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Theory of ballistic quantum transport in the presence of localized defects
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We present an efficient numerical approach for treating ballistic quantum transport across devices described by
tight-binding (TB) Hamiltonians designated to systems with localized potential defects. The method is based on
the wave function matching approach, Lippmann-Schwinger equation (LEQ), and the scattering matrix formalism.
We show that the number of matrix elements of the Green’s function to be evaluated for the unperturbed system
can be essentially reduced by projection of the time reversed scattering wave functions on LEQ which radically
improves the speed and lowers the memory consumption of the calculations. Our approach can be applied to
quantum devices of an arbitrary geometry and any number of degrees of freedom or leads attached. We provide
a couple of examples of possible applications of the theory, including current equilibration at the p-n junction
in graphene and scanning gate microscopy mapping of electron trajectories in the magnetic focusing experiment
on a graphene ribbon. Additionally, we provide a simple toy example of electron transport through 1D wire with
added onsite perturbation and obtain a simple formula for conductance showing that Green’s function of the
device can be obtained from the conductance versus impurity strength characteristics.
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I. INTRODUCTION

According to the Landauer approach, the phase coherent
component of conductance in nanoscale and mesoscopic
systems is determined by quantum scattering of the electron
incident from an input channel [1]. The coherent transport
problem is of a nonlocal nature, as it is determined by the
electron wave function that is defined within the entire device
with boundary conditions that are set at the ends of the sample.
Nevertheless, in a number of problems, the response of the
wave function to a local short-range perturbation is of a
central interest for characterization of the sample and its
electrical properties. To name a few examples, this is in
particular the case for short-range perturbations introduced by
the scanning techniques with a probe sweeping the surface of
the sample [2–8], for the scattering defects leading to the weak
localization [9] and weak antilocalization effects [10–12], or
for lattice defects leading to valley mixing in graphene [13].
Moreover, averaging over the coherent scatterers positions is
one of the numerical techniques to account for the decoherence
effects [14], equilibration of the currents in n-p-n junctions in
graphene [15], or investigation of Anderson localization in
graphene nanoribbons by introducing the disorder on ribbon
edge [16].

Due to a nonlocality of quantum scattering the conductance
response of the system to a local perturbation calls for solution
of the scattering problem in the entire integration domain. For
systems, in which the perturbation can be separated from the
Hamiltonian H̃ = H + V , one of the available procedures
for finding the perturbed wave function is a solution of the
Lippman-Schwinger equation [17] spanned by the solution of
the transport problem for H , the accompanied retarded Green’s
function, and the perturbation operator V . In practice for
electron transport problems the Lippman-Schwinger equation
is usually treated with the perturbation expansion [18,19]
or with iterative schemes [20,21]. In this paper we present
a method for an exact solution of the scattering problem
with the Lippman-Schwinger equation that requires evaluation
of reduced Green’s function matrix elements defined within

the region affected by the potential perturbation only. The
reduction is possible by projection of the Lippman-Schwinger
equation on the transport solutions with reversed time flow.
The present approach allows for a radical speed-up of the cal-
culations whenever various distributions of the perturbations V
for the same Hamiltonian H are needed. For illustration of the
method we present applications to scanning gate microscopy of
magnetic focusing [22] in graphene [23,24], and for evaluation
of the fractional conductance plateaux for graphene p-n
junctions [15,25,26] in the quantum Hall regime [27,28].

The paper is organized as follows. In the next section we
recall some basics and introduce necessary quantities needed
for the quantum scattering problem described within the robust
and commonly used wave function matching method [29–31].
In Sec. III we recall the tight-binding version of the Lippmann-
Schwinger equation. Next we show that by projecting the
time reversed scattering wave functions on the Lippmann-
Schwinger equation we can significantly reduce the number of
required Green’s functions elements, radically improving the
memory consumption and the speed of the algorithm. Later we
discuss two examples of application of derived formulas. In
Sec. IV we overview the established methods for calculations
of the Green’s function of unperturbed systems, starting from
knitting algorithm for arbitrary shaped devices, fast recursive
equations for bulk materials, or modular approach for creating
structures. In the last section we show the examples of
application of our method for graphene based devices.

