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Mitigating valley-driven localization in atomically thin dopant chains in Si
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A theoretical study of the localization properties of nanowires of dopants in silicon (Si) fabricated by ionic
implantation or scanning tunnel microscope lithography is presented for a model incorporating the currently
unavoidable imprecision in individual donor positioning. Experiments have shown that Ohm’s law holds in
some cases, in apparent defiance to the Anderson localization theory in one dimension. We investigate how
valley interference affects the traditional theory of electronic structure of disordered systems. Each isolated
donor orbital is realistically described by multivalley effective-mass theory. We extend this model to describe
chains of donors as a linear combination of dopant orbitals. Disorder in donor positioning is taken into account,
leading to an intricate disorder distribution of hoppings between nearest-neighbor donor sites (donor-donor tunnel
coupling)—an effect of valley interference. A decay length, related to the usual localization length, is obtained
for phosphorous (P) donor chains from a transfer-matrix approach and is further compared with the chain length.
We quantitatively determine the impact of uncertainties δR in the implantation position relative to a target and
also compare our results with those obtained without valley interference. We analyze systematically the aimed
interdonor separation dependence (R0) and show that fairly diluted donor chains (R0 = 7.7 nm) may be as long
as 100 nm before the effective onset of Anderson localization, as long as the positioning error is under a lattice
parameter (δR < 0.543 nm).

DOI: 10.1103/PhysRevB.94.115425

I. INTRODUCTION

On demand fabrication of dopant arrangements in silicon
is made possible by recent scanning tunnel microscope
(STM) lithography techniques. Nanowires constructed with
this technique obey Ohm’s law, in apparent defiance to
the Anderson localization theorem [1,2]. Even in quasi-one-
dimensional systems constructed through ionic implantation
of donors, for which positional disorder is significantly
larger, metal-insulator transition is observed at large enough
dopant densities [3–5]. It is unclear what aspects of the host
semiconductor drives this behavior and what we can do to
effectively engineer these transport properties.

We consider here a system of dopants deliberately im-
planted aiming at target positions so as to regulate interdonor
tunnel coupling (or hopping). Our model incorporates the
currently unavoidable imprecisions in donor positions and, in
particular, how they manifest in the hopping distribution. We
develop a theory of linear combinations of dopant orbitals
(LCDO), in which each donor orbital is described within
multivalley effective-mass theory (MV-EMT) including a
central cell correction. We then obtain the transfer matrix for
donor chains with realistic positioning disorder models and
extract the decay length for finite chains based on the behavior
of the Lyapunov exponent of the transformation defined by
it. We compare systems with and without valley interference,
showing that valleys play two opposite roles in the localization
of states—it increases the number of states available at the
point of charge neutrality (half-filled band) and introduces
the possibility of fully destructive interference, leading to a
broken link in the chain and reducing the paths through which
the current can percolate. We also study effects of uncertainty
in positioning in two and three dimensions (a disk or a sphere
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of uncertainty), consistent with bottom-up STM lithography
and top-down ionic donor implantation methods, respectively.

II. DONORS IN SILICON WITHIN EFFECTIVE MASS

We construct here the model for the electronic structure of
dopant chains extending the EMT of donor impurities in Si.
First, we revise the central cell corrected model of an impurity
in silicon within effective mass (Sec. II A). We also revise
how to construct the wave function of a donor pair from a
single dopant orbital, in analogy with the molecular orbital
theory. Then this analogy is extended into the model of a
chain of atoms, with a wave function described as a linear
combination of central cell corrected Kohn-Luttinger wave
functions centered at the impurity sites, which we dub LCDO.

A. Single donor

A distinct feature of the Si band structure is the sixfold
degeneracy of the conduction-band edge, located at kμ

along the 〈100〉 directions, μ = ±x,±y,±z with |kμ| =
k0 = 0.85( 2π

aSi
) in the fcc Brillouin zone (aSi = 0.5431 nm is

the conventional fcc lattice parameter for Si). [6] For bulk
Si, the periodic Hamiltonian does not couple the valleys,
which remain degenerate. A substitutional donor breaks the
translational symmetry and the steep donor potential couples
different valleys, resulting in a nondegenerate ground state to
which the six valleys contribute equally (A1 symmetry). The
A1 state is well separated (12 meV) from the first excited state.

