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A combined experimental and theoretical approach to the coupling between frequency-shift (�f ), damping,
and tunneling current (It ) in combined noncontact atomic force microscopy/scanning tunneling microscopy using
quartz tuning forks (QTF)-based probes is reported. When brought into oscillating tunneling conditions, the tip
located at the QTF prong’s end radiates an electromagnetic field which couples to the QTF prong motion via
its piezoelectric tensor and loads its electrodes by induction. Our approach explains how those It -related effects
ultimately modify the �f and the damping measurements. This paradigm to the origin of the coupling between
It and the nc-AFM regular signals relies on both the intrinsic piezoelectric nature of the quartz constituting the
QTF and its electrodes design.
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I. INTRODUCTION

Quartz tuning forks (QTF) have been used as oscillators
in combined noncontact atomic force microscopy (nc-AFM)
and scanning tunneling microscopy (STM) since 2000, with
the pioneer work by F. Giessibl [1] on Si(111)7 × 7. Their
(i) intrinsic piezoelectric properties, (ii) thermal and spectral
stability (resonance frequency f0 � 32 kHz, quality factor
Q � 50 000) and (iii) large stiffness (k � 1800 N/m) render
the probe highly sensitive to surface short-range (SR) atomic
forces and hence, make QTF well suited for scanning probe
microscopy (SPM). These unique features, combined with
the ability to control the tip apex with atomic precision at
cryogenic temperatures, has triggered numerous outstanding
results since 2009 [2–24].

In 2011 however, discussions came up about QTF-based
SPM probes. On Si(111)7 × 7, several groups reported that
there was a strong coupling between the tunneling current
It and the frequency shift (�f ) of the oscillating tip and,
hence, on the measured force [25,26]. It is reminded that
a major achievement of these probes is to allow the use of
small oscillation amplitudes (A0 � 1 Å), which makes the
connection between �f and surface SR interaction forces
straightforward [27]. To account for that �f/It coupling [28],
two approaches were reported so far. A. Weymouth et al.
evoked a repulsive phantom force on samples with limited
conductivity such as semiconductors (SC) [25,29]. A year
after, T. Wutscher et al. extended the frame of that model
and proved that a metallic surface state did not prevent the
phantom force from occurring [30]. This result went along
with the work by M. Baykara et al. on the conductive oxidized
Cu(100) surface, where a strong topography-feedback-induced
coupling on �f upon constant-current imaging was reported
[31]. The second approach was introduced in 2012 by
Z. Majzik et al. [26], who stated that part of the �f/It

coupling stemmed from the electronics of the instrument (I/V
converters, virtual ground issues...). Although Refs. [26,30]
pointed out the electronic coupling was weak, a design of
probe was proposed wherein It is collected by means of a thin
insulated wire glued at the QTF prong’s end [26,29,32–34].

This design was a valuable technical solution to lower the
coupling and became a commercial standard, as well known
as the qPlus sensor.

The above elements might bring to the conclusion that if
the overall design of the QTF-based probe and its circuitry
is optimized, the phantom force should couple �f and
It on SC samples, only. This paper details that another
coupling, which superposes to the “phantom effect” on SC,
has to be accounted for during any QTF-based nc-AFM/STM
experiment, including those on metallic substrates. When
the tip oscillates in the vicinity of the surface in tunneling
conditions, the AC part of the tunneling current makes it
behave as an antenna which radiates an electromagnetic (EM)
field whose frequency is given by the oscillation frequency of
the QTF. The EM radiated field is suspected to get coupled
to the QTF, primarily by inverse piezoelectric effect. In this
context, the coupling might intrinsically be related to the
quartz material of the QTF and to its electrodes design. If
at play, the coupling must alter the oscillation amplitude of
the QTF detected by the nc-AFM electronics, which in turn
must influence not only the frequency shift, but the damping
as well.

In this paper, the EM radiation-induced coupling with the
QTF is evidenced. However, being concealed in the total
piezoelectric current which is processed by the nc-AFM
electronics in a row, its consequences can hardly be traced
with actual QTF-based SPM probes. Optical methods might
be implemented to put them in evidence in situ (UHV, low
temperature), but this work seems difficult. We therefore
built an otherwise simpler “proof of concept” setup which
exemplifies the coupling.

The paper is built as follows. In Sec. II, the experimental
setup and the results which testify the influence of the EM
radiated field on the QTF are presented. The interpretation
framework of those results, including a semiquantitative
description of the EM radiated field and of its coupling to
the QTF is given in Sec. III. At last, the consequences of our
paradigm for the case of nc-AFM/STM combined experiments
are discussed in Sec. IV.

2469-9950/2016/94(11)/115421(15) 115421-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.94.115421


NONY, BOCQUET, PARA, AND LOPPACHER PHYSICAL REVIEW B 94, 115421 (2016)

II. EXPERIMENTAL SECTION

A. Setup

The simplified sketch of a standard qPlus as reported in
Refs. [26,33] for instance and so-called “QTF-based SPM
probe” in the following, is shown in Fig. 1(a). The picture
of our setup and the sketch of a QTF are reported in Figs. 1(b)
and 1(c), respectively. The aim of our setup is to put in evidence
the EM radiation-induced coupling on a QTF by recording the
subsequent piezoelectric current Ip (pA range) it develops.

For that purpose, Ip(f ) Fourier spectra (cf. Sec. II C) are
recorded as functions of the driving frequency fd and the
magnitude Ĩt of the AC current flowing in a wire, Ĩt (t) =
Ĩt cos(2πfdt) located near the QTF prong’s end. We name
that current Ĩt (t) for convenience because it is supposed to
mimic the AC part of the tunneling current, as measured
during a QTF-based SPM experiment. In our setup, we point
out that the wire is never in contact with the QTF which is
neither mechanically nor electrically driven (cf. Fig. 1(c), B
electrodes grounded). We are aware this does not mimic the
detailed tip-wire geometry of an actual QTF-based SPM probe
(gluing configuration, length, and shape of the wire), but this

FIG. 1. (a) Scheme of a typical setup for a QTF-based SPM probe,
after Refs. [26,33], with one prong able to oscillate only. For the
proper tunneling current readout, the tip is electrically decoupled
from the QTF prong’s end by an insulating medium. (b) Picture of our
experimental “proof of concept” setup supposed to mimic the setup
schemed in (a). The elbow the wire forms is in the direct vicinity of
one of the QTF’s prongs. It is located at a distance d � φ/2 � 0.1 mm
from the QTF prong’s end, however without touching it. (c) Sketch
of our setup including the geometry of an X-cut α-quartz, as used
for QTF-based SPM probes. The electrodes’ design is for illustrative
purpose and does not depict the detailed trace of the actual electrodes
of our QTF. The I/V converter is based after Ref. [26].

is nevertheless suitable to evince the qualitative influence of
the EM radiated field, as discussed in Sec. III A.

A commercial QTF (LFXTAL002995 from IQD) was
uncapped and fixed on a horizontal holder [not shown in
Fig. 1(b)]. It was placed at a distance d from an elbowed
Cu wire (diameter φ � 0.2 mm for ease of manipulation)
according to the geometry shown in Fig. 1(b) (here, d � φ/2).
The wire is mounted on a slider [not shown in Fig. 1(b)], which
permits us to roughly adjust its distance d to the QTF prong’s
end.

The AC current Ĩt (t) flowing in the wire is supplied by
a function generator (Agilent 33120A) coupled to a 1/20
voltage divider referenced to ground (Earth) and a 10 M�

resistor (cf. Fig. 2). This allows us to achieve a range of
current which is compatible with typical tunneling conditions
during nc-AFM/STM combined experiments: 250 pA to
1.25 nA (peak values). The driving frequency fd may be tuned
to match the resonance frequency of the antisymmetric mode
of the QTF, f0 = 32 768 Hz.