II. THE SCATTERING APPROACH FOR UNPERTURBED
HAMILTONIAN

We start by describing the wave-function matching ap-
proach [29,30,32,33] for solving the scattering problem of
arbitrary devices that we use to solve the unperturbed problem
for operator H and that provides the elements to define the
method for treatment of the local perturbations. We assume
that the system of interest can be expressed in terms of
finite size matrices like those generated by tight-binding (TB)
problems or finite difference approaches. The whole device
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FIG. 1. (a) A sketch of a quantum scatterer described by H0

coupled to the three semi-infinite leads by self-energy matrices
�l . The electron comes from the source represented by �l source
vector. The arrows point the possible direction of the scattering
electron for this specific example. (b) Block tridiagonal partitioning
of the Hamiltonian near the leads from which �l and �l can be
computed. The green area denotes the first slice which belongs to
the isolated system—the semi-infinite lead and quantum device
interface atoms.

can be divided into two parts: the Hamiltonian of isolated
system H0 and the self-energy � term which describes
the coupling of the isolated system to the semi-infinite
channels [see Fig. 1(a)]. The total Hamiltonian is then
defined as

H = H0 + �,

where the self-energy matrix contains the contribution from
all the leads connected to the device � = �1 + · · · + �N .

In order to compute the self-energy matrix �l for each lead
l one slices the Hamiltonian H0 at the lead interface into the
block tridiagonal form [see Fig. 1(b)]

−τ i ci−1 + (EF − H0,i)ci − τ
†
i+1ci+1 = 0, (1)

where i enumerates the ith slice from the lead interface (i = 0)
and τ i is the coupling matrix between two consecutive
Hamiltonian slices H0,i and H0,i+1, and vector ci is the wave
function at slice i.

In this paper we restrict our discussion to the linear transport
regime for a small source-drain bias [1], at which the currents
are carried by the electrons at the Fermi level EF which is

common for both leads. A more general approach (i.e., nonzero
bias) requires integration of the transmission probabilities over
the energy window defined by the chemical potentials of the
source and drain electrodes [1].

Assuming that the lead is homogeneous, i.e., the Hamilto-
nian and the coupling matrices do not depend on the position i

inside the lead, we may drop the indices in Eq. (1) and obtain
the formula

−τ ci−1 + (EF − H0)ci − τ †ci+1 = 0, (2)

which can be solved numerically by applying Bloch sub-
stitution ci = λiu [30,34], where λn ≡ eikn describes the
plane wave propagation in the channel with k being a
wave vector and u a Bloch mode which spans the unit
cell. The solution of Eq. (2) leads to the set of eigenpairs
({λ1,u1},{λ2,u2}, . . . ,{λ2NL

,u2NL
}), where NL is the length

of the ci vector. Then we group {λi,ui} into NL incoming
{λm,+,um,+} or NL outgoing {λm,−,um,−} modes. Each prop-
agating mode um,± (i.e., with |λm,±| = 1) is then normalized
to carry the unit value of quantum flux [30,34]. We define
incoming/outgoing modes matrices as

U± = (u1,±, . . . ,uNL,±)

and diagonal �± matrix constructed from Bloch factors

�± =

⎛
⎜⎝

λ1,± 0
. . .

0 λNL,±

⎞
⎟⎠.

Then the incoming/outgoing Bloch matrices are defined as

F± ≡ U±�−1
± U−1

± . (3)

Description of numerically stable algorithm for calculation of
possibly ill-conditioned F± can be found in Ref. [35]. Another
approach which involves singular value decomposition (SVD)
is explained in Ref. [34]. The self-energy matrix � of a given
lead l is defined as

�l ≡ τFl,−.

A general expression for the scattering problem can be written
in terms of a large but sparse system of linear equations

(EF1 − H)� l,m = �l,m, (4)

where �l,m is the scattering wave function of electron
incoming from lead l in mode m and H = H0 + �. The source
vector �l,m is nonzero only at sites which belong to the lead l,
and it is defined as

�l,m = τ l(Fl+ − Fl−) |ul,m,+〉 . (5)

