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We generalize the spin Meissner effect for an exciton-polariton condensate confined in annular geometries to
the case of nontrivial topology of the condensate wave function. In contrast to the conventional spin Meissner state,
topological spin Meissner states can in principle be observed at arbitrary high magnetic fields not limited by the
critical magnetic field value for the condensate in a simply connected geometry. One special example of the topo-
logical Meissner states are half-vortices. We show that in the absence of magnetic field, half-vortices in a ring exist
in a form of a superposition of elementary half-vortex states, which resolves recent experimental results where
such puzzling superposition was observed. Furthermore, we show that if a pure half-vortex state is to be observed,
a nonzero magnetic field of a specific magnitude needs to be applied. Studying exciton polaritons in a ring in the
presence of TE-TM splitting, we observe spin Meissner states that break the rotational symmetry of the system by
developing inhomogeneous density distributions. We classify various states arising in the presence of nonzero TE-
TM splitting based on what states they can be continued from by increasing the TE-TM splitting parameter from
zero. With further increasing TE-TM splitting, states with broken symmetry may transform into stable half-dark
solitons and therefore may serve as a useful tool to generate various nontrivial states of a spinor condensate.
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I. INTRODUCTION

Development of nanotechnology achieved during the last
decade allowed the design of semiconductor microcavities
possessing extremely high Q factors (more than 10 000).
This opened new opportunities in creation and investiga-
tion of fundamental properties of Bose-Einstein condensates
(BEC) of exciton polaritons—hybrid light-matter quasiparti-
cles emerging in the regime of strong coupling [1]. Although,
strictly speaking, the thermodynamic equilibrium of exciton
polaritons is rarely achieved, they exhibit properties inherent
to weakly interacting quantum Bose-gases. Among them
is superfluidity [2,3], formation of quantized vortices [4,5]
and solitons [6], Josephson oscillations and macroscopic
self-trapping [7], the spin-Hall effect [8] and others. The
peculiarity of the spin structure of polaritons combined with
strong polariton-polariton interactions and large coherence
lengths makes possible the generation of coherent bosonic spin
currents [9]. This opens a new research field of light-mediated
spin effects and paves the way for their implementation in
optoelectronics, e.g., for the creation of all-optical integrated
circuits [10,11].

Polariton systems possess several advantages with respect
to systems based on cold atoms. First, the extremely small
mass of polaritons (about 10−5 of the mass of free electrons)
makes critical temperatures of the observation of quantum
collective effects surprisingly high (from a few Kelvin for
GaAs-based structures to room temperature for GaN structures
[12]). Besides, polariton condensates allow reasonably simple
manipulation by application of external electric and magnetic
fields [13,14]. This plays essential role in the study of the
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fundamental properties of exciton-polariton condensates. In
the general case, magnetic field affects the exciton-polariton
emission energy, linewidth, and intensity due to the exciton
energy shift caused by Zeeman splitting in circular polar-
izations, the modification of the exciton-photon coupling
strength [15], and the modification of scattering process with
acoustic phonons [16]. The strong spin anisotropy of polariton-
polariton interactions, however, makes those dependencies
in the nonlinear regime highly nontrivial. In particular, in
Ref. [17], it was shown that below some critical value Bc of
the magnetic field, depending on the polariton concentration,
the so-called full paramagnetic screening (also known as spin
Meissner effect) occurs. Its signature is independence of the
photoluminescence energy on the magnetic field. The latter,
however, affects the polarization of the emission. Its ellipticity
gradually changes until the value Bc is reached. At this point,
emission becomes fully circular polarized and Zeeman split-
ting re-establishes. The main efforts of recent experimental
studies of exciton-polariton condensates in a magnetic field
have been successfully directed towards confirmation of these
seminal peculiarities, cf. Refs. [16,18–21].

The interplay between polarization splitting and anisotropic
polariton-polariton interactions becomes more tricky in
anisotropic cavities when additional energy splittings in
linear polarizations (TE-TM splittings) are present in addition
to the Zeeman splitting [22]. The situation becomes even
more interesting when polaritons are confined in nonsimply
connected regions, e.g., inside a ring resonator. In this case,
the direction of the effective magnetic field provided by TE-
TM splitting becomes position-dependent, which combined
together with a magnetic-field-induced Zeeman splitting leads
to the appearance of the geometric Berry phase responsi-
ble for the generation of a synthetic U(1) gauge field for
polaritons and possibility for the observation of an optical
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analog of the Aharonov-Bohm effect [23]. It should be
noted that exciton-polariton spinor BECs in a ring geometry
have been experimentally demonstrated by several groups
[11,18–20,24,25]. However, the polarization properties of the
interacting spinor polaritons in the rings were not subject
of theoretical investigation up to now to the best of our
knowledge. On the other hand, the presence of an artificial
U(1) gauge potential can lead to the onset of a persistent
current in the system, i.e., its ground state can be a vortex-type
solution. The investigation of the analogs of the spin Meissner
effect for such states with a quantized angular momentum is a
fundamentally interesting problem which can in principle lead
to applications such as polariton flux qubits.

Spinor vortex-type solutions in 2D systems were analyzed
in Ref. [26]. It was shown that besides normal vortices for
which both circular polarization components have the same
nonzero quantized angular momentum, half-vortex solutions
for which one of the circular polarizations is not rotating.
Half-vortices had been detected experimentally [5], but their
stability in 2D condensate in the presence of TE-TM splitting
remained a topic of a debate [27–29]. The current view is
that small TE-TM splitting does not destroy half-vortices
leading only to their warping [30]. However, large TE- TM
splittings can make in principle half-vortex solutions unstable.
This situation may become relevant when the polaritons are
confined in the ring, where relevant splittings can reach
the values of 1–2 meV for ring thicknesses of about one
micrometer [31]. Recent experimental work on half-vortices in
a ring geometry [24] demonstrated that polarization patterns
and density profiles could not be explained by the existing
theory, which led the authors to a conclusion that their
experimental configuration corresponds to some spurious
superposition of certain “elementary” half-vortex states.

The aim of this paper is to provide a theory of interacting
polariton ring condensate, introduce the concept of the topo-
logical spin Meissner effect, and describe the rich variety of
the states of the condensate both in the presence and absence
of the TE-TM splitting. In particular, we provide a detailed
analysis of the half-vortex states in the ring and show that
the superpositions of elementary half-vortex states reported
experimentally in Ref. [24] appear naturally in the developed
theory.

The paper is organized as follows. In Sec. II, we present the
model of exciton-polariton condensate in a ring and introduce
various types of emerging solutions. In Sec. III, we introduce
the topological spin Meissner effect in the case when the TE-
TM splitting is absent. In Secs. IV and V, we extend the
concepts and solutions obtained in the previous section to
the general case of finite TE-TM splitting. More specifically,
Sec. IV deals with topological spin Meissner states in the form
of constant-amplitude solutions, and in Sec. V, we study states
that spontaneously break the rotational symmetry of the system
due to the presence of TE-TM splitting. Section VI contains a
discussion of the experimental relevance of our parameters.

II. MODEL AND CLASSIFICATION OF SOLUTIONS

Interacting polaritons trapped in a quasi-one-dimensional
ring resonator can be described by the following system of

dimensionless Gross-Pitaevskii equations (see Appendix A):

iψ̇+ = −∂2
xψ+ + (|ψ+|2 + α|ψ−|2)ψ+

+�ψ+ + κe−2ixψ−,

iψ̇− = −∂2
xψ− + (|ψ−|2 + α|ψ+|2)ψ−

−�ψ− + κe2ixψ+. (1)

Here, ψ± are the components of the exciton-polariton spinor
wave function ψψψ ≡ {ψ+,ψ−} in the basis of circular polariza-
tions satisfying ψ±(t,x) = ψ±(t,x + 2π ), x is the azimuthal
angle, parameter α < 0 characterizes the attractive interaction
of the cross-polarized polaritons, � is half of Zeeman splitting
of a free polariton state (which we will refer to as just
“magnetic field”), and κ is half of the momentum-independent
TE-TM energy splitting. Parameters � and κ are dimen-
sionless and scale in units of �

2/(2m∗R2), where R is the
ring radius and m∗ is the exciton-polariton effective mass.
We use the dimensionless particles density per unit length,
ρ ≡ 1

2π

∫ 2π

0 (|ψ+|2 + |ψ−|2)dx, as a parameter controlling the
strength of the polariton-polariton interactions.