The piezoelectric current Ip(t) supplied by the QTF is
converted by an I/V stage with a basic design. Following
the suggestions in Ref. [26], we used as operational amplifier
(OPA) an OPA637 from Texas Instruments (supply: +/−15
V) and a Rf = 1 M� feedback resistor. The 5Spice c© Analysis
Pro software was used to verify the linearity of the I/V
converter circuit. The simulated transfer function (TF) of
the converter using the OPA637 SPICE model [35] and a
Rf = 1 M� feedback resistor is reported in Fig. 3(a). An
AC input current Ip = 10 pA was used for the simulation. The
shaded gray band depicts the 20–40 kHz detection band. Thus,
with these parameters in the 32 kHz range, the OPA operates
in its linear regime and does not act here as a charge amplifier
[26,36]. Therefore Vout(t) = −Rf Ip(t). As mentioned earlier,
the only excitation source of the QTF is its thermal noise
and the radiated EM field due to Ĩt (t), if any. In the absence
of radiated field (Ĩt = 0), the total piezoelectric current Ip(t)
reduces to the current generated by thermal noise, Ith. This
reference measurement is crucial as it gives access to the
minimum perturbation detectable with our setup. The noise
floor current Inf is measured off resonance and includes Ith

(nearly null) and all noise sources issued from the circuitry.
The whole setup is placed within a vacuum chamber

maintained at a pressure of about 10−7 mbar by means of an
ionic pump in order to minimize mechanical vibrations. This
allows for the investigation of the QTF under stable conditions
with a well-pronounced resonance at f0 = 32768 Hz and a
quality factor Q � 50 000. Measurements are performed at
room temperature.

B. Preventing ground coupling

When measuring weak signals by means of active compo-
nents such as OPAs, any external perturbation to the measure-
ment, among which the ground coupling, is to be minimized.
Therefore the design shown in Fig. 2 takes great care to both the
shielding of the whole setup and the optimization of the ground
connections. Along that line, note that the input (i.e., the
wire) and output (Vout signal) feedthroughs are physically well
separated on the vacuum chamber and that the I/V converter is

115421-2



FREQUENCY SHIFT, DAMPING, AND TUNNELING . . . PHYSICAL REVIEW B 94, 115421 (2016)

FIG. 2. Scheme of the whole acquisition chain of the experimental setup shown in Fig. 1(b). The QTF is placed in a vacuum chamber
including the I/V converter as well. Two wire configurations have been implemented to test the performances of the setup (α and β), but the α

one was used for the acquisition of the experimental spectra.

located about 2 cm below the QTF within a grounded metallic
box.

A more important issue deals with the stability of the virtual
ground (VGND) of the I/V converter, i.e., the OPA’s noninverting
input, which has to be continuously ensured. If VGND is
connected to the ground and the former fluctuates due to an
external cause (current flow, external EM radiation...), this
would immediately reverberate to the OPA output voltage. The
strength of this effect depends on the choice and the regime of
operation of the OPA, two aspects which have been discussed
in Ref. [26]. Albeit our OPA has good characteristics, one
must make sure that the arbitrary connection of VGND to the
actual ground does not influence our measurement of Ip(t). To
carefully assess this, two strategies were used.

Firstly, we implemented two different wire configurations
in the setup (α and β, cf. Fig. 2). Compared to the α geometry

described above, the β configuration does not influence the
QTF as it is located far away from it (d > 5 cm). It is connected
to the ground and the AC current Ĩt (t) in it stems from the
Agilent function generator (switch set to position 3 in Fig. 2).
Since the QTF has no role in this configuration, if Ĩt (t) is
to perturb the ground, this should readily be observed in
Vout(t) and hence in Ip(f ) Fourier spectra. Secondly, to get
completely rid of the ground connection of the wire, we used a
laptop supplied by a battery, i.e., with no electrical connection
to the laboratory, and hence, no ground connection. A 16
bits, 250 kHz board from National Instruments (NI-USB6215)
connected to it was used as a digital to analog converter to
provide the proper drive voltage to the α wire with a similar
range of Ĩt (t) currents (switches set to position 2 in Fig. 2). In
this configuration, the shield of the α wire is referenced to the
COM point defined by the laptop battery.

FIG. 3. (a) 5Spice c© simulation of the TF of the experimental I/V converter. The SPICE model of the OPA637 has been used. The input
current magnitude (10 pA) is in the range of currents that are typically used during nc-AFM/STM experiments. The shaded gray area depicts
the 20–40 kHz detection band. (b) Illustrative sketch showing how Imax

p (f ) spectra are derived (red-dotted curve). For each Ĩt value (here
Ĩt = 1.25 nA), Ip(f ) averaged FFT spectra (log scale) are first recorded at one driving frequency: here for instance fd = f off, 1 = 32 760.4 Hz
(black curve, 1024 spectra averaging), fd = f0 = 32 768 Hz (green curve, 1024 spectra averaging) or fd = f off,2 = 32 777.4 Hz (blue curve,
1024 spectra averaging). Note that upon those acquisition conditions, the noise floor current is well visible Inf = 360 fA and that when not
driving at the resonance frequency, the thermal peak is visible (gray arrow) too. The value of the current corresponding to each driving frequency
(maximum of the spectrum) is then stored (black circles) and the Imax

p (f ) spectrum (red-dotted curve) is obtained upon sweep of fd over a
given range.
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Our observations are the following. When using the β wire
in the range of Ĩt (t) currents yet mentioned, no peak in the
Ip(f ) Fourier spectrum was noticed, whatever the driving
frequency that was used (fd = f0 or fd �= f0). Ip(f ) remains
constant and reaches the same noise floor as the one measured
with the α wire (when fd �= f0) in the ground-connected
configuration, i.e., with the switches set to position 1. Note
that this observation excludes any EM coupling to the ground
as well. When exciting the α wire by means of the ground-free
configuration (switches set to position 2), we get qualitatively
similar results as when measuring with the ground-connected
configuration. However, the ground-free configuration cannot
be used for all experiments due to the limited duration of
the laptop battery. We therefore conclude the data presented
hereafter acquired with the α wire in the ground-connected
configuration are not altered by ground coupling.

C. Data acquisition and post-processing

The time-dependent piezoelectric current Ip(t) is acquired
by means of a 16 bits, 250 kHz analog to digital converter
(NI-USB6215) and a dedicated LabVIEW program. The data
are acquired as follows: a buffer of N = 4 250 000 samples of
the signal Ip(t) = −Vout(t)/Rf is acquired at fs = 250 kHz.
The windowing per buffer thus lasts Twin = N/fs = 17 s.
Ip(t) is filtered by a 20 kHz-40 kHz 2nd order Butterworth
bandpass filter implemented in the program to prevent aliasing
from frequencies above the Nyquist frequency fNyq = fs/2 =
125 kHz. The fast Fourier transform (FFT) spectrum of the
buffer is then computed. The spectral resolution is δfs =
fs/N � 60 mHz, which ensures the proper resolution of the
QTF resonance peak whose full width at half maximum is
�fFWHM = f0/Q � 1 Hz. The experimental observables are
the modulus of the normalized monolateral FFT spectrum of
Ip(t), Ip(f ) (in pA), and the rms value of the power spectrum
density (PSD) of Ip(t): S(f ) (in pA/

√
Hz). The two former

quantities are derived from Ip(t) according to:

Ip(f ) = 2

N
| FFT{Ip(t)} |

S(f ) = Ip(f )
√

Twin (1)

FFT spectra are averaged to optimize the signal to noise ratio.
The number of averaged spectra (Nav) for each acquisition
is specified in each figure caption, but typically Nav > 1000,
which makes the acquisition duration of a single averaged
spectrum last �5 h.

This is exemplified in Fig. 3(b), where Ip(f ) averaged
FFT spectra (Nav = 1024) are reported for Ĩt = 1.25 nA and
three driving frequencies: the resonance frequency of the QTF,
fd = f0 = 32 768 Hz (green curve) and two off-resonance
frequencies, namely fd = f off,1 = 32 760.4 Hz and fd =
f off,2 = 32 777.4 Hz (black and blue curves respectively).
Each spectrum exhibits a net peak at its driving frequency.
When fd �= f0, the magnitude of the peaks (�7 pA) overcomes
the magnitude of the thermal peak by a factor of 70 (Itherm � 90
fA), which remains visible at f0 otherwise (gray arrow). When
fd = f0, the magnitude of the peak reaches �20 pA, which
therefore cannot be explained by the superposition of the
off-resonance current peaks and the thermal peak. Besides,

the noise floor current (cf. white arrow) is consistent with the
situation Ĩt = 0.

