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Nonlinear thermoelectric efficiency of superlattice-structured nanowires
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We theoretically investigate nonlinear ballistic thermoelectric transport in a superlattice-structured nanowire.
By a special choice of nonuniform widths of the superlattice barriers—analogous to antireflection coating in
optical systems—it is possible to achieve a transmission which comes close to a square profile as a function
of energy. We calculate the low-temperature output power and power-conversion efficiency of a thermoelectric
generator based on such a structure and show that the efficiency remains high also when operating at a significant
power. To provide guidelines for experiments, we study how the results depend on the nanowire radius, the
number of barriers, and on random imperfections in barrier width and separation. Our results indicate that high
efficiencies can indeed be achieved with today’s capabilities in epitaxial nanowire growth.
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I. INTRODUCTION

In a thermoelectric material, an applied heat gradient gives
rise to an electric current or voltage and, conversely, an applied
electric current gives rise to a temperature difference. There-
fore, thermoelectric devices can be used as power generators,
converting heat into electric power, or as refrigerators, using
electric power to accomplish cooling [1,2]. However, the
efficiency of today’s thermoelectric devices is much lower
than that of the alternatives (mostly using the compression
and expansion of gases) and their use is therefore limited to a
number of niche applications where advantages such as small
size, no moving mechanical parts, reliability, and capability
to generate power also at small heat gradients give them the
upper hand. Many different ways to enhance the efficiency of
thermoelectric devices have been proposed, the most relevant
for the work we present here being nanoscaling, i.e., the idea to
reduce the dimensions of devices or introduce structuring on
very small length scales, which was first investigated by Hicks
and Dresselhaus [3,4] and has now seen some experimental
success; see, e.g., Refs. [5–7].

A question of more interest for fundamental physics is
how good you can possibly make a thermoelectric device.
Focusing on a power generator for definiteness, the laws of
thermodynamics sets a fundamental limit on the efficiency
of any device extracting work by using the temperature
difference between a hot bath (temperature Th) and a cold bath
(temperature Tc), which can never be higher than the Carnot
efficiency, ηC = 1 − Tc/Th. It was shown in Refs. [8,9] that
a thermoelectric device can indeed, in theory, operate at the
Carnot efficiency. This is only possible for a material where
electrons can only be transported at one particular energy,
meaning that the transmission function (for ballistic transport)
or transport distribution function (for diffusive transport) has
to be proportional to the delta function. It has later been noted
that quantum dots [10] or molecules [11,12] weakly coupled
to leads would possess precisely such electronic transport
properties due to the discrete orbitals.

However, it has later been noted that discrete orbital
states are not ideal when trying to operate a thermoelectric
device at large output power, because this requires a large
tunnel coupling to the leads which broadens the orbitals and

spoils the delta-function like transmission [13,14]. Recently,
Refs. [15,16] addressed, and solved, the problem of finding
the transmission function which maximizes the efficiency at
a given desired output power, showing that it should have
a square shape (i.e., letting all electrons through within a
finite energy window and blocking all transport outside this
window).

In this work, we theoretically investigate a superlattice-
structured semiconductor nanowire (NW) in the regime of
ballistic transport, and show that this is a possible real-
ization of a system with a nearly perfectly square-shaped
transmission function. The electron contribution to both the
charge current and heat current is calculated taking the
full voltage dependence and nonequilibrium condition into
account, but neglecting the phonon contribution to the heat
current (which would simply be an additive loss-mechanism),
inelastic scattering, and electron-electron interactions. In close
analogy with antireflection coating used in optical systems, a
special choice of nonuniform barrier widths makes it possible
to achieve energy windows with almost perfect transmission or
reflections of electrons [17], even with a rather small number of
barriers. The electronic power-conversion efficiency can then
come rather close to the Carnot efficiency, and the efficiency
remains large also when operating at large output powers. To
investigate the demands our proposal sets on epitaxial NW
growth, we investigate how the results depend on the number
of barriers, showing that a rather small number is sufficient, as
well as the sensitivity to random imperfections in the barrier
width and separation. We here use parameters valid for InAs
NWs, where barriers can be formed by controllable growth of
InP segments [18] or of segments of wurtzite structure in an
otherwise zinc blende NW [19–22].