Kohn and Luttinger [7] (KL) proposed, within effective-
mass theory (EMT), a ground-state variational wave function
pinned at the donor position with the correct A1-symmetry
written in terms of hydrogenic envelopes and Bloch functions
for each conduction-band minimum. For a donor at r = 0,

�KL(r) = 1√
6

6∑
μ=1

Fμ(r)eikμ·ruμ(r), (1)
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where Fμ(r) are hydrogeniclike envelope functions and uμ(r)
are the periodic parts of the six Bloch functions. The effective-
mass anisotropy affects the ground-state envelope functions,
suggesting the use of deformed 1s orbitals with a and b as
variational parameters,

F±z(r) = 1√
πa2b

exp

(
−

√
x2 + y2

a2
+ z2

b2

)
, (2)

and equivalently to F±x and F±y . A similar variational
envelope was proposed by Kittel and Mitchell [8].

This gives a species-independent description and a sixfold
degenerate donor ground state—in contrast, experiments show
a variation in binding energies among different group-V
dopants (P, As, Sb, Bi) and a nondegenerate ground state
as mentioned before. Both problems are corrected by a
species-dependent central cell potential, which accounts for
the more attractive potential close to the donor site, where
the screening by the core electrons is less effective. Besides
splitting the 1S manifold into a nondegenerate A1 state and
three- and twofold degenerate excited states (T 2 and E,
respectively) at the experimentally observed energies, the
main consequence of this correction to the present study is
to contract the donor ground-state wave function—an effect
confirmed experimentally [9]. The central cell prescription
discussed in Ref. [10] is incorporated in our model calculations
below.

B. Donor pairs and linear arrays

In analogy with the standard linear combination of atomic
orbitals (LCAO) scheme in quantum chemistry, we construct
the wave function of a pair of donors as a linear combination
of dopant orbitals (LCDO) described in Eq. (3) centered at the
substitutional donor sites r1 and r2. The dopant pair (molecule)
variational wave function reads

�mol(r) = α1�KL(r − r1) + α2�KL(r − r2) (3)

and the coefficients α1 and α2 must be determined variationally,
under the normalization constraint 〈�mol|�mol〉 = 1. As in the
LCAO procedure, this leads to a set of Rothaan equations for
the coefficients [11], which can be written as a Fock matrix F
and an overlap matrix S. Here we are interested in the single-
particle effects, so that the Fock operator is the single electron
Hamiltonian.

This approach is valid as long as (i) the interdonor distance
R12 = r2 − r1 is not too small, so that the assumptions of
EMT are still valid (continuum approximation); and (ii) the
ground-state wave function is still mainly composed of a
symmetric combination of valley states pinned around each
site. The latter assumption is more restrictive—while the
actual ground-state combination of valleys slowly changes as
the donors are brought closer together [12], near a distance
R12 ≈ 6 nm there is a sudden change from a mostly A1-like
to mostly T2-like combination of valleys [12]. Therefore,
our model is qualitatively inaccurate below this interdonor
distance.

If we call |1〉 and |2〉 the orbitals centered in each donor,
the pair Hamiltonian within a one-electron LCDO description

may be written as

Ĥpair = ε [|1〉〈1| + |2〉〈2|] + t[|1〉〈2| + |2〉〈1|], (4)

where ε is the isolated donor eigenenergy, which may be taken
as the energy origin, and t is the tunneling or hopping energy,
which is a function of the donors relative position R12. These
LCDO parameters are explicitly obtained semiempirically, as
discussed below. This procedure may be extended for larger
sets of dopants.

We formulate a simple one-orbital per site LCDO Hamil-
tonian for linear arrays of well separated donors based on
nearest-neighbor pair considerations. To describe the array’s
ground-state properties it remains acceptable to restrict the
basis set to the ground-state orbital in each donor, since the
perturbation due to nearby donors is relatively small. Further
approximations aiming at simplifying the numerical LCDO
parameters calculations are discussed in Sec. III.