In the following however, those averaged FFT spectra are
not reported as is, because each of them is the trace of only one
drive frequency. The spectral representation we rather adopted
is built as follows. Instead of averaging Ip(f ) over a large
set of spectra at constant fd , we record less spectra (�10)
and track the magnitude of the fd peak, Imax

p (f = fd ), while
sweeping fd over a frequency domain. The resulting Imax

p (f )
spectrum is therefore similar to the transfer function (TF) of
the QTF upon excitation by the radiated EM field, a spectrum
not measurable otherwise. In Fig. 3(b), the red-dotted curve is
the as-derived Imax

p (f ) spectrum of the QTF for Ĩt = 1.25 nA.
The black circles exemplify how the spectrum was derived.
The acquisition of Imax

p (f ) spectra is long too, and the signal-
to-noise ratio less good than for long-lasting averaged spectra.
The use of a standard Gaussian smooth procedure is useful
then. All Imax

p (f ) spectra reported hereafter were consistently
recorded with the parameters: fd range=32 745–32 795 Hz,
1000 points (spectral resolution: 50 mHz); 15 averaged spectra
per fd point; Gaussian smooth=3 points. At last, note that in
the following, we will rather use the name of “Ip(f ) spectra”
instead of the one of “Imax

p (f ) spectra.”

D. Results

1. Thermal response of the QTF (˜It = 0)

The noise floor current Inf of our detection setup as well as
the QTF mechanical parameters are first determined. These are
extracted from the thermal noise spectrum of the QTF, Ith. The
thermal noise power spectral density (PSD) of the QTF without
radiated field (Ĩt = 0) is reported in Fig. 4. The spectrum is
fitted with the thermal noise PSD of a 1D-free oscillator (red
curve, Eq. (3) in Ref. [37]) within the 32 750–32 780 Hz
range, giving the noise floor PSD Snf � 1.48 pA/

√
Hz (white

arrow), a corresponding noise floor current Inf � 360 fA, and
a thermal noise current at resonance Ith(f0) � 90 fA above Inf.

FIG. 4. Thermal noise PSD of the QTF (black dots, 15530 spectra
averaging). The experimental curve is fitted with the theoretical
PSD of a 1D free harmonic oscillator (red curve), giving the
equivalent mechanical parameters of the fork, namely f0 = 32 768
Hz, Q = 45 000 and k = 2700 nN/nA. The blue curve is the 5Spice c©

thermal noise TF of the equivalent RLC circuit of a QTF. The
derived equivalent electrical parameters are: R = 70 k�, L = 24750
H, C = 953.16 aF.
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FIG. 5. (a) Piezoelectric current (log scale) vs time recorded upon placing a grounded shield between the radiating wire and the QTF.
Current in the wire: 250 pA, fd = 32752 Hz. The presence of the shield in front of the QTF makes the piezoelectric current dropping down to
nearly the noise floor current, which testifies the influence of the radiated EM field on the QTF. (b) Ip(f ) spectra for various Ĩt currents.

The integrated noise at f0 is � 150 pA, hence the necessity to
average our spectra. The other fitted parameters are the QTF’s
resonance frequency, quality factor, and stiffness: f0 = 32 768
Hz, Q = 45 000, and k � 2700 nN/nA.

The analysis is completed by the 5Spice c© simulation of the
thermal noise TF of the equivalent RLC circuit of the QTF (cf.
blue curve in Fig. 4 and Sec. III C). An offset of 1.34 pA/

√
Hz

has been applied to the 5Spice c© simulation to make it match
the experimental noise floor. We believe this offset stems from
our circuitry (cabling, local resistances,...). The asymmetry
seen in the experimental spectrum, partly reproduced by the
simulation, is attributed to OPA nonlinearities when operating
at that low currents (similar order of magnitude between Ip

and the OPA’s input bias current). When operating at higher
currents, the asymmetry disappears. The optimum electrical
parameters we have found are: R = 70 k�, L = 24 750 H,
C = 953.16 aF, in agreement with typical values for standard
QTF [38].

2. Response of the QTF to an EM radiated field (˜It �= 0)

To evidence the influence of the EM radiated field on the
QTF, we first made a simple shielding experiment. If the
EM field stemming from the wire is to influence the QTF,
then placing a grounded metallic shield between the wire and
the QTF must strongly attenuate the coupling. For ease of
manipulation (placing/removing the shield), the experiment
was performed in air with the wire placed at about 1 mm
from the QTF prong’s end. The QTF resonance being strongly
attenuated in air, we used an arbitrary off-resonance driving
frequency fd = 32752 Hz and Ĩt = 250 pA. Thus, a grounded
molybdenum plate was manually and sequentially placed (ON
state) and removed (OFF state) between the wire and the QTF
with the resulting piezoelectric current Ip(t) shown in Fig. 5(a).
In the ON state, the piezoelectric current vanishes down to the
noise floor current Inf = 360 fA.

We now investigate the influence of the coupling in standard
conditions (vacuum, α configuration, and d � 100 μm), as
defined before [cf. Fig. 1(b)]. Ip(f ) experimental spectra

(log scale) are reported in Fig. 5(b). They were recorded for
Ĩt = 1.25 nA, 750 pA, 500 pA, and 250 pA (peak values). The
thermal noise spectrum (Ĩt = 0) of Fig. 4 has been reported
as a reference curve too. The experimental spectra exhibit
a resonance (f0 = 32 768 Hz)/antiresonance (32 769 Hz)
behavior superimposed to a nearly constant background. The
magnitude of both, resonance/antiresonance currents and the
background current increases with Ĩt . At first glance, the
background shift and the current at resonance scale linearly
with Ĩt . This feature will be discussed in the following section
and more specifically in Sec. III D.

Both the shield experiment and the peculiar shape of the
spectra unambiguously reveal the interaction between the
EM radiation field and the QTF. The resonance/antiresonance
behavior needs to be interpreted, which can only be performed
upon estimation of the EM radiation field and its coupling to
the QTF.

III. INTERPRETATION FRAMEWORK

In order to interpret the experimental spectra and establish
their relevance in the case of actual QTF-based SPM probes,
the geometry of the probe sketched in Figs. 6(a) and 6(c) is
rationalized and compared to the one of our setup [cf. Fig. 6(b),
reported from Fig. 1(b)]: (i) the tip wire is described by a
cylindrical perfect conductor with a diameter φ and a length L.
It is vertically oriented; (ii) the axis of the cylinder is parallel to
the end face of the QTF and located at a distance d � φ/2 from
it. Hence, d stands for the glue thickness in the actual probe;
(iii) the length of the tip is much larger than the thickness of
the QTF prong W , L � W ; (iv) the tunneling current read-out
wire is described with the same kind of cylinder as the tip,
except that it is horizontal and has a semi-infinite length; (v)
the elbowed junction between the tip and the read-out wire is
described by a quarter of circle whose radius Rw � φ.

In our setup, the tip wire is long and does not end at the
location where the tunnel junction might be [cf. dotted line
in Fig. 6(c)]. Its return path to ground forms another elbow
[sketched in Fig. 6(b)] which is located several millimeters
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FIG. 6. (a) Simplified geometry of an actual QTF-based SPM probe, as shown in Fig. 1(a). The dotted circle (radius Lc) depicts the elbowed
area of the wire where the major part of the EM radiated field able to influence the QTF will stem from. The metallic substrate’s surface
(grounded) acts as an antisymmetrical plane in the electromagnetic problem (image dipoles effects). (b) Picture of the geometry of our “proof
of concept” setup. The return path to ground is located far away from the QTF, consistently with the situation in (a) when image dipoles effects
are considered. (c) Sketch of the geometry used for the derivation of the EM radiated field. Three distinct zones and their corresponding images
are considered, which can be summarized as: the AA′ segment of length 2L; the BC and B ′C ′ semi-infinite segments; the AB and A′B ′ curves.
The EM radiated may be estimated for each of them (see text). (d) Detailed geometry of the AB curve (elbowed area) used for the derivation
of the EM radiated field. That part is equivalent to a dipolar contribution pqc. (e) Detailed geometry of the A and B points belonging to the
segments regions which are involved in the EM radiated field able to influence the most the QTF. Equation (4) states that the A (B) point is
positively (negatively) charged, hence defining a dipole pseg.

away from the QTF. Hence, the overall shape of the wire
compares to a large current loop. This geometry obviously
differs from the design of an actual probe. But, Sec. III A
[Eq. (2)] will establish that the AC current flowing in the
wire may be interpreted as a superposition of infinitesimal
oscillating dipoles located along it. On the other hand, the
occurrence of a tunneling current requires the use of a semi-
infinite grounded metallic substrate. Thus, the AC current in
the wire has to be completed by its corresponding set of image
dipoles in the metal body in order to ensure the zero potential
of the surface which therefore acts as an antisymmetrical plane
in the electromagnetic problem.

