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Electrified magnetic catalysis in three-dimensional topological insulators
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The gap equations for the surface quasiparticle propagators in a slab of three-dimensional topological insulator
in external electric and magnetic fields perpendicular to the slab surfaces are analyzed and solved. A different type
of magnetic catalysis is revealed with the dynamical generation of both Haldane and Dirac gaps. Its characteristic
feature manifests itself in the crucial role that the electric field plays in dynamical symmetry breaking and the
generation of a Dirac gap in the slab. It is argued that, for a sufficiently large external electric field, the ground
state of the system is a phase with a homogeneous surface charge density.
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I. INTRODUCTION

Topological insulators (TIs) form a class of materials with
unique properties, associated with a nontrivial topology of their
quasiparticle band structure (for a review, see Refs. [1–4]). The
key feature of two-dimensional (2D) and three-dimensional
(3D) TIs is the existence of special gapless edge and surface
states, respectively, while the bulk states of those materials
are gapped. The hallmark property of the surface states is
their topological protection. Mathematically, the nontrivial
topological properties of time-reversal (TR) invariant TIs are
generally described [5] by multiple copies of the Z2 invariants
found by Kane and Mele [6]. This implies that the energy band
gap should close at the boundary between topological and
trivial insulator (e.g., vacuum) giving rise to the occurrence of
the gapless interface states and the celebrated bulk-boundary
correspondence. The discovery of the Z2 topology in TIs is
an important breakthrough because it showed that nontrivial
topology can be embedded in the band structure and that the
presence of an external magnetic field is not mandatory for the
realization of topological phases.

Another distinctive feature of the 3D TIs is a relativisticlike
energy spectrum of the surface states, whose physical origin is
related to a strong spin-orbit coupling [7]. Indeed, the surface
states on each of the surfaces are described by 2D massless
Dirac fermions in an irreducible 2 × 2 representation, with a
single Dirac point in the reciprocal space. For comparison,
quasiparticles in graphene demonstrate similar properties, but
have four inequivalent Dirac cones due to a spin and valley
degeneracy [8] that makes certain aspects of their physics very
different from those of the surface states in TIs. In our study
below, we will concentrate only on the case of the strong
3D TIs whose surface states are protected by the topology
of the bulk bands in combination with the TR symmetry.
This leads to the locking of momenta and spin degrees of
freedom and, consequently, to the formation of a helical Dirac
(semi)metal state [7]. Such a state is characterized by the
electron antilocalization and the absence of backscattering.
The phenomenon of antilocalization has deep mathematical
roots and is usually explained by an additional Berry’s phase π

that is acquired when an electron circles a Dirac point. From the

physical viewpoint, when scattering on an impurity, an electron
must change its spin in order to preserve its chirality. Such a
process is possible only in the case of magnetic impurities
which break explicitly the TR symmetry.

Experimentally, a linear relativisticlike dispersion law of
the surface states is observed in Bi1−xSbx , Bi2Se3, Bi2Te3,
Sb2Te3, Bi2Te2Se, and other materials by using angle-resolved
photoemission spectroscopy (ARPES) [7,9–12]. Furthermore,
scanning tunneling microscopy and scanning tunneling spec-
troscopy provide additional information about the topological
nature of the surface states, such as the quasiparticles’ inter-
ference patterns around impurities and defects. The Fourier
analysis of these patterns has shown that the backscattering
between k and −k is highly suppressed in Bi1−xSbx [13] and
Bi2Te3 [14] in accord with the TR symmetry protection. The
existence of an odd number of Dirac nodes leads to other
exotic properties associated with surface states of TIs, e.g., an
axion electromagnetic response [15], an unusual surface Hall
conductance [16,17], etc.

It is well known that electrons confined to two dimensions
can form numerous interaction-induced phases. By using
numerical calculations, it was shown in Ref. [18] that it is
energetically favorable for the 2D electron liquid in a weak
magnetic field to form domains with empty and fully filled
higher Landau levels. Depending on the number of Landau
levels filled, the corresponding charge density wave (CDW)
phase is realized with a “stripe” or “bubble” pattern. By
using the simplest model of the surface states in a magnetic
field with strong local repulsion and a long-range Coulomb
interaction included perturbatively, it was suggested that a
similar CDW phase with a “stripe” or “bubble” pattern can
be also realized on the surface of 3D TIs for supercritical
values of a local repulsion constant [19]. For subcritical local
repulsion, the composite Fermi liquid (CFL) [20] phase is
expected [19,21]. It is interesting that composite fermions
in conventional 2D electron gas at half-filling were recently
suggested to be massless Dirac (quasi)particles [22] similar
to the surface quasiparticles of TIs. This result was also
checked numerically in Ref. [23], where it was shown that
at the half-filling the particle-hole symmetry for composite
fermions plays the same role as the TR symmetry for the
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2D Dirac fermions and, consequently, the backscattering off
symmetry-preserving impurities is also forbidden.

The influence of an external electric field on the exciton
condensation in thin films of TIs was studied in Refs. [24,25],
where it was shown that the electron condensate effectively
joins the surfaces of a thin film and leads to the formation of a
pairing gap. However, this is important only in thin (lz � 8 nm)
films of TIs and can be ignored in sufficiently thick slabs [26].
The exciton condensate exhibits unusual properties including
a stable zero mode and a fractional charge ±e/2 carried by
a singly quantized vortex in the exciton condensate [24]. The
dynamical gap generation in a simple model of TIs was also
considered in Ref. [27].

Just like a magnetic field, an external electric field may play
an important role in the dynamics of the surface states in a 3D
TI slab. In this paper, we study the dynamical gap generation
and the phase diagram of a TI slab placed in external magnetic
and electric fields perpendicular to the slab surfaces. (Note that
the case of the parallel fields is rather trivial. While a parallel
magnetic field does not affect the orbital motion, a parallel
electric field produces a current on the surface.) We argue that
a uniform phase with both dynamically generated Dirac and
Haldane gaps is realized in sufficiently strong (weak) electric
(magnetic) fields. Although the explicit calculations performed
in this paper use the model parameters suitable for Bi2Se3, the
main qualitative conclusions should be valid for all similar
TIs.

The paper is organized as follows. The effective Hamilto-
nian of the surface states in the simplest model of a topological
insulator with short- and long-range interactions is described in
Sec. II. The set of gap equations at finite temperature is derived
in Sec. III and its solutions in electric and magnetic fields are
obtained numerically in Sec. IV. The qualitative description of
the inhomogeneous phase with two stripes is given in Sec. V.
The main results are discussed and summarized in Secs. VI
and VII, respectively.

For convenience, throughout the paper, we set � = c = 1.

II. MODEL

By projecting the 3D bulk Hamiltonian onto the subspace
of surface states (see Refs. [1,28] for a detailed consideration),
the following effective Hamiltonian for the top surface of a 3D
TI is obtained [1,10,28,29]:

Htop surf(k) = C + vF (σ × k)z + O(k2)

= C+
(

0 vF (ikx + ky)
vF (−ikx+ky) 0

)
+ O(k2),

(1)

where C is a constant, σ = (σx,σy) are the Pauli matrices,
vF = 4.1 eVÅ = 6.2 × 105 m/s is the Fermi velocity, and
k = (kx,ky) is the surface momentum. The effective surface
Hamiltonian for the bottom surface is obtained from the
Hamiltonian of the top surface by the inversion k → −k (see
Sec. III C in Ref. [1]). It is worth noting that the effective
surface Hamiltonian is valid only at sufficiently small chemical
potentials, when the bulk states are gapped. Therefore, the
corresponding energy cutoff can be approximated by the bulk

band gap, i.e., � � �bulk. In the case of Bi2Se3, for example,
�bulk ≈ 0.35 eV [30,31].

The resulting model Hamiltonian, describing quasiparticle
states on the top and bottom surfaces of the 3D TI in constant
electric and magnetic fields applied perpendicular to the
surfaces of the slab, is given by H (0) = H

(0)
+ ⊕ H

(0)
− , where

H
(0)
λ =

∫
d2r ψ

†
λ(r)

×
(

m(0) − μ
(0)
λ ivF (πx − iπy)

−ivF (πx + iπy) −m(0) − μ
(0)
λ

)
ψλ(r). (2)

Here, λ = ± denotes the top and bottom surfaces, respectively,
μ

(0)
λ is the surface electrochemical potential, π ≡ −i∇ + eA

is the canonical momentum, A = (0,Bx) is the vector potential
that describes the constant magnetic field B pointing in the z

direction, and e is the electron charge. Note that in Eq. (2) we
redefined the wave function on the bottom surface by replacing
ψ− → σzψ−. As the notation suggests, the value of μ

(0)
λ may

depend on the surface index λ. Indeed, this is quite natural in
the model at hand since fixing charge densities on the top and
bottom surfaces requires an introduction of the corresponding
local electrochemical potentials. In view of a large surface g

factor, gs = 18 ± 4 [32], the Zeeman splitting is important in
TIs. This spin splitting is included in Hamiltonian (2) as the
bare gap parameter m(0) = gsμBB/2, where μB = 5.788 ×
10−5 eV/T is the Bohr magneton.