To study the stationary states of the system (1), we use the
substitution

ψ±(t,x) = ψ±(x)e−iμt . (2)

We treat μ as an unknown variable corresponding to the energy
blue shift of a photoluminescence line of the condensate in
a steady state [32], found for a given ρ. It is also identical
to the chemical potential parameter used in the literature on
the Gross-Pitaevskii model and Bose-Einstein condensation.
When time-dependent problems are treated, μ gives the
frequency of the rotating frame in which the dynamics of
physical quantities is captured.

The system of equations (1) inherits properties of the
nonlinear Schrödinger equation. Similar to the nonlinear
Schrödinger equation [33], an important class of stationary
solutions of Eqs. (1) is constant-amplitude solutions, which
correspond to polarization vortices with the homogeneous
density distributions along the ring. Those can be sought in
the form

ψ±(x) = χ±eim±x, for κ = 0 (3)

and

ψ±(x) = χ±ei(n∓1)x, for κ �= 0. (4)

Here, χ± are x-independent amplitudes. Therefore in the
presence of the TE-TM splitting vortex the winding numbers
in the two components of the spinor must differ by 2, while
these winding numbers m± are arbitrary integers for κ = 0.
In the limit of noninteracting polaritons, μ gives the energy
spectrum, and the existence of solutions (4) and (3) requires

μ = μ
(0)
± , μ

(0)
± = m2

± ± � (5)

and

μ = μ±, μ± = 1 + n2 ±
√

(2n − �)2 + κ2, (6)

respectively. It is clear that the vortex energies in the no-
interaction limit vary linearly with the applied magnetic field
� for κ = 0. While for κ �= 0, one deals with the typical
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anticrossing behavior in the proximity of the points � = 2n

(see detailed discussion and figure in Sec. IV).
When nonlinear effects are included, the energies acquire

the corresponding nonlinear shifts proportional to ρ, but not
only this. The spin anisotropy of nonlinear interaction α �= 1
makes it possible for the mixed (χ+ �= 0,χ− �= 0) vortex states
to loose the dependence of their energies on the applied
magnetic field. Such behavior of exciton-polariton condensate
in thermodynamic equilibrium is known as spin Meissner
effect (for an introduction to the spin Meissner effect see
Sec. I and original Refs. [17,18,22]). However, in contrast
to the previously studied spin Meissner effect, the properties
of such vortex states and their domain of existence are defined
by the vortex winding numbers. To highlight the dependence
on the winding numbers, we term the vortex states whose
energies either exactly or approximately lose dependence on
the magnetic field—topological spin Meissner states (TSM
states). As it will be shown below, TSM states are a ubiquitous
feature of our model. Note, that vortices with m+ = ±1,
m− = 0, and m+ = 0, m− = ±1 are so-called half-vortices
in the terminology used in Refs. [5,26–30]. We will show that
half-vortices also exhibit the topological spin Meissner effect.

We study nonlinear solutions for κ = 0 in Sec. III. Impor-
tantly, solutions (3) with m− − m+ �= 2, do not disappear as we
introduce κ �= 0, they simply develop inhomogeneous density
profiles and thus are associated with breaking the rotational
symmetry. We study the κ �= 0 case in details in Sec. IV.
Note that the system of Eq. (1) even with κ = 0 has various
solitonlike solutions with inhomogeneous density profiles, see,
e.g., Ref. [33]. These solitons can continue to exist for nonzero
κ as well. In order to limit the scope of the present work, we
leave these type of inhomogeneous solutions for future studies.

III. TOPOLOGICAL SPIN MEISSNER EFFECT:
ZERO TE-TM SPLITTING

A. Stationary solutions

We first focus on the case when the TE-TM splitting is
absent, κ = 0. Substituting Eq. (3) into (1), we have

[−μ + m2
+ + χ2

+ + αχ2
− + �]χ+ = 0,

(7)
[−μ + m2

− + χ2
− + αχ2

+ − �]χ− = 0.

Because the phases of ψ± are arbitrary, in this section, we will
assume χ−,χ+ � 0 without loosing the generality, however,
the relative phase of the amplitudes will play an important
role when we will be dealing with the case of nonzero TE-TM
splitting in the next section. One obvious class of solutions
of Eq. (7) comes by setting either χ+ or χ− to zero: this
gives two solutions with amplitudes (χ+,χ−) = (

√
ρ,0) and

(χ+,χ−) = (0,
√

ρ) and chemical potentials

μ
(0)
+ = m2

+ + ρ + � (8)

and

μ
(0)
− = m2

− + ρ − �, (9)

respectively. Energies of these solutions either increase or
decrease with �, depending on whether the polariton spin
is parallel or antiparallel to the applied magnetic field.

The other distinct class of solutions corresponds to the case
when both components have nonzero densities, χ+,χ− �= 0.
Equating the expressions in square brackets in (7) and using
the normalization χ2

+ + χ2
− = ρ, we find

χ2
+ = ρ − z

2
, χ2

− = ρ + z

2
, (10)

where

z = 2(� − �c)

(1 − α)
(11)

and

�c = 1
2 (m2

− − m2
+) = 0,± 1

2 ,± 3
2 ,±2, . . . . (12)

Solutions (10) depend on the magnetic field via parameter
z = χ2

− − χ2
+ subjected to the condition |z| < ρ. Therefore

solutions exist only in a limited interval of � given by

|� − �c| < ρ
(1 − α)

2
, (13)

and centered around �c. Note that � = �c (z = 0) for
different m+, m− are degeneracy points at which energies
(8) and (9) of the circularly polarized solutions coincide.

Substituting (10) into (7), we find a chemical potential for
the mixed polarization states (10):

μ(0) = 1
2 [m2

+ + m2
− + ρ(1 + α)]. (14)

Thus the chemical potential μ = μ(0) in this case does
not depend on the magnetic field and according to the
terminology introduced in Sec. II, these are the topologi-
cal spin Meissner (TSM) states. Equations (10), (13), and
(14) are a generalization of the conventional spin Meissner
effect to the case when the spinor components possess
a nontrivial phase winding and therefore can be called a
topological spin Meissner effect (TSM effect) [34]. The
conventional spin Meissner effect [17,18,22] arises when
spin-dependent polariton-polariton interactions compensate
the Zeeman splitting. Such compensation is possible until the
fully circularly polarized state is reached. In the TSM effect,
the Zeeman splitting is compensated by the combined action
of both polariton-polariton interactions and the circulation of
the exciton-polariton condensate described by the winding
numbers m+, m−. Note that for TSM states to exist, the offset
of the magnetic field � from its critical values �c should be
small enough, see Eq. (13). The graphs of μ versus � and
μ versus ρ for the families of solutions (8), (9), and (10) are
shown in Figs. 1(a) and 1(b), respectively. The linear spectrum
(5) is recovered in the limit ρ → 0, see Fig. 1(b).

At a fixed magnetic field, the condition (13) defines the
minimal value of the nonlinearity parameter ρ, which is needed
to observe a given TSM state. Equations (12) and (13) at � = 0
give the existence criterion for a TSM state with the winding
numbers m+ and m−,

ρ > ρmin(m+,m−) ≡ |m2
− − m2

+|
1 − α

. (15)

Therefore more and more TSM states arise as nonlinearity
is gradually increased from zero. The appearance of TSM
states with increasing nonlinearity is seen on the μ(ρ) plot on
Fig. 1(b) and μ(�) plot on Fig. 2. As seen from Fig. 1(b),
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FIG. 1. Families of constant-amplitude solutions (3) in zero
TE-TM splitting (κ = 0) on the diagrams μ vs � at fixed ρ = 0.5
(a) and μ vs ρ at fixed � = 0. Red and blue solid lines are pure
circular polarization vortices characterized by winding numbers m±
and the chemical potential is given by Eqs. (8) and (9). Black lines are
topological spin Meissner (TSM) states specified by a pair of winding
numbers (m+,m−). Each TSM state appears from the interaction of
circular polarization vortices, and if the nonlinearity is increased from
zero, they arise from the corresponding intersections of the red and
blue lines in (a). (b) shows how TSM states appear on the diagram μ

vs ρ when the nonlinearity parameter is increased continuously from
ρ = 0 (linear case) to 7 in zero magnetic field � = 0. In both cases,
α = −0.05.

TSM states with |m+| = |m−| start off straight from the linear
spectrum (ρ = 0), while those with |m+| �= |m−| require a
finite value of nonlinearity given by (15). In presence of large
nonlinearity, TSM states are the lowest energy states of the
system and arrange into a system of energy levels as shown in
Fig. 2.

