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Screening of a charged impurity in graphene in a magnetic field
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The electron states in the field of a charged impurity in graphene in a magnetic field are studied numerically.
It is shown that a charged impurity removes the degeneracy of Landau levels converting them into bandlike
structures. As the charge of impurity grows, the repulsion of sublevels of different Landau levels with the same
value of orbital momentum takes place leading to the redistribution of the wave function profiles of these sublevels
near the impurity. By studying the polarization effects, it is shown in agreement with the recent experiments that
the effective charge of impurity can be very effectively tuned by chemical potential. If the chemical potential is
situated inside a Landau level, then the charge of impurity is strongly diminished. In addition, the polarization
function in this case has a peak at zero momentum, which leads to the sign-changing oscillations of the screened
potential as a function of distance. If the chemical potential lies between the Landau levels, then the screened
potential does not change sign, the screening is minimal, and the charged impurity can strongly affect the electron
spectrum.
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I. INTRODUCTION

After the experimental discovery of graphene [1] whose
quasiparticles are described by a relativistic-like (2+1)-
dimensional Dirac equation with the velocity of light c re-
placed by the Fermi velocity vF ≈ c/300, it was soon realized
that this material is very promising for the experimental
observation of the atomic collapse [2–4] in the Coulomb field
of a point charge Ze. Indeed, the large value of the coupling
constant αg = e2/(�vF ) ≈ 2.2 leads to a dramatically smaller
value of the critical charge Zc ≈ 1/2 [5–7] compared to that
in quantum electrodynamics where Zc � 170 [3,4]. Since
nuclei with such large charges do not exist in nature, this
phenomenon was never observed in quantum electrodynamics.
The supercritical Coulomb center instability is also closely
related to the excitonic instability in graphene in the strong-
coupling regime αg > αc ∼ 1 (see Refs. [8–10]) and the gap
opening, which may transform graphene into an insulator
[11–14]. It is well known that the charged impurities are the
dominant source of scatterers in graphene affecting its major
electron transport features (see, for example, Ref. [15] and
references therein).

Recently, by creating artificial nuclei in a certain region of
graphene fabricated through the deposition of charged calcium
dimers on graphene with the tip of a scanning tunneling
microscope, the supercritical regime was reached and the
resonances corresponding to the atomic collapse states were
observed [16,17]. The supercritical instability for Ca dimers
on graphene was theoretically studied in Ref. [18] by making
use of the density functional theory and an improved Huckel
model. In a recent publication, Mao et al. proposed a more
effective way to deposit a charge in graphene: they showed
that a single-atom vacancy can host a local charge that can
be gradually changed by applying the voltage pulses with
the tip of a scanning tunneling microscope [19]. Similarly
to the case of charged adatoms on graphene, a transition into
a supercritical regime was observed with the formation of
quasibound states at the vacancy site.

In the continuum model, three of us extended [20] the study
of the supercritical instability of a single Coulomb center in
gapped graphene to the case of the simplest cluster of two
equally charged impurities when the charges of impurities are
subcritical, whereas their total charge exceeds a critical one.
We determined the critical distance between the impurities
separating the supercritical and subcritical regimes as a
function of charges of impurities and a gap.

An interesting problem of two oppositely charged impuri-
ties was considered in Refs. [21,22]. Obviously, this dipole
problem is particle-hole symmetric and electron states are
symmetric with respect to the change of the sign of energy,
E → −E. Naively, one would think that the supercritical
regime in this problem sets in when the lowest-energy electron
bound level intersects the highest energy hole bound state at
E = 0. However, it was found [21] that the levels first approach
each other as the dipole moment increases, and then diverge. In
fact, this behavior is typical for an avoided crossing [23] of the
states with the same symmetry. The issue of supercriticality
was revisited by three of us in Ref. [24]. We showed that
a new type of supercritical behavior is realized in the dipole
problem, which is connected with the change of localization of
the highest-energy occupied state from the negatively charged
impurity to the positively charged one. Such a migration of
the wave function corresponds to an electron and a hole
spontaneously created from the vacuum in bound states and
screening the positively and negatively charged impurities of
the supercritical electric dipole, respectively.