Before proceeding with the analysis of the model, it is
convenient to rewrite the model Hamiltonian (2) in terms
of the Dirac matrices. It is well known that there are two
irreducible representations of the Clifford-Dirac algebra in
(2+1) dimensions, e.g., see Ref. [33]. One of them is

γ 0 = σz, γ 1 = iσx, γ 2 = iσy (3)

and the other irreducible representation is obtained by chang-
ing γ μ → −γ μ with μ = 0,1,2 in Eq. (3). In terms of the Dirac
matrices (3), the free Hamiltonian (2) takes the following form:

H
(0)
λ =

∫
d2r ψ̄λ(r)

( − μ
(0)
λ γ 0 + vF (π · γ ) + m(0)

)
ψλ(r),

(4)

where ψ̄λ(r) = ψ
†
λ(r)γ 0. When an external electric field is

applied perpendicularly to the surfaces of the TI slab, the
gapless surface states will tend to completely screen the
field out. Indeed, from a physics viewpoint, the TI slab is
like a Faraday cage made of gapless (metallic) surface states
enclosing a gapped (insulating) interior. This implies that there
should be no electric field inside a (sufficiently thick) TI slab.
Enforcing this condition allows one to determine the charge
densities and electrochemical potentials on the surfaces. In
terms of the charge densities on the top and bottom surfaces,
one has

ρλ = λε0E, (5)

where E is the external electric field pointing in the z direction,
ε0 ≈ 8.854 × 10−12 F/m is the permittivity of free space, and
2ε0E corresponds to the difference of the charge densities of
the top and bottom surfaces needed to compensate the external
electric field.
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Under the parity transformation P in (2+1) dimensions,
which changes the sign of a spatial coordinate, i.e., (x,y) →
(−x,y), the two-component spinors transform as follows:
Pψ(t,x,y)P −1 = σxψ(t, − x,y). Clearly, the last term in
Hamiltonian (4) breaks parity, as well as the TR symmetry
T ψ(t,x,y)T −1 = σyψ

∗(−t,x,y). This mass term is known
in the literature as the Haldane mass

∑
λ mH ψ̄λψλ [34]. A

parity and TR invariant mass is also possible in the model with
two irreducible representations. It is given by the Dirac mass
term

∑
λ mD λψ̄λψλ with the parity transformation defined

by ψλ=+1 → σxψλ=−1 and ψλ=−1 → σxψλ=+1. (Note that,
in the TI slab model, this transformation interchanges the
states on the different spatially separated surfaces.) While a
Chern-Simons mass term for the gauge field is induced via
one-loop polarization when the Haldane mass is present, the
Chern-Simons term is absent in the case of the Dirac mass. The
spontaneous breaking of parity in (2 + 1)-dimensional QED
was studied in Ref. [35].

In this study, the model interaction Hamiltonian Hint

includes both a long-range Coulomb and a short-range local
four-fermion interaction

Hint = e2

8πε0κsurf

∫
d2r d2r′ �†(r)�(r)�†(r′)�(r′)

|r − r′|
+ Gint

2

∫
d2r �†(r)�(r)�†(r)�(r), (6)

where �(r) = (ψλ=+1(r),ψλ=−1(r))T . The first term in Hint

describes the long-range Coulomb interaction and takes
into account the effective surface dielectric constant κsurf =
(1 + κbulk)/2 ≈ 56, where the bulk dielectric constant κbulk ≈
113 for Bi2Se3 [36]. The second term captures the onsite
local repulsion, parametrized by the dimensionful coupling
constant Gint. In view of the large bulk dielectric constant and
assuming a large slab thickness, we neglect the intersurface
interaction and the possible formation of an intersurface
exciton condensate [24,25]. Thus, the full Hamiltonian of
our model is given by the sum of the free and interaction
Hamiltonians in Eqs. (4) and (6).

III. GAP EQUATIONS

In this section, we study the gap generation in the effective
model of a sufficiently thick TI slab described in the previous
section. The inverse free surface fermion propagator is given
by

iS−1
λ (u,u′) = [(

i∂t + μ
(0)
λ

)
γ 0 − vF (π · γ ) − m(0)

]
δ3(u − u′),

(7)

where u = (t,r) denotes a space-time coordinate. By using this
as a guide, we assume the following rather general ansatz for
the inverse full surface fermion propagator:

iG−1
λ (u,u′) = [(i∂t + μλ)γ 0 − vF (π · γ ) − mλ]δ3(u − u′),

(8)

where mλ is a dynamically generated gap (mass) which,
in general, includes both Haldane and Dirac gaps and μλ

denotes the dynamical electrochemical potential. Note that
all dynamical parameters in the full propagator are assumed to

be functions of (π · γ )2l2, where l = 1/
√|eB| is the magnetic

length. Therefore, in the end, they all depend on the Landau
level index n.

Because of the long-range interaction, in principle, the
renormalization of the wave function should be included in
the full propagator (8). This can be formally done by replacing
the Fermi velocity vF with a dynamical function Fλ. It is
well justified, however, to neglect the renormalization of the
Fermi velocity and replace it with vF . Indeed, even in the
case of graphene with an unscreened Coulomb interaction, the
renormalized Fermi velocity is generically 10% to 30% larger
than the corresponding bare value vF [37–39]. Because of a
much larger surface dielectric constant and, consequently, a
much smaller coupling constant, the Coulomb interaction will
play a minor role in the Fermi velocity renormalization and, as
we will show below, in the generation of dynamical gaps in TIs.

In order to represent the inverse propagator in the form of
a Landau-level expansion, we use the following complete set
of eigenstates (for details, see Appendix A in Ref. [39]):

ψn,ky
(r) = 1√

2n+1πln!
Hn

(
kyl + x

l

)
e
− 1

2l2
(x+ky l

2)2

eisBkyy, (9)

where Hn(x) are the Hermite polynomials and sB = sign(eB).
By making use of the results in Appendix A, we derive the
following inverse fermion propagators in the mixed frequency-
momentum representation:

S−1
λ (ω,r,r′) = ei�(r,r′)S̃−1

λ (ω,r − r′), (10)

G−1
λ (ω,r,r′) = ei�(r,r′)G̃−1

λ (ω,r − r′). (11)

Here �(r,r′) = −eB(x + x ′)(y − y ′)/2 is the famous
Schwinger phase and the translation-invariant parts of the
inverse propagators are given by

iS−1
λ (ω,r−r′) = e−η/2

2πl2

∞∑
n=0

{
sB

(
ω + μ

(0)
λ

)
[P+Ln−1(η)

−P−Ln(η)]−m(0)[P+Ln−1(η)+P−Ln(η)]

− i

l2
vF (γ · r)L1

n−1(η)

}
, (12)

iG−1
λ (ω,r − r′) = e−η/2

2πl2

∞∑
n=0

{
sB(ω + μn,λ)[P+Ln−1(η)

−P−Ln(η)]−mn,λ[P+Ln−1(η)+P−Ln(η)]

− i

l2
vF (γ · r)L1

n−1(η)

}
, (13)

where P± = (1 ± sBγ 0)/2, η = (r − r′)2/(2l2), and L
j
n(x) are

the generalized Laguerre polynomials (by definition Ln ≡
L0

n).
In order to study the dynamical gap generation, we utilize

the Baym-Kadanoff (BK) formalism [40], which leads to
a self-consistent Schwinger-Dyson equation for the fermion
propagator. In contrast to a perturbative analysis, the BK
formalism can capture nonperturbative effects such as spon-
taneous symmetry breaking. To leading order in coupling,
the BK effective action in the model under consideration is
given by Eq. (B7) in Appendix B. In view of the geometry
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of conducting states of our TI system, it should not be too
surprising that the effective action (B7) has a form similar to
that in bilayer graphene [compare with Eq. (9) in Ref. [41]].

The extremum of the effective action δ�(G)
δGλ

= 0 defines
the following Schwinger-Dyson equation for the full fermion
propagator (for details, see Appendix B):

iG−1
λ (u,u′) = iS−1

λ (u,u′) − e2γ 0Gλ(u,u′)γ 0D(u′ − u) − Gint{γ 0Gλ(u,u)γ 0−γ 0 tr[γ 0Gλ(u,u)]}δ3(u − u′), (14)

where the trace in the last term is taken over the spinor indices and the Hartree term due to the Coulomb interaction is absent.
This is justified because of the overall neutrality of the sample, i.e.,

Qb − e
∑
λ=±

tr[γ 0Gλ(u,u)] = 0, (15)

where Qb denotes the background charge due to the external gates. We note, however, that it does not make sense to drop the
Hartree-type term due to the contact interaction. Therefore, the corresponding term is kept in curly brackets in Eq. (14).

