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Controlling local currents in molecular junctions
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The effects of nonequilibrium constraints and dephasing on the circulating currents in molecular junctions
are analyzed. Circulating currents are manifestations of quantum effects and can be induced either by externally
applied bias or an external magnetic field through the molecular system. In a symmetric Aharonov-Bohm ring,
bond currents have two contributions, bias driven and magnetic field driven. We analyze the competition between
these two contributions and show that, as a consequence, current through one of the branches can be completely
suppressed. We then study the effect of asymmetry (as a result of chemical substitution) on the current pathways
inside the molecule and study asymmetry-induced circulating currents (without magnetic field) by tuning the
coupling strength of the substituent (at finite bias).
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I. INTRODUCTION

Persistent charge current is the current flowing in systems
with ring geometries, due to the phase coherent motion of
electrons [1]. It can be induced by the presence of vector
potential due to magnetic fields threading the ring, first studied
by Pauling in the context of aromatic molecules [2]. The effect
of magnetic flux through superconducting disks was studied by
Byers and Yang [3]. Buttiker et al. [4] showed that 1D metallic
rings, where phase coherence of electrons is maintained, act
like superconductors to produce a persistent current flowing
in the ring. Further studies have explored the effects of
various quantities such as disorder, temperature, and Coulomb
interaction between electrons on the persistent current [1]. In
this study we extend these works to the molecular regime in
the molecular junction setup.

In recent years, the electron conduction through a single
molecular junction has attracted a lot of research interest due
to its fundamental interest in exploring quantum effects and
its applications in miniaturization of electronic components
(molecular electronics). The idea of molecular electronics is to
control the electronic current by manipulating the physical and
chemical properties of the molecule. Current flowing through
molecules in a junction can take different pathways inside a
molecule. These pathways have been studied recently [5].

The ability to control local currents can be useful from a
technological perspective for developing new device function-
alities. For example, we can have a quantum dot circuit which is
capacitively coupled to one of the arms of a ring structure, cur-
rent through which can be manipulated by changing magnetic
flux threading the ring, thereby creating a magnetic switch.
Further, it is useful to understand which pathways through
the molecule are conducting the charge predominantly. It is
interesting to note that it is possible to find the pathways which
are actively conducting the charge through the molecule using
inelastic electron tunneling spectroscopy [6]. This may allow
us to engineer molecular circuits more efficiently. Here we
analyze the local currents inside a molecular junction in the
presence (in a symmetric junction) and absence (asymmetric
junction) of the magnetic field.

Magnetic field threading the molecular ring induces dif-
ferent phases in the electron wave function as it transverses
through different pathways inside the molecule. As we discuss

below, this phase acquired by the electron affects both the local
currents and the net current. Hence the dependence of current
flow on magnetic flux allows us to control not only the net
current through the junction but also the local bond currents
inside the junction. Although much work has been done to
study the effect of magnetic flux on current flowing between
leads [5,7–9], little attention has been paid to the study of the
effect of magnetic flux on the circulating currents inside the
molecule in the presence of external bias, with the notable
exceptions of Refs. [10–13]. Here we analyze the aspect
of controlling the local currents by manipulating external
magnetic field and chemical substitution. For a symmetric
Aharonov-Bohm ring case, in the presence of the external
bias, it is possible to fine-tune the magnetic flux to completely
suppress current flow across different branches selectively.
We show that the bond current has two contributions, which
we identify as magnetic-field-driven and bias-driven contri-
butions. These two contributions have different origins in the
molecular eigenstate basis; the former contribution is due to the
current carried by molecular eigenstates, while the latter is due
to the coherences between eigenstates induced by the leads.
These two contributions compete and may cancel each other
along a branch, while adding up to enhance the current along
the other branch. This is not possible if either the magnetic
field or the bias is present alone. We further consider the
case where an extra site is coupled to the ring system and
demonstrate that a circulating current (in this work we adapt an
intuitive definition of circulating current as “circulating current
is present if the direction of current flowing through one of the
branches is opposite to the direction of the net current, and
its magnitude is given by the smallest of the currents flowing
across the two branches”) can also be induced by tuning the
coupling strength of the substituent (at finite bias). This is
due to the asymmetry induced between pathways by the extra
coupling site. We derive analytic expressions for the bond
currents and discuss them under different conditions. We find
that the circulating currents can be induced not only by the
magnetic field but also due to coupling with the leads (in the
presence of asymmetry and finite bias). That is, the direction
of the current flowing across a branch can be manipulated
by tuning the coupling strength with the leads. We present a
detailed analysis of bond currents based on analytical results.
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The rest of the paper is organized as follows. In the next
section (Sec. II) we consider a model with asymmetry in the
presence of magnetic field and calculate the bond currents
inside the molecule and the net current in the circuit. In Sec. III,
we present a symmetric molecular ring system coupled to two
metal leads in the presence of a magnetic flux. We discuss bond
currents, net current, and the circulating current at equilibrium
(when the two leads are at the same thermodynamic state) and
nonequilibrium conditions. In Sec. IV we discuss circulating
currents in an asymmetric molecular ring junction in the
absence of the magnetic field. We conclude in Sec. V.

II. MODEL HAMILTONIAN AND CURRENT
CALCULATIONS

A. Model Hamiltonian

To study the effect of asymmetry and magnetic fields on
bond currents in ring molecular systems out of equilibrium (at
steady state), we consider a simple model shown in Fig. 1.
It consists of a ring molecular system with four identical
localized sites (orbitals) coupled to nearest sites through
hopping. Diagonally opposite sites are coupled to two metal
leads, and one of the free sites is coupled to an extra site.
Further, a magnetic flux is pierced through the molecular ring.
All four sites forming the ring are taken to have the same
energy (taken as zero by rescaling all other energies) and their
coupling strengths to nearest neighbors are equal, taken as the
energy unit. Specifically, sites 1 and 3 are coupled to the left
and right metallic leads (modeled as free-electron reservoirs
at thermal equilibrium), respectively. Site 2 is coupled to an
extra site (site 5 with energy ε) with coupling strength t . The
effect of the external magnetic field is included in the model
Hamiltonian in the spirit of Peierls substitution [14]. In this
work, we only consider noninteracting spinless electrons.

The Hamiltonian describing this model is given as

Ĥ =
5∑

i,j=1

H0ij
c
†
i cj +

∑
k

α=L,R

εα,kd
†
αkdαk

+
∑

k

[gLd
†
Lkc1 + gRd

†
Rkc3 + H.c.], (1)

FIG. 1. Schematic of model system considered. It consists of four
identical localized sites coupled to each other to form a ring geometry
(with magnetic field piercing the ring); diagonally opposite sites are
coupled to two metal leads and one of the sites not coupled to leads
is coupled to an extra site.

where

H0 =

⎛
⎜⎜⎜⎜⎜⎝

0 −e−i
φ

4 0 −ei
φ

4 0
−ei

φ

4 0 −e−i
φ

4 0 −t

0 −ei
φ

4 0 −e−i
φ

4 0
−e−i

φ

4 0 −ei
φ

4 0 0
0 −t 0 0 ε

⎞
⎟⎟⎟⎟⎟⎠

(2)

is the single-particle Hamiltonian for the isolated molecule.
φ is the dimensionless magnetic flux given by (B × A)/( �c

e
),

where B is the strength of applied magnetic field, A is the
area of the molecular ring, and �, c, e represent the reduced
Planck’s constant, speed of light, and (absolute) charge of an
electron, respectively. Here ci (c†i ) are the fermion annihilation
(creation) operators for destroying (creating) an electron at
site i and similarly dαk (d†

αk) are operators for destroying
(creating) an electron in state k in the α lead (α = L/R).
The first two terms in the Hamiltonian represent free-system
and free-lead Hamiltonians, and the third term represents
hybridization between system and lead sites. We also assumed
the wideband approximation (i.e., system lead hybridization is
independent of k).