Magnetic fields and their effects are ubiquitous in physics.
Electron states in a magnetic field are described by the
infinitely degenerate Landau levels. Since all electron states
of a given Landau level have the same energy, magnetic field
completely quenches the kinetic energy of these electrons
making such systems ideally suitable for the realization of
interaction-driven phases of matter. It is worth recalling here
just two notable examples such as the fractional quantum Hall
effect [25] and magnetic catalysis [26]. In view of the above,
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it is interesting how magnetic field affects the atomic collapse
in graphene [27–29]. The crucial ingredient is the existence of
an infinitely degenerate zero-energy Landau level for gapless
Dirac fermions in a magnetic field. In this case, any small
attractive potential leads to the appearance of negative-energy
bound states, in contrast to the case without magnetic field
when the impurity charge must exceed a certain critical value
for the appearance of quasibound states. Let us mention also
that this result presents a quantum-mechanical single-particle
counterpart of the magnetic catalysis in graphene. Recently,
electron states in the field of several charged impurities in
graphene in a magnetic field were considered in Ref. [30].

Experimentally, electron states in the field of a Coulomb
impurity in a magnetic field were studied in Refs. [17,19],
where it was shown that the strength of a charged impurity
can be tuned by controlling the occupation of Landau-level
states with a gate voltage. At low Landau level occupation, the
screening is so effective that the impurity becomes practically
invisible, whereas at full occupancy the screening is weak
and the impurity attains its maximum strength. In this regime,
the first experimental observation of Landau-level splitting
into discrete states due to lifting the orbital degeneracy was
reported. This experiment provides a motivation for the present
study where, in contrast to the earlier theoretical treatments
[27–32], the main accent is made on the role of polarization
effects.

The paper is organized as follows. In Sec. II, we consider
the electron levels in the Coulomb field of a charged impurity
in graphene in a magnetic field. How the screening of a charged
impurity can be tuned by chemical potential is studied in
Sec. III. The results are summarized and discussed in Sec. IV.

II. CHARGED IMPURITY IN A MAGNETIC FIELD

Let us consider the electron states in graphene with a single
charged impurity in a magnetic field. The Dirac Hamiltonian
in 2 + 1 dimensions which describes the quasiparticle states
in the vicinity of the K± points of graphene in the field
of charged impurity in a magnetic field reads (although, in
view of the magnetic catalysis [26], a nonzero gap is always
generated in graphene in a perpendicular magnetic field [11],
this gap is rather small for realistic magnetic fields; therefore,
for simplicity, we neglect it in our analysis below)

H = vF σπ + V (r), (1)

where π = −i�∇ + e
c
A, −e < 0 is the electron charge, the

vector potential A = B/2(−y, x) in the symmetric gauge de-
scribes magnetic field perpendicular to the plane of graphene,
and σ are the Pauli matrices. The Hamiltonian (1) acts on a
two-component spinor �ξs which carries the valley (ξ = ±)
and spin (s = ±) indices and we use the standard convention:
�T

+s = (ψA,ψB )K+s , whereas �T
−s = (ψB,−ψA)K−s , and A,B

refer to two sublattices of the hexagonal graphene lattice. We
regularize the Coulomb potential of an impurity by introducing
a parameter a of the order of the graphene lattice spacing.
Then the regularized interaction potential of the impurity with
charge Q = Ze is given by

V (r) = − Ze2

κ
√

r2 + a2
, (2)

where κ is the dielectric constant. Since the interaction
potential (2) does not depend on valley and spin, we will omit
the valley and spin indices ξ and s in the wave functions below.

It is convenient to introduce the magnetic length lB =√
�c/|eB| and the dimensionless quantity ζ = Ze2/(�vF )

which characterizes the strength of the bare impurity. Since
the total angular momentum is conserved, we use the polar
coordinates (r, θ ) to write

� = 1

r

(
e−i(m+1)θf (r)
−ie−imθg(r)

)
, (3)

where m is the orbital quantum number. Then the Dirac
equation takes the form

f ′ + m

r
f − r

2l2
B

f − E − V (r)

�vF

g = 0,

(4)
g′ − m + 1

r
g + r

2l2
B

g + E − V (r)

�vF

f = 0.