An illustrative example of TSM effect is the behavior of
half-vortices in the presence of a magnetic field. Similar to
half-vortices in a 2D system [26,27], half-vortices in a ring
have zero phase winding number of one component and a
simple vortex in the other component. These are four distinct
states: (1,0), (−1,0), (0,1), and (0,−1). These are essentially
nonlinear states which cease to exist in the linear limit, see
Fig. 1(b). In zero magnetic field, half-vortices may only be

FIG. 2. Constant-amplitude solutions (3) in zero TE-TM splitting
(κ = 0) on the diagrams μ vs � at different values of the nonlinearity
parameter ρ = 1 (a), 3 (b), 8 (c), and 15 (d). Topological spin
Meissner (TSM) states are marked by black lines resting on the
corresponding red and blue diagonal lines corresponding to the pure
circular polarization vortices. The intervals of magnetic field where
a given TSM state exists grow with increasing nonlinearity ρ. More
details are provided in Fig. 1 where the specific TSM states are marked
by their winding numbers. In all cases, α = −0.05.

observed for the nonlinearities stronger than the critical value
ρ > 1/(1 − α) given by the formula (15). On the other hand,
if the magnetic field is tuned to � = �c = ±1/2, even a very
small nonlinearity would be enough to create a half-vortex.

In order to compare our findings with existing experimental
studies of half-vortices in rings [24], we change to the basis of
linear polarization. At z = 0, the constant-amplitude solution
(3) with amplitudes defined by (10) takes the form

ψlin(z = 0) = √
ρ exp

(
i
m+ + m−

2
x

)(
cos 
m

2 x

sin 
m
2 x

)
, (16)

where the two components of the spinor in the basis of linear
polarization are ψlin,1 = (ψ+ + iψ−)/

√
2 and ψlin,2 = (ψ+ −

iψ−)/
√

2. Note that the implicit choice of the relative phase
of the spinor components χ+ = χ− made here is arbitrary:
half-vortex states with different relative phase of χ+ and χ−
are connected by a simple shift of coordinate as will be shown
in Sec. V. For � away from �c, the expression for a half-
vortex in linear polarization becomes more involved. A simple
expression may be obtained assuming z/ρ � 1,

ψlin ≈ ψlin(z = 0) + i
z

ρ

(
sin 
m

2 x

− cos 
m
2 x

)
. (17)
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The formula (17) can explain the experimental result [24]
where a superposition of half-vortex states was observed.
According to Ref. [24], the ansatz in the form of superposition
of states of the type (16) was used to fit the experimental data.
This puzzling result could not be explained by the existing
theory but created an uncertainty of why half-vortices prefer
a superposition in favor of a pure state (16). Assuming the
experiments were done in zero magnetic field we find that
|z| = 1/(1 − α) �= 0. Therefore formula (17) makes it clear
that a pure half-vortex state in the form (16) can not be observed
in zero magnetic field. Furthermore, if a pure half-vortex state
(16) is to be observed, a nonzero magnetic field with magnitude
equal exactly to |�| = 1/2 should be applied. As far as we
know, this has not been done in the existing experimental
studies of exciton-polariton states in a ring.

B. Stability of spin Meissner states

To analyze stability, we consider small time-dependent
perturbations ε±(x,t) around vortices:

ψ±(x,t) = [χ± + ε±(x,t)]eim±x. (18)

Substituting (18) into (1) at κ = 0, we get a system of linear
equations for ε±(x,t),

iε̇ = −ε′′
± − 2im±ε′

± + χ2
±(ε± + ε∗

±)

+αχ±χ∓(ε∓ + ε∗
∓) = 0 (19)

Expanding ε±(x,t) into Fourier series in x, see, e.g., Ref. [35],

ε±(x,t) =
∞∑
l=0

U±,l(t)e
ilx + V ∗

±,l(t)e
−ilx , (20)

we get a system of equations on Wl(t) = (U+,l ,V+,l ,

U−,l ,V−,l), decoupled for different integer l,

iẆl = η̂ĤlWl , (21)

where

η̂ =

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠ (22)

and

Ĥl =

⎛
⎜⎜⎝

d+ χ2
+ αχ+χ− αχ+χ−

χ2
+ d̃+ αχ+χ− αχ+χ−

αχ+χ− αχ+χ− d− χ2
−

αχ+χ− αχ+χ− χ2
− d̃−

⎞
⎟⎟⎠, (23)

where d± ≡ l2 + 2lm± + χ2
±, d̃± ≡ l2 − 2lm± + χ2

±. Assum-
ing Wl = wle

−iλt , wl ≡ (u+,l ,v+,l ,u−,l ,v−,l), we get an eigen-
value problem:

η̂Ĥlwl = λwl . (24)

The solution is spectrally unstable if there is at least one
eigenvalue with positive imaginary part Im λ > 0. Because of
equality Tr[(η̂Ĥl)†] = Tr[η̂Ĥl], the eigenvalues of the matrix
η̂Ĥl come in complex conjugated pairs.

In the special case � = �c, the eigenvalue problem [(24)
and (23)] allows simple analytical solution. For � = �c, we
have, according to (10), χ+ = χ− = √

ρ/2. Substituting into

(24) and (23) and solving the eigenvalue problem, we get four
eigenvalues:

λ = l

(
m+ + m−

±
√


m2 + l2 + ρ ±
√

4
m2(l2 + ρ) + α2ρ2

)
, (25)

where


m ≡ m− − m+. (26)

From (25), the unstable regions can be easily found,

|l2 + ρ − 
m2| < αρ. (27)

It is straightforward to see from (27) that there is no instability
in the case α = 0 when interaction between the circular
components is absent. However, for finite α, we have an
unstable region in ρ extending up to 
ρ ≈ |α|ρc either side
from ρc = 
m2 − l2.

We analyze the stability for arbitrary values of � by
using the perturbation theory in parameter α. We take into
account the dependence of χ+ and χ− on α exactly using their
expressions (10), while we treat perturbatively only those parts
of (23) that depend on α explicitly:

Hl = Ul + αV, (28)

Ul =

⎛
⎜⎜⎝

d+ χ2
+ 0 0

χ2
+ d̃+ 0 0
0 0 d− χ2

−
0 0 χ2

− d̃−

⎞
⎟⎟⎠,

V = χ+χ−

⎛
⎜⎝

0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

⎞
⎟⎠.

For the eigenvalues of matrix ηUl , we find the following simple
expressions:

λ+
1,2 = l

[
2m+ ±

√
l2 + 2χ2+

]
,

λ−
1,2 = l

[
2m− ±

√
l2 + 2χ2−

]
. (29)

Eigenvalues of ηH with nonzero imaginary part may appear
around degeneracy points of ηUl . In the trivial case, 
m = 0,
the degeneracies may only appear when χ2

− = χ2
+, i.e., at z =

0, which is the case studied above: the eigenvalues of matrix
(23) are given by (25). As seen from Eq. (25), this does not
lead to any instabilities as soon as |α| � 1. In the following,
we will assume 
m �= 0. Equating the eigenvalues λ+

1,2 and
λ−

1,2, we get for degeneracies λ+
1 = λ−

2 (
m > 0) and λ+
2 = λ−

1

(
m < 0) realized when |z| � 2
m2,

ρc(z) = 
m2 − l2 + z2

4
m2
. (30)

Applying the perturbation theory for non-Hermitian operators
[36], we find the first-order corrections to the degenerate
eigenvalues. At ρ = ρc, these are


λ = ± iαlχ+χ−
[(l2 + 2χ2+)(l2 + 2χ2−)]1/4

(31)
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FIG. 3. Instability regions of topological spin Meissner (TSM)
states with |
m| = 2 (a), |
m| = 3 (b), |
m| = 4 (c), and |
m| =
10 (d) as given by the analytical formulas (30) and (32). Dark and light
blue areas are instability regions in parameter space (z,ρ) arising at
different angular harmonics l for two different values of the parameter
α: −0.05 and −0.2, correspondingly. The hatched area marks the
region |z| � ρ where solutions in the form of TSM states do not exist
[see Eq. (13)].

and for l �= 0, it leads to instability due to the appearance of
an eigenvalue with a positive imaginary part.