The propagator mediating the Coulomb interaction is denoted by D(u). Its explicit expression is given by

D(u) =
∫

dω d2k
(2π )3

D(ω,k)e−iωt+ik·r ≈ δ(t)
1

4πε0κsurf

∫
dk

2π

kJ0(kr)

k + �(0,k)
, (16)

where J0(x) is the Bessel function. In the last expression, we neglected the dependence of the polarization function �(ω,k) on
ω, which corresponds to an instantaneous approximation. Such an approximation may be reasonable for the TI surfaces, where
charge carriers propagate much slower than the speed of light and, thus, the retardation effects are negligible. It is worth noting,
however, that the instantaneous approximation has a tendency to underestimate the strength of the Coulomb interaction [42].

Just like the inverse propagators in Eqs. (10) and (11), the propagators themselves have the same Schwinger phase. The full
propagator, in particular, takes the following explicit form:

Gλ(ω,r,r′) = ei�(r,r′)G̃λ(ω,r − r′), (17)

G̃λ(ω,r − r′) = e−η/2

2πl2

∞∑
n=0

{
sB(ω + μn,λ)[Ln−1(η)P+ − Ln(η)P−]

[ω + μn,λ + i0 sign(ω)]2 − M2
n

+mn,λ[Ln−1(η)P+ + Ln(η)P−] − i vF

l2 L1
n−1(η)[γ · (r − r′)]

[ω + μn,λ + i0 sign(ω)]2 − M2
n

}
,

(18)

where Mn =
√

(mn,λ)2 + ε2
Bn and εB =

√
2v2

F |eB| is the Landau energy scale. The inverse and full fermion propagators at finite
temperature are easily obtained through the standard replacement ω → iωm′ = iπT (2m′ + 1).

By factorizing the Schwinger phase on both sides of Eq. (14), we arrive at the following gap equation for the translation-invariant
part of the full propagator:

iG̃−1
λ (ω,r) = iS̃−1

λ (ω,r) − αvF

∫
d�

2π

dk

2π

kJ0(kr)

k + �(0,k)
γ 0G̃λ(�,r)γ 0 − Gint

∫
d�

2π
δ2(r){γ 0G̃λ(�,r)γ 0 − γ 0 tr[γ 0G̃λ(�,r)]}.

(19)

Here, we introduced the following notation: α = e2/(4πε0vF κsurf). In the case of Bi2Se3, in particular, α ≈ 0.062. Although it
is hard to estimate Gint reliably, its origin is the Coulomb repulsion on distance scales comparable to the lattice spacing. Thus, it
may be reasonable to use the following approximate model value:

Gint = αv2
F κsurf

�bulk
≈ 168.7 eVÅ

2
, (20)

where the factor κsurf was introduced in order to compensate for polarization effects in the definition of α. Indeed, polarization
effects should be negligible at small distances. It is worth noting that the corresponding dimensionless constant

gint = Gint�bulk

8
√

2πv2
F

≈ 0.18 (21)

is rather small. In fact, it is an order of magnitude smaller than the critical value gcr = √
π needed for generating a gap in a

(2+1)-dimensional model in the absence of a magnetic field [43]. Because of this and because of the strong suppression of the
Coulomb interaction by the large dielectric constant, no dynamical generation of a gap is expected in such a TI material in the
absence of an external magnetic field. Consequently, the magnetic catalysis [43] will play a crucial role in the generation of
dynamical gaps in TIs. (For a recent review on magnetic catalysis, see Ref. [44].)

By using the explicit form of the fermion propagator (18) on the right-hand side of Eq. (19), we can easily calculate the integral
over � (or the sum over the Matsubara frequency at nonzero temperature, see Appendix A 2). Afterwards, by multiplying both
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sides of the gap equation (19) by e−η/2Ln′ (η) or e−η/2(γ · r)L1
n′(η) and then integrating over r, the complete set of equations for

the dynamical parameters can be straightforwardly obtained. In particular, the gap equations for the lowest Landau level (LLL)
parameters are given by

�eff,λ = μ
(0)
λ + sBm(0) + α

vF

2l

{
K(0)

0,0[1 − 2nF (�eff,λ)] −
∞∑

n′=1

K(0)
n′,0

[
nF (Mn′ + μn′,λ) − nF (Mn′ − μn′,λ)

− sBmn′,λ
1 − nF (Mn′ + μn′,λ) − nF (Mn′ − μn′,λ)

Mn′

]}
+ Gint

4πl2

{ ∞∑
n′=1

[nF (Mn′ + μn′,λ) − nF (Mn′ − μn′,λ)]

+
∞∑

n′=1

sBmn′,λ
1 − nF (Mn′ + μn′,λ) − nF (Mn′ − μn′,λ)

Mn′

}
, (22)

where nF (x) = 1/(ex/T + 1) is the Fermi-Dirac distribution. Notice that we introduced an effective LLL electrochemical potential
�eff,λ = μ0,λ + sBm0,λ because the LLL parameters μ0,λ and m0,λ cannot be unambiguously defined separately and only their
combination �eff,λ has a well-defined physical meaning [45,46]. Similarly, the equations for the dynamical parameters associated
with higher Landau levels read as

mn,λ = m(0) + sBα
vF

4l

{
K(0)

0,n[1 − 2nF (�eff,λ)] +
∞∑

n′=1

K(0)
n′−1,n−1

[
nF (Mn′ + μn′,λ) − nF (Mn′ − μn′,λ)

+ sBmn′,λ
1 − nF (Mn′ + μn′,λ) − nF (Mn′ − μn′,λ)

Mn′

]

−
∞∑

n′=1

K(0)
n′,n

[
nF (Mn′ + μn′,λ) − nF (Mn′ − μn′,λ) − sBmn′,λ

1 − nF (Mn′ + μn′,λ) − nF (Mn′ − μn′,λ)

Mn′

]}

+ Gint

8πl2

{
sB[1 − 2nF (�eff,λ)] + 2

∞∑
n′=1

mn′,λ
1 − nF (Mn′ + μn′,λ) − nF (Mn′ − μn′,λ)

Mn′

}
, (23)

μn,λ = μ
(0)
λ + α

vF

4l

{
K(0)

0,n[1 − 2nF (�eff,λ)] −
∞∑

n′=1

K(0)
n′−1,n−1

[
nF (Mn′ + μn′,λ) − nF (Mn′ − μn′,λ)

+ sBmn′,λ
1 − nF (Mn′ + μn′,λ) − nF (Mn′ − μn′,λ)

Mn′

]
−

∞∑
n′=1

K(0)
n′,n

[
nF (Mn′ + μn′,λ) − nF (Mn′ − μn′,λ)

− sBmn′,λ
1 − nF (Mn′ + μn′,λ) − nF (Mn′ − μn′,λ)

Mn′

]}

− Gint

8πl2

{
[1 − 2nF (�eff,λ)] − 2

∞∑
n′=1

[nF (Mn′ + μn′,λ) − nF (Mn′ − μn′,λ)]

}
. (24)

The kernel coefficients K(0)
m,n that capture the long-range interaction effects in the gap equations are defined in Eq. (C1). In this

study, for simplicity, we neglect all screening effects, i.e., we set �(0,k) = 0. Then, the numerical analysis greatly simplifies
because the coefficients K(0)

m,n can be calculated analytically [see Eq. (C3)].
In addition to the gap equation (19), the constraints for the surface charge densities in Eq. (5) should be also satisfied. In terms

of the model parameters, the explicit form of the constraint reads as

− e

4πl2

{
[1 − 2nF (�eff,λ)] − 2

∞∑
n=1

[nF (Mn + μn,λ) − nF (Mn − μn,λ)]

}
= λε0E, (25)

where we used the definition for the surface charge densities
in terms of the fermion propagator, i.e., ρλ = e tr[Gλ(u,u)γ 0].
Because the surface charge density is fixed by the external
electric field, the electrochemical potential μ

(0)
λ is not an

independent parameter. It is determined together with the other
dynamical parameters by solving the system of Eqs. (22)–(25).

IV. NUMERICAL RESULTS

In this section, we present our numerical solutions of gap
equations (22)–(24), together with the constraint in Eq. (25).
Before proceeding to the analysis, it is convenient to give the
formal definition of the Dirac and Haldane gaps in the TI model
at hand. While the original surface gaps mn,+ and mn,− (with

115429-5



GORBAR, MIRANSKY, SHOVKOVY, AND SUKHACHOV PHYSICAL REVIEW B 94, 115429 (2016)

n � 1) have a straightforward physical meaning, the symmetry
properties of the ground state can be better understood in terms
of Dirac and Haldane gaps, i.e.,

mn,D = mn,+ − mn,−
2

, mn,H = mn,+ + mn,−
2

. (26)

Strictly speaking, these gaps cannot be associated with the
usual Dirac and Haldane masses in (2+1)-dimensional QED
(see Ref. [33]) because m± in TIs correspond to spatially
separated surfaces. Since the free Hamiltonian (2) contains
the bare Haldane gap m(0) due to the Zeeman interaction, it
is also convenient to define the dynamical part of the total
Haldane gap �mn,H ≡ mn,H − m(0).