In this description, the precise influence of the tunnel
junction, which obviously depends on the exact tip apex
geometry, is not accounted for. However, we infer it behaves
like an infinitesimal dipolar contribution as well, with a dipole
magnitude proportional to Ĩt dj /(2πfd ) (cf. Sec. III A), dj

being the tip/surface separation. For L � dj , the influence
of the resulting “junction dipole” will therefore not weight

predominantly in the resulting EM radiation field. Thus, by
dint of image effects, this situation is also similar to a “loop”
of current, which is precisely the case mimicked in our setup.

We hereafter detail the derivation of the EM field radiated
by a loop of current whose simplified geometry is built as
follows [cf. Fig. 6(c)]: (i) the tip wire of length L and its
corresponding set of image dipoles, i.e., a segment of length
2L (A′A segment); (ii) the elbowed area (AB curve) and its
image counterpart (A′B ′); (iii) the read-out wire depicted as
a semi-infinite connection to the I/V converter (BC segment)
with its images too (B ′C ′ segment).

A. Description of the EM radiated field

Solving exactly the electromagnetic problem including a
current source facing a QTF (dielectric medium + metallic
electrodes) with the proper boundary conditions in an an-
alytical way seems impossible. Therefore, despite its being
sketched in Fig. 6(c) for illustrative purpose, the QTF is not
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taken into consideration in the way we solve the electromag-
netic problem. We only solve the problem for an isolated tip
in vacuum, with the simplified geometry yet described.

As stated by standard antenna theory [39], for a wire with
a high aspect-ratio (length/radius) and a negligible spatial
extension w.r.t. the corresponding current wavelength λ, the
instantaneous charge distribution due to an AC current Ĩt (t) =
Ĩt cos(2πf t) is approximated by its first nonvanishing multi-
polar expansion term, i.e., the dipolar one. Each infinitesimal
part of the wire with a length ds � r (r being the distance
at which this part is observed) exhibits a dipolar moment
dp(t) = Ĩt (t)ds/ω, where ω = 2πf . In the proximity zone
r � λ = c/f for which retardation effects can be ignored,
the radiated EM field (magnetic and electric components
Brad and Erad, respectively) has mainly an electric character:
Brad/Erad � cε0r/λ � 1, where c is the light celerity and ε0

the dielectric permittivity of vacuum. Using standard complex
notations Ĩt (t) = Ĩt e

−jωt , where only the real part has physical
relevance, the electric radiated field dErad(r,t) produced by an
infinitesimal dipole dp(t) is given by:

dErad(r,t) = 1

4πε0

j Ĩt

ω
e−jωt

(
3r.ds
r5

r − ds
r3

)
, (2)

where r is the vector joining the dipole “center” to the
observation point [cf. Fig. 6(c)]. In the proximity zone
approximation, the EM radiated field is then obtained by
integrating dErad along the curvilinear abscise following the
wire shape.

1. Radiated EM field by a straight segment of length 2L

Following the geometry of Fig. 6(c), the radiated field by
the AA′ segment is:

Eseg
rad(M,t) =

∫ L

−L

dErad(r,t)ds

= 1

4πε0

j Ĩt

ω
e−jωt

⎧⎪⎪⎨⎪⎪⎩
∫ L

−L

3x(y−s)
r5
s

ds∫ L

−L

[ 3(y−s)2

r5
s

− 1
r3
s

]
ds∫ L

−L

3z(y−s)
r5
s

ds

, (3)

where rs = ‖r‖ =
√

x2 + (y − s)2 + z2. The equation may be
recast into:

Eseg
rad(M,t) = 1

4πε0

j Ĩt

ω
e−jωt

[
r2

r3
2

− r1

r3
1

]
, (4)

r1 and r2 being the vectors joining the beginning and the end
of the segment to the M point, respectively. For AA′ segment,
r2 = r1 − 2Ley, and Eq. (4) stands for the field created by a
negative (positive) charge in A′ (A).

2. Radiated EM field by a quarter of circle

The current is supposed to flow through a quarter of circle
belonging to the (x,y) plane with the geometry shown in
Fig. 6(d) (curve AB, flowing orientation from A to B here).
The observation point M(x,y,z) is referenced to the center
of the circle by the vector r. The elementary dipole is given
in standard polar coordinates (er,eθ ) by dp = ĨtRwdθeθ /ω,

where Rw is the radius of the circle and dθ the elementary
polar angle.

The field in M is then given upon integration of Eq. (2) for
θ ranging between π and π/2.

Eelbow
rad (M,t)

= 1

4πε0

j Ĩt

ω
e−jωtRw

×

⎧⎪⎪⎨⎪⎪⎩
∫ π/2
π

3(y cos θ−x sin θ)×(x−Rw cos θ)
r5
θ

dθ − ∫ π/2
π

− sin θ

r3
θ

dθ∫ π/2
π

3(y cos θ−x sin θ)×(y−Rw sin θ)
r5
θ

dθ − ∫ π/2
π

cos θ

r3
θ

dθ∫ π/2
π

3(y cos θ−x sin θ)×z

r5
θ

dθ

,

(5)

where rθ =
√

(x − Rw cos θ )2 + (y − Rw sin θ )2 + z2. Equa-
tion (5) is exact for any observation point. Nevertheless, at
large distance from the elbowed area, r � Rw, the equation
simplifies to:

Eelbow
rad (M,t) = 1

4πε0

j Ĩt

ω
e−jωtRw

{
3r · u

r5
r − u

r3

}
, (6)

where u = ex + ey. Thus, Eq. (6) states that the current flowing
in the quarter of circle radiates an EM field whose structure
is similar to the one radiated by a dipole pqc = pqcu, with
pqc = √

2ĨtRw/ω, located in O and oriented at π/4 w.r.t the
x axis [cf. Fig. 6(d)].

3. Total EM radiated field

In summary, the total EM radiated field can be estimated by
superposition of: (i) Eq. (4) applied to segments A′A, BC, and
B ′C ′; (ii) Eq. (6) applied to curves AB and A′B ′ assuming r �
Rw (dipolar contribution). Due to the distance dependence of
the former equations and to the fact that L � W , the major
part of the EM radiated field able to influence the QTF can thus
be restricted to the contribution of two point charges located in
A and B, plus the dipolar contribution of the quarter of circle
AB. Along that line, if one assumes that at time t , the current
flows along AB curve from A to B point [cf. elementary dipole
orientation dp in Figs. 6(a) and 6(e)], then Eq. (4) tells us that
A point is positively charged and B point is negatively charged.
For r � Rw, the contribution of the two point charges reduces
to a dipolar contribution as well, whose dipole pseg, according
to the conventions defined above, is oriented from B to A point
[cf. Fig. 6(e)].

pseg and pqc have similar magnitudes: j Ĩ (t)e−jωt/ω. They
are parallel, Rw-far apart, but with opposite directions. This
ultimately depicts a quadrupolar EM field. The magnitude of
an EM field issued from a quadrupole estimated at a distance
r , large enough from its center, is [39]

Erad(r,t) � 1

4πε0

R2
w

r4

j Ĩ (t)

ω
e−jωt . (7)

The above equation describes the radiated EM field for
the case of an oversimplified geometry of the tip wire.
With actual probes, one expects that geometry to be more
complex and, hence, the structure of the resulting field too.
This might explain why between distinct probes, the detailed
geometrical configuration of the tip being different (gluing
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conditions, read-out wire geometry...), the coupling may differ
significantly.