After solution of the scattering problem (4) for a given mth
incoming mode one may calculate transmission amplitudes
through other leads from

t l′
l,m = U−1

l′,−�L′
l,m, (6)

and reflection amplitudes as

r l
l,m = U−1

l,−
(
�L

l,m − ul,m,+
)
, (7)

with U l,− and U l′,− being the outgoing modes matrices
for input lead l and output leads l′, respectively [30]. The
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superscripts L′, L written by uppercase letters denote the
set of elements of vector � l,m which belong to the leads
l′ or l, respectively. We define t

l′,m′
l,m /r

l′,m′
l,m as the transmis-

sion/reflection amplitude that the electron entering the device
at lead l in mode m will leave the system at lead l′ in mode
m′. The transmission/reflection vectors are denoted as t l′

l,m

and r l′
l,m, respectively. Having computed t and r amplitudes

one calculates transport properties of the system: the electrical
conductance, the shot noise, or thermoelectric coefficients. For
instance the differential conductance g at temperature 0 K can
be computed from the Landauer-Büttiker formula

gl′
l = e2

h

∑
m,m′

∣∣t l′,m′
l,m

∣∣2
, (8)

where the sum over m and m′ runs only through propagating
modes in lead l and l′.

III. THE TRANSPORT WITH LOCALIZED DISORDER

A. The disorder matrix

We are looking for a solution of the scattering problem of
a system distorted by some potential energy operator V

H̃ = H + V , (9)

where we assume that V has the following properties:
(1) V affects only a fraction of sites (and orbitals) P

of the whole Hamiltonian H , i.e., |Vp,q | �= 0 for p,q ∈ P .
The performance and memory consumption of the numerical
method derived below highly depends on the cardinal number
of the P set and will be discussed later. We denote by V PP

reduced V matrix of size NP = n(P ) defined as [V PP ]p,q =
Vm(p),m(q), where m(p) is a function which maps from the
local indices of V PP matrix, i.e., from p,q ∈ {1,2, . . . ,NP } to
global indices m(p),m(q) ∈ P of larger V matrix.

(2) In general V PP can be dense, complex but must be
Hermitian (V = V †) in order to conserve the current in the
system. Note that the diagonal elements of the potential matrix
correspond to the on-site electrostatic potential energy, where
the off-diagonal elements correspond to hopping energies
between different sites.

(3) V does not affect the sites belonging to the leads, i.e.,
V does not change the modes in the leads.

B. Lippmann-Schwinger equation

In this section we specify the Lippmann-Schwinger equa-
tion for scattering processes and discuss its possible appli-
cation for TB systems [36]. The perturbed scattering wave
function �̃ l,m for the system described with Eq. (9) satisfies
scattering equation (4)

(EF1 − H̃)�̃ l,m = �l,m. (10)

Note that the source vector �l,m does not change, which results
from the property (3) of the potential matrix V . Without loss
of generality we express the new scattering wave function in
terms of the unperturbed one

�̃ l,m = � l,m + δ� l,m,

then using Eqs. (4) and (10) we get

(EF1 − (H + V ))(� l,m + δ� l,m) = �l,m,

(EF1 − H)δ� l,m = V (� l,m + δ� l,m). (11)

We define G = (EF1 − H)−1 as the Green’s function of the
unperturbed system. By multiplying Eq. (11) from the left by
G we obtain the Lippmann-Schwinger equation for δ� l,m

δ� l,m = GV (� l,m + δ� l,m). (12)

In order to compute the conductance gl′
l [see Eqs. (6) and (8)]

of the system with V one has to evaluate the values of �̃ l,m at

each lead l′ interface, i.e., vectors �̃
L′

l,m, thus we only need to
compute the elements of the δ�l,m vector which belong to the
given lead. The change in the wave function at site l′ is given
by

δ�l′
l,m =

∑
p,q

Gl′,pVp,q

(
�

q

l,m + δ�
q

l,m

)
.

Using the first property of the V matrix we get

δ�l′
l,m =

∑
p,q∈P

Gl′,pVp,q

(
�

q

l,m + δ�
q

l,m

)
which in the matrix notation can be written as

δ�L′
l,m = GL′P V PP

(
�P

l,m + δ�P
l,m

)
, (13)

where GL′P is the reduced Green’s matrix which couples the
elements of the lead l′ with the perturbed sites P . Similarly,
using Eq. (12) we calculate δ�P

l,m as

δ�P
l,m = GPP V PP

(
�P

l,m + δ�P
l,m

)
= (1 − GPP V PP )−1GPP V PP �P

l,m,

which substituted to Eq. (13) gives the final formula for the
change in the wave function

δ�L′
l,m = GL′P V PP (1 + (1 − GPP V PP )−1GPP V PP )�P

l,m,

= GL′P V PP (1 − GPP V PP )−1�P
l,m

≡ GL′P TPP �P
l,m, (14)

where

TPP = V PP (1 − GPP V PP )−1 (15)

is the transition matrix. Then the transmission probability
through lead l′ can be computed from Eq. (6)

t̃ l′
l,m = U−1

l′,−
(
�L′

l,m + δ�L′
l,m

)
.