Treating the deviation ρ − ρc from ρc as a perturbation,
we find the size of the instability interval (−
ρ,
ρ) centered
around ρc,


ρ =
⎛
⎝ 8α2χ2

+χ2
−
√

l2 + 2χ2+
√

l2 + 2χ2−

l2 + χ2+ + χ2− +
√

l2 + 2χ2+
√

l2 + 2χ2−

⎞
⎠

1/2

, (32)

where χ+, χ− are evaluated using Eq. (10) at ρ = ρc.
One may check that the other two degeneracies, λ+

1 = λ−
1

and λ+
2 = λ−

2 , which realize when |z| � 2
m2 do not
lead to imaginary eigenvalues and, therefore, do not cause
instabilities.

Formula (30) together with condition |z| < ρ imply that
the four half-vortices (1,0), (−1,0), (0,1), and (0,−1) have no
instability regions, i.e., they are linearly stable for all values
of ρ. The first nontrivial case arises for states with |
m| = 2.
Instability regions for states with |
m| = 2, 3, 4, and 10 are
shown in a parameter space of ρ versus z in Fig. 3.

We estimate the dynamical effect of the unstable mode
on the distribution of the spinor components. Assuming the
unstable mode dominates other modes but still can be treated
as a perturbation around the stationary solution, we write

ε± ≈ [u±eilx−iλr t + v∗
±e−ilx+iλr t ]eλi t , (33)

where we explicitly separated the real λr = Re λ and imagi-
nary λi = Im λ parts of the eigenvalue causing the instability.
Substituting (33) to the expressions for densities |φ±|2 =
|χ± + ε±(x,t)|2, we see that the growing unstable mode
modulates the densities of the spinor components in the
form of a propagating wave with a phase velocity v = λr/ l.
The real part λr can be estimated from expressions (29). At
degeneracies λ+

1 = λ−
2 ≡ λ and λ+

2 = λ−
1 ≡ λ, we find for the

phase velocity at ρ = ρc(z),

v = m+ + m− − z

2
m
. (34)

Thus v is determined by the total angular momentum m+ + m−
of a TSM state.

We use the split step (Fourier) method to numerically
analyze the dynamics of the unstable states. The (−1,1),
(−2,2), and (−1,2) cases are shown in Fig. 4. The onset of
unstable modes with a number of peaks or deeps is equal to
the angular harmonics l, in agreement with the corresponding
instability regions in Fig. 3. The instability develops as a wave
of density modulations. The unstable modes with l = 1 and
l = 2 around the state (−1,2) cause the density modulation
to rotate with phase velocity v ≈ 1, see Figs. 3(c) and 3(d).
While density modulations in state (−1,2) move anticlockwise
(increasing x), density modulations in state (−2,1) move
clockwise in agreement with the opposite sign of the phase
velocity in Eq. (34) (see Ref. [37]).

IV. CONSTANT-AMPLITUDE SPIN MEISSNER STATES
IN PRESENCE OF TE-TM SPLITTING

We are now going to look at how the presence of a nonzero
TE-TM splitting influences TSM states and the topological
spin Meissner effect. It is convenient to eliminate the explicit
dependence on x from the TE-TM splitting term, which is
achieved through the substitution

ψ± = φ±(x)e∓ix . (35)

With this substitution, we get the following auxiliary system
of equations, which takes a rotationally invariant form:

iφ̇+ = [D̂+ + |φ+|2 + α|φ−|2]φ+ + κφ−,
(36)

iφ̇− = [D̂− + |φ−|2 + α|φ+|2]φ− + κφ+,

where D̂± = 1 − μ − ∂2
x ± 2i∂x ± �. The form of equation

(36) is explicitly invariant under rotations, i.e., a shift of
coordinate R̂(
x)φ±(x) = φ±(x + 
x).

In the linear regime and κ �= 0, the stationary version of
the system (36) is a linear system of equations with constant
coefficients, which has solutions in the form of exponentials

φ±(x) = χ±einx, κ �= 0 (37)

with the winding number n for both components and ampli-
tudes

χ+ =
√

ρ

1 + ξ 2
, χ− = ξ

√
ρ

1 + ξ 2
, (38)

where ξ ≡ χ−/χ+ can take two values,

ξ = ξ±, ξ± ≡ 2n − �

κ
±

√
1 +

(
2n − �

κ

)2

. (39)
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FIG. 4. Numerically calculated dynamics arising when the unstable states in the instability regions shown in Fig. 3 are distorted by a
small initial perturbation. (a) l = 1 instability in state (−1,1) at ρ = 3. (b) l = 3 instability in state (−2,2) at ρ = 7. (c) l = 1 and (d) l = 2
instabilities in state (m+,m−) = (−1,2) at ρ = 8 and ρ = 5, correspondingly. The onset of the modes with the number of peaks equal to the
angular momentum l of the unstable mode is well visible, in agreement with Fig. 3. In all cases, z = 0 for each state, α = −0.05 and TE-TM
splitting is absent κ = 0. Video of the animated dynamics is available in Ref. [37].

Energies of the solutions (38) are

μ = 1 + n2 ±
√

(� − 2n)2 + κ2. (40)

Note that the winding numbers in the ψ± representation
[Eq. (1)] are given by

m± = n ∓ 1, 
m = 2. (41)

The linear spectrum (40) is plotted in Fig. 5 for the cases
of zero (κ = 0) and nonzero (κ = 0.1) TE-TM splitting. The
splitting of energy levels at � = �c ≡ 2n caused by TE-TM
splitting is seen in Fig. 5(b). The avoided crossings arrange in
a parabolic pattern μ(�c) ∼ �2

c as given by formula (40).
We now look into the nonlinear case. The constant-

amplitude solutions of the nonlinear system (36) have the same
form (37) where the amplitudes (38) are defined by real roots
of the fourth-order algebraic equation on ξ :

κ(ξ 4 − 1) − ρ(1 − α)(ξ 3 − ξ ) + 2(� − 2n)(ξ 3 + ξ ) = 0,

(42)

which, in general, may have 4, 2, or 0 real roots. The
bifurcations between pairs of real and complex roots when
changing the magnetic field and strength of TE-TM splitting
κ can be traced in Fig. 6. The figure shows the evolution of the
constant amplitude branches with changing strength of TE-TM
splitting κ at a fixed nonlinearity ρ = 3. The TSM branches
exist for small κ keeping their magnetic field-independent

form of chemical potential. On increasing κ , the topological
spin Meissner effect in the lower branch gradually comes to a
naught acquiring a parabolic dependence on �, while the top
branch disappears completely at high κ .

Although, the exact solutions can be found by solving
Eq. (42), it is instructive to find their explicit expressions in

FIG. 5. Linear spectrum in presence (solid lines) and absence
(dashed lines) of TE-TM splitting. TE-TM splitting results in
anticrossings at � = �c ≡ 2n, n = 0,±1, . . . for branches m± =
n ± 1, see Eq. (6).
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FIG. 6. The graphs show the evolution of constant-amplitude solutions of the system (1) with increasing TE-TM splitting for different
values of the phase winding number m. Black, blue, red, and green lines correspond to the states with |n| = 0, 1, 2, and 3. TE-TM splitting
parameter κ is increased from 0.0 (a) to 0.1 (b), 0.5 (c), 1.0 (d), and 2.0 (e). The nonlinearity parameters are ρ = 3 and α = −0.05. The splitting
of constant-amplitude TSM states into stable and unstable branches is visible in (b) when nonzero κ is introduced. For visibility purposes,
unstable regions are marked by solid lines and stable regions are marked by dotted lines. Note that only constant-amplitude solutions are shown
here.

the limit of small κ (see Ref. [37]). In the first order in κ , we
find for TSM states 
n = 0,

μ = μ(0) + κ ρ

2χ+χ−
+ O(κ2), (43)

where the zero-order term μ(0) is given by (14) and χ+χ− > 0,
χ+χ− < 0 are two distinct branches of solutions. The splitting
of the TSM states 
m = 2 into symmetric (χ+χ− > 0) and
antisymmetric (χ+χ− < 0) when a nonzero κ is introduced
is shown in Fig. 7. In zero magnetic field and absence of
interactions, (−1,1)s and (−1,1)a are the two lowest TE
and TM modes in a ring, while higher-order states such as
(−2,0)s, (0,2)s, (−2,0)a, and (0,2)a are propagating TE and
TM modes with nonzero wave vector. In the linear limit ρ → 0,

FIG. 7. Splitting of the spin Meissner states 
m = 2 under a
nonzero κ: states (−1,1), (−2,0), and (0,2) shown here split into
symmetric (χ+χ− > 0) and antisymmetric (χ+χ− < 0) branches
marked by “s” and “a” after the brackets with a pair of winding
numbers (m+,m−). Dashed line and solid lines correspond to κ = 0
and κ = 0.1, respectively. Other parameters are α = −0.05 and
� = 0. For simplicity, only constant-amplitude solutions are shown
here.

the splitting of the (−1,1) state is the avoided crossings given
by linear spectrum (40) and shown in Fig. 5.