Following (4), we write a nearest-neighbors LCDO Hamil-
tonian in the basis set of the A1 KL variational solutions, as
given in Eq. (1), to describe the ground state of a linear array
of hydrogeniclike impurities,

Ĥ =
∑
〈i,j〉

[
1

2
ε ni + ti,j (c†i cj + c

†
j ci)

]
, (5)

where ε is the on-site energy (site-independent for a single
donor species) and ti,j is the nearest-neighbor hopping, t in
Eq. (4), for donors at sites i and j . We allow the tunnel
coupling to be dependent on the particular pair, incorporating
possible displacements of donors’ relative positions along
the fabrication procedure, so that ti,j = t(Rij ). The creation
(c†i ) and annihilation (ci) operators refer to the occupation of
the orbital |i〉 at site i, thus ni = c

†
i ci is the site occupation

operator.

III. CALCULATION OF LCDO PARAMETERS—SINGLE vs
MULTIVALLEY MODEL

It is possible to obtain, within plausible approximations,
analytic expressions for the LCDO parameters. The first
approximation is to assume isotropic envelopes by taking
a = b = acc, where the subscript cc refers to the effective
Bohr radius obtained from a central cell corrected potential
[10], given in Table I. We do this for each of the valleys
separately, preserving the conduction-band sixfold degeneracy
and the physical insight on valley degeneracy effects, e.g.,
valley interference. Furthermore, we focus here on dilute
doping, which is easily accessible within effective mass (as
opposed to the dense limit [2]). Within this dilute limit, the

TABLE I. Single donor ground-state binding energy (E0) and
effective Bohr radius (see text) for group-V dopants as given and
described in Ref. [10].

Donor E0 (meV) acc (nm)

P 45.58 1.106
As 53.77 0.815
Sb 42.71 1.241
Bi 70.88 0.580
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orbital overlap is small enough to be treated perturbatively.
Therefore we dismiss hoppings among donors that are not
nearest neighbors.

To calculate the matrix elements of the atomistic Hamil-
tonian for a one-dimensional array of N donors 〈j |Ĥ |i〉, we
rewrite Ĥ = Ĥi + Ĥ ′, where Ĥ ′ = ∑

j �=i V̂j is the perturba-

tion potential due to all other cores and Ĥi = K̂ + V̂i consists
of the kinetic energy (K̂) plus the core potential V̂i for donor
i. This is useful because, by construction, Ĥi |i〉 = −E0 |i〉
where E0 is the single donor binding energy.

Since 〈j |Ĥ ′|i〉 � 〈j |Ĥi |i〉, the perturbation term is ne-
glected in the hopping energy expression, resulting in

tij = 〈j |Ĥi |i〉 + 〈j |Ĥ ′|i〉, (6a)

≈ −E0 S(Rij ,acc). (6b)

So tij is a function of the single donor ground-state
binding energy (E0) and the overlap between |i〉 and |j 〉
nearest-neighbors orbitals S(Rij ,acc) = 〈i|j 〉.

If energies are measured from the bottom of the conduction
band, we would identify ε with −E0. Instead, we set the origin
of energies to the center of the impurity band setting ε = 0,
without loss of generality.

In order to highlight valley interference effects in our one-
electron–one-orbital isotropic envelopes model, we consider
two expressions for the hopping (we omit the i,j labels when
no ambiguity is raised). First we take an expression neglecting
valley interference effects, equivalent to the dopant orbitals
appearing on single valley semiconductors [10],

t sv = E0 e−R/acc

(
1 + R

acc

+ R2

3a2
cc

)
. (7)

In this case t is a function of |R| = R only. The expression for
the overlap is simply that of an H2 molecule with orbital radius
and energies rescaled by the material effective parameters.

The second approach considers the sixfold degenerate Si
valleys giving, for isotropic envelopes,

tmv = t sv

⎡⎣1

3

3∑
η=1

cos(k0 Rη)

⎤⎦, (8)

referred to as the multivalley (mv) model. Here Rη (η = x,y,z)
are the Cartesian coordinates of R along the Si cubic axes.
Interference among the six Bloch functions manifests itself
as the term in square brackets, resulting in an oscillatory
behavior of the tunnel coupling. Depending on the vector R,
strong suppression of the tunnel coupling may occur. Figure 1
presents the hopping energy connecting a pair of donors a
distance R0 apart along three crystal directions ([100], [110],
and [111]). Note that the more localized Bi donor orbitals
leads to a negligible coupling as compared to the other donor
species.