Before we proceed to further simplification of Eq. (14), let
us discuss some of the numerical properties of the obtained
result. Firstly, in order to find the transmission probabilities one
has to compute the selected elements of the Green’s function
of unperturbed system G, which are needed to construct
two reduced matrices: GL′P and GPP . We will discuss this
problem in the next sections, but for now we assume that those
matrices can be computed with available algorithms. Secondly,
having GL′P and GPP one may compute conductance without
solving a large system of linear equations (4) which allows
for speed up of the calculations. The speed of the algorithm
will depend on the computational time CP needed to calculate
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the GL′P TPP matrix, time CG needed for calculation of the
reduced Green’s functions, and time CW needed for calculation
of the unperturbed wave functions. On the other hand the
computation time for the standard method is only CW since
the perturbation matrix V does not change the solution time of
Eq. (10). Hence, for a single scattering process the proposed
method is slower by ratio (CP + CG + CW)/CW. However,
when one is interested in statistical properties of current
and needs to compute conductance N times for different
V PP matrices (here we assume that the set of perturbed
sites P does not change, i.e., we can compute GL′P and
GPP once and store them in memory) the ratio becomes
(NCP + CG + CW)/(NCW) and for N → ∞ leads to CP/CW,
which in general can be an arbitrarily small number. Note that
the time CP depends only on the size of the V PP matrix, which
means that for small VPP , i.e., �1000 finding the transmission
amplitudes for a system with 106 sites may be significantly
reduced from minutes to fraction of seconds. Finally, the form
of Eq. (14) requires allocation of several dense matrices, two
of size NP × NP (GPP and V PP ) and L matrices of size
NL′ × NP (GL′P ), where NL′ is the total number of elements
in the lead l′ vector and L is the total number of leads in the
system. The value of NP can be controlled by choosing the
number of disordered sites in the system, however the NL′

depends on the device structure and can be in general very
large increasing the memory usage and the times CG, CP. We
propose then to use Eq. (14) as a starting point for a more
complicated approach discussed in the next paragraph.

C. Excluding the GL′ P terms

In this section we show that the GL′P term can be eliminated
from Eq. (14). Firstly, let us note that another matrix GPL′ can
be related with the scattering wave function at the sites P with
equation

�P
l,m = GPL�L

l,m,

where we used Eq. (4) and the sparsity of the source vector,
i.e., �

Q
l,m = 0 for Q /∈ L. Now, we look for a similar relation

for GL′P . Firstly, we note that by conjugating Hamiltonian
H0 → H∗

0 = HT
0 in Eq. (4) we obtain a scattering problem

for the particle propagating backward in time

←−
� l′,n = ←−

G
←−
� l′,n, (16)

where the symbol
←−
X ≡ X[H∗

0] denotes that variable X is
computed as usual but for conjugated Hamiltonian matrix

H∗
0,

←−
� l′,n and

←−
� l′,n are the column vectors, and the Green’s

function
←−
G is calculated as

←−
G = 1

EF1 − (H∗
0 + ←−

� )
.

Additionally, since H∗
0 = HT

0 one may prove that
←−
� = �T

which leads to the following identity
←−
G T = G. Using this

relation and transposing Eq. (16) we may write

←−
�

(T )
l′,n = ←−

�
(T )
l′,n

←−
G T = ←−

�
(T )
l′,nG,

where for clarity we denote transposition as (T ) in order
to distinguish it from other superscripts. Evaluating this

expression at sites belonging to P set we get

←−
�

P (T )
l′,n = ←−

�
L′(T )
l′,n GL′P . (17)

Let us now project the
←−
�

L′(T )
l′,n vectors on the scattering wave

function at lead l′ [see Eq. (14)]

�̃
L′

l,m − �L′
l,m = GL′P TPP �P

l,m.

Using Eq. (17) we get

←−
�

L′(T )
l′,n

(
�̃

L′

l,m − �L′
l,m

) = ←−
�

P (T )
l′,n TPP �P

l,m.