We analyze analytically the stability of the constant-
amplitude TSM states solving perturbatively the eigenvalue
problem for operator L̂ = ηĤ , where operator Ĥ is given in
Appendix C. Because the constant-amplitude TSM states are
split in two branches when nonzero κ is present, perturbation
expansion for eigenvalues of the operator L̂ = L̂0 + κL̂1 +
O(κ2) will involve powers of κ1/2,

λ = κ1/2[λ0 + O(κ)], (44)

where for λ0 we find (see details in Appendix C)

λ2
0 = ∓2(1 − α)

√
ρ2 − z2 (45)

for states χ+χ− > 0 and χ+χ− < 0, correspondingly. There-
fore, for κ > 0, the state with χ+ = χ− is unstable and state
χ+ = −χ− is stable (for κ < 0 the situation reverses). For the
unstable mode with eigenvalue given by (45), we find

ε± ∼ ±χ±einx = ±φ±(x), (46)

i.e., the unstable mode (46) results in a homogeneous change
of density distributions of the spinor components.

We compare the theoretical estimate (44) and (45) of the
imaginary part of the eigenvalue λ causing the instability to
its exact value obtained by a numerical diagonalization of
matrix (47) for different angular harmonics l. The results of
comparison for the dependence of Imλ on κ are presented in
Figs. 8(a) and 8(b) for two different values of nonlinearity
parameter ρ. The theoretical results (44) and (45) obtained by
perturbation expansion agree with the numerical calculation
for l = 0 at small κ . A small region of instability caused by
angular harmonics l = 1 is also visible in Fig. 8(a) for small
values of κ and is caused by the instability region l = 1 on
Fig. 3(a) [see Fig. 3(a) at ρ = 3]. With increasing strength
of TE-TM splitting, a state becomes unstable with respect to
several harmonics simultaneously.

In our numerical analysis of stability we solve the
eigenvalues problem of the operator η̂Ĥl(κ), where
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FIG. 8. Imaginary part of the eigenvalues of matrix (47) as a function of κ , evaluated at the unstable branch of the state (−1,1) and � = 0.
Black, dashed and dashed-dotted lines correspond to instabilities caused by angular harmonics l = 0, 1, and 2, respectively. Dotted line is the
theoretical estimate given by the first term in formula (44) with (45).

(see Appendix B for details)

Ĥl(κ)

=

⎛
⎜⎜⎜⎜⎝

d+ χ2
+ αχ+χ− + κ αχ+χ−

χ2
+ d̃+ αχ+χ− αχ+χ− + κ

αχ+χ− + κ αχ+χ− d− χ2
−

αχ+χ− αχ+χ− + κ χ2
− d̃−

⎞
⎟⎟⎟⎟⎠,

(47)

η̂ was defined above and the diagonal elements d±,d̃± are
given by

d± ≡ l2 + 2lm± + χ2
±

+ [−μ + m2
± + χ2

± + αχ2
∓ ± �], (48)

d̃± ≡ l2 − 2lm± + χ2
±

+ [−μ + m2
± + χ2

± + αχ2
∓ ± �]. (49)

Matrix (47) is a generalization of (23) to nonzero κ .
The solution is spectrally unstable if there is at least one

eigenvalue with positive imaginary part Im λ > 0. The results
of the stability analysis are shown in Fig. 6. Dashed lines mark
stable regions and solid lines mark unstable regions (stability
analysis with respect to the individual harmonics l can be found
in Ref. [37]). As seen from Fig. 6, the constant-amplitude TSM
states are split into stable (bottom) and unstable (top) branches,
in agreement with (45). At κ = 0, the instability is caused by
angular harmonics l = 1, which corresponds to the instability
region shown in Fig. 3(a), while for nonzero κ the l = 0 mode
appears as seen in Fig. 8(a).

Finally, we analyze the dynamics of instability arising due
to the unstable mode in the presence of TE-TM splitting.
The results of our time-dependent numerical calculations are
shown in Fig. 9. As seen from the figure, the presence of
TE-TM splitting leads to a homogeneous instability mode in
agreement with formula (46).

V. SYMMETRY-BREAKING SPIN MEISSNER STATES

In the previous section, we focused our attention to the TSM
states with the constrained phase winding numbers 
m =
2: these are constant-amplitude solutions at nonzero TE-TM
splitting. In this section, we will investigate the fate of the
more general states (3) with arbitrary m+, m−. It turns out that
solutions with 
m �= 2 do not disappear in the presence of
nonzero κ but instead develop inhomogeneous profiles.

At κ = 0, constant amplitude solutions of the auxiliary
system of equations (36) are expressed via solutions (3) studied
in Sec. III,

φ±(x) = χ±ei(m±±1)x (50)

Important aspects of the continuation of TSM states from
κ = 0 to κ �= 0 can be understood if we consider changes in
the symmetry properties of the model equations and of the
solutions themselves. Equations (36) with κ = 0 are invariant

FIG. 9. Numerically calculated dynamics of instability arising
when unstable state (−1,1) at ρ = 3, � = 0 is distorted by a small
initial perturbation in the presence of TE-TM splitting κ = 0.1. The
onset of l = 0 mode is visible in agreement with (a). Video of the
animated dynamics is available in Ref. [37].
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FIG. 10. Numerical continuation of states in parameter κ to the
region of nonzero TE-TM splitting. Solid lines mark constant am-
plitude solutions, dashed and dotted lines mark symmetry-breaking
states. Splitting of the state (−1,1) into two branches can be seen.
Contrary to the constant amplitude states, symmetry-breaking states
do not split into branches but develop inhomogeneous density profiles.
The (1,1), (−1, − 1) develop instabilities at κ ≈ 0.3, which lead to
breaking of the branch. Other parameters are α = −0.05 and � = 0.

under the following three transformations: rotation of the total
phase of the spinor, rotation of the relative phases of the spinor
components and shift of the azimuthal coordinate x. However,
not all of these operations are independent. Consider a shift of
the coordinate x → x + 
x,

R̂(
x)

(
χ+ein+x

χ−ein−x

)
= ei
x(m++m−)/2

(
χ+ein+x−iδ/2

χ−ein−x+iδ/2

)
, (51)

where δ = (
m − 2)
x and n± = m± ± 1. Thus the shift
of the coordinate of the constant-amplitude solutions (50) is
equivalent to a rotation of the total phase, if 
m = 2, or,
rotation of both total and relative phases, if 
m �= 2. When
TE-TM splitting is not zero, κ �= 0, then the symmetry of the
model with respect to the shift of the relative phase is broken.
This affects very differently solutions with 
m = 2 and

m �= 2. Those with 
m = 2 remain invariant with respect
to rotations in x, which are equivalent to the corresponding
shift in the still present total phase. Meanwhile, former

m �= 2 solutions develop inhomogeneous density profiles as
their rotational symmetry becomes broken. Thus, for κ �= 0,

m = 2 solutions have one broken symmetry (total phase) and
one Goldstone mode associated with it and 
m �= 2 solutions
have two broken symmetries and two Goldstone modes. While
for κ = 0, both types of solutions have two broken symmetries
(in the total and relative phases). Because the number of
Goldstone bosons does not change for 
m �= 2 solutions, they
do not branch as we introduce κ �= 0, while 
m = 2 split into
branches, see Fig. 10.

Numerical continuation of the solutions (3) in parameter
κ to the domain of nonzero TE-TM splitting is presented in
Fig. 10 for a fixed nonlinearity parameter ρ = 3. At κ = 0,
the energies of the solutions are given by Eqs. (8), (9),
and (14), see also a cross section of Fig. 1(b) at ρ = 3.
With increasing TE-TM splitting parameter the solutions

FIG. 11. Numerical continuation of TSM states given by
Eqs. (10) at κ = 0 to the domain of nonzero TE-TM splitting. The
evolution of the densities of the spinor components of symmetry-
breaking states during the continuation is shown with the parameter
κ increasing from left to right. Polar plots correspond to the branches
of the symmetry-breaking states in Fig. 10 with the same nonlinearity
strength ρ = 3. Parameters of the calculations are � = 0 and α =
−0.05. States (−1,0) and (0,−1) are not shown as they evolve in the
same way as (0,1) and (1,0), respectively, with spinor components
interchanged. Dashed lines and fainter colors mark unstable states.

with winding numbers (m+,m−), 
m �= 2 continue to exist
developing inhomogeneous density profiles. Splitting of the
constant amplitude states with 
m = 2 into two branches is
also visible in Fig. 10. Contrary to the constant amplitude
states, symmetry breaking states do not split into branches.
Indeed, as can be seen from formula (51), states with different
relative phase of the spinor components at κ = 0 seed the
same solution at κ �= 0, apart from the coordinate shift and a
common phase factor. Snapshots of the evolution of densities
of the spinor components under continuously changing κ are
shown on Fig. 11.