Previous studies have investigated thermoelectric effects
in superlattice-structured NWs in the linear response regime,
see, e.g., Refs. [23–26], but, to the best of our knowledge,
there have been no systematic attempts to design a square
transmission function, or to investigate the nonlinear regime.

The paper is organized as follows. Section II introduces
the NW model and explains the simple theory for ballistic
thermoelectric transport used throughout this work. Section III
contains the main results. In Sec. III A we discuss the
transmission function and show how to design the barriers
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FIG. 1. (a) Sketch of setup with a superlattice-structured NW
placed in the z direction and connected to a hot and a cold lead.
(b) Energy diagram corresponding to the setup in (a). (c) Energy
diagram where the NW is represented by its transmission function
T (E,V = const). (d) Sketch showing how the thermoelectrically
generated power can be used in an external circuit (here simply
represented by a resistor), which generates the voltage eV = μc − μh

across the thermoelectric element in (b) and (c).

to achieve a good square shape even with a rather small
number of barriers. Section III B shows the resulting nonlinear
power and efficiency of the device operated as a thermoelectric
power generator. For simplicity, Secs. III A and III B focus
on the ideal case of a single transport channel and perfectly
uniform superlattice parameters; Sec. III C then collects the
discussions of deviations from the ideal situation. Finally,
Sec. IV concludes and summarizes our findings.

II. NANOWIRE MODEL AND THERMOELECTRIC
TRANSPORT

Figure 1(a) shows a sketch of the considered device with
a superlattice-structured NW attached to a hot and a cold
lead, where the barriers are indicated by black NW segments.
Figure 1(b) is a mixed real space and energy space sketch
of the structure in (a), where the hot and cold leads are
represented by Fermi seas of electrons with temperatures Th

and Tc, and electrochemical potentials μh and μc, respectively
(the thermally broadened electron distributions are indicated
both by the color grandient and by a curved line representing
the value of the Fermi function). The conductance band edge
of the NW, EC , is also shown, which is increased in energy
by an amount δEC at the barriers, which have thickness w and
separation d.

Our treatment is based on ballistic transport, i.e., assuming
coherent evolution along the superlattice neglecting dephasing
from electron-electron and electron-phonon scattering. This
is realistic at cryogenic temperature for superlattices up to
10 barriers as demonstrated in Ref. [27]. We note that, in
this regime, also the contribution from phonon drag [28,29]

vanishes. The electric current is then given by

I = 2e

h

∫
dE T (E,V )

[
f

(
E − μh

kBTh

)
− f

(
E − μc

kBTc

)]
, (1)

where we for simplicity have focused on the strictly one-
dimensional (1D) case of a single transport channel [see
Eqs. (7) and (9) for the expressions for multiple 1D channels
and 3D devices, respectively]. In Eq. (1), −e is the electron
charge, h is Planck’s constant, V = (μc − μh)/e is the bias
voltage, kB is Boltzmann’s constant, f (x) = 1/(exp(x) + 1) is
the Fermi function, and T (E,V ) is the transmission function
(which depends explicitly on bias voltage).

The thermoelectric effect in a ballistic conductor is most
easily understood by considering first a temperature difference
between the two leads, Th > Tc, while keeping the electro-
chemical potentials equal, μh = μc = μ. If the transmission
function close to μ is energy independent the imbalance in
state occupations in the leads will give rise to a current of
high-energy electrons with E > μ flowing from the hot to the
cold lead, and an equally large current of low-energy electrons
with E < μ flowing in the opposite direction. Therefore, there
will be a net heat current Q > 0 flowing from hot to cold,
but no net electric current, I = 0. An electric current results
if the transmission function is asymmetric around E = μ,
for example letting only the high-energy electrons through
as in Fig. 1(c). Electric power, P = IV , now results if the
electric current is driven “up stream,” against the voltage. In a
thermoelectric power generator, the voltage is generated by the
external electric circuit where the current does electric work
(or charges a battery), represented in Fig. 1(d) by a resistor.
Here we will for simplicity instead consider V to be externally
controllable. The efficiency of the thermoelectric generator is
now given by the generated electric power divided by the heat
which is lost from the hot lead

η = P

Qh

. (2)

We will neglect all other contributions to Qh except the
heat carried by the electrons. It is important to realize that
even though we neglect inelastic scattering of the electrons
traversing the device between the hot and cold leads, there is
no conservation of heat current, Qh �= −Qc. Instead, the first
law of thermodynamics gives P = Qh + Qc (with Qc < 0)
and Eq. (2) can equivalently be written as η = 1 − |Qc|/Qh.