For each eigenstate �(x), we define a decay length (ξ ) from
the asymptotic behavior of the wave function, presumed to be
of the form

�(x) → exp [−|x|/ξ ]. (9)

This form of decay applies to exactly infinite chains, in which
ξ plays the role of the usual localization length. It describes the
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FIG. 1. Hopping (tmv) as a function of the distance between
group-V (P, As, Sb, and Bi) donor pairs along the given crystal
directions. Symbols represent the available positions in the Si lattice
for substitutional donors.

spatial extent of the wave function, and is thus closely linked
with transport properties.

Experiments are performed in real finite chains. We for-
mally determine a decay length in finite chains by the standard
transfer-matrix approach. Our criterion for transport in finite
chains, stated in Sec. VI, compares ξ to the chain length L.

IV. TRANSFER-MATRIX APPROACH

The transfer-matrix approach (TMA) is an efficient way
to calculate the localization lengths in one-dimensional (1D)
chains and is easily extended to quasi-1D structures [13–18].
A very concise description of the operational steps involved is
given here.

We write the eigenfunctions in the basis of A1 orbitals as
|�〉 = ∑

n φn|n〉, where n is the index for the chain site. The
TMA approach [14,19,20] follows from the relation among
the wave-function amplitudes φn, tn,n−1φn−1 + tn,n+1φn+1 =
Eφn, which is directly cast into a tensorial formulation,


̂n =
(

φn+1

φn

)
, 
̂n = T̂n · 
̂n−1, (10a)

T̂n =
(

E/tn,n+1 −tn,n−1/tn,n+1

1 0

)
, (10b)


̂L−1 =
(

L∏
i=1

T̂L−i

)
· 
̂0. (10c)
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FIG. 2. Schematic representation of our model of disorder: target sites (small open circles in red solid lines) are aligned along a single
[110] axis and separated by R0. Dashed circles of radius δ centered at each target site define the uncertainty region. In two dimensions the
actual donor position is randomly picked among the substitutional sites inside this disk (grey circles and target). In the 3D disorder model the
position is picked inside a sphere of radius δ. Relative position vectors for consecutive sites are indicated.

These relations show that indeed T̂ acts as a transfer operator
for the Lyapunov vectors (
̂n), while (10c) is guaranteed to
asymptotically converge by the Oseledec theorem [21–24].

The mapping described in Eq. (10c) defines how the
wave function decays from a reference site i = 0 into i = L.
Therefore, we can relate the localization length ξ and the
Lyapunov characteristic exponents (LCEs) γp, with p = 0,1,
for both components of the vector. The LCEs are calculated
numerically, as discussed in Appendix.

Once the mapping has converged, any iteration like (10a)
gives 
̂

(p)
n = exp[γp · |Rn|] · 
̂

(p)
n−1, where the index p refers

to each LCE and |Rn| is the distance between consecutive sites
(n − 1,n). The LCEs lead to solutions interpreted as either an
increasing wave function (which we call γ1) or decreasing (γ0).
The unphysical exponent γ1 is discarded, and the decreasing
solution leads to a localization length ξ = |γ −1

0 |.

V. DONOR ARRANGEMENT AND DISORDER

We simulate a (quasi)linear array of substitutional donors
in Si along a [110] symmetry direction as sketched in Fig. 2.
Target positions are assigned at evenly spaced substitutional
atomic sites in the Si structure, with nearest neighbors
separated by a vector R0. In the absence of disorder, the
electronic structure is trivially calculated, since in Eq. (5)
ti,j = t(R0), constant for all nearest-neighbors pairs.

In real samples, unavoidable deviations from the target posi-
tions lead to a disordered Hamiltonian. Here the most affected
terms are the off-diagonal matrix elements, ti,j = t(Rij), which
specify our model of disorder, as the hopping distribution is
implicitly defined by the donors positions. Positioning disorder
is simulated here by a geometric parameter δ (see Fig. 2).
Around each target position nR0, with n integer, a region of
uncertainty is taken as a disk or a sphere (we discuss both) of
radius δ. The donor is randomly positioned at a substitutional
site within the uncertainty region.1 This approach has the same

1A Gaussian distribution with width σ was also attempted, giving
essentially the same results for hopping distributions as the uniform
case within circle or sphere of radius δ, as long as σ ≈ δ. It is unclear,

ingredients found in fabrication methods based on impurity
implantation [1,3,4] followed by an annealing procedure
(guaranteeing the occupation of the energetically favorable
substitutional site).