Symmetry-breaking states can be classified according to
which states they can be continued from by increasing the
TE-TM splitting κ from zero because they inherit topological
properties of the seeding solutions, i.e., their two phase
winding numbers. Indeed, the two topological invariants,
which could be used to characterize a symmetry-breaking TSM
state, are

1

2πi

∫ 2π

0

∂xφ±
φ±

dx, (52)
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and coincide with m± of the constant-amplitude TSM state
at κ = 0 to which it can be continued given that neither
of the components turned to zero during the continuous
transformation.

To analyze analytically TSM states with broken rotational
symmetry in presence of TE-TM splitting, we use a pertur-
bative approach and consider a small distortion ε±(x) of the
shape of the TSM state (10):

φ±(x) = [χ± + κε±(x) + O(κ2)]ei(m±±1)x (53)

μ = μ(0) + κμ(1) + O(κ2), (54)

where ε±(x) are complex functions and χ± are amplitudes of
the TSM state at κ = 0. Substituting into (36) we get a system
of equations on ε±(x),

−ε′′
± − 2im±ε′

± + χ2
±(ε± + ε∗

±) + αχ±χ∓(ε∓ + ε∗
∓)

= μ(1)χ± − e±i(
m−2)xχ∓. (55)

Assuming 
m �= 2, we may seek for solutions of (55) in the
form

ε± = A±e±i(
m−2)x + B±e∓i(
m−2)x + C±, (56)

where coefficients A±, B±, and C± can be chosen real.
Substituting into (55) and using the normalization condition,
we get two decoupled systems of equations:

Ĥ
m−2W = R, (57)

QC = 0, (58)

where W = (A+,B+,A−,B−)T , C = (C+,C−,μ(1))T , R =
(−χ−,0,−χ+,0)T , and matrix Ĥ
m−2 is given by Eq. (23)
for l = 
m − 2 and

Q =
⎛
⎝ 2χ2

+ 2αχ+χ− −χ+
2αχ+χ− 2χ2

− −χ−
χ+ χ− 0

⎞
⎠. (59)

The determinant of matrix Q is det Q = 4χ2
+χ2

−(1 − α), which
is nonzero as χ−,χ+ �= 0. Therefore, for the TSM states, only
a trivial solution to the system (58) exists, i.e., C1 = C2 =
μ(1) = 0. Because μ(1) = 0 and μ(0) does not change with
the magnetic field, the energy μ of the symmetry-breaking
solutions induced by TSM states is also independent of the
magnetic field, i.e., symmetry-breaking solutions induced by
topological spin Meissner states remain spin Meissner states,
at least in the first order in TE-TM splitting. Therefore, from
(14) for symmetry-breaking TSM states in the presence of
TE-TM splitting, we have

μ = 1
2 [m2

+ + m2
− + ρ(1 + α)] + O(κ2). (60)

To find the density profiles of the symmetry-breaking solu-
tions, we solve system (57). For small κ , perturbative solutions
(56) are in good agreement with our numerical calculations
(see Ref. [37] for comparison between the theoretical and
numerical results).

The influence of TE-TM splitting on the topological spin
Meissner effect is shown in Fig. 12. As seen from the figure,
the energies of the symmetry-breaking TSM states depend
weakly on the magnetic field even in the presence of significant

FIG. 12. Topological spin Meissner effect in the presence of TE-
TM splitting. As seen from the figure, the energies of symmetry-
breaking TSM states (solid lines) depend weakly on the magnetic
field even in the presence of significant TE-TM splitting κ = 1 as in
the calculation presented here. Note that the spin Meissner effect is
not exact for states with nonzero net angular momentum m+ + m−
while it holds better for states with zero angular momentum such as
(0,0) and (1,−1). Dashed lines mark constant-amplitude solutions.
Nonlinearity parameters ρ = 3 and α = −0.05.

TE-TM splitting κ = 1. Notice that the spin Meissner effect
is not exact for states with nonzero net angular momentum
m+ + m−, while it holds better for states with zero angular
momentum such as (0,0) and (1,−1).

Studies of topological spin Meissner effect in half-vortices
(−1,0) and (1,0) are shown in Figs. 13(a) and 13(b). As seen
from the figure, the magnetic field is balanced by the densities
of the spinor components of a vortex state, with the energy of
the state remaining nearly constant (cf. Fig. 12). Figures 12(a)
and 12(b) show polar plots of the numerically calculated
densities |φ+|2 and |φ−|2 for a fixed nonlinearity parameter
ρ = 3. Dashed lines and fainter colors mark spectrally unstable
states. The other two half-vortices, (0,1) and (0,−1) coincide
with (1,0) and (−1,0) when two circular polarizations are
interchanged and the direction of the magnetic field is reversed.

As seen from the analytical formula (56), quantity 
m − 2
defines the order of the discrete rotational symmetry in the
density distribution of the states (i.e., the number of peaks or
deeps): in (1,0) and (0,−1) it has a threefold rotational sym-
metry, while in states (0,1) and (−1,0) the density distribution
has “onefold” symmetry (i.e., no rotational symmetry). The
evolution of numerically calculated density distributions for
a higher-order state (4,−4) with changing TE-TM splitting
parameter κ is shown in Fig. 14. Due to |
m − 2| = 10, its
density distribution is tenfold rotationally symmetric.

We investigate the stability of the symmetry-breaking states
numerically evaluating the eigenvalues of the discretized
Hessian matrix [the continuous version of the Hessian matrix
is given by Eq. (C2) in Appendix C]. The unstable states
resulting from this analysis are marked by dashed lines and
faint colors in Figs. 13(a) and 13(b). No instabilities were found
among the configurations displayed in Fig. 14. We analyzed
the unstable states of half-vortices marked by dashed lines
and faint colors in Fig. 13. The arising dynamics when an
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FIG. 13. Topological spin Meissner effect in half-vortices (−1,0) (a) and (1,0) (b): the effect of magnetic field is balanced by the changing
densities of the spinor components of a vortex state, keeping the energy of the state nearly constant (see Fig. 12). Polar plots of numerically
calculated density distributions are presented. Pink and blue colors represent densities |φ+|2 and |φ−|2, correspondingly. TE-TM splitting κ

takes values, from top to bottom: 0, 0.3, and 0.6 in (a) and 0, 0.5, and 1.0 in (b). The magnetic field is given by z/ρ = −0.5, 0, and 0.5 from
left to right, with z defined by Eq. (11). Nonlinearity parameters ρ = 3 and α = −0.05. Dashed lines and fainter colors mark unstable states.

FIG. 14. Numerically continued symmetry-breaking TSM state
(4,−4) of higher-order rotational symmetry. Pink and blue colors
represent densities |φ+|2 and |φ−|2, correspondingly. The values of
κ are 2, 4, and 6 from top to bottom. Magnetic field is given by
z/ρ = −0.5, 0, and 0.5 from left to right, with z defined by Eq. (11).
Balancing of the magnetic field by density distributions of the spinor
components in a polarization vortex (topological spin Meissner effect)
is seen here. This leads to all states having energies independent of
the value of the magnetic field. Nonlinearity parameters ρ = 3 and
α = −0.05. All of the displayed configurations were found to be
stable with respect to linear perturbations.

unstable state is disturbed by a small perturbation is shown
in Fig. 15. As seen from the figure, in the initial stage, the
densities patterns are nearly constant as it takes time for
the instability to develop. In the next stage when instability
has grown large enough, quasiperiodic patterns appear, which
indicate an onset of propagating waves that modulate the
densities of the circular polarized components. Videos of the
propagating density modulations are available in Ref. [37].