In order to provide an insight into relation (26) between m±
and Dirac and Haldane gaps, let us recall the reducible 4 × 4
representation for QED2+1 considered in Ref. [33]:

γ̃ 0 =
(

γ 0 0
0 −γ 0

)
, γ̃ 1 =

(
γ 1 0
0 −γ 1

)
,

γ̃ 2 =
(

γ 2 0
0 −γ 2

)
. (27)

In this representation, in addition to the γ matrices in Eq. (27),
there exist two other matrices

γ̃ 3 = i

(
0 1
1 0

)
, γ̃ 5 = i

(
0 1

−1 0

)
, (28)

which anticommute with γ̃ 0, γ̃ 1, and γ̃ 2. In terms of these
4 × 4 matrices, the existence of a U(2) symmetry in the model
of a TI slab, defined by Eqs. (4) and (6), is transparent. The
corresponding group generators are given by

1, iRμγ̃ 3, Rμγ̃ 5, and γ̃ 3γ̃ 5, (29)

where Rμ is the operator which interchanges μ
(0)
+ ↔ μ

(0)
−

in the low-energy free Hamiltonian (4). (Note that, in the
absence of an external electric field, there is no need in the
operator Rμ.) As is easy to check, the Dirac gap mD�̄�

breaks the U(2) symmetry down to U+(1) × U−(1), where
�̄ = �†γ̃ 0 and the subscript λ = ± labels the two irreducible
representations or the surfaces of the TI slab. The Haldane gap
mH�̄γ̃ 3γ̃ 5� is invariant with respect to the U(2) symmetry,
but, unlike the Dirac gap, it breaks the parity P and T

symmetries. Since external electric and magnetic fields break
P and T symmetries, the generation of the Haldane gap has no
effect on symmetry breaking. Therefore, only the dynamically
generated Dirac gap will spontaneously break the symmetry

of our model. As we will see below, such a gap is indeed
generated due to the electrified magnetic catalysis.

For numerical calculations, it is useful to estimate energy
scales in the problem at hand:

�bulk ≈ 350 meV,
gsμBB

2
≈ 0.5B[T ] meV,

εB =
√

2v2
F |eB| ≈ 22.6

√
B[T ] meV,

l ≈ 25.7 nm/
√

B[T ]. (30)

By solving numerically the gap equations (22), (23), and
(24) together with constraint (25), we straightforwardly obtain
the electrochemical potentials μn,± and the gaps mn,± as
functions of the magnetic field. The results for the lowest
and first Landau level parameters are shown in Fig. 1 for fixed
values of the electric field and temperature E = 1 mV/Å and
T = 5 × 10−3�bulk ≈ 20 K, respectively. In the calculation,
we truncated the system of equations by including only
nmax = 26 Landau levels.

As we see from the left panel in Fig. 1, the absolute values
of the electrochemical potentials �eff,± and μ1,± experience
a large jump around |B| ≈ 5 T. The jump corresponds to the
point at which the filling of the first Landau level starts. We
checked that the position of the jump shifts to larger values of
the magnetic field with increasing the external electric field.
Of course, this behavior is expected since larger electric fields
require higher charge densities on the TI surfaces. In addition
to the large jump around |B| ≈ 5 T, we also observe additional
features in the dependence of �eff,± and μ1,± at smaller values
of the magnetic field. They generically correspond to the onset
of filling of higher Landau levels. Here, it is appropriate
to mention that, in all regimes studied, the electrochemical
potentials μ

(0)
± are very similar quantitatively to μ1,± and,

therefore, we do not show them in our figures.
Let us now turn to the discussion of the dynamically

generated gaps. The results in the middle panel of Fig. 1
clearly demonstrate that the surface gaps m1,± monotonically
increase with the magnetic field. More interestingly, however,
we find that the values of the gaps on the two surfaces m1,+
and m1,− remain comparable, although not identical to each
other for sufficiently weak electric fields. The importance of
this observation becomes obvious in the context of the U(2)
symmetry discussed earlier. Indeed, if the values of m1,+
and m1,− were exactly the same, they would describe a pure
Haldane solution. As is clear from the definition in Eq. (26), a
small difference between m1,+ and m1,− implies the existence

FIG. 1. The lowest and first Landau level parameters as functions of the magnetic field for fixed values of the external electric field
E = 1 mV/Å and temperature T = 5 × 10−3�bulk ≈ 20 K. The results for the (effective) electrochemical potentials �eff,± and μ1,± are shown
in the left panel, the gaps m1,± are shown in the middle panel, and Dirac and Haldane gaps m1,D , m1,H , and �m1,H are shown in the right panel.
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FIG. 2. The lowest and first Landau level parameters as functions of the external electric field for fixed values of the magnetic field B = 5 T
and temperature T = 5 × 10−3�bulk ≈ 20 K. The results for the (effective) electrochemical potentials �eff,± and μ1,± are shown in the left
panel, the gaps m1,± are shown in the middle panel, and Dirac and Haldane gaps m1,D , m1,H , and �m1,H are shown in the right panel.

of a dynamically generated Dirac gap. Such a gap is induced
by the applied electric field. This conclusion is further
supported by the dependence of the dynamical gaps on the
electric field, shown in Fig. 2 and discussed below Eq. (33).

The results in the right panel of Fig. 1 demonstrate that
the absolute value of the Dirac gap m1,D increases with the
magnetic field at sufficiently small fields |B| � 5 T, when
the LLL is fully filled. At larger magnetic fields |B| � 5 T,
when the LLL is not fully filled, the Dirac gap remains nearly
constant (or increases very slowly). In contrast, the dynamical
part of the Haldane gap �m1,H increases approximately as
B2. Note that, because of the linear dependence of m(0) on
the magnetic field, the total Haldane gap m1,H grows almost
linearly with B.

The dependencies of the lowest and first Landau level
parameters on the external electric field are presented in
Fig. 2 for fixed values of the magnetic field (B = 5 T) and
temperature (T = 5 × 10−3�bulk ≈ 20 K). As we see from the
left panel in Fig. 2, the absolute values of the electrochemical
potentials slowly increase with electric field at first, and then
experience a substantial jump at |E | ≈ 1 mV/Å. The jump
corresponds to the field at which the filling of the first Landau
level begins. From the middle panel in Fig. 2, we see that the
surface gaps m1,± have a linear dependence at weak fields (i.e.,
in the regime of a partially filled LLL) and stay approximately
constant at higher electric fields. As might have been expected,
the Haldane gap m1,H , which is shown in the right panel of
Fig. 2, depends very weakly on the applied electric field. This
is in contrast to the behavior of the Dirac gap m1,D (see the
right panel in Fig. 2), which is linear in E at small fields and
stays approximately constant at large fields. It should be also
emphasized that the Dirac gap vanishes at E = 0. As we argue
below, this fact is important from the viewpoint of symmetry
properties in the model.

As already suggested earlier, the generation of the Dirac gap
is directly connected with the applied external electric field. In
order to demonstrate this in the simplest possible setting, it is
instructive to consider an approximate form of the gap equation
(23) in the limit of a large magnetic field. By rewriting it in
terms of the Haldane and Dirac gaps, we obtain

mn,H ≈m(0) + 1

4l

∞∑
n′=1

×
(
αvFK(0)

n′−1,n−1 + αvFK(0)
n′,n+

Gint

πl

)
mn′,H

Mn′
, (31)

mn,D ≈ −πlsBε0

(
αvFK(0)

0,n + Gint

2πl

)E
e

+ 1

4l

∞∑
n′=1

×
(

αvFK(0)
n′−1,n−1 + αvFK(0)

n′,n + Gint

πl

)
mn′,D

Mn′
,

(32)

where we took into account that nF (Mn ± μn,λ) � 1 for n � 1
and assumed that Mn′ is almost independent of the small Dirac
gap. Note that in order to rewrite the LLL contributions in
the gap equations in terms of the electric field E , we used
the following approximate expression for the surface charge
densities:

ρ+ = −ρ− = ρ+ − ρ−
2

≈ e

4πl2
[nF (�eff,+) − nF (�eff,−)] = ε0E . (33)

By comparing the gap equations (31) and (32), we see that the
external electric field plays the role of a “seed” for the Dirac
gap mn,D , just as the bare gap parameter m(0) for the Haldane
gap mn,H . This explains why the external electric field is the
key factor in generating the Dirac gap and breaking the U(2)
symmetry in the slab of 3D TIs.

It may be instructive to study the dependence of the
electrochemical potentials μn,± and gaps mn,± on the Landau
level index n. The corresponding results for two different
values of the electric field are presented in Fig. 3 for B = 5 T
and T = 5 × 10−3�bulk ≈ 20 K. As we see, all dynamical
parameters depend very weakly on the Landau level index
n. In view of the large surface dielectric constant and,
consequently, weak Coulomb interaction, this result is not
surprising. Moreover, it strongly suggests that the long-range
interaction indeed plays a minor role compared to the local
interaction.