B. Bond currents

Expressions for bond current operators between localized
sites can be obtained from the continuity equation for the
charge density operator at any localized site. For example rate
of change of charge at site 1, i.e.,

d

dt
(−ec

†
1c1) = ie

�
[c†1c1,H ], (3)

gives three terms on the right-hand side, and each of these three
terms can be identified as the operator for the current from site
1 to site 2 or to site 4 or to the left lead regions. In particular,
the operator for the current from site 2 to 1 and from site 4 to
1 can be identified as

Î2→1 = ie

�

(
ei

φ

4 c
†
2c1 − e−i

φ

4 c
†
1c2

)
(4)

and

Î4→1 = ie

�

(
e−i

φ

4 c
†
4c1 − ei

φ

4 c
†
1c4

)
, (5)

whose averages give the bond currents flowing between sites
1 and 2 (I2→1) and 1 and 4 (I4→1). At steady state these two
bond currents can be expressed as

I2→1 = e

�

∫ +∞

−∞

dω

2π

[
ei

φ

4 G<
12(ω) − e−i

φ

4 G<
21(ω)

]
(6)

and

I4→1 = e

�

∫ +∞

−∞

dω

2π

[
e−i

φ

4 G<
14(ω) − ei

φ

4 G<
41(ω)

]
, (7)

where G<
ab is the ab matrix element of Fourier-transformed

lesser projections of the system’s Green’s function to be
introduced shortly. Note that these are the only independent
bond currents flowing inside the molecule, as all other bond
currents can be expressed in terms of these two currents due to
stationarity of charge densities at all the sites in the molecule
at steady state. Indeed, at steady state I2→5 = 0, I3→2 = I2→1,
and I3→4 = I4→1.
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C. Net current in the circuit

The net current IL (which is same as −IR) flowing into
the left lead from site 1 at steady state is given by the rate
of change the average of charge on the left lead, i.e., IL(t) =
d
dt

(−e
∑

k〈d†
LK (t)dLK (t)〉). Similarly to the bond currents, the

net current can also be expressed in terms of the system’s
greater and lesser Green’s functions G>/< as [15]

IL = e

�

∫ +∞

−∞

dω

2π
[�<

11(ω)G>
11(ω) − G<

11(ω)�>
11(ω)], (8)

where �>/< are Fourier-transformed greater and lesser projec-
tions of contour-ordered self-energy to be introduced shortly.
Note that the two terms on the right-hand side of Eq. (8) are
real and represent inflow and outflow of the electrons from
the left lead. On the other hand, such an interpretation is not
possible for the two terms on the right-hand side of Eq. (6) and
Eq. (7) as they are complex functions in general.

D. Green’s function calculation

In order to calculate bond currents and net current in the
circuit, we need to compute the system’s Green’s functions.

These Green’s functions (in matrix form) are defined on the
Schwinger-Keldysh contour [15,16] as

Gc(τ,τ ′) = − i

�
〈[	(τ,τ ′)
(τ )
†(τ ′)

−	(τ ′,τ )
†(τ ′)T 
(τ )T ]〉, (9)

where τ and τ ′ are contour times with


(τ ) = (c1(τ ) c2(τ ) c3(τ ) c4(τ ) c5(τ ))T (10)

and 	(τ,τ ′) is the Heaviside step function defined on the
Schwinger-Keldysh contour [16]. Gc(τ,τ ′) satisfies the fol-
lowing equation of motion [15,16]:

∫
c

dτ1

[(
i�

∂

∂τ
− HS

)
δc(τ,τ1) − �c(τ,τ1)

]
Gc(τ1,τ

′)

= δc(τ,τ ′), (11)

where �c is the self-energy due to interaction with the leads
and has the following matrix structure:

�c(τ,τ ′) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

|gL|2
∑
k,k′

G0
Lk,Lk′(τ,τ ′) 0 0 0 0

0 0 0 0 0

0 0 |gR|2
∑
k,k′

G0
Rk,Rk′(τ,τ ′) 0 0

0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

Here G0
Lk,Lk′(τ,τ ′) and G0

Rk,Rk′(τ,τ ′) are contour-ordered Green’s functions for the isolated leads. Equation (11) can be projected
onto the real times using Langreth rules to obtain all other real-time Green’s functions [15]. At steady state all the Green’s
functions become time translational invariant and can be handled easily in the frequency domain. For example, the equation
for the retarded system Green’s function can be obtained from Eq. (11) by using Langreth rules and Fourier-transforming the
resulting equation to get

[ωI − H0 − �r (ω)]Gr (ω) = I, (13)

where I is a 5 × 5 identity matrix and �r (ω) is the Fourier-transformed retarded self-energy, obtained by Fourier-transforming
the retarded projection of the contour-ordered self-energy �c(τ,τ ′) given in Eq. (12). The retarded Green’s function can be
obtained from the above equation by matrix inversion, i.e., Gr (ω) = [ωI − H0 − �r (ω)]−1. The advanced Green’s function
can be obtained in a similar manner, i.e., Ga(ω) = [ωI − H0 − �a(ω)]−1, where �a(ω) is the Fourier-transformed advanced
self-energy. Lesser and greater Green’s functions can be obtained from

G</>(ω) = Gr (ω)�</>(ω)Ga(ω), (14)

where �</>(ω) are Fourier-transformed lesser and greater self-energies obtained by Fourier-transforming lesser and greater
projections of the contour-ordered self-energy given in Eq. (12).

Thus obtained Green’s functions can be used in Eqs. (6), (7), and (8) to get expressions for the bond currents, I2→1 and I4→1,
and the net current, IL, as (from here onwards we choose natural units such that e = 1, c = 1, and � = 1)

I2→1 =
∫ +∞

−∞

dω

2π

LR[fL(ω) − fR(ω)]

D[ω]
ω(ω − ε)

[
{2ω(ω − ε) − t2} cos2

(
φ

2

)
+ t2 sin2

(
φ

2

)]

+
∫ +∞

−∞

dω

2π

2[LfL(ω) + RfR(ω)] sin(φ)

D[ω]
(ω − ε)[ω(ω − ε)(ω2 − 2) − t2(ω2 − 1)], (15)
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I4→1 =
∫ +∞

−∞

dω

2π

LR[fL(ω) − fR(ω)]

D[ω]
{ω(ω − ε) − t2}

[
{2ω(ω − ε) − t2} cos2

(
φ

2

)
− t2 sin2

(
φ

2

)]

−
∫ +∞

−∞

dω

2π

2[LfL(ω) + RfR(ω)] sin(φ)

D[ω]
(ω − ε)[ω(ω − ε)(ω2 − 2) − t2(ω2 − 1)], (16)

and

IL =
∫ +∞

−∞

dω

2π

LR[fL(ω) − fR(ω)]

D[ω]