The equation above can be related with transmission
probabilities (6)

←−
�

L′(T )
l′,n U l′,−δ t l′

l,m = S
l′,n
l,m , (18)

where we define the elements of the scattering overlap
matrix Sl′

l,m

S
l′,n
l,m ≡ ←−

�
P (T )
l′,n TPP �P

l,m

and the variation in the transmission vector

δ t l′
l,m ≡ t̃ l′

l,m − t l′
l,m = U−1

l′,−
(
�̃

L′

l,m − �L′
l,m

)
. (19)

Let us now discuss the dimensions of the vectors and matrices
present in the equations above. The �P

l,m is a column vector of
length NP . We define a matrix

�P
ML

≡ (
�P

l,1,�
P
l,2, . . . ,�

P
l,ML

)
, (20)

composed from vectors �P
l,m, where the uppercase subscript

ML denotes the number of propagating modes in lead l at
given EF. Hence �P

ML
is a rectangular matrix of size NP × ML.

Similarly, for the rest of the leads l′, we define

←−
�

P (T )
ML′ ≡ (←−

� P
l′,1,

←−
� P

l′,2, . . . ,
←−
� P

l′,ML′
)T

(21)

being a matrix of size ML′ × NP . Let us now define a source
matrix for modes propagating from lead l′ backward in time

←−
�

L′(T )
ML′ ≡ (←−

� L′
l′,1,

←−
� L′

l′,2, . . . ,
←−
� L′

l′,ML′
)T

. (22)

The size of this matrix is ML′ × NL′ . Finally, the modes ma-
trices U l′,− and the transmission vectors t̃ l′

l,m have dimensions
NL′ × NL′ and NL′ × 1, respectively.

Let us note that t l′
l,m is a vector which in general can be

divided into two parts: (i) scattering amplitudes of propagating
modes and (ii) evanescent modes. Despite the fact that
the second term does not contribute to the current in the
Landauer formula the coefficients are usually nonzero and
play an important role for construction of the open boundary
conditions at leads interfaces. The structure of the t vector can
be written in general form

t l′
l,m = (

t
l′,1
l,m , . . . ,t

l′,ML′
l,m ,t

l′,ML′+1
l,m , . . . ,t

l′,NL′
l,m

)T
,

with t
l′,ML′ +1
l,m , . . . ,t

l′,NL′
l,m being the amplitudes of evanescent

modes. In the following we assume that the disorder introduced
by V PP matrix does not affect the evanescent modes at each
lead. From the above assumption the change in the scattering
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amplitudes affects the transport modes only

δ t l′
l,m = (

δt
l′,1
l,m , . . . ,δt

l′,ML′
l,m ,0, . . . ,0

)T
, (23)

≡ (
δ t̃ l′

l,m,01×NL′ −ML′
)T

, (24)

which shows that we can truncate the last NL′ − ML′ columns
of modes matrix U l′,− in Eq. (18). Let us note that the
assumption that the evanescent mode amplitudes are not
affected by the V PP matrix requires that the perturbation is
introduced at a sufficient distance from the lead within the
scattering region.

Let us then define the truncated matrix U l′,− as U trnc
l′,− which

has dimensions NL′ × ML′ and is obtained from the first ML′

columns of U l′,−. Using the definitions above we can write
Eq. (19) in the following way

←−
�

L′(T )
ML′ U trnc

l′,−δ t̃ l′
l,m = Sl′

l,m,

where the product

←−
D l′ ≡ ←−

�
L′(T )
ML′ U trnc

l′,− (25)

is now a square matrix of size ML′ × ML′ . Multiplying the
equation above by

←−
D −1

l′ from the left we get

δ t̃ l′
l,m = ←−

D −1
l′ Sl′

l,m,

from which one may compute transmission probabilities for
propagating modes

T̃
l′

l,m ≡ ∣∣ t̃ l′
l,m

∣∣2 = ∣∣t l′
l,m + ←−

D −1
l′ Sl′

l,m

∣∣2
(26)

and conductance g̃l′
l (8).

In case of the reflection amplitudes r l
l,m defined in

equation (7) we can write the perturbed ones as

r̃ l
l,m = U−1

l,−
(
�L

l,m − ul,m,+ + δ�L
l,m

) ≡ r l
l,m + δ r̃ l

l,m,

with δ r̃ l
l,m = U−1

l,−δ�L
l,m. Following exactly the same steps

as in the case of t l′
l,m we obtain δ r̃ l

l,m = ←−
D −1

l Sl
l,m, which

shows that if we redefine r l
l,m → t l

l,m then Eq. (26) defines
the reflection probabilities when l′ = l.

