordered with
respect to the bosonic vacuum. The colons in Eqs. (2.13)
denote the normal ordering with respect to the fermionic
vacuum in which all states with positive (negative) wave
numbers are empty (occupied).

In the fermionic representation, construction of excitations
is straightforward. We are interested in simultaneous eigen-
states of H+, P+, and δN+ with δN+ = 0. Any such state
is a superposition of the particle- and hole-type elementary
excitations of the gas of effective fermions. The particle
excitation is obtained by promoting a fermion from the Fermi
level to one of the unoccupied single-particle states, whereas
in the hole excitation a fermion is promoted from one of the
occupied single-particle states to the Fermi level. Such particle
(hole) excitations have the largest (smallest) possible energy
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for a fixed momentum, given by the first two terms in the
expansions (1.1).

Perturbation theory in δH = H − H̃ transforms the right-
moving eigenstate of H̃ to the eigenstate of the full Hamilto-
nian H . This state is also an eigenstate of the total momentum
P with the same eigenvalue. The leading contribution in δH

consists of dimension-3 operators (∂xϕ±)2(∂xϕ∓). The key
observation [5] is that these operators are not chiral and have
zero expectation value in the right-moving eigenstate of H̃ .
Accordingly, correction to the energy due to these operators
arises only in the second order [5,14,21], yielding δε ∝ p3,
which does not affect the first two terms in the expansion
(1.1).

III. EFFECTIVE MASS FROM BETHE ANSATZ

In this section we derive low-energy excitation spectra
for exactly solvable models and verify the validity of the
phenomenological expressions (1.1)–(1.3). Specifically, we
consider a system of identical particles described by the
Hamiltonian

H = �
2

2m

⎧⎨⎩−
∑

l

∂2

∂x2
l

+
∑
l �= l′

V (xl − xl′)

⎫⎬⎭ (3.1)

in the thermodynamic limit when both the number of particles
N and the system size L are taken to infinity with their ratio
n0 = N/L kept fixed. Our consideration applies to models
integrable by Bethe ansatz [8–10,22], including the Lieb-
Liniger model [10] describing bosons with contact repulsion

V (x) = cδ(x), (3.2)

and the hyperbolic Calogero-Sutherland model [11,12] with
the interaction potential given by

V (x) = λ(λ − 1)

a2 sinh2(x/a)
. (3.3)

(Because the potential (3.3) is impenetrable, the statistics
of the constituent particles is irrelevant.) As mentioned in
Sec. I, excitation spectra in the limits 0 < c/n0 	 1 and
c/n0 
 1 for the Lieb-Liniger model (3.2) and in the regime
1 	 exp(1/an0) 	 λ for the hyperbolic Calogero-Sutherland
model (3.3) have been studied analytically in Refs. [13–15,17]
and found to be in agreement with Eqs. (1.1)–(1.3). The present
consideration is applicable to all c > 0 in Eq. (3.2) and to all
λ > 0 and any finite a in Eq. (3.3).

In Bethe ansatz [8–10,22], many-body eigenstates are
parametrized by sets of N different rapidities k1,k2, . . . ,kN .
In this respect, the classification of eigenstates is analogous
to that of noninteracting Fermi gas, in which any state is
characterized by N different wave numbers. The structure of
the ground state is also similar to fermions: the “occupied”
rapidities densely fill the interval |ki | � q, where the “Fermi
rapidity” q is in one-to-one correspondence with the mean
density n0 [8–10,22]. The analogy extends to excited states,
which can be viewed as superpositions of the particle- and
hole-type excitations of the “Fermi gas” of rapidities, also
known as, respectively, type I and type II excitations [10]. The
momenta and energies of the right-moving (p > 0) excitations

satisfy [8–10,22]

p = 2π�

∣∣∣∣∫ k

q

dk′ρ(k′,q)

∣∣∣∣, ε =
∣∣∣∣∫ k

q

dk′σ (k′,q)

∣∣∣∣ (3.4)

with k > q(|k| < q) for the particle (hole) excitation. The den-
sity of rapidities in the ground state ρ(k,q) = L−1∑N

i=1 δ(k −
ki) depends on both k and q and obeys the Lieb equation [8–10]

ρ(k,q) + 1

2π

∫ q

−q

dk′�′(k − k′)ρ(k′,q) = 1

2π
, (3.5)

in which q enters as an independent parameter. The function
σ (k,q) in the second equation in (3.4) is the derivative of the
energy function introduced in Ref. [22]. It obeys the Yang-
Yang equation [8,9,22]

σ (k,q) + 1

2π

∫ q

−q

dk′�′(k − k′)σ (k′,q) = �
2k

m
. (3.6)

In Eqs. (3.5) and (3.6), �′(k) is the derivative of the two-
particle scattering phase shift. The phase shift is given by
�(k) = − 2 arctan(k/c) for the Lieb-Liniger model [8–10]
and by �(k) = 2Im[ln �(λ + iak/2) − ln �(1 + iak/2)] for
the hyperbolic Calogero-Sutherland model [8,12].

Unlike the standard Calogero-Sutherland model corre-
sponding to the infinite a limit in Eq. (3.3), the phase shifts in
the cases we discuss are not singular. Accordingly, Eqs. (3.5)
and (3.6) yield analytic at all k functions ρ(k,q) = ρ(−k,q)
and σ (k,q) = −σ (−k,q). Expanding ρ and σ in Eqs. (3.4) in
Taylor series near k = q, we obtain Eq. (1.1) with

v = v(q,q) = σ0

2π�ρ0
,

1

m∗
= 1

2π�ρ0
(v′

k)k = q, (3.7)

where

v(k,q) = σ (k,q)

2π�ρ(k,q)
(3.8)

and ρ0 = ρ(q,q), σ0 = σ (q,q), v′
k = ∂v(k,q)/∂k.