[
{2ω(ω − ε) − t2}2 cos2

(
φ

2

)
+ t4 sin2

(
φ

2

)]
. (17)

Here D[ω] = [(ω − ε){ω4 − (LR

4 + 4)ω2 + 4 sin2(φ

2 )} −
ωt2{ω2 − 2 − LR

4 }]2 + (L+R

2 )2[ω(ω−ε)(ω2−2)−t2(ω2−
1)]2, α = 2πρ|gα|2, and fα(ω) = 1

eβα (ω−μα )+1 . Here βα and μα

are, respectively the temperature and the chemical potential
of the αth lead. From here onwards, we shall consider the
case where temperatures of both the leads are the same
(βL = βR = β). Note that L, R , β−1, ε, t , and ω are
dimensionless numbers given in units of the coupling between
sites constituting the ring. Both the bond currents I2→1 and
I4→1 have two contributions, one purely due to applied bias
(and becomes zero for eV = 0) and the other purely due
to applied magnetic flux (and becomes zero for φ = 0). In
passing, we note that IL = I2→1 + I4→1, which is nothing
but Kirchoff’s law. Notice that the net transmission function
given as

TL(ω) = LR

D[ω]

[
{2ω(ω − ε) − t2}2 cos2

(
φ

2

)

+ t4 sin2

(
φ

2

)]
(18)

has no real zeros (antiresonances) for φ �= 2nπ (n is any
integer). For φ = 2nπ , TL(ω) has zeros at ω = ε±√

ε2+2t2

2 .
The two different cases, symmetric and asymmetric junc-

tions, mentioned in the introduction, are special cases of the
model presented in this section. They are obtained in the limits
t → 0 and φ → 0, respectively. We analyze these two cases
separately in the next two sections.

Although we have chosen a symmetric gauge, where the
dimensionless magnetic flux is equally distributed among
all the bonds (just to show that the ring is symmetric), the
expressions for the bond currents [Eq. (15) and Eq. (16)]
and the net current [Eq. (17)] remain invariant under any
gauge choice; hence the results are clearly gauge invariant. To
be more specific an arbitrary gauge can be considered, where
the single-particle Hamiltonian for the isolated molecule is

H0 =

⎡
⎢⎢⎢⎣

0 −e−iφ12 0 −eiφ41 0
−eiφ12 0 −e−iφ23 0 −te−iφ25

0 −eiφ23 0 −e−iφ34 0
−e−iφ41 0 −eiφ34 0 0

0 −teiφ25 0 0 ε

⎤
⎥⎥⎥⎦

(19)

such that φ12 + φ23 + φ34 + φ41 = φ. By explicit calculation
it can be shown that the expressions for the bond currents
[Eq. (15) and Eq. (16)] and the net current [Eq. (17)] depend
only on the sum of the phases (i.e., φ12 + φ23 + φ34 + φ41 =

φ); hence the results presented in this section do not depend on
any specific gauge choice and the results are gauge invariant.

III. SYMMETRIC AHARONOV-BOHM RING

In this section we analyze the effect of applied magnetic
field and bias on the bond currents flowing in a symmetric ring.
We therefore take the limit of t → 0 in the general equations
(15), (16), and (17) given in Sec. II. The extra site (substituent)
gets decoupled from the ring and hence does not affect the bond
currents as well as the net current. The quantum Aharonov-
Bohm effects on the net conductance of this junction is studied
in Ref. [17], where the effects of magnetic flux and asymmetry
between two branches on the net transmission function were
analyzed. In this work we are mainly interested in controlling
bond currents inside the molecule. For simplification we set
L = R = .

For this symmetric Aharonov-Bohm ring case, the bond
currents become I2→1 = IV + Iφ and I4→1 = IV − Iφ , where
IV and Iφ are given by

IV =
∫ +∞

−∞

dω

2π

[
22ω2 cos2(φ

2 )

D[ω]

]
[fL(ω) − fR(ω)] (20)

and

Iφ =
∫ +∞

−∞

dω

2π

[
2ω(ω2 − 2) sin(φ)

D[ω]

]
[fL(ω) + fR(ω)]

(21)

with D[ω] = [ω4 − (2

4 + 4)ω2 + 4 sin2(φ

2 )]2 + 2ω2[ω2 −
2]2. The expressions for I2→1 and I4→1 have two contributions:
IV is due to the applied chemical potential difference between
two metallic leads and Iφ is the contribution driven due to
the magnetic flux; this contribution vanishes only if φ is
an integral multiple of 2π . Note that both the contributions
vanish if φ is an odd integral multiple of π , irrespective
of the applied bias. This behavior can be understood better
if we analyze the bond current in the molecular eigenspace
(Appendix A) and the net current in terms of spatial pathways
(Appendix B). We find that the two contributions, Iφ and
IV , have different origins. Each eigenstate carries a current
which depends on φ. These add up to give Iφ , while the IV

contribution comes due to the coherences induced by the leads
between different eigenstates. IV can also be interpreted as the
net current due to two interfering pathways 1 → 2 → 3 and
1 → 4 → 3 in the molecule (Appendix B). At φ = π , these
two pathways interfere destructively and hence IV = 0. On
the other hand, Iφ = 0 for φ = π , as eigenstates which carry
opposite currents become degenerate (Appendix A). When
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φ = 0 the bond current I12 = IV ; i.e., the contribution comes
entirely from the coherences between eigenstates which cannot
be described within the simplified Lindblad quantum master
equation approach [18]. Analytical expressions for Iφ and
IV for both finite-temperature and zero-temperature cases are
given in Appendix C. Note that for the bias-driven part, IV , it
is straightforward to define an energy-dependent transmission

function T (ω) = [
22ω2 cos2( φ

2 )
D[ω] ]; however the same is not

possible for Iφ .
Close to equilibrium, by linearizing the two fluxes in φ and

eV , we get

IV = LV V × eV + LV φ × φ, (22)

Iφ = LφV × eV + Lφφ × φ, (23)

where LV V = ∫ +∞
−∞

dω
2π

[ 22ω2

D[ω]φ=0
]f ′(ω), Lφφ = ∫ +∞

−∞
dω
2π

[ 4ω(ω2−2)
D[ω]φ=0

]f (ω), and LV φ = LφV = 0 are Onsager matrix
elements. The off-diagonal elements are individually zero
since (i) IV is an even function of φ and IV = 0 for eV = 0,
hence the contribution linear in φ to IV vanishes, and (ii) Iφ

is an even function of eV (for μ = 0) and Iφ = 0 for φ, hence
the contribution linear in eV to Iφ vanishes. Thus close to
equilibrium the two fluxes, one originating from the applied
bias and the other due to the applied magnetic field, are
independent of each other. Therefore, close to equilibrium,
the net current in the circuit (2IV ) cannot be manipulated
by applied magnetic field. Note that here, φ acts as a
thermodynamic force for the flux Iφ . This scenario is different
from standard linear irreversible thermodynamics, where the
cross Onsager matrix elements for a general case, where
generalized fluxes Jm are driven by generalized forces Xn (i.e.,
Jm = ∑

n LmnXn), satisfy the Onsager-Casimir relationship
[19] as a consequence of microscopic reversibility of
underlying dynamics, Lmn(φ) = (−1)(αm+αn)Lnm(−φ) (αm

assumes 0 if Jm and Xm are symmetric under time reversal or
1 if Jm and Xm are antisymmetric under time reversal), where
φ is treated as a parameter. Since here φ is an external force
which drives Iφ , on time reversal both the force (φ) and hence
the resultant flux (Iφ) change sign, which is consistent with
linear irreversible thermodynamics [19].