D. Numerical algorithm

To conclude the previous section the following algorithm
can be used to compute the scattering matrix for system with
potential matrix V :

(1) Compute and store the following matrices for system
without disorder potential [see Eq. (4)]: (a) the scattering wave
functions � l,m for selected leads and modes in those leads.
(b) the outgoing modes matrices U l′,− and t l

l,m(i.e., scattering
matrix).

(2) Compute and store the following matrices for system
with H0 → H∗

0 in Eq. (4). (a) all the scattering wave functions←−
� l′,n and (b) source vectors

←−
� L′

l′,n for time reversed problem.

(3) Compute reduced matrices �P
ML

from Eq. (20),
←−
�

P (T )
ML′

from Eq. (21),
←−
�

L′(T )
ML′ from Eq. (22), and

←−
D l′ from Eq. (25).

(4) Calculate the selected elements of the Green’s function
GPP and reduced disorder matrix V PP .

(5) Construct the transition matrix TPP from Eq. (15).

(6) Compute new scattering amplitudes t̃ l′
l,m from Eq. (26)

from which conductance (8) can be calculated.

E. Discussion

The general relation between the scattering matrix and the
transition matrix (26) can be used for any type of scattering
problem which can be described by Eq. (4), hence it is relevant
for any kind of TB systems or, e.g., Hamiltonians generated
by finite difference (or finite elements [32,37]) methods. Then
different kinds of forms of V PP can be used to simulate random
onsite potential in quantum structures (diagonal form of V PP ),
point defects in the lattice, adatoms [38–40], or modification
of existing hoping energies (off-diagonal elements). The
advantage of Eq. (26) over the basic Lippmann-Schwinger
Eq. (14) is that one reduces the number of Green’s function
elements to be computed, which for arbitrary systems can
be a memory and time consuming task. On the other hand
one has to compute all the scattering wave functions for
particle propagating backward in time

←−
� l′,n, however this can

be done efficiently with existing numerical libraries [41,42].
Additionally, for well written quantum transport solvers this
problem reduces to replacing the original Hamiltonian by its
conjugation which is a straightforward task. Additionally, in
a special case when H0 is real the relation

←−
X = X holds,

hence one does not have to compute
←−
� l′,n and other matrices

separately.

F. Weak perturbation limit

An interesting case arises when one takes the limit
GPP V PP → 0 in Eq. (15), i.e., V PP generates weak per-
turbation in the Hamiltonian

TPP = V PP (1 − GPP V PP )−1 ≈ V PP (1 − GPP V PP )

= V PP − V PP GPP V PP .

In this limit one may compute the correction to the scattering
matrix as

t̃ l′
l,m = t l′

l,m + ←−
D −1

l′
←−
�

P (T )
ML′ TPP �P

ML

≈ t l′
l,m + t l′(1)

l,m + t l′(2)
l,m ,

with the first (1) and the second (2) order corrections being

t l′(1)
l,m = ←−

D −1
l′

←−
�

P (T )
ML′ V PP �P

ML

t l′(2)
l,m = −←−

D −1
l′

←−
�

P (T )
ML′ V PP GPP V PP �P

ML
. (27)

Note that the first correction does not require the information
about Green’s function. Similar expression for the first order
correction (27) to the scattering matrix has been derived
recently [18] in the context of scanning gate microscopy
technique. The present result generalizes the ones of Ref. [18]
to the case of magnetic field, the spin degree of freedom, or any
other system that can be described within the single-electron
transport problem defined by Eq. (4).

G. 1D case

Let us discuss another example of one-dimensional quan-
tum transport with a single scattering mode in the leads.
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We show that for the case when the perturbation potential
is localized on one site P (δ-like potential) we can find simple
expression for the conductance which relates conductance g

with the Green’s function at site P .
For this case we can drop all the indices in Eq. (26) and

work only with scalar variables

t̃ = t + cP VP (1 − GPP VP )−1 (28)

with cP = ←−
D −1←−� P �P and VP being the onsite potential

affecting site P . For an infinite potential barrier VP = +∞
the scattered electron will be completely reflected, hence

lim
VP →+∞

t̃ = 0 = t − cP G−1
PP ⇒ t = cP G−1

PP .