By using the above results, we can also obtain the
quasiparticle energy levels as functions of the magnetic and
electric fields

ω0,λ = −�eff,λ, ωn>0,λ = −μn,λ ± Mn, (34)

where Mn were given below Eq. (18). The corresponding
numerical results are summarized in Fig. 4.

As we see from the left panel in Fig. 4, there is a rather
large splitting between the energy levels on the top and bottom
surfaces at small values of the magnetic field. This corresponds
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FIG. 3. The electrochemical potentials μn,± (left panel), the gaps mn,± (middle panel), and the Dirac and Haldane gaps (right panel)
as functions of the Landau level index n. The results for E = 2 mV/Å are represented by red solid and green dotted lines. The results for
E = 1 mV/Å are represented by blue dashed and brown dashed-dotted lines. The values of the magnetic field and temperature are B = 5 T
and T = 5 × 10−3�bulk ≈ 20 K, respectively.

to the regime with higher Landau levels being occupied.
With increasing the magnetic field, the magnitude of splitting
quickly diminishes and becomes rather small when the LLL
regime is reached. In contrast, the increase of the electric field
tends to amplify the splitting between the Landau levels. The
existence of such a splitting may lead to an observation of
new plateaus in the Hall conductivity. The large jumps in the
energy spectrum at |B| ≈ 5 T and |E | ≈ 1 mV/Å correspond
to the onset of and the exit from the LLL regime, respectively.
As is clear, these features are directly connected with the
corresponding jumps in the electrochemical potentials, seen
in the left panels of Figs. 1 and 2.

Before concluding this section, let us briefly discuss the
role of finite temperature in our solution. As expected,
the main results remain qualitatively the same for a whole
range of sufficiently small values of the temperature. With
increasing (decreasing) the temperature, however, the jumps
that correspond to the onset of and the exit from the LLL
regime become smoother (sharper) in the dependence of the
electrochemical potentials on the fields, shown in the left
panels of Figs. 1 and 2. It is also worth pointing that a weak
dependence of electrochemical potentials on the fields in the
regions between the jumps is caused by thermal broadening of
Landau levels. It vanishes in the limit T → 0.

V. INHOMOGENEOUS PHASE WITH TWO STRIPES:
QUALITATIVE APPROACH

In the previous section, we advocated the homogeneous
phase with dynamically generated gaps as the ground state
of 3D TIs in a sufficiently strong external electric field. On
the other hand, the inhomogeneous CDW phase considered
in Ref. [19] is likely to be more favorable in weak electric
fields. In order to provide a qualitative analytic description of
the inhomogeneous CDW phase with a “stripe” pattern, in this
section we consider a simple configuration of two stripes with
an infinitely thin transition region, or a domain wall at x = 0.
This is modeled by an inhomogeneous gap m(x) = |m| sign(x)
for the top surface, i.e., λ = +1 and sB = +1. (Note that such
a gap function with asymptotes of opposite sign at x → ±∞,
but without a magnetic field, is qualitatively similar to the
famous Jackiw-Rebbi solution in 1D [47].)

The solution to the Dirac equation with the gap function in
the form m(x) = |m| sign(x) is discussed in Appendix A 3. The
corresponding numerical results for the quasiparticle energy
spectrum as a function of ky , as well as the chiral condensate
and charge density as functions of the spatial coordinate x,
are shown in Fig. 5. In order to plot the results, we fixed
the model parameters as follows: m = 5 meV, μ = 0, and
B = 5 T. In the calculation, we also limited the sum over

FIG. 4. The quasiparticle energies for the first three Landau levels as functions of the magnetic field at fixed E = 1 mV/Å (left panel) and
as functions of the electric field at fixed B = 5 T (right panel). Red and blue lines denote the quasiparticle energies on the top and bottom
surfaces, respectively. Solid lines represent the LLL, dashed and dotted lines correspond to the first and second Landau levels, respectively.
The temperature is T = 5 × 10−3�bulk ≈ 20 K.
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FIG. 5. The energy spectrum as a function of ky (left panel), the chiral condensate (middle panel), and the charge density (right panel)
as functions of x in the Dirac problem with the inhomogeneous gap m(x) = |m| sign(x). For simplicity, only the first six Landau levels are
presented in the left panel. The red solid lines in the middle and right panels represent the numerical data. The blue dashed lines denote the
corresponding fits. The model parameters are m = 5 meV, μ = 0, and B = 5 T.

Landau levels (nmax = 26) and cut off the integration over ky

(−6/l � ky � 6/l).
As we see from Fig. 5, the chiral condensate and the

charge density have a kink and antikink structure, respectively.
Therefore, the existence of zero-energy states on the domain
wall agrees with the inhomogeneous form of the gap function.
The chiral condensate and the charge density can be fitted well
by the following functions:

tr[G(u,u)] =
∑

n

sign(ωn)

2
ψ̄ωn

(x)ψωn
(x)

≈ 1

4πl2
2.5 tanh

(
2.6

x

l

)
, (35)

tr[γ 0G(u,u)] =
∑

n

sign(ωn)

2
ψ†

ωn
(x)ψωn

(x)

≈ − 1

4πl2
1.0 tanh

(
1.3

x

l

)
, (36)

where the sum runs over the complete set of eigenstates, given
by the solutions to the spectral equation (A18). These fits are
shown in Fig. 5 alongside with the numerical solutions.

Let us now consider the case of a nonzero external electric
field, applied perpendicularly to the slab. By considering a
sufficiently thick slab, we will assume that the average electric
field inside the slab vanishes. In the homogeneous case, the
field is screened by the uniform surface charge densities.
This generically requires specific nonzero electrochemical
potentials μ± on the top and bottom TIs surfaces. In the
inhomogeneous striped phase, however, the simplest way to
achieve nonzero average surface charge densities is to vary the
width of stripes by �lx . The value of �lx can be estimated
from the following expression:

ε0E = ρ(lx + �lx) − ρ(lx) + ρ(−lx + �lx) − ρ(−lx)

≈ e

4πl2

[
tanh

(
1.3

lx + �lx

l

)
− tanh

(
1.3

lx − �lx

l

)]
,

(37)

where we used the standard definition for the surface charge
density ρ = e tr[γ 0G(u,u)] together with Eq. (36).

Our numerical result for the ratio of the correction �lx
to the stripe half-width lx is plotted in Fig. 6. We see that
the correction to the stripe width �lx becomes significant at

sufficiently strong electric fields. In fact, it is comparable to lx
already for E � 1 mV/Å. This suggests that the stripe phase is
unstable when the electric field exceeds a certain critical value
Ecr. Quantitatively, the critical value roughly corresponds to
the beginning of the first Landau level filling

Ecr ≈ e2B

4πε0�c
, (38)

where we used Eq. (25) and restored Planck’s constant �

and the speed of light c. This relation implies that Ecr ≈
0.22B[T] mV/Å, which is in a good agreement with our
previous numerical estimate E � 1 mV/Å at B = 5 T.

Another way to estimate the critical value of the electric
field is to compare the free-energy density in the homogeneous
phase, which is given by Eq. (B12), with the energy density
of the stripe phase estimated in Ref. [19]. In other words,
the value of Ecr is given by the solution to the following
equation:

0 =
∑

λ

�λ −
[√

αγ

l2
− m

l2

]
, (39)

where the term in square brackets corresponds to the energy
cost of creating the stripe phase [19]. The latter is characterized
by the domain-wall tension γ ∼ 1/l2 and the magnetic mass
m ∼ 1/l. The value of α is given below Eq. (19). The solution
to Eq. (39) can be easily obtained numerically and appears to

FIG. 6. The ratio of the width correction �lx to the stripe half-
width lx as a function of the external electric field (red line). The
model parameters are m = 5 meV, μ = 0, B = 5 T, and lx = 500 Å.

115429-9



GORBAR, MIRANSKY, SHOVKOVY, AND SUKHACHOV PHYSICAL REVIEW B 94, 115429 (2016)

agree quite well with the estimate in Eq. (38). One can also
obtain an approximate analytical solution to Eq. (39) by using
the LLL approximation for the free-energy density (B12),
i.e.,

�λ ≈ λε0E�eff

e
, (40)

where we used the LLL approximation for the charge density
(25). Then, by substituting this into Eq. (39) and estimating
the effective electrochemical potential as �eff ∼ λ/l, we find
the following critical value of the electric field:

Ecr ≈ e2B(1 − √
α)

2ε0�c
. (41)

This result is qualitatively the same as the estimate in
Eq. (38), although quantitatively appears to be somewhat
larger, Ecr ≈ 1.03B[T] mV/Å. We conclude, therefore, that
the critical electric field scales linearly with the magnetic
field Ecr ∼ e2B/(ε0�c), but the coefficient of proportionality
is determined only up to an overall factor of order 1.