A. Thermodynamic equilibrium

When μL = μR = μ and βL = βR = β, (i.e., when both
the leads are at the same thermodynamic equilibrium) only
the magnetic-field-driven current Iφ = I2→1 exists (I4→1 =
−I2→1) and leads only act as phase breakers for the electronic
motion in the molecular ring. Note that in this case φ may be
arbitrarily large.

Figure 2 is a plot of the equilibrium bond current, Iφ , as
a function of φ for various values of the chemical potential
(μ) of leads at fixed  and β. It shows that at thermodynamic
equilibrium, Iφ is a periodic function of φ with period 2π ,
although eigenstate energies, eigenstate contributions (to Iphi),
and their populations are periodic in φ with period 8π . This
is because the eigenstate populations and their respective
contributions to Iφ get swapped after a 2π increase in φ such
that Iφ remains periodic in φ with period 2π (Appendix A).

1.0 0.5 0.0 0.5 1.0

0.4

0.2

0.0

0.2

0.4

Φ

2 Π

I Φ

FIG. 2. Equilibrium bond current as a function of φ with  =
0.1 and β = 100. Here, dashed: μ = −1.0, dotted: μ = 0, and
continuous: μ = 1.5. Note that all energy values are given in units of
coupling strength between sites constituting the ring.

We next analyze the effect of molecule-lead coupling
on the equilibrium bond current. We note that the effect
of molecule-lead coupling on the orbital magnetic moment
density at equilibrium is studied in Ref. [20]. Figure 3 shows
Iφ as a function of  at fixed μ and β for various values of φ.
Increasing the coupling strength to leads, Iφ decreases because
leads acts as phase breakers that hinder the coherent motion
of electrons [21,22] and therefore suppresses the coherent
current. As  is increased, different eigenstates mix strongly
due to coupling to leads. This enhances scattering of electrons
between different eigenstates and leads to dephasing. Said
differently, the suppression of Iφ can also be understood as
due to increasing overlap between density of states of different
eigenstates carrying opposite currents, as  is increased. As
 → ∞ (specifically 2 	 β 	 1), Iφ decays to zero as

Iφ ≈ 4β sin(φ)

π22
Re

[

(1)

(
1

2
− iβμ

2π

)]
, (24)

0 5 10 15 20

0.3

0.2

0.1

0.0

0.1

0.2

0.3

I Φ

FIG. 3. Equilibrium bond current as a function of  with bare
chemical potential μ = 0 and β = 100. Here, dashed: φ = − π

2 , thin:
φ = − π

3 , thick: φ = π

3 , and dotted: φ = π

2 .
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0 2 4 6 8 10

0.1

0.0

0.1

0.2

Β

I Φ

FIG. 4. Equilibrium bond current as a function of β with  = 0.1
and φ = π

2 . Here, dashed: μ = −1.0, continuous: μ = 0, and dotted:
μ = 1.5.

where 
(1)[Z] is the trigamma function [23] in variable Z. On
the other hand, as  → 0, Iφ reduces to the limit of circulating
current in an isolated molecule which is given by the sum
of the currents carried by eigenstates (Appendix A) multiplied
by their respective populations (at thermodynamic equilibrium
given by lead Fermi functions at the corresponding eigenstate
energies).

As the temperature is increased, different eigenstates start to
get populated due to coupling with leads. At high temperatures
(β → 0), the populations of various eigenstates become almost
identical. As discussed in Appendix A, different eigenstates
contribute oppositely to the current, and hence the net bond
current diminishes as the temperature is increased. This is
shown in Fig. 4. At small temperature (β → ∞), the current
approaches the sum of currents carried by all eigenstates with
energies below μ (since only states below μ are occupied).

B. Out of thermodynamic equilibrium

We now consider the case when the two leads are not at the
thermodynamic equilibrium, i.e., μL �= μR and βL = βR = β.
Further, we take μL = μ + eV

2 and μR = μ − eV
2 , with bare

chemical potentials of the leads set in resonance with ring site
energies (μ = 0). In this case, the external bias also contributes
to the bond currents and we have to consider both Iφ and IV ,
given in Eqs. (20) and (21). We note that IV is an even (odd)
function of φ (eV ), whereas Iφ is an odd (even) function of
φ (eV ). Hence, by changing the polarity of either eV or φ,
it would be possible to make the two contributing currents
flow in opposite directions leading to enhancement of current
flowing along one branch and reduction of current flowing
along the other branch. This is a trivial case. However we
find that at finite bias (eV ), φ can be tuned (without changing
polarity) such that only one of the branches is conducting.
This is shown in Fig. 5, where the white region in φ-eV
space indicates that both the branches are conducting, the blue
(dashed) curve corresponds to φ and eV values where only the
lower branch is conducting (I2→1 = 0), and the red (dotted)
curve corresponds to φ and eV values where only the upper
branch is conducting (I4→1 = 0). It should be recalled that at
φ = π , due to destructive interference, both the branches are

FIG. 5. Phase diagram for bond currents in the molecular ring.
The two curves (red dotted and blue dashed) separate regions where
both the branches are conducting and black line represents a region
where both the branches are nonconducting. On the blue (dashed)
curve only the lower branch is conducting, while on the red (dotted)
curve the upper branch is conducting. Parameters chosen are  = 0.1,
β = 100, μ = 0, μL = μ + eV/2, and μR = μ − eV/2.

nonconducting and hence net current in the circuit is also zero
(Appendix B), irrespective of the applied bias. This is indicated
by a black line in the figure. Magnetic-field-driven (Iφ) and
applied-bias-driven (IV ) contributions to the bond current are
plotted in Fig. 6 as a function of φ and eV . Notice that Iφ

changes sign with respect to both φ and eV , while direction of
IV cannot be changed by changing φ. The change in the sign of
Iφ with φ is similar to the case discussed in the thermodynamic
equilibrium. However the change in the sign of Iφ with eV

happens because, as the bias increases, the populations of
states with different contributions changes, resulting in sign
change of Iφ . For large molecule-lead coupling strengths, Iφ

goes to zero asymptotically (as ≈ 1
2 ) and hence circulating

currents vanish.
The net current flowing in the circuit for the symmetric

(t = 0) Aharonov-Bohm ring case becomes

IL =
∫ +∞

−∞

dω

2π

[
42ω2 cos2

(
φ

2

)
D[ω]

]
[fL(ω) − fR(ω)]. (25)

Net current flowing in the circuit has been analyzed in
several works to study the effects of the magnetic flux on
the net current; for example, Refs. [7,17] studied the effect of
magnetic field on net transmission function in an asymmetric
ring system. In Ref. [24] the effect of inhomogeneous magnetic
flux on the net current is analyzed. In Ref. [25] the effect of
Coulomb interaction on the net current in the presence of
magnetic flux is studied. Dissipation due to electron-phonon
coupling and its effect on the net transmission has been studied
in Ref. [26], and the effect of external electromagnetic field
has been discussed in Ref. [27]. In the present work, since we
are only interested in bond currents in the molecule, we do not
pursue the net current further.
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FIG. 6. Contributions, Iφ (upper panel) and IV (lower panel), to
bond currents are plotted as a function of φ and eV with  = 0.1,
β = 100, μ = 0, μL = μ + eV/2, and μR = μ − eV/2.