We solve numerically the above equations by using the
shooting method. In order to utilize this method, one should
determine the appropriate asymptote of the solution at r → 0
for |V (r)| ≈ |V (0)| = Ze2

κa
� |E|. This asymptote is different

for orbital numbers m � 0 and m < 0. For m � 0, by using
f = rm+1ϕ(r), g = rm+1χ (r), and expressing one component
in terms of the other, we find the following approximate
equation:

ϕ′′ + 2m + 1

r
ϕ′ +

(
V 2(0)

�2v2
F

− (2m + 1)

r2

)
ϕ = 0, (5)

whose regular at the origin solution is ϕ(r) ∼ r . The other
component χ (r) ∼ constant for r → 0. Therefore, the radial
functions should satisfy the boundary conditions at the origin

ϕ(0) = 0, χ (0) = 1. (6)

For m < 0, by using f = r−mϕ(r), g = r−mχ (r), and pro-
ceeding in a similar way we find that the radial functions ϕ

and χ satisfy the boundary conditions at the origin which are
swapped with respect to those in the case m � 0,

ϕ(0) = 1, χ (0) = 0. (7)

The numerical integration of Eq. (4) proceeds as follows.
We take a “shot” from r = 0 at a fixed value of energy solving
the differential equations with the initial conditions (6) or (7)
and check the behavior of the wave functions at r → ∞. The
latter may tend to +∞ for some values of energy or to −∞
for other values. A physical solution is the solution for which
the exponentially growing behavior of the absolute value is
absent. We find the corresponding value of the energy of this
solution by using the method of bisections. In our numerical
calculations, we use a = 0.05lB .

The magnetic field modifies the energy spectrum of elec-
trons in the Coulomb field of the charged impurity making
all continuum states discrete and provides an effective scale
given by the magnetic length. On the other hand, the charged
impurity removes the orbital degeneracy of Landau levels
transforming the latter into bandlike structures. In Fig. 1 we
plot in solid lines the dimensionless energies ε = ElB/�vF

of Landau levels with m = 0 and different n as functions of
impurity charge in the magnetic field B = 10 T. The blue
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FIG. 1. The dimensionless energies ε = ElB/(�vF ) of electron
levels in gapless graphene in the magnetic field B = 10 T as functions
of the impurity charge for different orbital numbers m. Here the levels
are marked n = +1, green lines; n = 0, blue lines; n = −1, red lines;
m = −1, dotted lines (only for n = +1 and n = −1); m = 0, solid
lines; m = 1, dashed lines; m = 2, dot-dashed lines.

solid curve describes the m = 0 state of the n = 0 Landau
level, and the red and green solid curves describe the m = 0
level of the lower and upper “quasicontinua”, respectively,
evolving with the charge of impurity. As the charge of impurity
increases, the blue curve comes close to the red curve. In the
absence of magnetic field, with further increase of the charge
of impurity the corresponding bound state would dive into the
lower continuum producing a resonance.

According to Fig. 1, the situation is qualitatively different in
the presence of a magnetic field as the blue curve never crosses
the red curve. Instead, typical level repulsions are realized
(the well-known avoided crossing theorem [23] forbids a level
crossing for two states with the same symmetry). It is seen
that level repulsion occurs only between the sublevels with
the same value of orbital momentum m. For example, we
clearly see the repulsion between the levels n = 1, m = −1
and n = −1, m = −1, as well as the levels n = 0, m = 0
and n = −1, m = 0. States with different quantum numbers
m simply cross each other without repulsion. The situation is
similar to that of a quantum electrodynamical system of the
finite size [4,33].

Figure 2 shows the radial distribution function W (r) =
2πr|�nm|2 for m = 0 and n = 0,−1,−2 states for the three
values of the impurity charge ζ/κ = 0.7, 1.3, and 1.9. The
second value corresponds to the states in the vicinity of the
avoided crossing, see the blue and red solid curves in Fig. 1. For
a small charge of the impurity (left panel), the electron density
is weakly affected by the impurity and the radial distribution
functions of the above mentioned states have one, two, and
three maxima, respectively. As the impurity charge increases,

all leftmost maxima in W (r) move to the impurity position
r = 0 and attain their maximal values at ζ/κ ≈ 1.3 (middle
panel). In addition, a new maximum appears on the blue solid
curve (as well as additional maxima on the other two curves),
and the radial distribution function of the n = 0 level begins
to look qualitatively like the radial distribution function of the
n = −1 level with two maxima.