VI. DISCUSSION

In this section, we discuss the range of validity and
limitations of our study, and compare our main results with
those existing in the literature. Let us start by pointing the
limitation of our model used for the description of the TI
surface states. While the model captures the Dirac nature of the
low-energy quasiparticles, it does not describe the hexagonal
warping of the Fermi surface that occurs away from the Dirac
point [7,11]. The corresponding effect was taken into account
in the study of gap generation in Ref. [48] and could play an
essential role in some TIs. For example, this may be the case
in Bi2Te3 [e.g., see Fig. 1(c) in Ref. [11]], in which the band
gap is about three times smaller than in Bi2Se3 and the trigonal
potential ∼k3 is rather strong. In the case of Bi2Se3, however,
the hexagonal warping could be safely neglected, except for
the case of rather high values of the chemical potential [e.g.,
see Fig. 8 in Ref. [4] and Fig. 3(b) in Ref. [12]]. The model
used in this study also ignores a Schrödinger-type term ∼k2,
which describes an asymmetry between the electron and hole
bands [49] (see also Fig. 1 in Ref. [12]). When the quadratic
term is sufficiently small, it is not expected to substantially
affect the dynamics of the gap generation.

The study here did not include the effects of the intersurface
tunneling on the dynamical generation of gaps. According to
Ref. [26], tunneling between the opposite surfaces may be
quite important only for sufficiently thin (lz � 8 nm) TI slabs.
Therefore, neglecting the intersurface tunneling is expected to
be a good approximation in the case of thick samples. It would
be interesting, however, to rigorously study the corresponding
effects in thin TI films in external electric and magnetic fields.

One of the uncertainties of the model Hamiltonian used in
this study is the strength of the local interaction Gint. Although
the order of magnitude of this coupling constant could be
estimated by using general arguments, its precise value is
unknown. Despite this, we argue that the simplified model
(4) that includes both short- and long-range interactions (6) is
sufficient for the qualitative analysis of the electrified magnetic
catalysis in 3D TIs. Moreover, we might even suggest that,

irrespective of the specific value of the coupling constants,
the qualitative features established here should be rather
universal.

It is interesting to compare our results with those obtained
in Ref. [19], where the phase diagram was studied in 3D TIs
in a magnetic field, but without an external electric field. The
authors of Ref. [19] argued that, depending on the strength
of local interaction, the CFL or CDW (“stripe” or “bubble”)
phases can be realized. Our results here suggest that neither
of those two phases describe the ground state of the TI
slab in a sufficiently strong external electric field. The CFL
phase with the half-filled LLL on each TI surface cannot
be easily deformed to screen out the external electric field
from penetrating into the TI bulk. This would imply a large
energy cost and disfavor the CFL phase. The CDW phase
could perhaps survive when a relatively weak electric field
is applied. In this case, the average charge densities on the
TI surfaces, which are needed to screen the electric field out
from the bulk, could be simply obtained by the formation
of positive and negative stripes (or bubbles) of unequal size.
(Note that it is energetically favorable to have either completely
filled or empty LLL inside the stripes [19].) As we showed in
Sec. V, a simple estimate suggests that the charge imbalance
obtained by the variation of the stripe widths can compensate
only relatively weak electric fields. Therefore, a sufficiently
strong electric field E > Ecr also destroys the CDW phase.
Our parametric estimate for the critical electric field strength
is Ecr ∼ e2B/(ε0�c).

In view of the above arguments, we claim that the ground
state of the TI slab in a nonzero magnetic field and a sufficiently
strong electric field is a homogeneous phase with equal in
magnitude, but opposite in sign, surface charge densities. It is
also characterized by the presence of both Dirac and Haldane
gaps. While our qualitative conclusion seems rather rigorous,
this study is insufficient to establish the precise structure of the
phase diagram in the plane of the applied electric and magnetic
fields. It would be very interesting to clarify the details of
the corresponding phase diagram either experimentally or
numerically.

It may be instructive to note that the thermal broadening of
Landau levels plays a relatively important technical role in our
analysis and in the description of the electrified homogeneous
phases. Indeed, by using a nonzero temperature, we were
able to unambiguously describe the surface ground states with
adjustable partial fillings of Landau levels, needed to screen
the external electric field. Certainly, the corresponding ground
states allow a well-defined zero-temperature limit, but their
description may become more subtle. By noting that surface
impurities also broaden Landau levels, we suggest that their
presence could lead to a realization of the electrified magnetic
catalysis similar to that in Sec. IV.

As is clear from our study, the low-energy model for the
surface states of 3D TIs is essentially a (2+1)-dimensional
QED, supplemented by certain constraints. The generation of
different types of gaps, such as those describing spontaneous
parity breaking and chiral symmetry breaking were studied
in QED2+1 without background electromagnetic fields in
Refs. [33,35,50] a long time ago. Moreover, it was shown
that the Dirac mass can be spontaneously generated, while the
Haldane mass is energetically disfavored [35]. Clearly, this
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is not the case in the problem at hand, where both types of
gaps are generated on the TI surfaces. This is due to the fact
that the TR and inversion symmetries are explicitly broken
by the external magnetic and electric fields. Furthermore, we
find that the Haldane gap dominates at small values of the
electric field. This situation is reminiscent of the dynamically
enhanced Zeeman splitting in graphene [39].

VII. CONCLUSION

In this study, we considered the dynamical generation of
gaps in a slab of a 3D TI, such as Bi2Se3, placed in the magnetic
and electric fields perpendicular to its surfaces. (Although we
used the model parameters for Bi2Se3, the main conclusions
should be valid for all similar TIs.) Note that the conducting
states on the TI slab surfaces and the overall geometry of
the system are rather similar to bilayer graphene. On the
other hand, the degeneracy connected with the valley and
spin degrees of freedom, which is responsible for a variety
of quantum Hall states in bilayer graphene, is absent in a TI
slab. Still, there are notable similarities in the dynamics of
gap generation in these two physical systems. For example,
the valley quantum Hall (or layer polarized) state, which is
realized in a sufficiently strong external electric field in bilayer
graphene, resembles the homogeneous state considered in this
paper.

By solving the gap equations for the surface quasiparticle
propagators in a simple model with short- and long-range
interactions, we found that both the Dirac and Haldane gaps
are dynamically generated in the TI slab in external electric
and magnetic fields. The underlying mechanism is a different
version of the magnetic catalysis. Because of a large surface
dielectric constant, the Coulomb interaction appears to play a
minor role in the dynamics. Unlike the Dirac gap, the Haldane
gap respects the U(2) symmetry with the generators given
in Eq. (29), but breaks the parity and TR symmetries. Since
both discrete symmetries are explicitly broken by external
electric and magnetic fields, the generation of the Haldane gap
does not break any symmetries. The Dirac gap, on the other
hand, is generated only in the presence of an electric field. The
result of such an electrified magnetic catalysis is a spontaneous
breaking of the U(2) symmetry.

By comparing our results with the findings in Ref. [19],
we argued that the homogeneous phase with dynamically
generated Dirac and Haldane gaps is the true ground state in
the TI slab in nonzero magnetic and sufficiently strong electric
fields. The precise structure of the phase diagram in the plane
of applied electric and magnetic fields remains to be clarified,
however.
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APPENDIX A: WAVE FUNCTIONS AND FERMION
PROPAGATOR

In this appendix, we determine the wave functions and the
fermion propagator in the model with the free Hamiltonian
in Eq. (2). For the simplicity of notation, we will drop the
superscript (0) in μ

(0)
λ and m

(0)
λ in this appendix.

1. Wave functions

The eigenvalue problem H
(0)
λ ψ = ωψ for the model Hamil-

tonian in Eq. (2) reduces to the following equation:(
mλ − μλ vF (∂x + sBky + eBx)

vF (−∂x + sBky + eBx) −mλ − μλ

)
×φ(x) = ωφ(x), (A1)

after we choose the wave function in the form ψ(r) =
eisBkyyφ(x), where φ(x) = (φ1(x),φ2(x))T and sB = sign(eB).
It terms of the variable

ξ =
√

|eB|
(

ky

|eB| + x

)
, (A2)

Eq. (A1) can be rewritten in the form

(mλ − μλ − ω)φ1(ξ ) + vF

√
|eB|(∂ξ + sBξ )

×φ2(ξ ) = 0, (A3)

vF

√
|eB|(−∂ξ + sBξ )φ1(ξ )

− (mλ + μλ + ω)φ2(ξ ) = 0. (A4)

For simplicity, here we consider only the case with sB = +1.
The solutions to this system of equations take the form

φ1(ξ ) = vF

√
2|eB|

μλ + ω − mλ

p2

2
Dp2/2−1(

√
2ξ ), (A5)

φ2(ξ ) = Dp2/2(
√

2ξ ), (A6)

where p =
√

(ω + μλ)2 − m2
λ/(vF

√|eB|) and Dp2/2(
√

2ξ ) is
the parabolic cylinder function [51]. By requiring that solutions
are finite at |ξ | → ∞, we find the quantization condition
p2/2 = n, where n is a non-negative integer. In this special
case, the parabolic cylinder functions can be expressed in terms
of Hermitian polynomials Hn(ξ ), i.e.,

Dn(
√

2ξ ) = e−ξ 2/2Hn(ξ )√
2n

. (A7)

Thus, the final expressions for the normalized wave functions
take the form

ψsB=+1,n(r)

= 1√
2l

√
ωn + μλ − mλ

ωn + μλ

eikyy

(
vF

√
2n|eB|

μλ+ωn−mλ
Yn−1(ξ )

Yn(ξ )

)
, (A8)

where Yn(ξ ) = e−ξ2/2Hn(ξ )√
2nn!