VI. DISCUSSION

To conclude, we have shown that an exciton-polariton
condensate placed in a trap of nonsimply connected geometry
may exhibit states whose energies are independent of the
applied magnetic field. The properties of these states are
dictated by the topology of the condensate wave function,
i.e., two phase winding numbers of its spinor components. We
analyzed the stability of these topological spin Meissner states
and indicated the range of parameters where such states may
exist and are stable. These findings helped us shed light onto
the properties of half-vortices in a ring and gave us a clue in
the understanding of the recent experiments. We analyzed the
effect of TE-TM splitting on the topological spin Meissner
states and found that stable states exist even in the presence of
significant TE-TM splitting strengths. Finally, we found that
a certain class of TSM states exist which breaks rotational
symmetry in the presence of TE-TM splitting by developing
inhomogeneous densities.

The range of parameters discussed in this paper can be
reached experimentally. Depending on the size of the ring and
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FIG. 15. Dynamics of instabilities arising when the unstable half-vortices shown in Fig. 13 are distorted by a small initial perturbation:
state (−1,0) at (a) z/ρ = −0.5, κ = 0.6 and (b) z/ρ = 0.5, κ = 0.6 (b) with the density profile in Fig. 13(a) and state (1,0) at (c) z/ρ = 0.5,
κ = 0.5 and (d) z/ρ = 0, κ = 1 with the density profile in Fig. 13(b). Videos of animated dynamics are available in Ref. [37].

detuning, the characteristic energy �
2/2m∗R2 may be varied

in a broad range of energies. For a ring diameter 10 μm, the
unit energy can vary from 4 to 40 μeV, depending on the
detuning. Therefore both small � ∼ 10 and higher values are
well accessible in experiments. The effect of TE-TM splitting
can be made significant, if desired. In a 1-μm waveguide,
TE/TM splitting can be as high as ∼1 meV [31,38], which
allows to reach κ ∼ 10 and even κ ∼ 100, in normalized
units. On the other hand, κ can be made negligibly small
by choosing larger ring widths, by controlling detuning [39]
and the properties of the distributed Bragg reflector [40].
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APPENDIX A: TE-TM SPLITTING IN MICROCAVITY
RING RESONATOR

The TE-TM splitting of the linear polarization in quasi-
one-dimensional microcavities may have different physical
origins such as the difference in reflection coefficients for TE
and TM polarizations in Bragg mirrors [40], the anisotropy
caused by thermal expansion [38] and the influence of the
boundaries [31].

The simpler case of k-independent TE-TM splitting may
arise due to an anisotropy present in the system such as defor-
mation due to a thermal stress [38] or difference in boundary
conditions for electric and magnetic fields at the cavity-to-
air interface [31]. Assuming a homogeneously distributed
asymmetry with the axis aligned along the radial/azimuthal
direction of the ring, for the polaritons coupled to the TE and
TM modes, the TE-TM Hamiltonian acting on the spinor wave
function (ψr (ϕ,t),ψϕ(ϕ,t))T ,

ĤTE-TM =
(−
 0

0 


)
, (A1)

where 2
 is the energy splitting for polarizations aligned along
the radial and azimuthal directions. Transforming to the basis
of circular polarizations, we get the Hamiltonian

ĤTE-TM =
(

0 
e−2iϕ


 e2iϕ 0

)
(A2)
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acting on the wave function (ψ+(ϕ,t),ψ−(ϕ,t))T . Here, ψ± =
(ψx ∓ iψy)/

√
2 are components of a spinor ψ = ψ+ê+ +

ψ−ê− in the circular polarization basis with vectors ê± =
(êx ± iêy)/

√
2. The TE-TM splitting Hamiltonian in the

form (A2) was established in work [23] to describe the
polarization splitting of an exciton-polariton condensate in a
one-dimensional ring interferometer.

The k-dependent TE-TM splitting arises due to the property
of distributed Bragg reflectors to have slightly different angular
dispersions for TE and TM polarizations [40]. This makes mi-
crocavity polaritons polarized longitudinally and transversely
to their propagation direction to acquire different dispersion
relations. In the effective mass approximation, the k-dependent
TE-TM splitting can be described by introducing two masses
mTM and mTE for polaritons polarized longitudinally (TM
mode) and transversely (TE mode) with respect to the in-plane
k vector. In a narrow ring resonator this type of TE-TM
splitting becomes effectively independent of the wave number
kϕ along the ring, as long as kr  kϕ is satisfied. Indeed,
consider an exciton-polariton condensate confined in a ring
trap of radius R and width 
R. With account of k-dependent
TE-TM and Zeeman splittings, it can be described by a
system of coupled spinor Gross-Pitaevskii equations (cf. Refs.
[27,30,39,41]):

i�
∂�+
∂t

= − �
2

2m∗ ∇2�+ + (α1|�+|2 + α2|�−|2)�+

+ 1

2
geffμBB �+ + β(∂x − i∂y)2�−

i�
∂�−
∂t

= − �
2

2m∗ ∇2�− + (α1|�−|2 + α2|�+|2)�−

− 1

2
geffμBB �− + β(∂x + i∂y)2�+, (A3)

where β = �
2(m−1

TE − m−1
TM)/4 is a parameter describing TE-

TM splitting, m∗ = 2mTEmTM/(mTE + mTM) is the effective
mass, and geff is the effective exciton-polariton g factor, μB

is the Bohr magneton, B is the applied magnetic field, and
α1 = U0 and α2 = U0 − 2U1 are parameters characterizing
polariton-polariton interactions. In the limit of a narrow ring,
we may use the adiabatic approximation and separate the radial
dependence of the wave function, �±(r,ϕ,t) = ζ (r)ψ±(ϕ,t),
where ζ (r) is the normalized ground-state wave function in the
radial direction, satisfying the stationary Schrödinger equation

�
2

2m∗

(
−∂2

r − 1

r
∂r + 1

r2

)
ζ (r) = Eζ (r).

Neglecting lower-order derivatives in r we arrive to the
following 1D model:

i�
∂ψ+
∂t

= − �
2

2m∗R2

∂2

∂ϕ2
ψ+ + (α̃1|ψ+|2 + α̃2|ψ−|2)ψ+

+ 1

2
geffμBB ψ+ + β̃e−2iϕψ−

i�
∂ψ−
∂t

= − �
2

2m∗R2

∂2

∂ϕ2
ψ− + (α̃1|ψ−|2 + α̃2|ψ+|2)ψ−

− 1

2
geffμBB ψ− + β̃e2iϕψ+ (A4)

with effective parameters α̃1, α̃2, and β̃, which are connected to
α1, α2, and β via parameters of the ring. Note that the TE-TM
splitting Hamiltonian obtained in Eq. (A4) is of the same form
as given by the k-independent TE-TM splitting (A2).

Introducing dimensionless units by rescaling the quantities
entering Eqs. (A2) and (A4) to unit energy E0 ≡ �

2/2m∗R2,
we obtain

iψ̇+ = −∂2
ϕψ+ + (|ψ+|2 + α|ψ−|2)ψ+

+�ψ+ + κe−2iϕψ−
iψ̇− = −∂2

ϕψ− + (|ψ−|2 + α|ψ+|2)ψ−

−�ψ− + κe2iϕψ+, (A5)

where α ≡ α̃2/α̃1 = α2/α1, � ≡ 1
2geffμBB/E0, and κ ≡

β̃/E0 or κ ≡ 
/E0 depending on the origin of TE-TM
splitting. The number of particles is given by N = 2πρE0/α̃1,
where ρ ≡ 1

2π

∫ 2π

0 (|ψ+|2 + |ψ−|2)dϕ. We use x for ϕ in the
main text to simplify the notation.

The early experimental and theoretical attempts [42–50] to
estimate α1 and α2 generally agree that α1 > 0 and α1 
|α2| with some works suggesting negative α2. The recent
investigations [51,52] of the ratio α2/α1 have shown that the
ratio depends significantly on the detuning δ between exciton
and photon modes and may change from very negative (smaller
than −1 for small negative δ) to positive values (for larger δ). In
our calculations throughout this paper, we use a “conservative”
estimate α = −0.05.