Further, the middle panel implies that the peak in the radial
distribution function of the n = 0 level near the impurity is
redistributed among the m = 0 states of the n = −1,−2, . . .

Landau levels. Obviously, this is an analog of the phenomenon
of the diving into continuum for a supercritical charge in the
absence of a magnetic field. In the latter case, the lowest bound
state dives into the lower continuum producing a resonance
whose wave function can be considered as redistributed over
the lower continuum states with energies of the order of the
resonance width γ . All wave functions from this region have
an additional sharp peak near the origin. As we see, when
magnetic field is present, there is a similar redistribution of
the profiles of radial distribution functions near the impurity
(note that as the impurity charge increases, the “redistribution”
region shifts down to the lower Landau levels). According to
the right panel in Fig. 2, the blue curve representing the electron
density is now similar to the red dashed curve in the left panel
and the red dashed curve is similar to the green dot-dashed
curve in the left panel.

So far we did not take into account the screening of a
charged impurity due the polarization effects in graphene to
which we turn in the next section.

III. TUNING THE SCREENING OF CHARGED IMPURITY
WITH CHEMICAL POTENTIAL

The strength of the impurity, and consequently the splitting
of Landau levels, in the field of charged impurities can be
effectively controlled by the gate voltage as was demonstrated
in experiment in Ref. [17]. Luican-Mayer et al. attribute
the variation in the strength of the impurity potential to the
screening properties of the 2D electron system. To describe this
effect theoretically, we first consider the polarization function
without the impact of the Coulomb impurity. With the effects
of screening taken into account, the Poisson equation reads

√
−�2DV

(0)
tot (x) = −2πZe2

κ
δ(2)(x)

− 2πe2

κ

∫
d2y�(0)(x − y; μ)V (0)

tot (y), (8)

where the polarization function �(0)(x − y; μ) is calculated by
using the wave functions in the absence of impurity. Notice
the presence of the pseudodifferential operator

√−�2D in the
equation above, which is necessary to correctly describe the
Coulomb interaction in a dimensionally reduced electrody-
namic system [34].

In order to show that the effective equation for planar
charge density distribution has form (8), let us start with the
Coulomb potential in momentum space in three dimensions
Ṽ (q,qz) ∼ 1

q2+q2
z
, where q is the planar momentum and qz the

third component of momentum. To find the effective potential
for a planar distribution of charges we should integrate over qz.
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FIG. 2. The radial functions of the electron density of the m = 0 state for the Landau levels n = 0 (blue solid lines), n = −1 (red dashed
lines), and n = −2 (green dot-dashed lines) and three different values of the impurity charge: ζ/κ = 0.7 (left panel), ζ/κ = 1.3 (middle panel),
ζ/κ = 1.9 (right panel).

Then we find that the effective potential equals Ṽeff(q) ∼ 1
|q| .

Obviously, the corresponding potential in coordinate space
satisfies a two-dimensional equation (8) with zero polarization
function. Since Eq. (8) is algebraic in momentum space,

(
q + 2πe2

κ
�(0)(0,q; μ)

)
V

(0)
tot (q) = −2πZe2

κ
, (9)

the potential in coordinate space is easy to find:

V
(0)

tot (x) = −Ze2

κ

∫
d2q

2π

exp(iqr)

|q| + 2πe2

κ
�(0)(0,q; μ)

= −Ze2

κ

∫ +∞

0
dq

q J0(q|x|)
q + 2πe2

κ
�(0)(0,q; μ)

. (10)

The static polarization function at zero temperature has the
form [35]