IV. EFFECT OF CHEMICAL SUBSTITUTION

Here we explore the effect of coupling an extra site (with site
energy ε and coupling strength t) to an otherwise symmetric
ring system. We analyze the effect of this substitution on the
bond currents in the absence of magnetic field. The substitution
introduces asymmetry between two paths that an electron
can take in going from the left lead to the right lead. This
leads to interference effects in the net current as discussed
in Refs. [28,29]. However this asymmetry not only affects
the net current but also the bond currents in the molecule
and may lead to circulating currents (at finite bias) even in
the absence of magnetic flux. The goal in this section is to
study these circulating currents. To this end we take the limit
φ → 0 of the general equations (15), (16), and (17), given in
Sec. II. To further simplify the analysis, we consider the case
L = R =  and ε = 0.

The expressions for the bond currents, I2→1 and I4→1, and
the net current, IL, assume the form

I2→1 =
∫ +∞

−∞

dω

2π

[
2ω2(2ω2 − t2)

D[ω]

]
[fL(ω) − fR(ω)],

(26)

I4→1 =
∫ +∞

−∞

dω

2π

[
2(ω2−t2)(2ω2−t2)

D[ω]

]
[fL(ω)−fR(ω)],

(27)

IL =
∫ +∞

−∞

dω

2π

[
2(2ω2 − t2)2

D[ω]

]
[fL(ω) − fR(ω)], (28)

where D[ω] = {ω2 + (
2 )2}{[(ω2 − t2)(ω2 − 4) − 2t2]2 +

(
2 )2ω2(ω2 − t2)2}. These currents are plotted as functions

of eV and t in Fig. 7. Note that the bond current I2→1

(corresponding to the branch having the extra substituent)
changes sign as bias is scanned, while I4→1 remains positive
(in the direction of the net current).

Unlike the case in the presence of magnetic flux, in this case
the two bond currents (which vanish at zero bias) have well-
defined energy-dependent transmission functions, T12 and T14.
We note that both the transmission functions have common
zeros at ω = ± t√

2
. We analyze the nature of transmission

functions at these zeros. Since D[ω = ± t√
2
] > 0, it is clear

that both T12 and T14 change sign in opposite directions
around ω = ± t√

2
. However the total transmission function,

TL(ω) = (2ω2−t2)2

D[ω] , attains its minimum value (zero) at these
points (antiresonances). This behavior of bond transmission
functions changing sign around antiresonances of the total
transmission function was noticed by Jayannavar et al. [12],
using scattering theory. Apart from the antiresonance points,
T14 has extra zeros at ω = ±t , where it is an increasing
(decreasing) function at +t (−t), and T12 has an extra zero at
ω = 0 where it has a maximum. For |ω| > t , both T12(ω) and
T14(ω) are positive functions of ω. Thus at energies |ω| > t , the
two bond currents flow in the same (positive) direction, while
for |ω| < t , the two currents flow in the opposite direction
and a circulating current exists. The energy range |ω| < t is,
therefore, critical for the existence of a circulating current in
the molecule. Thus at low temperatures, the circulating current
exists only for |eV | < t (here μ = 0 is assumed). In Fig. 8 we
show a plot of T12(ω), T14(ω), and TL(ω).

Zeros of transmission functions T12(ω), T14(ω), and
TL(ω) are analyzed using the projection operator method in
Appendix D. The antiresonance (multipath zero) of TL(ω) at
ω = ± t√

2
is due to the destructive interference between two

paths 1 → 2 → 3 and 1 → 4 → 3 that an electron can take
through the molecule to go from left lead to right lead. This
has been discussed before in Ref. [30]. The bond transmission
functions, T12(ω) and T14(ω), have several zeros. The zero of
T12(ω) at ω = 0 is due to the destructive interference between
direct (1 → 2) and indirect (1 → 4 → 3 → 2) paths that an
electron can take to go from site 1 to site 2 (note that for
ε = 0, this zero is degenerate, and it is also due to the energy
of the electron being in resonance with the substituent site
energy). Similarly, the zeros of T14(ω) at ω = ±t are due to the
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FIG. 7. Bond currents I2→1 and I4→1 together with the net current,
IL, as a function of t and eV with ε = 0,  = 0.1, β = 100, μ = 0,
μL = μ + eV/2, and μR = μ − eV/2.

destructive interference between direct (1 → 4) and indirect
paths (1 → 2 → 3 → 4). The bond transmission functions,
T12(ω) and T14(ω), also have zeros at ω = ± t√

2
, but they do

not have a simple interpretation in this scheme.

3 2 1 0 1 2 3

2

1

0

1

2

3

Ω

T
Ω

FIG. 8. Bond transmission functions T12 (dashed), T14 (dotted),
and net transmission function TL (continuous) as a function of ω with
 = 1, ε = 0, and t = 1.

As discussed earlier, the circulating current appears due to
the negativity of I12 which comes from the negativity of T12 in
the region |ω| < t√

2
, outside which T12 is positive. For  → ∞

(specifically  	 t), T12 in the region |ω| < t√
2

goes to zero as

T12 ≈ (2ω2−t2)
(ω2−t2)2

16
2 and hence the negative contribution to I2→1

vanishes asymptotically. Therefore for large , circulating
current vanishes. Thus for sufficiently large bias (with μ = 0),
greater than t√

2
, and at low temperatures it is therefore possible

to change the sign of I12 (from negative to positive) by tuning
the coupling strength,  (for high temperature this can happen
even for |eV | < t√

2
). Hence it is possible to switch between the

phases with and without circulating currents in the molecule
by tuning . This is shown in Fig. 9, where the black region
represents circulating current in the ring and the white region

0.5 1.0 1.5 2.0 2.5 3.0
0

1

2

3

4

5

6

eV

FIG. 9. Circulating current as a function of  and eV with μL =
μ + eV

2 , μR = μ − eV

2 , μ = 0, β = 100, t = 1, and ε = 0. Here it is
shown that switching between phases with circulating current (black
region) and without circulating current (white region) can be done by
tuning  for certain eV .
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represents a region with no circulating current. It is clear that,
for certain values of eV , it is possible to switch between
phases with and without circulating current by changing 

values. Note that T14 is also negative over a small energy
window, t√

2
< |ω| < t , which is always compensated by the

positive contribution from the region |ω| < t√
2
, leading to

positive I4→1.

V. CONCLUSIONS

We have studied bond currents in a simple ring-shaped
molecular junction in the presence of asymmetry and magnetic
field. The first case studied is the symmetric Aharonov-
Bohm ring coupled to metal leads, where we identified
two contributions to bond currents, one induced by applied
magnetic field (Iφ) and the other due to applied bias (IV ).
These two contributions have different origins: the term Iφ

is due to the population terms in the eigenstate basis and the
term IV is due to the coherences induced by leads between
different eigenstates. It is possible to tune the applied bias and
the applied magnetic field to completely suppress the current
across one branch and enhance the current across the other
branch. Lead-induced dephasing suppresses the circulating
current which, for large lead couplings, dies off quadratically
(≈ 1

2 ). When an asymmetry is introduced by coupling a
substituent on one of its branches, it is possible to generate
a circulating current at finite bias, even in the absence of
applied magnetic field by tuning the coupling strength of the
substituent. Furthermore, we find that it is possible to switch
between phases with and without circulating currents by tuning
the coupling strength of the molecule with leads.