√
π

and l = 1/
√|eB| is the mag-

netic length. Note that the normalized wave function
in the case of sB = −1 is given by ψsB=−1,n(r) =

115429-11
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(−iσy)ψ∗
sB=+1,n(r)|

mλ→−mλ
. The corresponding energy eigen-

values are

ωn=0 = −μλ − sBmλ, ωn>0 = −μλ ± Mn, (A9)

where Mn =
√

m2
λ + nε2

B and εB =
√

2v2
F |eB| is the Landau

energy scale.

2. Fermion propagator

In this section we derive the free fermion propagator in the
model under consideration. In the mixed frequency-coordinate

space representation, the fermion (Feynman) propagator is
formally defined by

S(ω,r,r′) ≡ i
∑

n

ψn(r)ψ̄n(r)

ω − ωn + i0 sign(ω)
, (A10)

where the sum runs over the complete set of quasiparticle
eigenstates given by Eq. (A9).

It is convenient to start with the derivation of the lowest
Landau level (LLL) contribution to the fermion propagator,
i.e.,

Sn=0(ω,r,r′) = i

∫
dky

2π

ψn=0(r)ψ̄n=0(r′)
ω + μλ + sBmλ + i0 sign(ω)

= −isB

P−
2πl2

ei�(r,r′)−η/2

ω + μλ + sBmλ + i0 sign(ω)
, (A11)

where P± = (1 ± sBγ 0)/2, �(r,r′) = −eB(x + x ′)(y − y ′)/2 is the Schwinger phase, and η = (r − r′)2/(2l2).
The contribution of higher Landau levels to the fermion propagator is given by

Sn>0(ω,r,r′) =
∞∑

n=1

iei�(r,r′)−η/2

2πl2

{
sB(ω + μλ)[Ln−1(η)P+ − Ln(η)P−]

[ω + μλ + i0 sign(ω)]2 − M2
n

+ mλ[Ln−1(η)P+ + Ln(η)P−] − i vF

l2 L1
n−1(η)[γ · (r − r′)]

[ω + μλ + i0 sign(ω)]2 − M2
n

}
, (A12)

where L
j
n(x) are the generalized Laguerre polynomials (by definition Ln ≡ L0

n). In the derivation, we performed the summation
over the quasiparticle energies and integrated over ky by using formula 7.377 in Ref. [52].

In the case of a nonzero temperature, the energies are replaced by the Matsubara frequencies, i.e., ω → iωm′ = iπT (2m′ + 1).
In the gap equation (19), the corresponding propagators enter in the form of a sum over Matsubara frequencies. The corresponding
results for the sums are

T

∞∑
m′=−∞

Sn=0(iωm′ ,r,r′) = sBP−ei�(r,r′)−η/2

2πl2

1 − 2nF (μλ + sBmλ)

2
, (A13)

T

∞∑
m′=−∞

Sn>0(iωm′ ,r,r′) = −ei�(r,r′)−η/2

4πl2

∞∑
n=1

{
[nF (Mn − μλ) − nF (Mn + μλ)][Ln−1(η)P+ − Ln(η)P−]

+
[
mλ[Ln−1(η)P+ + Ln(η)P−] − i

vF

l2
L1

n−1(η)[γ · (r − r′)]
]
nF (Mn + μλ) + nF (Mn − μλ) − 1

Mn

}
,

(A14)

where nF (x) = 1/(ex/T + 1) is the Fermi-Dirac distribution function.

3. Two stripes separated by a domain wall

In this section, we consider the Dirac problem with the inhomogeneous gap in the form m(x) = |m| sign(x), which models an
infinitely thin transition region at x = 0 that separates two wide stripes of phases with masses of opposite signs. For the sake of
simplicity, we set λ = +1 and sB = +1 in this section.

By making use of wave functions found in Appendix A 1, we obtain the following solutions in the regions with positive and
negative gaps:

x > 0 : φ1(ξ ) = vF

√
2|eB|

μ + ω − |m|
p2

2
Dp2

2 −1
(
√

2ξ ), φ2(ξ ) = Dp2

2
(
√

2ξ ), (A15)

x < 0 : φ1(ξ ) = − vF

√
2|eB|

μ + ω + |m|
p2

2
Dp2

2 −1
(−

√
2ξ ), φ2(ξ ) = Dp2

2
(−

√
2ξ ), (A16)

where we assumed that the corresponding wave functions must vanish at x → ±∞. By matching the wave functions at x = 0,
i.e.,

C+ψx>0

∣∣∣
x=0

= C−ψx<0

∣∣∣
x=0

, (A17)
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we derive the following spectral equation:

Dp2

2 −1
(
√

2kyl)

Dp2

2
(
√

2kyl)

1

ω + μ − |m| = −
Dp2

2 −1
(−√

2kyl)

Dp2

2
(−√

2kyl)

1

ω + μ + |m| . (A18)

Note that this spectral equation looks somewhat similar to Eq. (2.19) for bound states in Ref. [28]. We note, however, that the
wave function in our case decreases at |x| → ∞ polynomially rather than exponentially.

By making use of the wave functions, we can also give the following explicit results for the density of charge carriers (plus
sign) and the chiral condensate (minus sign):

tr[(γ 0)
1±1

2 G(u,u)] =
∫

dky

2π

∑
n

sign[ωn(ky)]

2
|C+[ωn(ky) + μ,ky]|2

{
θ (x)

[
[ωn(ky) + μ + |m|]2

ε2
B

∣∣∣∣Dνn−1

(√
2kyl +

√
2
x

l

)∣∣∣∣
2

±
∣∣∣∣Dνn

(√
2kyl +

√
2
x

l

)∣∣∣∣
2]

+ θ (−x)

∣∣∣∣ Dνn
(
√

2kyl)

Dνn
(−√

2kyl)

∣∣∣∣
2

×
[

[ωn(ky) + μ − |m|]2

ε2
B

∣∣∣∣Dνn−1

(
−

√
2kyl −

√
2
x

l

)∣∣∣∣
2

±
∣∣∣∣Dνn

(
−

√
2kyl −

√
2
x

l

)∣∣∣∣
2]}

, (A19)

where ωn(ky) denotes the roots of Eq. (A18), νn = [[ωn(ky) + μ]2 − m2]/ε2
B , and C+(ω,ky) is a normalization constant. Note

that contrary to the homogeneous phase, ωn(ky) now explicitly depends on ky .

APPENDIX B: EFFECTIVE ACTION

In this appendix, we derive the one-loop Baym-Kadanoff (BK) effective action for the full surface quasiparticle propagators
Gλ. We begin with the part of the effective action connected with the Coulomb interaction. (For a similar derivation in bilayer
graphene, see Ref. [41].) The interaction Hamiltonian Hint of the Coulomb interaction in 3D has the standard form

Hint = e2

8πε0κ

∫
d2r dz d2r′dz′ n(r,z)n(r′,z′)√

(r − r′)2 + (z − z′)2
, (B1)

where ε0 ≈ 8.854 × 10−12 F/m is the vacuum dielectric constant and κ is a dielectric permittivity. Since we wish to consider a
TI slab in an external electric field, the density of charge carriers in the system under consideration consists of four terms:

n(r,z) = δ(z − Lz)nc,− + δ(z − lz)n−(r) + δ(z + lz)n+(r) + δ(z + Lz)nc,+, (B2)

where nc,λ denote the densities of charge carriers on the capacitor plates separated by the distance 2Lz (clearly, we assume that
these charge densities are uniform and do not depend on r in order to produce constant electric field in which our TI slab is
situated), and nλ(r) = ψ

†
λ(r)ψλ(r) denotes the density of charge carriers on the surfaces of the slab whose width is 2lz. Obviously,

we assume that Lz > lz.
By using Eq. (B2), we can easily integrate over z in Eq. (B1). The result reads as

Hint = 1

2

∫
d2r d2r′ {U (r − r′)[n+(r)n+(r′) + n−(r)n−(r′)] + 2Us,inter(r − r′)n+(r)n−(r′)

+ 2Usc,1(r − r′)[n+(r)nc,+ + n−(r)nc,−] + 2Usc,2(r − r′)[n+(r)nc,− + n−(r)nc,+]