�(0)(0,q; μ) = Nf

4πl2
B

⎧⎪⎪⎨
⎪⎪⎩

nc∑
n=0

∑
λ=±

Qλλ
nn

(
q2l2

B

2

)
δ�(μ − λMn) −

nc∑
n,n′=0

∑
λ,λ′=±

λn	=λ′n′

Qλλ′
nn′

(
q2l2

B

2

)
θ�(μ − λMn) − θ�(μ − λ′Mn′)

λMn − λ′Mn′

⎫⎪⎪⎬
⎪⎪⎭, (11)

where Mn = �vF

lB

√
2n are the Landau level energies, and we

introduced the ultraviolet cutoff nc because of the divergence
of the sum over the Landau levels, which is estimated to
be nc = 104/B[T] due to finiteness of the bandwidth. As in
experiment [17], we consider the system of two superposed
graphene layers twisted away from Bernal stacking by a
large angle. This does not affect the spectrum of single-
layer graphene but results in an additional twofold layer
degeneracy: the factor Nf = 2s2l = 4 takes into account spin
degeneracy and the presence of a second graphene layer. In
experiment, this setup ensures reducing the random potential
fluctuations due to substrate imperfections. The smeared delta
function δ�(x) = �

π
1

x2+�2 and the step function θ�(x) = 1
2 +

1
π

arctan ( x
�

) account for the finite width of Landau levels, and
the functions Qλλ′

nn′ (y) are defined as

Qλλ′
nn′ (y) = e−yy|n−n′ |

(√
(1 + λλ′δ0,n>

)n<!

n>!
L|n−n′|

n<
(y)

+λλ′(1 − δ0,n<
)

√
(n< − 1)!

(n> − 1)!
L

|n−n′|
n<−1 (y)

)2

, (12)

where n< = min(n,n′), n> = max(n,n′), and Lm
n (y) are the

generalized Laguerre polynomials. The first term in Eq. (11)
describes the contribution from the intralevel transitions while
the second term represents contributions from the interlevel
transitions. For small width of Landau levels the first term
looks like a sequence of delta functions and contributes only

when the chemical potential lies inside Landau levels. At small
wave vectors (q 
 l−1

B ) the polarization function (11) behaves
as [35]

�(0)(0,q; μ) � κ

2πe2
(qTF + dq2), (13)

where

qTF = e2Nf

κl2

nc∑
n=0

∑
λ=±

(2 − δ0n)δ�(μ − λMn) (14)

is the Thomas-Fermi wave vector which determines the
strength of the long-wavelength screening, and parameter d

is given by

d = −e2Nf

2κ

nc∑
n=0

∑
λ=±

(4n + δ0n)δ�(μ − λMn) − e2Nf l

2
√

2κ�vF

×
nc−1∑
n=0

∑
λ,λ′=±

θ�(μ − λMn+1) − θ�(μ − λ′Mn)

(λ
√

n + 1 − λ′√n)3
. (15)

Figure 3 illustrates the dependence of the static polarization
function (11) and its two leading long-wavelength terms (14)
and (15) on the chemical potential. We plot for comparison
the unscreened potential and the screened potential (10) of
the impurity in Fig. 4. Let us consider the case where the
chemical potential is situated between Landau levels. Then
the Thomas-Fermi wave vector (14) is close to zero [Figs. 3(a)
and 3(b)] and the Coulomb potential of the impurity is weakly
screened, although even in this case graphene contributes to
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FIG. 3. Dimensionless polarization function �̃ = (4π�vF lB/Nf )�(0,q; μ) as a function of the chemical potential and the wave vector (left
panel) and the two coefficients q̃TF = (2κ�vF lB/e2Nf )qTF, d̃ = (2κ�vF /e2Nf lB )d of its expansion (13) at small wave vectors (right panel).

the total dielectric function at large and intermediate momenta,
which effectively diminishes the charge of the impurity and
the screened potential. Indeed, while the screened potential
tends to its bare value at r → ∞, it is weakened for small and
intermediate distances (see the red dashed line in Fig. 4). On the
other hand, when the chemical potential lies inside any given
Landau level, the screening works much more effectively due
to large qTF (see the green dash-dotted line in Fig. 4) providing
an excellent means of controlling the effective charge of
impurity by the gate voltage. Moreover, the coefficient d in
Eq. (15) in this case is negative [see Fig. 3(c)] which means
that �(0)(0,q; μ) has a nonmonotonic momentum dependence
with a peak at q = 0. This behavior of the polarization
function leads to the oscillations of the screened potential
(green dash-dotted line in Fig. 4) with the sign change (i.e.,
the overscreening of the Coulomb potential) at intermediate
distances of the order of several magnetic lengths.