Although we have studied a specific simple model, so that
analytical insights can be achieved, we feel that qualitative
results do not change much under realistic conditions. To
realize the proposed experiment with molecular junctions,
using even relatively large molecules of typical dimensions
∼10 Å, is difficult as it needs unrealistically strong magnetic
fields of strength ∼1000 T. Nevertheless, these results can be
easily realized with artificial molecules (quantum dots) [31].
We note that an experiment has been carried out recently using
magnetic fields of strength ∼1 T with a double quantum dot
ring structure of radius ∼100 Å fabricated at the interface of
semiconductor heterostructures (GaAs-AlGaAs) by applying
gate potentials [32].

Here we have neglected the spin degree of freedom of
the electrons. However, in the presence of the spin degree
of freedom, the Zeeman splitting can be important and may
qualitatively change the results presented in this paper. In the
presence of the magnetic field, the single-particle electron
states split into spin-up and spin-down states with linear shift
in energy proportional to applied magnetic field strength.
However in the presence of single-spin electrons, such a
splitting can be neglected and the presented analysis strictly
holds if spin-flip processes can be neglected on the system.
This will be the case, for example, when ferromagnetic leads
(both polarized in the same direction) are used instead of
the normal-metal leads. The presented results also remain
qualitatively valid when the Zeeman splitting energy scale
is much smaller compared to the thermal energy scale, applied
bias, and lead-induced broadening. Further, for large Zeeman

splitting (large compared to the bias regime, lead-induced
broadening, and thermal energies), as the spin-up (moves
downward) and spin-down (moves upward) states move out
of the applied-bias regime, one can suitably tune the external
gate potential to bring one of the spin states into the conduction
regime, and hence effectively the single-spin state would
be important. Thus the theoretical scheme presented can
be realized in experiments by choosing all energy scales
in a controlled manner compared to the Zeeman scale for
both small and large Zeeman splitting energies. But in the
intermediate Zeeman splitting regime, where Zeeman splitting
energy (linear in applied magnetic filed strength) is comparable
to other energy scales, we expect to see few qualitative changes
like some nonlinear modulations of both bond currents and
net currents (due to linear dependence of site energies on
applied magnetic field) superposed by the simple periodic
trend expected in the small and large Zeeman splitting cases.
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APPENDIX A: EIGENSTATE PICTURE OF BOND
CURRENTS IN SYMMETRIC AHARONOV-BOHM RING

The isolated molecule in the presence of magnetic flux is
described by the Hamiltonian expressed in terms of Fock space
operators,

Ĥ = (c†1 c
†
2 c

†
3 c

†
4)Hsystem

⎛
⎜⎝

c1
c2
c3
c4

⎞
⎟⎠ (A1)

where Hsystem is the single-particle Hamiltonian for the
symmetric ring system obtained by removing 5th row and
5th column from the matrix given in Eq. (2). The eigenstates
of the single-particle Hamiltonian are given by

ψ1 = 1

2

⎛
⎜⎝

1
1
1
1

⎞
⎟⎠, ψ2 = 1

2

⎛
⎜⎝

−i

−1
i

1

⎞
⎟⎠, ψ3 = 1

2

⎛
⎜⎝

i

−1
−i

1

⎞
⎟⎠,

ψ4 = 1

2

⎛
⎜⎝

−1
1

−1
1

⎞
⎟⎠ (A2)

with corresponding energies

ε1 = −2 cos

(
φ

4

)
, ε2 = 2 sin

(
φ

4

)
, ε3 = −2 sin

(
φ

4

)
,

(A3)

ε4 = 2 cos

(
φ

4

)
,

respectively. The Hamiltonian in the eigenbasis is expressed
as

Ĥ =
4∑

i=1

εiA
†
i Ai, (A4)
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where creation/annihilation (A†
i Ai) operators in the eigenbasis

can be expressed in terms of creation/annihilation operators in
the local basis as ⎛

⎜⎝
A1
A2
A3
A4

⎞
⎟⎠ = U†

⎛
⎜⎝

c1
c2
c3
c4

⎞
⎟⎠, (A5)

where matrix U has single-particle eigenstates given in
Eq. (A2) as columns. Similarly, from Eqs. (4) and (5), Î2→1

and Î4→1 in the eigenbasis are given by

Î2→1/4→1 = i

�
(A†

1 A
†
2 A

†
3 A

†
4)Ibond2→1/4→1

⎛
⎜⎝

A1
A2
A3
A4

⎞
⎟⎠,

(A6)

where

Ibond2→1

=

⎛
⎜⎜⎜⎜⎝

1
2 i sin

(
φ

4

) (
1
4 − i

4

)[
sin

(
φ

4

)+cos
(

φ

4

)] (
1
4 + i

4

)[
cos

(
φ

4

)−sin
(

φ

4

)] − 1
2 cos

(
φ

4

)
(− 1

4 − i
4

)[
sin

(
φ

4

)+cos
(

φ

4

)]
1
2 i cos

(
φ

4

)
1
2 sin

(
φ

4

) (
1
4 − i

4

)[
cos

(
φ

4

)−sin
(

φ

4

)]
(− 1

4 + i
4

)[
cos

(
φ

4

)−sin
(

φ

4

)] − 1
2 sin

(
φ

4

) − 1
2 i cos

(
φ

4

) (
1
4 + i

4

)[
sin

(
φ

4

)+cos
(

φ

4

)]
1
2 cos

(
φ

4

) (− 1
4 − i

4

)[
cos

(
φ

4

)−sin
(

φ

4

)] (− 1
4 + i

4

)[
sin

(
φ

4

)+cos
(

φ

4

)] − 1
2 i sin

(
φ

4

)

⎞
⎟⎟⎟⎟⎠

(A7)

and

Ibond4→1

=

⎛
⎜⎜⎜⎜⎝

− 1
2 i sin

(
φ

4

) (− 1
4 − i

4

)[
cos

(
φ

4

)+sin
(

φ

4

)] (− 1
4 + i

4

)[
cos

(
φ

4

)−sin
(

φ

4

)] − 1
2 cos

(
φ

4

)
(

1
4 − i

4

)[
cos

(
φ

4

)+sin
(

φ

4

)] − 1
2 i cos

(
φ

4

)
1
2 sin

(
φ

4

) (− 1
4 − i

4

)[
cos

(
φ

4

)−sin
(

φ

4

)]
(

1
4 + i

4

)[
cos

(
φ

4

)−sin
(

φ

4

)] − 1
2 sin

(
φ

4

)
1
2 i cos

(
φ

4

) (− 1
4 + i

4

)[
cos

(
φ

4

)+sin
(

φ

4

)]
1
2 cos

(
φ

4

) (
1
4 − i

4

)[
cos

(
φ

4

)−sin
(

φ

4

)] (
1
4 + i

4

)[
cos

(
φ

4

)+sin
(

φ

4

)]
1
2 i sin

(
φ

4

)

⎞
⎟⎟⎟⎟⎠.