The 1D expression for the electron contribution to the heat
current flowing out of lead h is

Qh = 2

h

∫
dE T (E,V )(E − μh)

×
[
f

(
E − μh

kBTh

)
− f

(
E − μc

kBTc

)]
, (3)

i.e., the same as Eq. (1) but replacing the electric charge of the
electrons with the heat E − μh they carry [see Eqs. (8) and (10)
for the corresponding expressions for multiple 1D channels
and 3D devices, respectively]. We can now understand the
optimal shape of the transmission function. To maximize P ,
we should allow electrons to travel only in one direction, for
example from hot to cold, which requires a strong energy
asymmetry in the transmission function. To minimize Qh, we
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should, on the other hand, only let electrons through close
to μh. Therefore, the maximal η is obtained when T (E,V )
is maximally peaked in E, i.e., proportional to δ(E) [8,9].
However, a finite number of transport channels gives rise to
a peak of finite height (rather than a true delta function) and
I , and therefore P , approaches zero as this peak becomes
increasingly narrow. It was shown in Refs. [15,16] that the
optimal η at a given P is instead obtained when T (E,V ) at
a fixed V has a square shape, allowing all electrons to be
transmitted within an energy range determined by the desired
efficiency and blocking all electrons outside this energy range.

A sharp onset in the transmission function can be achieved
by using doping or electrostatic gating to position the lowest
1D subband of a NW close to μh,c (this idea was originally
suggested by Hicks and Dresselhaus [4], although they con-
sidered diffusive rather than ballistic transport). Experimental
realization of this proposal has been difficult, e.g., because
disorder introduces scattering which ruins the sharp onset
of the transmission as the lowest subband falls below μh,c

(interestingly though, the resulting rapid fluctuations in the
transmission close to pinch-off was recently shown to in some
cases give rise to an increased P compared with the bulk
material [7]). In the superlattice structure we consider here, we
can allow μh,c to lie well within the lowest subband, because
the quantum mechanical reflection from the barriers block
transport except for within narrow energy bands.

We use a continuum model and want to calculate the
current due to plane waves traveling in the z direction, i.e.,
we consider wave functions of the form �(r) = φn(x,y)ψ(z),
where φn(x,y) is the radial part and

ψ(z) = Aeikzz + B e−ikzz, (4)

where kz = √
2m∗

z (E − EC − En)/�, with m∗
z the effective

mass in the z direction and En the energy of subband n

(measured relative to EC). By matching the wave functions at
points where the potential changes, we find the T-matrix T 12

which relates the coefficients of the rightgoing and leftgoing
waves to the left of the potential change (A1 and B1) to those
to the right of the potential change (A2 and B2) [30](

A1

B1

)
= T 12

(
A2

B2

)
. (5)

The T-matrix for a more complicated structure involving N

points where the potential changes is simply found by multi-
plying the individual T-matrices, T 1N = T 12T 23 · · · T (N−1)N

and the total transmission amplitude is found from the
matrix elements, t = (T 1N

11 T 1N
22 − T 1N

12 T 1N
21 )/T 1N

22 . Finally, the
transmission function is given by T (E,V ) = (kz,N/kz,1)|t |2
(assuming equal effective mass in regions 1 and N ).

The voltage dependence in T (E,V ) originates from the
variation in the potential profile along the wire when V > 0.
For simplicity, we assume that the potential changes only in
the barriers and remains constant in between, such that the
total potential drop over the entire structure is equal to eV

(when the barriers have varying width we assume that the
voltage drop over each barrier is proportional to its width). In
addition, we neglect the small slope at the top of the barriers
and assume them to remain square shaped. A more rigorous
approach would be to self-consistently solve for the potential
profile and charge density along the wire, but we do not expect

significant deviations from our simpler method because we
focus on small voltages and chemical potentials below the
transmission band, and therefore small charge densities.