0 10 20 30 40
0.8

0.6

0.4

0.2

0

r lB

V
r
l B

v F

FIG. 4. The unscreened regularized Coulomb potential (blue
solid line) and the screened potential of the impurity as a function
of r/ lB in the cases where the chemical potential is situated between
Landau levels (red dashed line) and lies inside the zeroth Landau
level (green dash-dotted line).

Let us now consider the electron states. By numerically
solving the Dirac equation with the screened potential (10)
using the same procedure as in the previous section, we find
the electron spectrum which shows that the Landau levels
are shifted and split into sublevels with different values of
m. We perform calculations for the doubly charged impurity
Z = +2 and the dielectric constant due to silicon substrate
κ = (1 + κsub)/2 = 2.5. The energies of electron sublevels for
several first Landau levels are displayed in Fig. 5.

2 0 2 4 6 8 10

2

1

0

1

2

m

Esn,m

FIG. 5. The energies of Landau levels n = 0,±1,±2,±3 split
with m in the field of screened impurity in a magnetic field, plotted in
units of �vF /lB = 81.2 meV in the case where the chemical potential
lies between Landau levels. The bare charge of the impurity is
Z = +2, the dielectric constant of the substrate is κ = 2.5, and the
magnetic field is B = 10 T.
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FIG. 6. The integral density of states on the zeroth Landau level in graphene with the charged impurity Z = +2 (left panel). The dependence
of chemical potential on the applied gate voltage (right panel).

In general, the splitting of Landau levels with m can be
determined only numerically. However, for large m, it can be
found in perturbation theory. Unperturbed wave functions of
the n = 0 Landau level of the electron in a magnetic field are
given by

�
(0)
0m(r) = e

− r2

4l2
B

lB
√

2πm!

[
0(

r2

2l2
B

)m/2
e−imθ

]
. (16)

The lowest Landau level splitting can be estimated as follows:

δE0m = 〈0m|Vtot(r)|0m〉 =
∫

d2r �
(0)†
0m Vtot(r)�(0)

0m

=
∫ ∞

0
W (r)Vtot(r)dr, (17)

where W (r) = 2πr|�(0)
0m(r)|2 = 1

2mm!l2m+2
B

e−r2/(2l2
B )r2m+1 is the

radial distribution function. For large m, it has a high and
narrow peak at the distance r

peak
m = lB

√
2m + 1 determined

by solving the equation W ′(r) = 0. For large orbital momenta
m, the level splitting could be estimated as Vtot(r

peak
m ), which

approximates the exact value of δE0m with one percent error
for states with m � 10.

Due to the additional degeneracy gsgvgl = 8 related to
the spin, valley, and layer degrees of freedom (gs = gv =
gl = 2), the complete degeneracy of a Landau level per unit
area equals n0(B) = gsgvgl(Be/hc) ≈ 2 × 1012 cm−2 in the
magnetic field B = 10 T. Because of the finiteness of the sam-
ple sizes used in experiment [17], we also consider the
graphene sheet of a finite area taken 500 × 500 nm in our
calculations. Therefore, there are N = n0(B)S

gsgvgl
≈ 600 sublevels

with different orbital numbers m on each Landau level, so
that the maximum orbital number for nth Landau level reads
mmax = N − |n| − 1. Broadening these sublevels with the
width � = 0.05�vF /lB used in Ref. [17], we plot the integral
density of states for the zeroth Landau level

dN(E)

dE
=

mmax∑
m=0

δ�(E − δE0m) (18)

in the left panel of Fig. 6. Since the charged impurity affects
most strongly the states of Landau levels with small values
of m, we use the energies of the exact solutions of the Dirac
equation for the states with m � 6 in Eq. (18) and energies of

the rest of the states are computed according to Eq. (17), whose
inaccuracy is smaller than one percent for these states. This
panel shows that the zero Landau level is slightly displaced
below the origin; thus a large part of this level is already filled
at zero gate voltage, i.e., at zero chemical potential. Therefore,
the dependencies μ(Vg) and �(0)(0,q; μ(Vg)) have a significant
asymmetry with respect to gate voltage.