(A8)

Here the diagonal elements of Ibondα→1 multiplied by their
respective populations give bond currents (between sites α

and 1 for α = 2,4) carried by different eigenstates.
It is clear that in the isolated molecule described by

a thermal ensemble, only populations contribute to bond
currents. But if the molecule is connected to leads, coherences
can be induced between eigenstates and hence bond currents
also change. It is clear that the eigenstate Lindblad master
equation can give nonzero bond currents (as eigenstates
themselves carry finite currents), albeit a wrong result out
of equilibrium [18].

The lesser Green’s function matrix, G<(ω), can be
transformed into the eigenbasis as G̃<(ω) = U†G<(ω)U .
From this, the bond currents are calculated using Iα→1 =∫ +∞
−∞

dω
2π

Tr[Ibondα→1G̃
<(ω)] for α = 2,4. By explicit calculation

it can be seen (for the case L = R = ) that I2→1 = IV + Iφ

and I4→1 = IV − Iφ , where only population terms of G̃<(ω)
contribute to Iφ and coherences contribute to IV .

For thermodynamic equilibrium (i.e., μL = μR = μ and
βL = βR = β), eigenstate energies, eigenstate populations
[−i

∫ +∞
−∞

dω
2π

G<
mm(ω)], and eigenstate contributions to Iφ are

periodic in φ with period 8π as shown in Figs. 10, 11, and
12. The net contribution of each eigenstate is also periodic in
φ with period 8π as shown in Fig. 13, but Iφ is periodic in
φ with period 2π as can be seen in Fig. 14. This is because
eigenstate energies, eigenstate contributions (Ibond2→1mm

) to Iφ ,

and eigenstate populations get swapped after a 2π increment
in φ as can be seen in Figs. 10, 11, and 12. Furthermore,
for φ = π , states with opposite contributions to current Iφ

become degenerate, hence the circulating current vanishes.
Note that the difference in Fig. 2 and Fig. 14 is solely due to
the temperature difference which affects the populations of the
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FIG. 10. Eigenvalues of isolated ring as a function of φ. Dashed,
thick, dotted, and thin curves represent eigenstate energies of states
1, 2, 3, and 4.
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FIG. 11. Contribution of various eigenstates to Iφ as a function
of φ. Dashed, thick, dotted, and thin curves represent contribution of
eigenstates 1, 2, 3, and 4 to Iφ .
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FIG. 12. Populations of various eigenstates of ring connected to
reservoir as a function of φ with μ = 0, eV = 0, β = 1, and  =
0.1. Dashed, thick, dotted, and thin curves represent populations of
eigenstates 1, 2, 3, and 4.
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FIG. 13. Individual contributions of eigenstates as a function of
φ with μ = 0, eV = 0, β = 1, and  = 0.1. Dashed, thick, dotted,
and thin curves represent individual contributions of eigenstates 1, 2,
3, and 4 to Iφ .
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FIG. 14. Iφ as a function of φ with μ = 0, eV = 0, β = 1, and
 = 0.1.

eigenstates in the molecule. At low temperatures (as β = 100
in Fig. 2), as the magnetic field is varied, there will be a sharp
change in the populations of states which contribute differently
to bond currents, as the states which lie below the chemical
potential change as a function of magnetic flux. But at high
temperatures (as β = 1 in Fig. 14), the population changes are
smooth, due to large thermal energy. Thus the changes in the
bond current as a function of applied magnetic flux are also
smooth.

APPENDIX B: SPATIAL PATH PICTURE OF NET
CURRENT IN SYMMETRIC AHARONOV-BOHM RING

For noninteracting electron systems considered here, the net
current in the circuit [which can be obtained by using Eq. (14)
in Eq. (8)] can be expressed as

IL =
∫ +∞

−∞

dω

2π

[
LGr

13(ω)RGa
31(ω)

]
[fL(ω) − fR(ω)].

(B1)

Following Ref. [30], we use the projection operator technique
to project out sites 2 and 4 and obtain

Gr
13(ω) = 1

ω + i L

2 − �U
11 − �L

11 −
(
�U

13+�L
13

)(
�U

31+�L
31

)
ω+i

R
2 −�U

33−�L
33

× (
�U

13 + �L
13

) × 1

ω + i R

2 − �U
33 − �L

33

. (B2)

The first term in the product corresponds to the renormalized
retarded Green’s function for site 1 with self-energies coming
from excursions into the upper branch (�U

11), lower branch

(�L
11), and to and fro excursions to site 3 ( (�U

13+�L
13)(�U

31+�L
31)

ω+i
R
2 −�U

33−�L
33

).

The second term corresponds to the sum of bare amplitudes
to go from site 1 to site 3 through upper (�U

13) and lower
branches (�L

13). The third term corresponds to the retarded
Green’s function for site 3 with self-energies coming from
excursions into the upper branch (�U

33) and lower branch (�L
33)

only. �
U/L

ab are matrix elements of self-energies due to up-
per/lower branches, respectively, and they are given by �U =
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1
ω

( 1 e
i
φ
2

e
−i

φ
2 1

) and �L = 1
ω

( 1 e
−i

φ
2

e
i
φ
2 1

). Ga
31(ω) can be obtained

as Ga
31(ω) = [Gr

13(ω)]∗|φ→−φ . For φ = π , the two pathways
1 → 2 → 3 and 1 → 4 → 3 destructively interfere [since

(�U
13 + �L

13)|φ=π = ( e
i
φ
2

ω
+ e

−i
φ
2

ω
)|φ=π = 0] leading to zero net

current in the circuit. Also for φ �= 2nπ (n is any integer), the
net transmission function TL(ω) = LGr

13(ω)RGa
31(ω) has a

zero (antiresonance) at ω = 0, which is a resonance zero [30]
(since the particle injected from the lead into the system at this
energy is in resonance with sites 2 and 4).

APPENDIX C: ANALYTICAL EXPRESSIONS FOR CURRENTS FOR THE SYMMETRIC AHARONOV-BOHM RING

1. Finite-temperature expressions

The frequency integrals in Eqs. (20) and (21) can be performed using contour integration technique to get

IV = 2 cos2(φ

2 )

2π

[
ia1(

a2
1 − a2

2

)(
a2

1 − a2
3

)(
a2

1 − a2
4

)
{



[
1

2
− i

β

2π
(μL + ia1)

]
− 


[
1

2
+ i

β

2π
(μL − ia1)

]

+


[
1

2
+ i

β

2π
(μR − ia1)

]
− 


[
1

2
− i

β

2π
(μR + ia1)

]}

+ ia2(
a2

2 − a2
1

)(
a2

2 − a2
3

)(
a2

2 − a2
4

)
{



[
1

2
− i

β

2π
(μL + ia2)

]
− 


[
1

2
+ i

β

2π
(μL − ia2)

]

+


[
1

2
+ i

β

2π
(μR − ia2)

]
− 


[
1

2
− i

β

2π
(μR + ia2)

]}

+ ia3(
a2

3 − a2
1

)(
a2

3 − a2
2

)(
a2

3 − a2
4

)
{



[
1

2
− i

β

2π
(μL + ia3)

]
− 


[
1

2
+ i

β

2π
(μL − ia3)

]

+


[
1

2
+ i

β

2π
(μR − ia3)

]
− 


[
1

2
− i

β

2π
(μR + ia3)

]}

+ ia4(
a2

4 − a2
1

)(
a2

4 − a2
2

)(
a2

4 − a2
3

)
{



[
1

2
− i

β

2π
(μL + ia4)

]
− 


[
1

2
+ i

β

2π
(μL − ia4)

]