APPENDIX B: STABILITY ANALYSIS:
NUMERICAL CALCULATIONS

We analyze the stability of the constant-amplitude so-
lutions against the Bogoliubov-de Gennes excitations, see,
e.g., Ref. [35]. Consider a small time-dependent perturbation
ε±(x,t) around a stationary constant-amplitude solution,

φ±(x,t) = [χ± + ε±(x,t)]einx. (B1)

Substituting into (36) we get a system of linear equations on
ε±(x,t),

iε̇ = −ε′′
± − 2i(n ∓ 1)ε′

± + χ2
±(ε± + ε∗

±)

+αχ±χ∓(ε∓ + ε∗
∓) + [−μ + n2 + χ2

±

+αχ2
∓ ± (� − 2n)]ε± + κε∓ = 0. (B2)

Expanding ε±(x,t) into the Fourier series in x,

ε±(x,t) =
∞∑

l=−∞
U±,l(t)e

ilx + V ∗
±,l(t)e

−ilx , (B3)

we get a series of decoupled systems of equations parametrized
by an integer l. To analyze the stability, we solve the eigenvalue
problem

η̂HW = λW (B4)

with W = (U+,l ,V+,l ,U−,l ,V−,l),

η̂ =

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠ (B5)
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and

H =

⎛
⎜⎜⎜⎝

d+ χ2
+ αχ+χ− + κ αχ+χ−

χ2
+ d̃+ αχ+χ− αχ+χ− + κ

αχ+χ− + κ αχ+χ− d− χ2
−

αχ+χ− αχ+χ− + κ χ2
− d̃−

⎞
⎟⎟⎟⎠, (B6)

where A± and B± are given by

d± ≡ l2 + 2l(n ∓ 1) + χ2
± + [−μ + m2 + χ2

± + αχ2
∓ ± (� − 2n)], (B7)

d̃± ≡ l2 − 2l(n ∓ 1) + χ2
± + [−μ + m2 + χ2

± + αχ2
∓ ± (� − 2n)]. (B8)

The solution is spectrally unstable if there is at least one eigenvalue with a positive imaginary part Im λ > 0.

APPENDIX C: STABILITY ANALYSIS: THEORY

Consider a small time-dependent perturbation ε±(x,t) around a stationary (in general, x-dependent) solution φ±(x). For
εεε = (ε+,ε∗

+,ε−,ε∗
−)T , we get the equation

iε̇εε = L̂εεε, (C1)

where L̂ = η̂Ĥ with η̂ defined above and

Ĥ =

⎛
⎜⎜⎝

D̂+ + 2|φ+|2 + α|φ−|2 φ+φ+ αφ∗
−φ+ + κ αφ−φ+

φ∗
+φ∗

+ D̂∗
+ + 2|φ+|2 + α|φ−|2 αφ∗

−φ∗
+ αφ−φ∗

+ + κ

αφ∗
+φ− + κ αφ+φ− D̂− + 2|φ−|2 + α|φ+|2 φ−φ−
αφ∗

+φ∗
− αφ+φ∗

− + κ φ∗
−φ∗

− D̂∗
− + 2|φ−|2 + α|φ+|2

⎞
⎟⎟⎠. (C2)

Substituting εεε(x,t) = εεε(x)e−iλt to (C1), we get

L̂εεε = λεεε. (C3)

Operator L̂ has the following properties:

L̂qqq1 = 0, L̂qqq2 = qqq1, L̂L̂qqq2 = 0, (C4)

where

qqq1 =

⎛
⎜⎝

φ+
−φ∗

+
φ−

−φ∗
−

⎞
⎟⎠, qqq2 = ∂

∂μ

⎛
⎜⎝

φ+
φ∗

+
φ−
φ∗

−

⎞
⎟⎠ (C5)

are two zero modes of operator L̂2. Let us define the operator
L̂† = Ĥ η̂ conjugated to L with respect to the dot product

〈fff ,ggg〉 ≡
∫ 2π

0
fff ∗(x) · ggg(x) dx. (C6)

For L̂†, we have

L̂†QQQ1 = 0, L̂†QQQ2 = QQQ1, L̂†L̂†QQQ2 = 0, (C7)

where QQQ1,2 = η̂ qqq1,2.
Suppose φ± are calculated at κ = 0. Then there exists p1

as well,

L̂0ppp1 = 0, L̂0ppp2 = ppp1, L̂0L̂0ppp2 = 0, (C8)

where ppp1 and ppp2 are given by

ppp1 =

⎛
⎜⎝

−φ+
φ∗

+
φ−

−φ∗
−

⎞
⎟⎠, ppp2 = ∂

∂�

⎛
⎜⎝

φ+
φ∗

+
φ−
φ∗

−

⎞
⎟⎠, (C9)

and

L̂
†
0PPP 1 = 0, L̂

†
0PPP 2 = PPP 1, L̂

†
0L̂

†
0PPP 2 = 0 (C10)

with PPP 1,2 = η̂ ppp1,2.
In the case when the state is split into two branches at

κ �= 0, we use a perturbative expansion for λ, a square root of
the series in κ for an eigenvalue of operator L̂2,

L̂ = L̂0 + κL̂1 + O(κ2), (C11)

λ = κ1/2[λ0 + λ1κ + O(κ2)], (C12)

εεε = εεε0 + κ1/2εεε1 + κεεε2 + O(κ3/2). (C13)

In the first orders, we have

L̂0εεε0 = 0, (C14)

L̂0εεε1 = λ0εεε0, (C15)

L̂0εεε2 + L̂1εεε0 = λ0εεε1. (C16)

On applying L0 from the left to the last equation,

L̂2
0εεε2 + L̂0L̂1εεε0 = λ2

0εεε0, (C17)
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and forming a dot product with PPP 2, QQQ2,〈
PPP 2,L̂

2
0εεε2

〉 + 〈PPP 2,L̂0L̂1εεε0〉 = λ2
0 〈PPP 2,εεε0〉〈

QQQ2,L̂
2
0εεε2

〉 + 〈QQQ2,L̂0L̂1εεε0〉 = λ2
0 〈QQQ2,εεε0〉 , (C18)

〈PPP 1,L̂1εεε0〉 = λ2
0 〈PPP 2,εεε0〉

〈QQQ1,L̂1εεε0〉 = λ2
0 〈QQQ2,εεε0〉 . (C19)

Due to the degeneracy, we take the linear superposition

εεε0 = appp1 + bqqq1 (C20)

with constant coefficients a and b, Thus

a 〈PPP 1,L̂1ppp1〉 + b 〈PPP 1,L̂1qqq1〉
− λ2

0[a 〈PPP 2,ppp1〉 + b 〈PPP 2,qqq1〉] = 0

a 〈QQQ1,L̂1ppp1〉 + b 〈QQQ1,L̂1qqq1〉
− λ2

0[a 〈QQQ2,ppp1〉 + b 〈QQQ2,qqq1〉] = 0. (C21)

Also, as L̂(κ)qqq1(κ) = 0 for arbitrary κ , there exist q̃qq1 and
Q̃QQ1 such that L̂1q1q1q1 = L̂0q̃1q̃1q̃1 and L̂

†
1Q1Q1Q1 = L̂

†
0Q̃1Q̃1Q̃1. Therefore

〈PPP 1,L̂1qqq1〉 = 〈QQQ1,L̂0q̃qq1〉 = 0, 〈QQQ1,L̂1qqq1〉 = 〈QQQ1,L̂0q̃qq1〉 = 0,

and 〈QQQ1,L̂1ppp1〉 = 〈Q̃QQ1,L̂0ppp1〉 = 0:

a
(〈PPP 1,L̂1ppp1〉 − λ2

0 〈PPP 2,ppp1〉
) − λ2

0b 〈PPP 2,qqq1〉 = 0

aλ2
0 〈QQQ2,ppp1〉 + λ2

0b 〈QQQ2,qqq1〉 = 0. (C22)

Thus, for the two nonzero eigenvalues λ0, we have the equation

λ2
0 = 〈PPP 1,L̂1ppp1〉 〈QQQ2,qqq1〉

〈QQQ2,qqq1〉 〈PPP 2,ppp1〉 − 〈QQQ2,ppp1〉 〈PPP 2,qqq1〉 . (C23)

Evaluating ppp1,qqq1, PPP 2,QQQ2 for the TSM state 
m = 2 at κ = 0
[see Eqs. (10), (13), and (14)] we get 〈QQQ2,ppp1〉 = 0, 〈PPP 2,qqq1〉 =
0, 〈PPP 2,ppp1〉 = 4π/(1 − α), 〈QQQ2,qqq1〉 = 4π/(1 + α). Therefore,
for λ2

0, we have

λ2
0 = 〈PPP 1,L̂1ppp1〉

〈PPP 2,ppp1〉 = (1 − α)

4π
〈ppp1,Ĥ1ppp1〉 . (C24)

Operator H1 can be found by substituting the perturbative
solution for the TSM state into (C2). Evaluating (C24), we get
the formula (45).

From the system (C22), we find coefficients a and b, which
define the instability mode (C20). For the considered case, we
get b = 0 and therefore the unstable mode is ε± ∼ ±χ±einx .
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