The amount of disorder is dictated by the accuracy of the
donor positioning method. Ionic implantation is characterized
by a straggle region in the longitudinal direction and some
lateral uncertainty due to imperfect collimation of the accel-
erated ionic beam [3,4]—which typically leads to a three-
dimensional uncertainty region. If instead the nanostructure
is fabricated by bottom-up lithographic implantation [1], the
uncertainty region is reduced by the far better precision of
the lithographic instrument tip. Furthermore, the uncertainty is
initially confined to the exposed surface—which we model as a
two-dimensional uncertainty disk (in fact, often the overgrowth
of Si on top of the donor arrangement and thermal treatment
lead to some three-dimensional uncertainty due to diffusion).
In both cases, the radius δ establishes the disorder distribution
in the electronic Hamiltonian. A more general model would
allow an ellipsoidal region, but an estimate of the aspect ratio
for each experiment would be needed. Instead, we restrict
the study to the special cases of a sphere and a disk in
order to obtain general features due to the dimensionality of
the diffusion, instead of modeling the peculiarities of each
method. Only discrete values of δ, representing a change in
the number of lattice sites contained within the sphere/disk,
are meaningful. For example, all δ < aSi

√
3/4 are equivalent

to δ = 0, since all of them only contain the central target site.
Target chains along the [110] direction imply (R0)x =

(R0)y = n aSi/2, as in Ref. [1]. The role of donors’ density
(ρ = 1/R0) is assessed by considering target chains with
different linear densities, i.e., changing R0.

VI. MOBILITY EDGES

Electronic transport in a chain of donors differs from a
regular condensed-matter system in many ways. A relevant

though, what is the most realistic distribution model. We therefore
adopt the simplest (single parameter), uniform distribution.
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aspect is the finiteness of these chains, which may have a length
comparable to or lesser than the extent of an exponentially
localized state. In the former case, such electronic state
would contribute to charge currents and, in the absence of
scattering processes, it conducts in the so-called ballistic
transport regime. In the presence of relaxation phenomena
such as electron-phonon scattering, transport would fit into the
Drude or Ohmic transport picture. Our criterion for metallic
conductivity is based on these considerations, and we do not
explicitly include relaxation.

The mature theory of electronic localization by disorder
is discussed extensively in the literature. For infinite 3D
disordered systems the theoretical prediction is that, while
extended and localized states coexist in the solid, they are
completely segregated in energy. Eigenenergies of localized
(toward the band edges) and of delocalized (around the band
center) states are sharply separated at the so-called mobility
edges (μ) [25,26].

In one dimension, disorder of any strength localizes all
states. Considering that metalliclike current involves transport
by delocalized electrons, it should not be observed in disor-
dered chains, where no mobility edge is present. However,
when dealing with finite arrays, we may define an effective
mobility edge, μeff(L), as the value of the energy at which
the localization length of the states becomes larger than the
chain length L, a scenario compatible with current flow along
a disordered 1D system.

In one dimension, our nearest-neighbors model with off-
diagonal disorder gives a symmetric distribution of eigenstates
with respect to the on-site energy, chosen here as ε = 0, so that
for ξ < L in all energy domain we get μeff = 0.

It is also convenient from the theoretical point of view
to define the converse quantity. Given an interdonor target
spacing R0 and disorder length δ, we call length edge the
limiting length � of chains above which any chain show
nonconducting behavior, i.e., ξ (R0,δ,L > �) < L for any
disorder realization. This requirement for conductivity is
sensitive to the particular realization of disorder, as it also
happens in experiments, which are in fact quite sample
dependent. As a general probe to quantitatively characterize
the transport behavior for chains of different lengths (L),
target positions (R0), and degrees of disorder (δ), we calculate
Lyapunov exponents for each chain realization in ensembles
(∼10 000 chains) for each set L,R0,δ. With the Lyapunov
exponents we obtain an estimate of the decay length (which
formally is only well defined in the asymptotic limit of very
long chains) and each chain in the ensemble is identified as
conducting or not (based on the presence or absence of states
deemed conducting). Results in Figs. 3 and 4 give �, the length
above which all chains in the ensemble are not conducting, not
localization lengths or decay lengths directly. The particular
proportion of conducting to nonconduction states in each
ensemble is explored in Fig. 6, where the percentage of
conducting states is given.