III. RESULTS

To make the results as easy as possible to understand, we
focus in Secs. III A and III B on a fully 1D NW, meaning
that all subbands except the lowest lies far above μh and μc,
and we assume a perfect structure (equal height, width, and
spacings of all barriers). Deviations from these conditions will
be investigated in Sec. III C.

Unless otherwise is stated, we use Tc = 4 K, Th = 10 K,
and m∗/m0 = 0.022, where m0 is the free electron mass and
m∗ is the effective mass appropriate for the conduction band
of InAs. We also assume δEC = 100 meV, which is close to
the value extracted from recent experiments [22] for the barrier
height associated with wurtzite segments in a zinc blende InAs
NW. Furthermore, we use w = 15 nm, d = 10 nm, and, unless
otherwise stated, seven barriers. To obtain a square-shaped
transmission with a small number of barriers we follow
Ref. [17] and let the two outermost barriers be half the width
of the others, analogous to antireflection coating in optics.

A. Optimizing the transmission function

Figure 2(a) shows T (E) = T (E,0) over a large range of
energies. Below the barrier height transmission bands appear
related to the minibands in an infinite superlattice [there is
only one such band with the parameters used in Fig. 2(a)].
The widths of the transmission bands are determined by the
tunnel amplitude through the barriers (determined primarily
by w and by E relative to δEC) and their spacings depend
primarily on d. Figures 2(b), 2(c), and 2(d) show a zoom
of the lowest transmission band in Fig. 2(a) for four, seven,
and 10 barriers, respectively, and Fig. 2(e) compares with the
case without antireflection coating which gives rise to a series
of discrete transmission peaks ill-suited for a thermoelectric
device operating at a high power. With antireflection coating,
adding more barriers makes the edges on either side of
the energy bands steeper. Sharpening the lower edge of the
transmission band prevents transport in the wrong direction
as a response to a temperature difference and is crucial for
high thermoelectric efficiency, but rather little is gained from
adding more than seven barriers.

An alternative path towards achieving a rectangular trans-
mission function, the use of superlattices with a Gaussian
distribution of thicknesses or heights has been suggested [31].
Here we consider such a superlattice with 25 barriers, where
the width of barrier i is w exp{−[(i − 13)/6]2}. The corre-
sponding transmission function is shown in Fig. 2(f) and ap-
pears promising as it does not display any remaining of the iso-
lated peaks. However, the onset is not as steep as for the case of
the superlattice with antireflection coating in Figs. 2(b)–2(d).
Therefore, we found no substantial improvement by using
Gaussian superlattices, although we also tested other types
of variations, such as distance and barrier height. In addition,
the large number of barriers needed in this case makes the
transmission function very sensitive to random variations in
the superlattice parameters.
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KARBASCHI, LOVÉN, COURTEAUT, WACKER, AND LEIJNSE PHYSICAL REVIEW B 94, 115414 (2016)

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

40 45 50 55
0.0

0.2

0.4

0.6

0.8

1.0

40 45 50 55
0.0

0.2

0.4

0.6

0.8

1.0

40 45 50 55
0.0

0.2

0.4

0.6

0.8

1.0

40 45 50 55
0.0

0.2

0.4

0.6

0.8

1.0

40 45 50 55
0.0

0.2

0.4

0.6

0.8

1.0
(f)(e)

(d)(c)

(b)

T
(E
)

(a)

T
(E
)

T
(E
)

E [meV] E [meV]

FIG. 2. (a) T (E) = T (E,0) plotted over a wide range of energies. (b), (c), and (d) T (E) close to the lowest transmission band, comparing
four, seven, and 10 barriers, respectively. (e) Same as (c) with seven barriers, but without antireflection coating. (f) T (E) of 25 barriers where
the width of the middle barrier is 15 nm and the widths of other barriers follows a Gaussian function (see main text).