According to Refs. [1,36], the typical thickness of the
SiO2 substrate layer is t ≈ 300 nm. Then, the carrier den-
sity is related to the gate voltage as n = κVg/(te) ≈ 7 ×
1010Vg[V] cm−2, where e is the electron charge and κ is
dielectric constant due to the SiO2 substrate. Taking into
account the size of graphene sheet, the number of electrons
appearing in graphene due to the applied gate voltage
equals �N = nS ≈ 175 × Vg[V ]. On the other hand, �N =
gsgvgl

∫ μ

0
dN
dE

dE. Therefore, by integrating expression (18)
over energy, we obtain the dependence Vg(μ) = 8

175

∫ μ

0
dN
dE

dE.
We note that although in general the relationship between
the charge density n and the gate voltage Vg is not strictly
linear due to the quantum capacitance effects near the Dirac
point, the measurements done in Refs. [1,36] agree with the
linear dependence. We incorporate this relationship in our
computations. The inverse dependence is plotted in the right
panel of Fig. 6. This procedure of calculating the dependence
of μ on Vg is easily extended to higher Landau levels.

The local density of states (LDOS) is given by

ρ(r,E,μ) = gsgvgl

∑
n,m

|�nm(r)|2δ�(E − Enm(μ)), (19)

where the energies depend on the chemical potential through
a screened potential. In experiment [17], the electron spec-
trum was determined by measuring the differential tunneling
conductance dI/dVbias at the tip position as the function of
the bias voltage Vbias = (E − EF )/e where the energy E is
measured relative to the Fermi level EF (at zero or sufficiently
small temperature EF ≈ μ). Far away from the impurity, the
LDOS displays practically unbiased Landau levels because
only wave functions of the states with large m contribute at
large distances. The energies of these states are only weakly
shifted so that Enm ≈ E(0)

n = sgn(n)(�vF /lB)
√

2|n| and the
wave functions �nm(r) ≈ �(0)

nm(r) with good accuracy. In this
case one can perform the summation over the orbital number
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FIG. 7. The local density of states is plotted at four values of gate voltage along the line cuts across the impurity. The rightmost panel
shows the LDOS in the nonscreened case.

m and get

ρ(r,Vbias,μ) = gsgvgl

2πl2
B

nc∑
n=−nc

δ�

(
eVbias + μ − E(0)

n

)
. (20)

Therefore, the LDOS is similar to that when the impurity
is absent and the only effect of the latter is the chemical
potential asymmetry due to the shift of the Landau levels.
At large distance from the impurity (r � lB) the local density
of states exhibits the peaks which correspond to unperturbed
Landau levels. They appear at biases eVbias = E(0)

n − μ. This
is in agreement with the experimental data (see Fig. 3(a) in
Ref. [17]).

To account for the reaction of the impurity on the polariza-
tion function we proceed in the following way. We neglect the
influence of impurity on the electron wave functions, which
keeps the polarization function translation invariant, but take
into account the change of energy levels due to impurity.

When the impurity is absent, the Landau levels are degen-
erate in the orbital quantum number and all gsglgvN ≈ 4800
electrons have energies which depend only on the Landau level
index n. Let us consider the zeroth Landau level. The corre-
sponding contribution from all its electrons to the polarization

function is δ�0 = Nf

4πl2
B

2Q++
00 ( q2l2

B

2 ,0)δ�(μ). Since the impurity
potential splits the Landau levels into sublevels specified by
the orbital quantum number m, each sublevel with fixed m

contains only 8 electrons. Naturally, the contribution of each
sublevel must be 600 times smaller than the contribution of the
whole level, because the polarization effects are proportional
to the number of electrons which screen the external potential.
The approximation which, nevertheless, allows us to take into
account the shift and broadening of the Landau level due to
the impurity potential is to replace δ�(μ) → 1