We finally discuss the structure of the current source.
Equation (7) stands for a pure harmonic source. In the
generic case of a periodic current Ĩ (t) (pulsation ω0), its
Fourier expansion must be considered instead: Ĩt (t) = 〈Ĩt 〉 +∑

n�=0 Ine
jωnt , ωn = nω0, In and 〈It 〉 being the nth harmonic

pulsation (n �= 0), the magnitude of the nth Fourier component
(n �= 0) and the static component (n = 0) of the current,
respectively. Thus, the radiated field becomes:

Erad(r,t) � 1

4πε0

R2
w

r4

+∞∑
n=−∞,�=0

jIn

ωn

e−jωnt . (8)

In Eq. (8), the term under summation does not consider the
static component as it does not promote the radiated field. This
equation can thus be written in an integral form as follows:

Erad(r,t) � 1

4πε0

R2
w

r4

∫ t

0
[Ĩt (t

′) − 〈Ĩt 〉]dt ′, (9)

where the integrand stands for the AC part of the current
source, as expected for the EM radiation source in standard
antenna theory.

B. Coupling to the QTF

The derivation of the strain field within the QTF induced by
the EM radiated field [Eq. (9)] is a key issue for the description
of the coupling. Nevertheless, an analytical approach seems
illusive because, although the calculation of the EM radiated
field is oversimplified, it yet yields a nonlinear distance
dependence which makes the detailed tensorial calculations
of the piezoelectric coupling hardly tractable. We therefore
chose to discuss the coupling semiquantitatively.

The quadrupolar contribution of the EM radiated field may
be quantified by introducing two characteristic lengthes: Lc

and Rw, Rw being the radius of curvature of the elbowed area
of the wire yet defined. Lc depicts the size of the influence zone
of the EM field where the maximum coupling with the QTF is
expected to occur [Figs. 6(a) and 6(b), dotted area]. We assume
Lc to match the QTF prong’s width: Lc � W � 100 μm and
Rw � 50 μm to match commonly reported values with QTF-
based SPM probes [26,33].

In the context of nc-AFM/STM combined experiments, the
tunneling current exhibits an exponential-like dependence with
the tip-surface separation. Following the discussion at the end
of Sec. III A 3, the dynamic tunneling current Ĩt (t) stemming
from the tip oscillatory motion exhibits AC, Ĩt , and static,
〈Ĩt 〉, components. 〈Ĩt 〉 stands for the experimentally reported
observable (1 pA–1 nA range). In this context, Eq. (9) writes:

Erad(Lc,t) � 1

4πε0

R2
w

L4
c

∫ t

0
[Ĩt (t

′) − 〈Ĩt 〉]dt ′. (10)

Fourier analysis states that Ĩt (t) is a superposition of
harmonic waveforms with frequencies fn = nf0 (n ∈ N). For
oscillation amplitudes A0 � 1 Å, the first harmonics (n � 3)
preponderate with magnitudes � 〈Ĩt 〉 (cf. appendix A and
Ref. [26]). Moreover, the nc-AFM electronics behaves as a
spectral filter that continuously tracks the resonance frequency
f0 of the QTF. Hence, the unique component of the Ĩt (t)

Fourier expansion influencing the QTF is the fundamental
one, whose magnitude is � 〈Ĩt 〉. Therefore, the current writes:
Ĩt (t) = 〈Ĩt 〉 cos(2πf0t), which is the waveform used so far,
indeed. Thus:

Erad(Lc,t) � 1

4πε0

R2
w

L4
c

〈Ĩt 〉
2πf0

sin(2πf0t). (11)

Realistic experimental values 〈Ĩt 〉 = 25 pA and f0 � 32
kHz yield Erad � 30 V/m. The corresponding mean radiated
power per oscillation cycle in a volume L3

c at distance Lc from
the wire is Prad � ε0f0〈E2

rad〉L3
c/2 � 810−20〈Ĩt 〉2 W, if 〈Ĩt 〉 is

in pA. If the QTF is depicted by a 1D harmonic oscillator, the
latter power can be compared to the one dissipated by friction
during one cycle: Pdis = f0/2 × k/Q × A2

0 � 710−18 × A2
0

W, with k/Q � 1/25 and A0 in Å. In the steady state, Pdis

equates the power supplied by external excitation to the QTF.
For Pdis = Prad, we find that 〈Ĩt 〉 � 25 pA may promote a
� 300 pm oscillation of the QTF.

Obviously, this result is overestimated owing to the 100%
coupling efficiency we have assumed. A QTF converts elec-
trical energy into mechanical energy by inverse piezoelectric
effect, whose efficiency for quartz is weak. X-cut α-quartz
crystals have two nonequivalent piezoelectric tensor compo-
nents [40] (e11, e14) of magnitude e � 10−12 m/V. Therefore
with Erad = 30 V/m, the resulting piezoelectric displacement
is expected to be up � eEradLc � 3 fm only. However, the
radiated energy has an oscillating character, and so has up.
This dynamic displacement concerns a characteristic mass
δm = ρL3

c (for quartz, ρ = 2103 kg/m3) located at the QTF
prong’s end, which acts as an oscillating inertial force of mag-
nitude Finert = δm∂2up/∂t2 = (2πf0)2δmeEradLc � 0.23 pN.
If properly oriented, Finert(t) can excite the antisymmetric
mode of the QTF and trigger a mechanical oscillation of the
prong with an amplitude Ainert = (Q/k)Finert � 6 pm, at f0.
That estimate is not negligible in view of the amplitude range
used with QTF-based SPM probes, typically A0 � 40 pm in
the low-amplitude regime [2,3]. The present effect, named
inertial coupling, yields the bending of the QTF prong and, by
virtue of the direct piezoelectric effect, a piezoelectric current
component Iinert(Ĩt ), which must scale linearly with Ĩt . The
total piezoelectric current Ip(Ĩt ) supplied by the QTF to the
nc-AFM electronics becomes an Ĩt -dependent functional of
the form:

Ip(Ĩt ) = Inf +
mechanical motion︷ ︸︸ ︷

Ith + Iosc + Iinert(Ĩt ) + Iind(Ĩt )︸ ︷︷ ︸
coupling

, (12)

where Inf, Ith, and Iosc are the noise floor current (circuitry-
dependent), the thermal noise current (weak, and essentially
non-null at resonance), and the current produced by the QTF
oscillation upon external excitation, respectively. In absence
of mechanical, or electrical actuation, Iosc = 0, obviously. Ith,
Iosc, and Iinert(Ĩt ) stand for an actual mechanical oscillation of
the QTF prong, but only Iinert(Ĩt ) reflects a motion due to the
Ĩt coupling.

In Eq. (12), the last term Iind(Ĩt ) is also Ĩt dependent and
reflects a current of induced charges due to the influence of
the EM radiated field on the metallic electrodes of the QTF.
These charges stem from (or flow to) the ground and load the
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electrodes with a density reflecting the inhomogeneous spatial
distribution of Erad ∝ L−4

c and the electrodes’ geometry.
This effect is named induction coupling and should scale
linearly with Ĩt too. It cannot be excluded that Iind(Ĩt ) does
partly contribute to the prong motion. If the induced charge
distribution on the electrodes yields internal field lines with
optimal symmetry [41] (as those observed upon AC electrical
actuation of the QTF), a bending motion might be promoted.
However, Erad behaves as a quadrupolar field and does not
clearly exhibit such a symmetry. Therefore, despite its AC
character, Iind(Ĩt ) should not contribute to the prong motion, to
a large extent. But being part of the overall detected current, its
contribution to the measured oscillation amplitude of the tip,
A0, is not to be neglected, as discussed below and in Sec. III D.

C. Electrical equivalence

To help in interpreting the experimental spectra by means of
the constitutive equation 12, we reasoned in terms of electrical
analogy of the QTF and its circuitry. The mostly reported [42–
46] electrical analogy of the QTF is the Butterworth-Van Dyke
equivalent circuit, i.e., a RLC branch (impedance: ZRLC(f ) =
R + jL2πf + 1/(jC2πf ), with j 2 = −1) in parallel with a
capacitance CL, both being electrically loaded by a common
AC voltage supply Vsup [cf. Fig. 7(a)]. For ours, CL = 12.5 pF
(manufacturer’s data). The resonance/antiresonance behavior
of the QTF within this analogy is well known and shown
in Fig. 7(b). The RLC branch depicts the current due to the
mechanical motion of the QTF, whereas the CL branch depicts
the capacitive charge that occurs in the electrodes due to Vsup.