Figure 3 shows the length edge dependence on the inter-
donor separation (� vs R0) for a fixed disorder δ = 0.4 nm.
It is possible to observe a nonmonotonic fluctuation behavior,
with more pronounced and steeper oscillations for 2D than
for 3D disorder. We analyze each of these features next. It
is clear that the results here regarding electronic properties
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FIG. 3. (a) Length edge (�)—the upper limit of length for a chain
to sustain electronic transport—as a function of distance between
consecutive target positions (R0) in 2D and 3D disorder models
for multivalley hopping and δ = 0.4 nm. The encircled region is
explored in Fig. 4 which shows the dependence of � on disorder
δ for R0 = 7.7 nm. The region below each line is compatible with
current-carrying behavior. Error bars are smaller than the data points.
(b) Parameter Q vs R0 follows qualitatively the behavior of � above.

are a consequence of the underlying hopping distributions,
unambiguously fixed by the chain geometry.

The difference in fluctuations amplitude from 2D to 3D may
be understood from of the impact of the dimensionality in the
number of different nearest-neighbors relative vector bonds
of the chain. In the 2D disorder model, the circle of radius
δ = 0.4 nm contains five possible sites for a substitutional
impurity in Si—thus 25 relative positions for consecutive
donors—among which only nine are inequivalent (lead to
different tunnel couplings). In the 3D case, a sphere of radius
δ = 0.4 nm contains 17 sites, leading to 289 different relative
positions of consecutive pairs, distributed in 36 inequivalent
distances, thus 36 possible values for the tunnel coupling.
More generally, for a fixed disorder radius δ, there are more
possibilities for different vectors Rij in three dimensions than
in two dimensions and, as a result, fluctuations in � tend
to average out becoming less pronounced in the 3D case, as
illustrated in Fig. 3. Reduced fluctuations in three dimensions
with respect to otherwise equivalent models in two dimensions
are also observed in Figs. 4 and 5, as discussed next.
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FIG. 4. Disordered chain length edge (�) as a function of 2D
(3D) disorder radius (δ) for single valley model [(a) and (c)] and
multivalley model [(b) and (d)]. Results are presented for a distance
R0 = 7.7 nm between consecutive target implantation points.

We now discuss the counterintuitive nonmonotonic fluc-
tuations of � vs R0. We recall that results in Fig. 1 show
that, in our nearest-neighbor MV hopping model (both 2D
and 3D), the hopping oscillates as it decays exponentially
with R0. Thus larger values of R0 tend to correspond to
(i) a narrower range of hopping elements in absolute value,
so a lower degree of disorder which favors transport, but
(ii) reduced absolute values of the hopping energies, which
decrease exponentially with interdonor distance, inhibiting
transport. These competing effects may be roughly connected
to (i) the spread [standard deviation (σ )] and (ii) the average
of the hopping distribution (with hopping taken in absolute
value). As a test of these concepts, we naively assume
that the transport capability of a chain varies linearly with
the average value of the hopping (in absolute value) and with
the inverse of the spread, so the ratio Q = 〈|t |〉/σ (|t |) would
give a figure of merit related to the transport quality in a
particular chain. We calculate average and width of the hopping
distributions resulting from all possible pairs at each R0 and δ.
The ratio Q is plotted in Fig. 3(b). As can be seen, Q follows
reasonably the patterns in � on frame (a). Of course we get
some local inversions, since there is no justification to state
that Q is linear in both 〈|t |〉 and 1/σ (|t |), and to ignore other
aspects as the value of R0, since for a fixed length L, larger
R0 chains will contain fewer atoms and bonds, reducing the
number of tunnel steps, favoring transport.

The effect of increasing disorder on the maximum chain
length � is investigated in Fig. 4 for fairly dilute donor chains
(R0 = 7.7 nm). Here we note a decrease in � with increasing
disorder, a plausible result. Again, the 2D data points show
distinct fluctuations as compared to the smoother 3D cases.
We discuss general trends in � in Sec. VII.

VII. GENERAL TRENDS FOR 2D AND 3D MODELS

Figure 3 also highlights that the 2D disorder model leads
to longer conducting chains, compared to 3D disorder. But the
difference between these models is not too large, revealing that
a 3D diffusion is not significantly more damaging to transport
than the 2D one.