N
dN
dE

|
E=μ

, where
the derivative dN/dE is given by Eq. (18), in the first term for
n = 0 in Eq. (11):

�(0)(0,q; μ) = Nf

4πl2
B

⎧⎪⎪⎨
⎪⎪⎩

2Q++
00

(
q2l2

B

/
2,0

)
mmax + 1

mmax∑
m=0

δ�(μ − δE0m) +
nc∑

n=1

∑
λ=±

Qλλ
nn

(
q2l2

B

/
2,0

)
δ�(μ − λMn)

−
nc∑

n,n′=0

∑
λ,λ′=±

λn	=λ′n′

Qλλ′
nn′

(
q2l2

B

/
2,0

)θ�(μ − λMn) − θ�(μ − λ′Mn′)

λMn − λ′Mn′

⎫⎪⎪⎬
⎪⎪⎭. (21)

In this way, we can incorporate the displacement and
broadening of Landau levels due to the Coulomb field of
impurity. Although similar procedures can be performed for
several first Landau levels, the largest contribution is connected
with the zeroth Landau level because we consider the case
where the chemical potential crosses this Landau level. This
replacement makes the polarization function asymmetric with
respect to the chemical potential, as could be seen from Fig. 7.

Using the procedure described above, we compute V
(0)

tot (x)
for four values of gate voltage. By numerically integrating

the Dirac equation with this potential and determining the
energies of several first Landau levels in such a potential, we
plot the local density of states in Fig. 7. For comparison with
experimental data we take the same values of gate voltage as
in Ref. [17]. It is clearly seen that the impurity is strongly
screened when the chemical potential moves within a Landau
level (gate voltages Vg = −10 V, −5 V, 0 V) with progressive
level filling when Vg increases, and screening is strongly
diminished when the chemical potential is situated between
Landau levels (Vg = +7 V). We also plot the LDOS when the
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polarization effects are switched off (the rightmost panel).
It shows that the level splitting is much more significant
comparing to the case where the polarization effects are taken
into account.

IV. SUMMARY

Motivated by a recent experimental study of the Dirac
equation for quasiparticles in the field of a charged impurity in
graphene in a magnetic field, we calculated the corresponding
electron states in the continuum model and constructed the
local density of states. In the presence of a charged impurity,
degenerate Landau levels convert into bandlike structures due
to lifting the orbital degeneracy. For zero chemical potential,
as the charge of impurity increases, the energy level with
quantum numbers n = 0, m = 0 comes close to the highest
energy of the level n = −1. In the absence of magnetic field,
the corresponding bound state would dive into the lower
continuum with further increase of the charge of impurity
producing a resonance. The situation is qualitatively different
in the presence of a magnetic field as the energy curves with
the same orbital momenta m never cross. Our calculations
clearly demonstrate this phenomenon of the level repulsion
between the sublevels with the same m and the formation of
a quasiresonance state when the impurity charge exceeds a
critical value. In such a case we observe a redistribution of
profiles of radial distribution functions with the same orbital
momentum among lower Landau levels n � −1.

Experimentally, it was shown that the strength of a charged
impurity and splitting of Landau sublevels with different or-
bital momenta in a magnetic field can be very effectively tuned
by a gate voltage. To describe this phenomenon theoretically
it is crucial to take into account the polarization in a magnetic
field in the presence of chemical potential which is directly
related to a gate voltage. We determined numerically how the
adiabatic increasing or diminishing of the impurity charge can
be effectively accomplished by varying the chemical potential.
As we have shown, the static polarization in a magnetic field
strongly depends on the position of the chemical potential
relative to the Landau levels. If the chemical potential is
situated inside a Landau level, then the screening is very
intense and the effective charge of the impurity is strongly
reduced. In addition, a nonmonotonic momentum dependence
of the static polarization function with a peak at q = 0 leads
to oscillations of the screened potential with the sign change
as a function of distance. On the other hand, if the chemical
potential lies between Landau levels, then the screening is
minimal and the impurity can significantly affect the electron
spectrum. These features of a charged impurity in graphene in
the magnetic field are clearly observed in recent experiments
[17,19].
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