The I
eq
p (f,Ĩt ) experimental spectrum [cf. Fig. 7(d), reported

from Fig. 5(b) for Ĩt = 1.25 nA] has a very similar appearance
as the one derived from the Butterworth-Van Dyke TF shown
in Fig. 7(b). The former circuit cannot be used to fit our data
though, our setup including no explicit electrical actuation
(Vsup). Nevertheless, the above description remains partly
correct. Indeed, Iinert(Ĩt ) stems from a motion of the QTF prong
which can be described as an effective voltage V dr

eff driving
ZRLC. As to Iind(Ĩt ), it may be interpreted as an equivalent
current resulting from an effective voltage V

cap
eff �= V dr

eff loading
an effective capacitance Ceff. Ceff �= CL because Erad does not
load the electrodes as Vsup would do. Thus, we ultimately
propose in Fig. 7(c) a more generic equivalent circuit to the
QTF whose piezoelectric current I

eq
p (f,Ĩt ) is:

I eq
p (f,Ĩt ) = Inf + Ith +

Iinert(f,Ĩt )︷ ︸︸ ︷
V dr

eff(Ĩt )

ZRLC(f )
+

Iind(f,Ĩt )︷ ︸︸ ︷
V

cap
eff Ceff(Ĩt ) × j (2πf ) .

(13)

Because Inf, Ith and the RLC parameters of the QTF are
determined yet (cf. Sec. II D), Eq. (13) can be used as a
two-parameters fitting functional: V dr

eff(Ĩt ) and the V
cap

eff Ceff(Ĩt )
product, both proportional to Ĩt . I

eq
p (f,Ĩt ) being complex, the

actual current used for fitting is |I eq
p (f,Ĩt )|, which properly

treats the specific phase relationship between Iinert(f,Ĩt ) and
Iind(f,Ĩt ).

FIG. 7. (a) Butterworth-Van Dyke circuit used to describe the
QTF when electrically actuated by an external supply (Vsup). (b)
5Spice c© simulation of the TF of the Butterworth-Van Dyke circuit
shown in (a). The R, L, C parameters are those formerly derived for
our QTF and the I/V converter TF was included in the simulation.
To achieve a background current of � 7 pA, consistently with the
experimental spectrum shown in (d), we need to input Vsup = 2.4μV.
The resonance/antiresonance behavior is well known with this kind
of circuit. (c) Equivalent circuit of the QTF upon EM excitation. The
Butterworth-Van Dyke circuit is reconsidered. The two branches are
separated and excited by independent effective voltage sources. (d)
Experimental Ip(f,Ĩt ) spectrum reported from Fig. 5(b) for Ĩt = 1.25
nA. The resonance/antiresonance behavior is qualitatively similar as
the one shown in (b).

D. Interpretation of the fits

In Fig. 8(a), the fits of the experimental spectra derived
from Eq. (13) have been overlaid (black curves) to the
experimental spectra [colored curves, reported from 5(b)].
The as-derived fitting parameters are gathered in Table I.
The excellent agreement between the experimental and fitted
curves over the entire frequency domain validate our paradigm.
Equation (13) also permits the deconvolution of the total
current for all frequencies, among which f0. Thus, |I eq

p (f0,Ĩt )|
[green circles in Fig. 8(b)] may be deconvoluted as: (i) the
|Iinert(f0,Ĩt )| contribution [red triangles in Fig. 8(b)] and (ii)
the |Iind(f0,Ĩt )| contribution [black squares in Fig. 8(b)].
Figure 8(b) shows the expected linearity between |I eq

p (f0,Ĩt )|,
|Iinert(f0,Ĩt )|, |Iind(f0,Ĩt )|, and Ĩt .

The modulii and arguments of the current components
(I eq

p (f,Ĩt ) − Inf), Iinert(f,Ĩt ), and Iind(f,Ĩt ) are reported in
Figs. 9(a) and 9(b), respectively. For the sake of the clarity,
we have reported them for Ĩt = 1250, 750, 500, and 250 pA
in Fig. 9(a) and for Ĩt = 1250 pA only in Fig. 9(b) (similar
behavior otherwise). It can be seen that the induction current
acts as a nearly constant background shift of the curve, whereas
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FIG. 8. (a)Ip(f ) spectra (log scale) for various Ĩt currents reported from Fig. 5(b). The experimental spectra are fitted with |I eq
p (f,Ĩt )|

[black curves, Eq. (13)] derived from the QTF equivalent circuit [Fig. 7(c)], which permits us to assign the resonance/antiresonance behavior
(Ĩt �= 0) to inertial/induction currents due to the EM radiation field on the QTF. (b)|I eq

p (f0)|, |Iinert(f0)|, and |Iind(f0)| values derived from the
fits (left scale, error bars ±0.5 pA) vs Ĩt and corresponding amplitude (right scale, see text).

the inertial current is responsible for the resonant behavior at
f0 = 32768 Hz. However, it is the specific phase relationship
between those components (in-phase for f < f0, π/2-shifted
for f = f0, and π -shifted for f > f0) which is responsible
for the occurrence of the antiresonance above f0 (32 769 Hz).
Another aspect of that peculiar phase relationship between
components is the fact that the modulus of the equivalent
current does not result from the direct summation of the
modulii of its constitutive parts (cf. Table I).

At last, it is useful to convert those currents into oscillation
amplitude in order to assess their relative weight compared to
typical oscillation amplitudes reported with QTF-based SPM
probes, A0 � 40 pm. For that purpose, we chose to use the
conversion factor γ = 0.505 m/A given for conventional QTF
by R. Grober et al. [38]. The conversion is shown on the right
axis of Fig. 8(b). The inertial component Iinert(f0) [red triangles
in Fig. 8(b)] relates to an actual prong oscillation of amplitude
Aact

0 = γ |Iinert(f0)|. Conversely, the induction component
|Iind(f0)| [black squares in Fig. 8(b)] does not reflect any
prong oscillation. It is referred to as Aind

0 = γ |Iind(f0)|.
The peculiar phase relationship between those currents

is also responsible for the fact that the total amplitude
A0 derived from I

eq
p is not given by A0 = γ [|Iinert(f0)| +

|Iind(f0)|] = (Aact
0 + Aind

0 ) but by A0 = γ × |I eq
p (f0)| =

γ
√

�{Inf + Ith + Iinert(f0)}2 + �{Iinert(f0) + Iind(f0)}2 �√
Aact

0
2 + Aind

0
2
. The above elements lead to the conclusion

that there is a gap between the actual oscillation amplitude of
the QTF, Aact

0 , and the detected one, simply referred to as A0,
so far. This gap will be referred to as an apparent amplitude
A

app
0 , also given in Table I: A

app
0 = A0 − Aact

0 .

IV. CONSEQUENCES OF THE COUPLING IN NC-AFM:
FREQUENCY SHIFT, OSCILLATION

AMPLITUDE, AND DAMPING

The way Aact
0 and A

app
0 amplitudes (cf. Sec. III D) affect the

experimental nc-AFM observables (�f and damping) is not
trivial because one might expect the amplitude controller to
compensate for them. In order to tackle this issue, we suggest
the following thought experiment. Let us consider that the
tip oscillates with an amplitude setpoint Aset

0 at a constant

TABLE I. Table of the fits parameters and corresponding current components (modulii) and amplitude at resonance vs Ĩt .