We now differentiate Eq. (3.5) with respect to q and
Eq. (3.6) with respect to k. This gives

ρ ′
q(k,q) + 1

2π

∫ q

−q

dk′�′(k − k′)ρ ′
q(k′,q)

= − ρ0

2π
[�′(k − q) + �′(k + q)], (3.9a)

σ ′
k(k,q) + 1

2π

∫ q

−q

dk′�′(k − k′)σ ′
k′(k′,q)

= σ0

2π
[�′(k − q) + �′(k + q)] + �

2

m
. (3.9b)

Comparison of Eq. (3.9b) with Eqs. (3.5) and (3.9a) shows
that σ ′

k = (2π�
2/m)ρ − (σ0/ρ0)ρ ′

q , or

ρ ′
q

ρ0
+ σ ′

k

σ0
= 2π�

2

mσ0
ρ . (3.10)
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Similarly, differentiating Eqs. (3.5) and (3.6) with respect to k

and q and comparing the resulting equations, we find

ρ ′
k

ρ0
+ σ ′

q

σ0
= 0. (3.11)

Using Eqs. (3.8), (3.10), and (3.11), we obtain

(v′
k − v′

q)k = q = �

m
. (3.12)

This relation allows us to express the partial derivative v′
k

in Eq. (3.7) via the total derivative dv/dq = (v′
k + v′

q)k = q ,
resulting in

1

m∗
= 1

4π�ρ0

(
�

m
+ dv

dq

)
. (3.13)

In order to compare Eq. (3.13) with the phenomenological
result (1.3), we need to eliminate the Fermi rapidity q in
favor of the particle density n0. The two are related via the
normalization condition [8–10]

n0(q) =
∫ q

−q

dk ρ(k,q), (3.14)

which gives dn0/dq = 2ρ0 + ∫ q

−q
dk ρ ′

q(k,q). Substituting
here ρ ′

q from Eq. (3.10), we obtain

dn0

dq
= �n0

mv
. (3.15)

Combined with the formula [8,9] dμ/dq = �v, Eq. (3.15)
gives dμ/dn0 = (m/n0)v2, which turns the phenomenolog-
ical expression for the sound velocity (1.2) into an identity
[8–10].

Substituting dv/dq = (dv/dn0)(dn0/dq) and taking into
account Eq. (3.15), we rewrite Eq. (3.13) as

m

m∗
= 1

4πρ0v

d(vn0)

dn0
. (3.16)

It remains to express ρ0 here via the Luttinger-liquid parameter
K . To this end, we multiply Eqs. (3.5) and (3.9b) by σ ′

k(k,q)
and ρ(k,q), respectively, and integrate over k in the interval
−q < k < q. The left-hand sides of the resulting equations
are identical. Equating the right-hand sides and evaluating the
integrals with the help of Eqs. (3.5) and (3.14), we obtain the
formula [8,9,23]

ρ0σ0 = �
2n0

2m
. (3.17)

Comparison of the first equation in (3.7) with Eq. (3.17) then
yields the relation we seek,

2πρ0 =
√

K . (3.18)

Substituting Eq. (3.18) into Eq. (3.16), we finally arrive at
Eq. (1.3).

IV. DISCUSSION

In this paper we considered two different routes to obtaining
spectra of elementary excitations of Galilean-invariant one-
dimensional quantum liquids. In Sec. II we discussed the
particle (hole) excitations in the gas of effective noninteracting
fermions that emerge as a result of the diagonalization of the
phenomenological hydrodynamic Hamiltonian. In Sec. III we
studied Lieb’s type I (type II) excitations in the Bethe ansatz
formalism [24]. Both routes lead to Eqs. (1.1)–(1.3) for the
low-energy spectra. The agreement shows that Lieb’s picture
of elementary excitations as particles or holes of the “Fermi
gas” of rapidities can be understood literally at low momenta,
when the excitations are indeed particles or holes in the gas of
effective fermions.

Elementary excitations reveal themselves in the behavior of
dynamic correlation functions, such as the dynamic structure
factor (Fourier-transform of the density-density correlation
function) S(p,ε). In accordance with the phenomenological
picture of weakly interacting effective fermions [5], at small
momenta almost the entire spectral weight of S(p,ε) is spread
uniformly over the interval of energies ε−(p) < ε < ε+(p). At
ε approaching ε±(p), the structure factor exhibits power-law
singularities [25,26] characterized by exponents μ±(p) that
scale linearly at small p [25].

It is natural to ask whether expansions similar to
Eqs. (1.1)–(1.3) for the excitation spectra can be derived
for the exponents μ±(p). It is easy to see that this is not
the case. Indeed, the singularities arise due to interaction
between the effective fermions [7,25–27]. In addition, the
exponents μ±(p) are sensitive to the cubic and higher order
in p corrections to their spectra [7,27]. At the level of the
gradient expansion of the hydrodynamic Hamiltonian, the
relevant contributions are represented by operators of scaling
dimension 4 and higher. Some of these terms, such as the
dimension-4 operators (∂2

xϕ±)2, can not be written as products
of powers of ∂xϕ and ∂xϑ . Accordingly, their coefficients
can not be found by invoking the Galilean invariance and
considering the response of the ground state to the variation
of the mean density. Thus, it is not possible to obtain simple
universal phenomenological expressions similar to Eqs. (1.2)
and (1.3) for the coefficients in the expansions of μ±(p). By
the same token, no such expressions exist for the coefficients
of the cubic and higher-order terms in the expansions (1.1) of
the excitation spectra.
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