Using this result we simplify Eq. (28)

t̃ = cP G−1
PP + cP VP

1 − GPP VP

= cP G−1
PP

1 − GPP VP

= t

1 − GPP VP

,

from which we can compute the two terminal conductance

g̃ = g
1

1 + [
{GPP }2 + �{GPP }2]V 2
P − 2VP 
{GPP } , (29)

with g being the conductance of the unperturbed system. From
the equation above we see that by adding a localized potential
at some point P to the quantum wire we can perform a scan
in function of the VP amplitude and then fit the obtained
response g̃ to Eq. (29) in order to obtain the information about
the Green’s function (real and imaginary part, i.e., LDOS) of
the device at point P . Another approach would be to calculate
numerically the first and second derivative of g̃ with respect to
perturbation strength VP

1

g

dg̃

dVP

∣∣∣∣
VP =0

= 2
{GPP }

1

g

d2g̃

dV 2
P

∣∣∣∣
VP =0

= 6
{GPP }2 − 2�{GPP }2.

Expression (29) is exact for delta-like perturbations, how-
ever it should be also valid for finite size potentials when the
effective width of perturbation is smaller than half of the Fermi
wavelength dV � λF /2. One should also note that the Eq. (28)
is valid also for any device (2D or 3D) which carries only one
transverse mode.

IV. COMPUTING THE GREEN’S FUNCTION

In this section we overview the procedures used for
evaluation of the Green’s function matrices, for a general case
(IV A), for a devices with translational symmetry (IV B), and
the combined modular approach for calculation of the Green’s
function (IV C).

A. Computing selected elements of G for arbitrary devices

One of the most challenging aspects of the derived method
is the calculation of selected elements of the Green’s function
of unperturbed system G = (EF1 − H)−1. Since H in usual
applications is a large (e.g., ∼105 − 106) and sparse matrix, its

inverse is dense and cannot be computed with direct inversion
algorithms. In order to overcome this problem various algo-
rithms were developed to compute only the necessary elements
of G instead of a whole matrix. A popular method called
recursive Green’s function (RGF) which involves the Dyson
equation developed in a number of variants is used for this
purpose, e.g., see Refs. [43–46]. Unfortunately many of those
variants are limited to a specific geometry of device [47] or
can be used only for two terminal devices or special slicing has
to be performed in order to include the effect of multiterminal
devices [48].

However, recently a variation of RGF method has been
developed which generalizes the standard approach, leading
to numerically stable knitting algorithm [49]. The knitting
algorithm can be applied to arbitrary shaped devices with
arbitrary number of leads, orbitals, etc. In general the method
of Ref. [49] can be used to compute selected elements of
the inverse of any structurally symmetric sparse matrix. For
more details about implementation, numerical scaling, or
memory usage we refer the reader to the original paper
[49]. Alternatively one may use the efficient nested dissection
approach as described recently in Ref. [50].

To summarize this section, the selected elements of the
Green’s function G can be computed with available algo-
rithms, but for general purpose it may be practical to implement
an universal algorithm from Ref. [49]. For testing purpose we
provide the source code of our implementation of the knitting
algorithm [51] written in Fortran.

B. Computing G of translational invariant devices

In this section we explain that for a special case of quantum
channels with translational symmetry (bulk materials) the
general formula for a Green’s function can be found for
any type of Hamiltonian including the topology, number of
orbitals, or dimensionality of the problem [16,31,44].

Let us recall that any translationally invariant quantum
channel generated by the TB problems can be described by
general block tridiagonal Hamiltonian EF1 − H0 [30,52] of
form

−H0i,i−1ci−1 + (EF1 − H0i,i)ci − H0i,i+1ci+1 = 0,

where ci describes the wave function at the ith slice, the
diagonal block H0,i,i is the Hamiltonian of the isolated slice,
and H0i,i−1 = H†

0i,i+1 = τ represents coupling between slices
i ∓ 1 and i. Assumed translation symmetry requires invariance
of block matrices after shift along the diagonal of H matrix

H0i+k,j+k = H0i,j ,

then if considered channel is infinite the same property is also
satisfied by Green’s function G0 = (EF1 − H0)−1

G0i+k,j+k = G0i,j , (30)

which shows that knowledge about G0i,j±k is enough to
reproduce any blocks of the Green’s function. The infinite
device can be truncated with self-energies as in Eq. (4),

� l,m = (EF1 − H)−1�l,m = G�l,m.