In Fig. 4 different valley compositions and dimensionalities
are compared in terms of how they affect �. In the multivalley
model at fixed R0 = 7.7 nm, the trend �2D > �3D is pre-
served for all considered disorder parameters δ > 0.4 nm, as
illustrated in Figs. 4(b) and 4(d). In order to appreciate valley
interference effects, results within the single valley model are
also presented in Fig. 4, showing that the general decay of �

with disorder is similar to the multivalley description. Note
that, for each δ, single valley models lead to larger values of �

as compared to multivalley ones, consistent with destructive
valley interference affecting the hopping. We remark that, for
this particular R0, the 3D disorder model sustains larger �

values [see Figs. 4(a) and 4(c)]. It is possible that this ordering
inverts at some value of R0 as in the multivalley case, a
question that is less relevant since the single valley model
is not realistic. At disorder radii near δ = 1 nm, the maximum
chain length � seems to saturate at a finite value. Analyzing the
hopping distributions near this region and comparing it with
those of exaggeratedly large radii (δ ≈ 3 nm), we see that in
fact this is not a fully converged value for �. This plateau is
accidental, and larger δ will lead to a higher probability of
vanishingly small hoppings, thus obtaining the expected limit
of �(δ → ∞) = 0.

Figure 5 presents the density of states (DOS) averaged
over an ensemble of 104 samples of chains with ≈500 nm,
differentiating single valley and multivalley models. For
comparison the target chain DOS is also shown. No significant
differences are observed comparing the two models of disorder
(2D and 3D). On the other hand, effects coming from valley
interference may be observed in the DOS, where we note that
the single valley DOS for small δ shows close similarities to
that of 1D ordered chains, while, as δ increases, the energy
range of the spectrum widens and the peak related to the
1D Van Hove–like peak lowers and spreads. In the single
valley model, disorder is responsible for washing the Van
Hove singularity away slowly, keeping a remainder of the
idealized chain peak at the band edge [27]. Only at disorder
levels comparable to the donor separation does the Van Hove
singularity fully disappear. Meanwhile, for the multivalley
cases, the relevant length parameter leading to the extinction
of the singularity fingerprint is the oscillation period 2π/k0.
Therefore, even the smallest positioning disorder (a single
atomic spacing) is enough to eliminate this feature. Contrary to
models where the disorder is tuned by a continuous parameter
[27], multivalley DOS has no remanent features of the ordered
1D character, no memory of Van Hove singularities at the
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FIG. 5. Density of states in energy for six different disorder radii
(δ). Our model leads to a single band which is symmetric around
the on-site energy ε, taken to be zero here. The model (SV or MV,
2D or 3D) is indicated in each frame. The DOS for the target chain
configuration is also given (δ = 0).

edges of the energy spectrum. It is possible to observe that the
multivalley DOS presents sharp oscillations for small δ that
become smoother as δ increases.

Note that the DOS in the multivalley cases increases
towards the band center as compared to the respective single
valley DOS, which increases toward the edges. In all cases
the DOS has a peak at the center of the spectrum, i.e., the
isolated-donor energy ε = 0. It is long known that in the case
of purely off diagonal disorder in one dimension the state at the
center of the band is not exponentially localized [28]. While it
still decays with distance, it is slower than the decay in Eq. (9).
This favors the existence of longer localization lengths around
the center of the spectrum.

While the mobility edge is reduced in multivalley materials
due to valley interference, this accumulation of states near the
band center favors transport. In our simulations we did not find
any instances in which the latter effect is more relevant than
the first. In other words, the number of conducting states is
always larger in single valley materials.

A comprehensive summary of our results is given in
Fig. 6. We analyze localization properties of chains with
fixed target donors distance R0 along [110]. Ensembles are
grouped by disorder δ and length L, where δ characterizes
2D or 3D position distributions and consequently tunnel
coupling distributions. Single valley and multivalley models
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FIG. 6. Fraction of conducting states as a function of donor chain
length (L and the disorder radius (δ) for the single valley (SV)
and multivalley (MV) models. The 3D disorder model (a) and the
2D disorder model (b) were considered. Results are presented for a
distance of 7.7 nm between target implantation points.

are also treated independently. Overall we studied about
200 ensembles, corresponding to a fixed combination [δ,L,

dimension of disorder (2D or 3D), valley multiplicity (single or
multi)]. The conduction character of each statistical realization
is verified according to our criterion. The data points in the
figure give the fraction of conducting samples in the respective
ensemble.