B. Power and efficiency of a power generator

Figures 3(a) and 3(b) show the output power and efficiency
using the transmission function shown in Fig. 2(c), plotted
as functions of V and the average lead chemical potential
μ = (μh + μc)/2. We focus on μ at or below the lowest
transmission band, in which case thermoelectric transport
is electronlike; a similar result is found for μ at or above
this transmission band, but then corresponding to holelike
thermoelectric transport. P and η are here set to zero when
the combination of μ and V causes the current to flow from
positive to negative biased leads and instead dissipate power.
The maximum η which can be achieved by appropriately
tuning V increases as μ falls below the lowest transmission
band and can come arbitrarily close to ηC = 60%. However,
from Fig. 3(a) we see that the corresponding output power
becomes very small in this region (Carnot efficiency can
only be reached for reversible operation at vanishing output
power [9,32]). A more suitable performance metric than the
maximum efficiency is the efficiency at maximum power,
ηmaxP , which in Fig. 3(a) is ηmaxP = 22.9%, while the
maximum output power is Pmax = 4.95 pW.

For comparison we also calculate the efficiency and output
power of a quantum dot with a single orbital at energy Ep

described by the Lorentzian transmission function

TQD(E) = (�/2)2

(E − Ep)2 + (�/2)2
, (6)

independent of V . We adjust the width � to obtain the same
ηmaxP as for the superlattice-structured NW in Fig. 3(b) and

show the output power obtained with this value for � in
Fig. 3(c). Although a Lorentzian transmission function is ideal
to maximize η and ηmaxP for small �, in the large P regime of
large �, it is seen to give almost a factor 3 lower Pmax than the
superlattice-structured NW. It is not at all possible to achieve a
Pmax comparable with Fig. 3(a) with a Lorentzian transmission
function, no matter how large we make �.

The performance of thermoelectric devices is often charac-
terized by the dimensionless thermoelectric figure of merit,
ZT = GS2T/κ , where the conductance G, the Seebeck
coefficient S, and the heat conductance κ are given by linear-
response versions of expressions like Eqs. (1) and (3) [33–35]
(leading order expansion in V and 	T = Th − Tc). When
ZT → ∞, η → ηC , but this only holds in linear response
and ZT is not a particularly useful quantity for our study of
the nonlinear regime. Nonetheless, for comparison we show
in Fig. 3(d) ZT (μ) plotted over a larger range of μ compared
with Figs. 3(a) and 3(b). For μ below the lowest transmission
band ZT grows to be very large, but as mentioned above this
corresponds to the rather uninteresting regime of very small
output power. When μ is inside the transmission band, ZT

becomes small because the transmission is almost symmetric
around μ. For μ above the transmission band, thermoelectric
transport becomes holelike and ZT grows again.

C. Nonideal effects: Disorder and multiple subbands

In this section we investigate deviations from the assump-
tion of a strictly 1D NW with perfect barriers. First we
introduce random variations into the widths and separations
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FIG. 3. Power P (a) and efficiency η (b) plotted on a color scale
as a function of bias V and average chemical potential μ of the
leads for the 7-barrier superlattice with antireflection coating. The
white stars mark the point of maximum output power. Note that
negative values appearing for large V are not displayed in our scale.
(c) η(V,μ) for a double barrier structure (single quantum dot) with
barrier widths adjusted to give the same efficiency at maximum power
as the superlattice-structured NW in (b). (d) Figure of merit, ZT, as a
function of μ.

of the barriers. Random variations in barrier heights are likely
small when determined by the crystal structure, but would
have qualitatively the same effects as variations in widths and
separations. We let the barrier widths and separations vary
around their mean values according to a normal distribution
with standard deviation σ , and calculate the average transmis-
sion function based on 5000 such randomly generated NWs
[Figs. 4(a) and 4(b)]. Both types of variations reduce the
height of the transmission function as well as the sharpness

FIG. 4. (a) T (E) with increasing disorder in w. (b) T (E) with
increasing disorder in d . (c),(d) ηmaxP as a function of disorder
strength in w and d , respectively.

of the transmission band edges. This average transmission
function is then used to calculate ηmaxP [Figs. 4(c) and 4(d)],
corresponding to the efficiency at maximum power which
could be achieved in a thermoelectric device where those NWs
were coupled in parallel.

For the parameters used here, ηmaxP remains large for
standard deviations up to around 10% of the average barrier
width (or around 1.5 nm); see Figs. 4(a) and 4(c). ηmaxP is more
sensitive to variations in the barrier separation, see Figs. 4(b)
and 4(d), decreasing substantially below standard deviations of
around 2% of the average barrier separation, meaning around
0.2 nm, so here monolayer precision is desirable.