+


[
1

2
+ i

β

2π
(μR − ia4)

]
− 


[
1

2
− i

β

2π
(μR + ia4)

]}]
(C1)

and

Iφ =  sin(φ)
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, (C2)

where a1 = +
√

2−64 sin2( φ

4 )
4 , a2 = −

√
2−64 sin2( φ

4 )
4 , a3 = +

√
2−64 cos2( φ

4 )
4 , a4 = −

√
2−64 cos2( φ

4 )
4 and 
[z] is digamma function

in variable z [23].
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2. Zero-temperature expressions

The frequency integrals can be performed after taking zero-temperature (β → ∞) limits in Eqs. (20) and (21) to get

IV = 22 cos2
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and

Iφ = 2 sin(φ)
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. (C4)

APPENDIX D: INTERPRETATION OF ZEROS
OF TRANSMISSION FUNCTIONS FOR

ASYMMETRIC RING JUNCTION

Here we analyze the zeros of the transmission functions for
the ε �= 0 case. The ε = 0 case discussed in the main text can
be obtained trivially. Using Eq. (14) in Eq. (8), the net current
in the circuit can be recast as

IL =
∫ +∞

−∞

dω

2π

[
LGr

13(ω)RGa
31(ω)

]
[fL(ω) − fR(ω)].

(D1)

Similarly to Appendix B, we project out sites 2, 4, and 5 to
obtain expression for Gr

13(ω) as

Gr
13(ω) = 1

ω + i L

2 − �U
11 − �L

11 −
(
�U

13+�L
13

)(
�U

31+�L
31

)
ω+i

R
2 −�U

33−�L
33

× (
�U

13 + �L
13

) × 1

ω + i R

2 − �U
33 − �L

33

. (D2)

The interpretation of three terms in Ga
13(ω) is the same as

discussed in Appendix B. �
U/L

ab are matrix elements of self-
energies due to upper/lower branch; they are given by �U =

(ω−ε)
ω(ω−ε)−t2 (1 1

1 1
) and �L = 1

ω
(1 1
1 1

). Ga
31(ω) can be obtained

as Ga
31(ω) = [Gr

13(ω)]∗. For ω = ε±√
ε2+2t2

2 , the two pathways
1 → 2 → 3 and 1 → 4 → 3 destructively interfere [since

(�U
13 + �L

13)|
ω= ε±

√
ε2+2t2

2

= 0] leading to zeros (antiresonances

termed as multipath zeros [30]) in the net transmission
coefficient (this is due to the destructive interference between
the upper and lower branch to go from site 1 to site 3,
as the individual amplitudes are nonzero). However in the
presence of applied magnetic field, these antiresonances in
TL(ω) disappear [Eq. (18)].

Using Eq. (14) in Eqs. (6) and (7) (addition-
ally using Im[Gr

13(ω)Ga
32(ω)] = −Im[Gr

11(ω)Ga
12(ω)] and

Im[Gr
13(ω)Ga

34(ω)] = −Im[Gr
11(ω)Ga

14(ω)] for φ = 0 case),
expressions for the two bond currents I2→1 and I4→1, given by
Eqs. (6) and (7) with φ = 0 and L = R = , can be cast as

I2→1 = −2
∫ +∞

−∞

dω

2π
 Im

[
Gr

11(ω)Ga
12(ω)

]
[fL(ω) − fR(ω)],

(D3)

I4→1 = −2
∫ +∞

−∞

dω

2π
 Im

[
Gr

11(ω)Ga
14(ω)

]
[fL(ω) − fR(ω)].

(D4)

To analyze zeros of the transmission function T12(ω) =
−2 Im[Gr

11(ω)Ga
12(ω)], for the current between sites 1 and 2,

we follow the same procedure as above and project out sites
3, 4, and 5 to get

Gr
11(ω) = 1

ω + i 
2 − �I

11 −
(
�D

12+�I
12

)(
�D

21+�I
21

)
ω−�I

22−�S
22

(D5)

115424-13



HARI KUMAR YADALAM AND UPENDRA HARBOLA PHYSICAL REVIEW B 94, 115424 (2016)

and

Ga
12(ω) = 1

ω−i 
2 −(

�I
11

)∗−
[(

�D
12

)∗
+
(
�I

12

)∗][(
�D

21

)∗
+
(
�I

21

)∗]
ω−

(
�I

22

)∗
−
(
�S

22

)∗

× [(
�D

12

)∗ + (
�I

12

)∗] × 1

ω − (
�I

22

)∗−(
�S

22

)∗ .

(D6)

�
D(I )
ab are matrix elements of self-energies due to direct

path 1 → 2 (indirect path 1 → 4 → 3 → 2) given by �D =
( 0 −1
−1 0

) and �I = (
1

ω− 1
ω+i 

2

− 1
ω

1
ω+i 

2 − 1
ω

− 1
ω+i 

2 − 1
ω

1
ω

1
ω+i 

2 − 1
ω

). The self-energy

due to the extra substituent is �S = (0 0
0 t2

ω−ε

). At ω = ε,

Ga
12(ω) becomes zero (due to the bare advanced Green’s

function term becoming zero due to divergence of �S
22),

leading to the zero of the transmission function (termed
as resonance zero). Another zero (multipath zero) of the
transmission function can be identified at ω = 0, where
(�D

12)∗ + (�I
12)∗ = − ω

ω(ω−i 
2 )−1

becomes zero, which can be

interpreted as a result of destructive interference between direct
and indirect paths. Another set of zeros (which are multipath
zeros of net transmission function TL(ω) at ω = ε±√

ε2+2t2

2
discussed above) does not have a simple interpretation in this
procedure.

For analyzing zeros of transmission function T14(ω) =
−2 Im[Gr

11(ω)Ga
14(ω)], for the current between sites 1 and

4, we project out sites 2, 3, and 5, to get

Gr
11(ω) = 1

ω + i 
2 − �I

11 −
(
�D

14+�I
14

)(
�D

41+�I
41

)
ω−�I

44

(D7)

and

Ga
14(ω) = 1

ω − i 
2 − (

�I
11

)∗ −
[(

�D
14

)∗
+
(
�I

14

)∗][(
�D

41

)∗
+
(
�I

41

)∗]
ω−

(
�I

44

)∗

× [(
�D

14

)∗ + (
�I

14

)∗] × 1

ω − (
�I

44

)∗ . (D8)

�
D(I )
ab are matrix elements of self-energies due

to direct path 1 → 4 (indirect path 1 → 2 →
3 → 4) given by �D = ( 0 −1

−1 0
) and �I =

1
[(ω+i 

2 ){ω(ω−ε)−t2}−(ω−ε)]
((ω−ε)(ω+i 

2 ) −(ω−ε)
−(ω−ε) ω(ω−ε)−t2). At

ω = ε±√
ε2+4t2

2 , (�D
14)∗ + (�I

14)∗ = (ω+i 
2 ){ω(ω−ε)−t2}

[(ω+i 
2 ){ω(ω−ε)−t2}−(ω−ε)]

becomes zero; hence ω = ε±√
ε2+4t2

2 are zeros of T14(ω) (these
zeros are a result of destructive interference between direct
and indirect paths and hence can be termed as multipath
zeros). Similarly to the T12(ω) case, another set of zeros (at
ω = ε±√

ε2+2t2

2 ) does not have a simple interpretation in this
procedure.
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