Ĩt (pA peak) 1250 750 500 250

V dr
eff (μV) 1.80 1.08 0.72 0.46

V
cap

eff Ceff (10−17 C) 2.99 1.89 1.30 0.77

|I eq
p (f0)| (pA) (27.4 ± 0.5) (16.7 ± 0.5) (11.3 ± 0.5) (7.3 ± 0.5)

A0 = γ |I eq
p (f0)| (pm) (13.8 ± 0.2) (8.4 ± 0.2) (5.7 ± 0.2) (3.7 ± 0.2)

|Iinert(f0)| (pA) (25.6 ± 0.5) (15.3 ± 0.5) (10.2 ± 0.5) (6.5 ± 0.5)
Aact

0 = γ |Iinert(f0)| (pm) (12.9 ± 0.2) (7.7 ± 0.2) (5.2 ± 0.2) (3.3 ± 0.2)

|Iind(f0)| (pA) (6.1 ± 0.5) (3.9 ± 0.5) (2.7 ± 0.5) (1.6 ± 0.5)
Aind

0 = γ |Iind(f0)| (pm) (3.1 ± 0.2) (2.0 ± 0.2) (1.4 ± 0.2) (0.8 ± 0.2)

A
app
0 = A0 − Aact

0 (pm) (0.9 ± 0.4) (0.7 ± 0.4) (0.5 ± 0.4) (0.4 ± 0.4)
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FIG. 9. (a) Current components after Eq. (13) (log scale) vs frequency for various Ĩt currents. The parameters used to compute the curves
are those issued from the fits of the experimental spectra (Table I). One has reported: (|I eq

p (f )| − Inf) (continuous colored lines), |Iind(f )|
(double dotted colored lines) and Iinert(f ) (dotted colored lines). The inertial component is responsible for the resonance behavior, and the
induction component acts as a constant background which shifts the resulting curve upwards. It is the peculiar phase relationship between both
components [see (b)], which is responsible for the antiresonance behavior of the resulting total current. (b) Corresponding arguments of the
current components (radians) vs frequency. For the sake of the clarity, we only have reported them for Ĩt = 1.25 nA. It is visible that inertial
and induction components are on-phase for f < f0, π/2 phase shifted at resonance and antiphased for f > f0.

rest distance to the surface (few Å). The amplitude controller
is engaged (damping signal recorded), whereas the distance
controller not. Let us now compare two situations, one with
Ĩt = 0, the other one where Ĩt �= 0. Compared to the Ĩt = 0
case, Ĩt �= 0 leads to: (i) an actual supplementary oscillation
of the tip, Aact

0 . However, Aact
0 is properly compensated by the

controller, which brings the oscillation down to Aset
0 ; (ii) an

apparent amplitude A
app
0 which is also compensated by the

controller, albeit not standing for a physical oscillation. The
order of magnitude for these amplitudes may conditionally
yield 10 pm (cf. Table I), that is �25% of A0 = 40 pm.
This should readily be visible in the damping signal, whose
interpretation becomes delicate then.

Moreover, the actual oscillation amplitude of the tip and
the one expected from Aset

0 are systematically shifted by A
app
0 .

This induces a shift of the tip/surface lower turning point
separation, and hence, a difference between measured �f in
both experiments.

This effect can be investigated in more detail. For this
purpose, the influence that any A0 change has on �f is to
be derived. For that purpose, we expand Giessibl’s formula
[27] linking �f , the tip-sample force Fts(z) and A0 to obtain
(cf. Appendix B):

d�f

dA0
= −A0f0

8k

∂3Fts(z)

∂z3
. (14)

With f0 = 32678 Hz, Q = 50 000 and k = 1800 N/m and
a typical force magnitude of � − 2 nN in the SR attractive
regime (�3.5 Å to the surface, 〈Ĩt 〉 � 1 nA) and A0 = 40 pm,
any A0 change as small as dA0 = A

app
0 = 1 pm (cf. Table I)

yields: d�f � 0.25 Hz (cf. Fig. 11 in Appendix B). This d�f

change has a similar magnitude as some of the experimentally

reported molecular corrugations upon constant height imaging
(e.g., Fig. 2 B in Ref. [3]). Consequently, if quantitative
analysis is targeted (force extraction by inversion algorithms
[47]...), the coupling reported here must be considered.

V. CONCLUSION

In this paper, we have developed an experimental “proof
of concept” setup aiming at exploring an intrinsic origin to
the coupling between the frequency shift and the tunneling
current, as reported with QTF-based SPM probes during nc-
AFM/STM combined experiments. Our setup has allowed us
to unambiguously show that an oscillating current flowing
in a wire located in the direct vicinity of one of the QTF’s
prongs induces a flowing current between the electrodes of this
QTF. An interpretation framework has been proposed, which
captures the physics at play and details the response of the
QTF. The oscillating current in the wire makes it behave like
a tiny antenna which radiates an oscillating electromagnetic
field whose frequency matches the QTF resonance frequency
and hence, makes the rest of the process extremely efficient.
This field penetrates the body of the QTF and, by virtue of
the inverse piezoelectric effect, accelerates a volume of quartz
located at the QTF prong’s end. This accelerated piece of
matter acts as an external, unexpected, actuation of the QTF
and provokes its oscillation, which leads to a part of current,
the so-called inertial current, collected by the QTF electrodes.
The electromagnetic field also bathes the metallic electrodes,
which by induction leads to another part of the detected current
in the QTF. The induction-related current does not reflect any
motion of the QTF prong. But, being part of the global current
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flowing in the electrodes, it might wrongly be interpreted as if
it resulted from such a motion.

Inertial and induction currents get added to the overall
piezoelectric current supplied by the QTF and translate
into an actual supplementary oscillation amplitude and an
apparent oscillation, respectively. These parasitic components
ultimately fake the oscillation amplitude of the tip detected
by the nc-AFM electronics, which alters both the �f and the
damping (�) measurements, hence the (�f,�)/It coupling.

The aim of our paper was to qualitatively evince the
coupling between an EM field and a QTF covered with
electrodes. The geometry of the radiating tunneling wire
was chosen according to the available literature for both
experiments and calculations. Nevertheless, we think that with
the chosen geometry, the effect measured in our experimental
setup with respect to generally used qPlus sensors is rather
underestimated. Indeed, for the short decay length of the EM
radiated field as described in our work, the distance between
the tip wire and the QTF prong’s end is crucial. In our
experimental setup, the center of the wire is almost one order
of magnitude farther away than with commonly used tunneling
wires (50 μm in diameter) which are directly glued at the QTF
prong’s end. While on the one hand, optimized tip lengths and
bending radii could decrease the coupling effect, on the other
hand, the large diameter of the wire and the large separation
between the QTF front end and the wire in our setup (due to
the fact that the wire is not glued onto the prong end) result in
a measured effect which might be up to an order of magnitude
smaller than with a thinner wire glued directly on the QTF.

The detailed implications the coupling might have on the
quantitative interpretation of nc-AFM/STM data can only be
assessed by means of a complete quantitative approach. Both
the electromagnetic and the coupled piezoelectric/mechanical
problems must jointly be solved by finite element method
(FEM) calculations. Once the magnitude of each effect (iner-
tial, induction) is known, its influence could be assessed with
our nc-AFM simulator, where the complete set of closed loops
is reproduced in detail. Thus, the FEM/nc-AFM simulator
combination might exactly quantify the influence the tunneling
current has on �f and damping signals. This work is currently
in progress.

At last, we can suggest some exploratory solutions to avoid
the coupling reported here. The most straightforward one
consists in operating the QTF at low tunneling currents, in
the range of 10 pA. Another approach requires us to modify
or redesign the QTF. Two conditions have to be fulfilled then:
(i)the metallic electrodes need to be located as far as possible
from the tip; (ii) the piezoelectricity property of the QTF
prong’s end where the tip is glued needs to be destroyed. For
that purpose, one might suggest to perform a well-controlled
chemical etching of the electrodes and an amorphization of
the prong’s end (by helium implantation for instance). This
solution would preserve the quality factor of the QTF, but the
implantation process might be delicate. A second option might
consist in elongating the QTF prong’s end by attaching to it a
proper part made of a nonpiezoelectric material at the end of
which the tip would be glued. This solution might be easier to
implement, but the mechanical properties of the QTF, among
which is its quality factor, should be altered.
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APPENDICES

1. Tunneling current Fourier components

The simplified expression for the instantaneous tunneling
current Ĩt (t) flowing through the oscillating tip separated by
z(t) from the surface is written:

Ĩt (t) = I0e
−z(t)/λ, (A1)

where λ is a characteristic length which pertains to the work
function of the substrate material. For metals, λ � 1 Å. Assum-
ing a harmonic motion of the tip, the instantaneous tip-surface
separation may be written as: z(t) = z0 + A0 cos(2πf0t),
where z0 is the tip-surface rest separation and A0 the oscillation
amplitude. Standard Fourier analysis allows for recasting Ĩt (t)
as:

Ĩt (t) = I0e
−z0/λ

{
BesselI

[
0,

A0

λ

]

+ 2
+∞∑
n=1

(−1)nBesselI

[
n,

A0

λ

]
cos(2πnf0t)

}
, (A2)

where BesselI is the Bessel function of the first kind. Defining
〈Ĩt 〉 = I0e

−z0/λBesselI[0,A0/λ] as the DC part of the tunneling
current, which also relates to the experimentally measured
current, the AC part Ĩt (t) becomes:

Ĩt (t) = 2〈Ĩt 〉
+∞∑
n=1

(−1)n
BesselI

[
n,A0

λ

]
BesselI

[
0,A0

λ

] cos(2πnf0t). (A3)

For A0/λ � 1, the amplitude of the first harmonics
are around 〈Ĩt 〉, whereas higher ones decrease rapidly (cf.
Figs. 10(e) and 10(f)). We have shown the AC part is of the
same order as the DC one for oscillation around 1 Å. The
radiated EM field is also given by a Fourier summation, so
only the knowledge of the contribution given by the AC part
of the current is necessary.