VIII. FINAL REMARKS AND CONCLUSIONS

Our study reveals nontrivial and sometimes unexpected
consequences of fabrication parameters (R0 and L) and
fabrication control (δ) on the transport behavior of 1D donor
chains in silicon. Trends and properties described here are
likely to be found in experimental investigations. The main
difficulty, to be overcome in the future, is to generate a large
enough set of samples where the statistical search presented
here could be performed.

Our results are consistent with relatively long conducting
chains reported in experiments, [1] even in disordered cases
driven by valley interference effects (Fig. 3). Distances
between donors are reasonably controllable within STM-tip
deposition techniques while the disorder radius is continually
reduced with the development of these techniques [29–33].
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In our model, the Coulomb electron-electron correlations
are not explicitly included. However, in the context of
low-dimensional systems like P -donor arrays in Si, explicit
inclusion of electron-electron correlations are known to affect
the electronic behavior and may eventually dominate the
transport behavior [32]. Nonetheless, the trends found here are
expected to contribute to highly correlated chains, for which a
detailed inclusion of the geometrical disorder and multivalley
effects may not be trivial.
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APPENDIX: COMPUTING LYAPUNOV EXPONENTS AND
INTEGRATED DENSITY OF STATES (IDOS): 1D CHAIN

WITH OFF-DIAGONAL DISORDER

Considering the linear mapping presented in Eq. (10c),
numerical implementation faces two main difficulties. In
obtaining a final Lyapunov vector (LV) 
̂L−1, one has to handle
the product P̂L · 
̂0 that diverges exponentially dominated
by the Lyapunov maximum exponent (LME)—exceeding the
overflow limit. The other difficulty is related to the fact that the

̂L−1 asymptotic direction is given by the Oseledec subspace
related to the LME, i.e., for any initial vector 
̂0, the angle
between final Lyapunov vectors will tend to zero leading to
determinant precision problems [34].

In this work, the solution for these difficulties lies in
extracting the increase and decrease of LV associated with
the LME and the LmE (Lyapunov minimal exponent), respec-
tively. For this purpose we made use of the Gram-Schmidt
orthonormalization procedure (GSOP)—in the usual diagonal

disorder context this procedure is implemented after m steps
but since in our problem the LVs diverge faster it will be
done after each step. Although the procedure will be more
expensive computationally it will impact in a very convenient
way to determine the IDOS by the node counting technique.

We begin the GSOP initializing the LV, i.e., we randomly
choose an initial set of orthonormal LVs: (
̂(1)

0 ,
̂
(2)
0 ). After

each step we extract the modulus of these LVs and this set is
orthonormalized again, for a k + 1 step,


̂
(1)
k+1 = T̂k+1 · 
̂

(1)
k

M
(1)
k+1

, (A1a)


̂
(0)
k+1 =

[̂
1 − 
̂

(1)
k+1
̂

(1)†
k+1

]
T̂k+1 · 
̂

(0)
k

M
(0)
k+1

, (A1b)

where (M (p=1,0)
k+1 ) is the modulus of each LV before the

normalization procedure. The LME (p = 1) and LmE (p = 0)
will be given by

γ (p) = 1

L

L−1∑
i=0

ln
[
M

(p)
i

]
|Ri | , (A2)

where L is the chain length and Ri is the vector connecting
a pair of nearest-neighbor donors (i and i + 1). Although we
apply an orthonormalization procedure to the set of LVs it
is good to clarify that this set is not necessarily orthogonal;
the goal here is to decrease the influence of the LME in
determining LVs associated with other Lyapunov exponents.

In our model, the nth eigenstate must have n nodes and
given this, the number of states below the energy given by nth
eigenstate will be precisely n. By the node counting technique
we determine the IDOS by the ratio of the wave function
amplitudes (φn) presented in Eq. (10a), i.e.,

IDOS(E) = 1

L

N−1∑
i=0

�

[
− φi(E)

φi+1(E)

]
; (A3)

� is the Heaviside theta. By the IDOS the density of states is
easily obtained.
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