We now take into account the finite width of the NW by
including more than one 1D subband in the calculation. Here
we make the simplest assumption that the NW has exactly the
same cylindrical cross section inside and outside the barriers
and that the interfaces to the barriers are perfect, in which
case there is no scattering between different 1D subbands and
the electric and heat currents are found from straightforward
generalizations of Eqs. (1) and (3)

I = 2e

h

∑
n

∫
dE Tn(E,V )

[
f

(
E − μh

kBTh

)
− f

(
E − μc

kBTc

)]
, (7)

Qh = 2

h

∑
n

∫
dE Tn(E,V )(E − μh)

[
f

(
E − μh

kBTh

)
− f

(
E − μc

kBTc

)]
, (8)

where the transmission for the different subbands, Tn(E,V ),
differ from each other only by the energy of the bottom of
the different subbands, Tn(E,V ) = T0(E − (En − E0)), where
En are the bottoms of the subbands, which are found by

solving the 2D Schrödinger equation in the circular NW cross
section using a single band effective mass approximation. For
comparison we also calculate P and η for a superlattice-
structured 3D material, equivalent to a NW with R → ∞.
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FIG. 5. (a) η(V,μ) plotted on a color scale for a multisubband NW with R = 150 nm. (b) η(V,μ) plotted on a color scale for a bulk
superlattice (equivalent to a NW with R → ∞). (c) ηmaxP as a function of average temperature for a single-band NW (R → 0), a multisubband
NW (R = 50 nm), and bulk (R → ∞).

In 3D, we need to integrate also over the transverse momenta
when calculating the electric current density and heat current,
resulting in [30]

J 3D = e

h

∫
dE⊥ T (E⊥,V )[n2D(μh − E⊥,Tc)

− n2D(μc − E⊥,Th)], (9)

Q3D
r = m

π2�3

∫
dE⊥ T (E⊥,V )

∫
dE‖ (E⊥ + E‖ − μh)

×
[
f

(
E⊥ + E‖ − μh

kBTh

)
− f

(
E⊥ + E‖ − μc

kBTc

)]
,

(10)

where E⊥ is the kinetic energy due to electron motion in
the transport direction and E‖ is the potential energy and
kinetic energy in other directions, and n2D(ε,T ) = mkBT

π�2 ln(1 +
eε/kBT ).

To see clear effects of the finite NW width we show in
Fig. 5(a) η for a rather thick NW with R = 150 nm, for which
ηmaxP = 12.01%, i.e., almost reduced by a factor 2 compared
with the single-subband case in Fig. 3(b). Figure 5(b) shows η

for a 3D superlattice structure, which is even further reduced,
with ηmaxP = 4.07%. In Fig. 5(c) we plot the calculated
ηmaxP as a function of average lead temperature (keeping
Th = Tc + 6 K constant), comparing a superlattice-structured
single-subband NW, a multisubband NW with R = 50 nm, and
a 3D structure. We see that a NW with R = 50 nm performs
approximately as well as a perfect 1D system for T � 30 K,
then loses in performance for higher T as more subbands
start to conduct, and finally approaches the performance of a
3D system for T � 150 K. At Th = 10 K and Tc = 4 K, we

find that a multisubband NW retains more or less the high
performance of a perfect 1D NW for R � 70 nm.

IV. CONCLUSIONS

In conclusion, we have investigated ballistic superlattice-
structured NWs operated as thermoelectric generators, and
have calculated the output power, efficiency, and efficiency
at maximum power in the nonlinear regime with large
temperature differences between the hot and cold leads. Our
results show that at low temperatures [4 K (10 K) for the cold
(hot) lead was considered here], excellent performance can be
achieved under conditions which should be within reach of
present-day capabilities for epitaxial NW growth: rather few
barriers (�4), relatively thick NWs (R � 70 nm), and with
some tolerance for random variations in the barrier width and
separation. The performance is much better than for a 3D
superlattice-structured material, and when operating at high
output power, the efficiency is much larger than for a quantum
dot (double-barrier structure). For simplicity, we have focused
on thermoelectric power generation, but the same criteria of
efficient energy filtering of electrons will give rise to a high effi-
ciency and output power also for a thermoelectric refrigerator.
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