2. Relation between d� f and d A0

We here establish the relation between the �f change,
d�f , due to a dA0 uncertainty (or bad estimate) of the
actual oscillation amplitude of the tip, in the limit of the
small-amplitude regime (A0 � z0, see hereafter). The starting
point is F. Giessibl’s formula giving �f for a tip-surface
interaction Fts, a rest distance z0, an amplitude A0, a spring
constant k, and a resonance frequency f0, namely [27]:

�f

f0
= − 1

2kA0

∫ 2π

0
Fts(z0 + A0 cos(x)) cos(x)dx. (A4)

We calculate (d�f/f0)/dA0 by restricting the expansion of
the former equation w.r.t. to A0 around z0 to the lowest ordered
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FIG. 10. (a) Tunneling current (log scale) vs tip-surface separation, after Eq. (A1), with λ = 1 Å and I0 = 40 nA. The trace of the tip
oscillation has been indicated for A0 = 40 and 400 pm. (b) Trace of the tip oscillation at f0 = 32768 Hz vs time for A0 = 40 pm (continuous
curve) and A0 = 400 pm (dotted curve). The A0 = 40 pm curve has been arbitrarily shifted vertically. For both amplitudes, the tunneling
current Ĩt (t) reported in (c) and (d) is calculated for a common lower turning point s = z0 − A0 = 4 Å. (c) Tunneling current (black curve)
vs time for A0 = 400 pm. The blue and green curves depict the corresponding static (n = 0) and fundamental components (n = 1) as derived
from the FFT spectrum shown in (e), respectively. (d) Same as (c) for A0 = 40 pm. (e) FFT spectrum (modulus, log scale) of the tunneling
current shown in (c) (bilateral representation, phase components not shown). (f) FFT spectrum of the tunneling current shown in (d).

nonzero term:

d�f

f0

dA0
= − 1

2kA0

{∫ 2π

0

∂Fts

∂z

∣∣∣∣
z0+A0 cos(x)

cos2(x)dx

− 1

A0

∫ 2π

0
Fts(z0 + A0 cos(x)) cos(x)dx

}
. (A5)

We expand the integrands as:

∂Fts

∂z

∣∣∣∣
z0+A0 cos(x)

= ∂Fts

∂z

∣∣∣∣
z0

+ ∂2Fts

∂z2

∣∣∣∣
z0

A0 cos(x)

+ 1

2

∂3Fts

∂z3

∣∣∣∣
z0

A2
0 cos2(x) + o

(
A3

0 cos3(x)
)

(A6)

FIG. 11. Force [Eq. (A9), left scale] and d�f/dA0 [Eq. (A8),
right scale] vs tip-surface separation (log scale). One has reported
the value of d�f/dA0 for A0 = 40 pm (blue dotted curve). We get
d�f/dA0 � 0.25 Hz/pm at z � 3.5 Å and a corresponding force
� −2 nN.
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and:

Fts(z0 + A0 cos(x)) = Fts(z0) + ∂Fts

∂z

∣∣∣∣
z0

A0 cos(x)

+ 1

2

∂2Fts

∂z2

∣∣∣∣
z0

A2
0 cos2(x)

+ 1

6

∂3Fts

∂z3

∣∣∣∣
z0

A3
0 cos3(x)+o

(
A4

0 cos4(x)
)
.

(A7)

The latter developments are inserted into Eq. (A5) and we
note that

∫ 2π

0 cosn(x)dx = 0 when n is odd. Therefore, in the
limit A0 � z0, we ultimately get:

d�f

dA0
= −A0f0

8k

∂3Fts

∂z3

∣∣∣∣
z0

. (A8)

The former equation has been plotted in Fig. 11 for
A0 = 40 pm. The other parameters are f0 = 32768 Hz and

k = 1800 N/m. The tip-surface interaction force derives from
a long-range Hamaker potential and a short-range Morse
potential of kind:

Fts(z) = −∂Vts(z)

∂z

= − ∂

∂z

{
−HR

6z
− U0

[
2e−(z−rc)/λ − e−2(z−rc)/λ

]}
,

(A9)

where R stands for the tip radius. We chose R = 2 nm. The
other parameters have been chosen for a silicon-silicon in-
teraction [48], namely: H = 1.86510−19 J, U0 = 3.64110−19

J, λ = 1.2 Å, and rc = 2.357 Å. For A0 = 40 pm, we get
d�f/dA0 � 0.25 Hz/pm at z � 3.5 Å and a corresponding
force � −2 nN. Hence, for dA0 = 1 pm, d�f � 0.25 Hz.
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[7] M. Ternes, C. González, C. P. Lutz, P. Hapala, F. J. Giessibl,

P. Jelı́nek, and A. J. Heinrich, Phys. Rev. Lett. 106, 016802
(2011).

[8] L. Gross, F. Mohn, N. Moll, B. Schuler, A. Criado, E. Guitián,
D. Peña, A. Gourdon, and G. Meyer, Science 337, 1326 (2012).

[9] F. Mohn, L. Gross, N. Moll, and G. Meyer, Nat. Nanotechnology
7(4), 227 (2012).

[10] R. Pawlak, S. Kawai, S. Fremy, T. Glatzel, and E. Meyer, J.
Phys.: Condens. Matter 24, 084005 (2012).

[11] D. G. de Oteyza, P. Gorman, Y.-C. Chen, S. Wickenburg, A.
Riss, D. J. Mowbray, G. Etkin, Z. Pedramrazi, H.-Z. Tsai, A.
Rubio, M. F. Crommie, and F. R. Fischer, Science 340, 1434
(2013).

[12] R. Pawlak, T. Glatzel, V. Pichot, L. Schmidlin, S. Kawai, S.
Fremy, D. Spitzer, and E. Meyer, Nano Lett. 13, 5803 (2013).

[13] F. Pielmeier and F. J. Giessibl, Phys. Rev. Lett. 110, 266101
(2013).

[14] B. Schuler, W. Liu, A. Tkatchenko, N. Moll, G. Meyer, A.
Mistry, D. Fox, and L. Gross, Phys. Rev. Lett. 111, 106103
(2013).

[15] J. van der Lit, M. P. Boneschanscher, D. Vanmaekelbergh, M.
Ijäs, A. Uppstu, M. Ervasti, A. Harju, P. Liljeroth, and I. Swart,
Nat. Commun. 4, 2023 (2013).

[16] J. Zhang, P. Chen, B. Yuan, W. Ji, Z. Cheng, and X. Qiu, Science
342, 611 (2013).

[17] A. M. Sweetman, S. P. Jarvis, H. Sang, I. Lekkas, P. Rahe,
Yu Wang, J. Wang, N. R. Champness, L. Kantorovich, and P.
Moriarty, Nat. Commun. 5, 3931 (2014).

[18] M. Schneiderbauer, M. Emmrich, A. Weymouth, and F. J.
Giessibl, Phys. Rev. Lett. 112, 166102 (2014).

[19] B. Schuler, S.-X. Liu, Y. Geng, S. Decurtins, G. Meyer, and L.
Gross, Nano Lett. 14, 3342 (2014).

[20] F. Huber, S. Matencio, A. J. Weymouth, C. Ocal, E. Barrena,
and F. J. Giessibl, Phys. Rev. Lett. 115, 066101 (2015).

[21] C. Wagner, M. F. B. Green, P. Leinen, T. Deilmann, P. Krüger,
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