+ κsurfU (r − r′)[nc,+nc,+ + nc,−nc,−] + 2Uc,inter(r − r′)nc,−nc,+}, (B3)

where the corresponding Coulomb potentials are

U (r) = e2

4πε0κsurf

1

r
, Us,inter(r) = e2

4πε0κsurf

1√
r2 + 4l2

z

, Usc,1(r) = e2

4πε0κsurf

1√
r2 + |Lz − lz|2

,

Usc,2(r) = e2

4πε0κsurf

1√
r2 + |Lz + lz|2

, Uc,inter(r) = e2

4πε0

1√
r2 + 4L2

z

. (B4)

The physical meaning of Eq. (B3) is transparent. Its first term describes the standard Coulomb interaction of quasiparticles on
the top and bottom surfaces of the TI slab. The second term corresponds to the intersurface interaction, therefore, Us,inter contains
additional term 4l2

z in the denominator compared to U . The second line in Eq. (B3) describes interactions of surface quasiparticles
with the charge densities on the capacitor plates. The last line in Eq. (B3) does not depend on nλ(r) and is, therefore, irrelevant for
the gap equations (obviously, this line describes the electrostatic interaction of charge densities on capacitor plates). The Fourier
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transforms of interactions (B4) are given by

U (k) = e2

2ε0κsurf

1

k
, Us,inter(k) = e2

2ε0κsurf

e−2lzk

k
, Usc,1(k) = e2

2ε0κsurf

e−|Lz−lz|k

k
,

Usc,2(k) = e2

2ε0κsurf

e−|Lz+lz|k

k
, Uc,inter(k) = e2

2ε0

e−2Lzk

k
, (B5)

where k = |k|. Further, it is convenient to rewrite the first term in Eq. (B3) as follows:

U (r − r′)[n+(r)n+(r′) + n−(r)n−(r′)] = U (r − r′)�†(r)�(r)�†(r′)�(r′) − 2U (r − r′)n+(r)n−(r′). (B6)

The one-loop BK effective action [40] in the model under consideration reads as

�(G) = −i
∑
λ=±

Tr
[
LnG−1

λ + S−1
λ Gλ − 1

] + e2

2

∫
d3u

∫
d3u′

{∑
λ=±

tr[γ 0Gλ(u,u′)γ 0Gλ(u′,u)]D(u′ − u)

−
∑
λ=±

tr[γ 0Gλ(u,u)]
∑
λ′=±

tr[γ 0Gλ′(u′,u′)]D(u′ − u)

+ 2
∑
λ=±

tr[Pλ
+γ 0Gλ(u,u′)Pλ

−γ 0Gλ(u′,u)][Ds,inter(u
′ − u) − D(u′ − u)]

− 2
∑
λ=±

tr[Pλ
+γ 0Gλ(u,u)]

∑
λ′=±

tr[Pλ′
− γ 0Gλ′(u′,u′)][Ds,inter(u

′ − u) − D(u′ − u)]

+ 2
∑
λ=±

tr[Pλ
+γ 0Gλ(u,u)nc,+ + Pλ

−γ 0Gλ(u,u)nc,−]Dsc,1(u′ − u)

+ 2
∑
λ=±

tr[Pλ
+γ 0Gλ(u,u)nc,− + Pλ

−γ 0Gλ(u,u)nc,+]Dsc,2(u′ − u) − [nc,+nc,+ + nc,−nc,−]κsurfD(u′ − u)

− 2nc,+nc,−Dc,inter(u
′ − u)

}
− Gint

2

∫
d3u

∑
λ=±

( tr[γ 0Gλ(u,u)] tr[γ 0Gλ(u,u)] − tr[γ 0Gλ(u,u)γ 0Gλ(u,u)]), (B7)

where Pλ
± = (1 ± λ)/2 are the surface projectors. The trace in the first term is taken in the functional sense, the trace in the rest

of terms is taken over spinor indices.
The extremum of the effective action δ�(G)

δGλ
= 0 defines the following Schwinger-Dyson equation for the full fermion

propagator:

iG−1
λ (u,u′) = iS−1

λ (u,u′) − e2

{
γ 0Gλ(u,u′)γ 0D(u′ − u) − γ 0

∑
λ=±

tr[γ 0Gλ(u,u)]δ3(u − u′)D̃(0)

− γ 0tr[γ 0G−λ(u,u)]δ3(u − u′)[D̃s,inter(0) − D̃(0)] + γ 0nc,λδ
3(u − u′)D̃sc,1(0) + γ 0nc,−λδ

3(u − u′)D̃sc,2(0)

}

−Gint{γ 0Gλ(u,u)γ 0 − γ 0 tr[γ 0Gλ(u,u)]}δ3(u − u′), (B8)

where the contribution due to the third term in the curly brackets in Eq. (B7) is zero because the fermion propagator of the full
model is diagonal in surface indices. The trace is taken over the spinor indices only, D̃(0), D̃s,inter(0), D̃sc,1(0), D̃sc,2(0) are the
Fourier transforms of the corresponding interactions at zero momentum, and

D(u) ≈ δ(t)
1

4πε0κsurf

∫
dk

2π
J0(kr), (B9)

where J0(kr) is the Bessel function. The overall neutrality condition (15) implies that the second term in the curly brackets in
Eq. (B8) is equal to zero. The last two terms in the curly brackets for nc,+ = −nc,− (which stems from the symmetric charge
distribution on the opposite surfaces of the slab) are equal to

[nc,λD̃sc,1(0) + nc,−λD̃sc,2(0)] = −γ 0 1

2ε0κsurf
nc,λ[(Lz − lz) − (Lz + lz)] = nc,λγ

0 lz

ε0κsurf
. (B10)
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Notice the fact that the dependence on Lz cancels out in Eq. (B10). This means that the formalism correctly describes the TI slab
in an applied external electric field. Thus, the gap equation (B8) takes the form

iG−1
λ (u,u′) = iS−1

λ (u,u′) − e2

{
γ 0Gλ(u,u′)γ 0D(u′ − u) − γ 0 lzδ

3(u − u′)
ε0κsurf

[n−λ + nc,−λ]

}

−Gint{γ 0Gλ(u,u)γ 0 − γ 0 tr[γ 0Gλ(u,u)]}δ3(u − u′). (B11)

The last term in the first curly brackets has a clear physical meaning. It describes a superposition of electric fields due to the
capacitor plates and charged surfaces of the TI. Taking into account condition (5), i.e., nλ = −λε0E/e, we conclude that the
corresponding term in the gap equation (B8) vanishes and the gap equation takes the following final form:

iG−1
λ (u,u′) = iS−1

λ (u,u′) − e2γ 0Gλ(u,u′)γ 0D(u′ − u) − Gint{γ 0Gλ(u,u)γ 0 − γ 0 tr[γ 0Gλ(u,u)]}δ3(u − u′).

It is worth noting that we are working in the grand canonical ensemble. The corresponding free-energy density is expressed
through the effective action � as � = −�/(V T ), where V T is a (2 + 1) space-time volume. On the solution of the gap equation
(12B), we have the following surface free-energy density (compare with Appendix C in Ref. [45]):

�λ = − 1

8πl2
[1 − 2nF (�eff,λ)]

[
�eff,λ + μ

(0)
λ + sBm(0)

] − 1

4πl2

∞∑
n=1

{(
μ

(0)
λ + μn,λ

)
[nF (Mn − μn,λ) − nF (Mn + μn,λ)]

+ 2M2
n + mn,λ(m(0) − mn,λ)

Mn

[1 − nF (Mn + μn,λ) − nF (Mn − μn,λ)]

}
− ε0E2

2κsurf
(κsurfLz − lz), (B12)

where the last term has a transparent physical meaning and represents the energy density of an electric field outside the slab.

APPENDIX C: KERNEL COEFFICIENTS K(0)
m,n

In this appendix, we give the definition for the kernel coefficients K(0)
m,n used in Coulomb part of the gap equation in the static

approximation. Further, we provide an explicit expression for those coefficients in the case without polarization effects. The
kernel coefficients are defined by [39]

K(0)
m,n =

∫ ∞

0

dk

2π

klL(0)
m,n(kl)

k + �(0,k)
, (C1)

L(0)
m,n = 1

l2

∫ ∞

0
dr r e

− r2

2l2 L0
m

(
r2

2l2

)
L0

n

(
r2

2l2

)
J0(kr) = (−1)m+ne− k2 l2

2 Ln−m
m

(
k2l2

2

)
Lm−n

n

(
k2l2

2

)
, (C2)

where we used formula 7.422.2 in Ref. [52] in order to perform the integration in Eq. (C2).
By neglecting the polarization effects, i.e., setting �(0,k) = 0, and using formula 2.19.14.15 in Ref. [53], one obtains the

following explicit result:

K(0)
m,n

∣∣∣
�→0

=
∫ ∞

0

dx

2π

∫ ∞

0
dt e−tL0

m(t)L0
n(t)J0(x

√
2t) = �(n + 1/2)�(m + 1/2)

2
√

2 π3/2 m! n!
3F2(−m, − n,1/2; 1/2 − m,1/2 − n; 1),

(C3)

where 3F2 is the hypergeometric function.
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