Let us assume that an electron enters the channel in mode
|um,−〉, from the left lead l ≡ L [i.e., an electron is injected by
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the source vector �L,m, see Eq. (5)] and at site i = 0. Then the
scattering wave function at ith slice is given by

|ci,m〉 = Gi,0�L,m = Gi,0τL(FL,+ − FL,−) |uL,m,−〉 . (31)

Since the derivation involves only the left lead, we can drop
the subscript L in all the equations below. On the other hand
we can write the exact formula for the scattering mode at slice
i (pure propagation in the bulk)

|ci,m〉 = λ−i
m,− |um,−〉 . (32)

By putting Eqs. (31) and (32) together and using the matrix
notation we get

U−�−i
− = Gi,0τ (F+ − F−)U−,

from which we obtain

Gi,0 = U−�−i
− U−1

− [τ (F+ − F−)]−1

= Fi
−[τ (F+ − F−)]−1,

where we used Eq. (3). By setting i = 0 we obtain a general
expression for the diagonal blocks of the Green’s matrix

Gk,k = G0,0 = [τ (F+ − F−)]−1, (33)

which leads to the recursive formula for right off-diagonal
elements Gi+k,k

Gi+k,k = Gi,0 = Fi
−G0,0 = F−Gi−1,0, for i � 1. (34)

For the left off-diagonal blocks we get an analogical expression

G−i,0 = G−i+k,k = Fi
+G0,0 = F+G−i+1,0, for i � 1.

(35)
The diagonal block matrix Gk,k can be directly computed from
Eq. (33). However, this can be numerically unstable since both
Bloch matrices F± and the coupling matrix τ can be in general
ill defined [34]. To overcome this problem one may find Gk,k

by using one of the RGF methods discussed in the previous
section. However, we can use the fact that in general Gk,k

does not depend on the length of the device and the smallest
possible device which can be created is 2 × 2 block matrix[

G0,0 G0,1

G1,0 G1,1

]
=

[
EF1 − (h + �L) τ †

τ EF1 − (h + �R)

]−1

,

with h = H0,1,1 being the diagonal slice of the Hamiltonian.
From this we can calculate required diagonal element G0,0 as

G0,0 = (A − B D−1C)−1,

A = EF1 − (h + �L)

B = τ † (36)

C = τ

D = EF1 − (h + �R),

which we found to be more stable than the direct calculation
from Eq. (33).

The general expression described in this section can be used
to compute the Green’s function of translationally invariant
devices like graphene ribbons, carbon nanotubes, quantum
wires, straight channels, etc. Translational symmetry of the
problem stated in Eq. (30) allows us to store just one row of
the Green’s function, hence the memory usage scales linearly

(a) (b)

FIG. 2. (a) Schematics of two uncoupled infinite channels hor-
izontal A and vertical B. (b) System B is glued to system A with
coupling matrix VAB which removes the self-energy term from the
Hamiltonian B and connects proper sites of both systems.

as (n + 1)L2, where L is the size of the G0,0 matrix and n is the
number of off-diagonal elements to be computed. The standard
approach requires n2L2 elements to be stored, therefore much
larger systems can be stored with this method. The speed of the
algorithm depends mostly on the time needed for computation
of the self-energies, two L × L matrix inversions in Eq. (36),
and n matrix-matrix multiplications defined by equations (34)
and (36). Finally, in this case one can easily compute �P

ML
(20)

and
←−
�

P (T )
ML′ (21) matrices from pure propagation as in Eq. (32).

C. Modular approach to compute Green’s function

The result derived in the previous section can be used
to construct efficiently more complicated devices built from
translational invariant blocks connected with proper cou-
pling matrix by using the Dyson equation, similarly as in
Ref. [45,53]. As an example we consider a system created from
two channels: a horizontal and a vertical one [see Fig. 2(a)].
Green’s function of separated systems can be computed from
Eqs. (34) and (35). The Hamiltonian and the Green’s function
of uncoupled systems can be written as

H0 =
[

HA 0
0 HB

]
, G0 =

[
GA 0
0 GB

]
,

with HX = EF 1 − (H0,X + �1,X + �2,X), with H0,X being
the Hamiltonian of a closed system.

We can glue both systems with Dyson equation

G = G0 + G0VABG, (37)

where the coupling matrix VAB glues selected sites of system A

and B with matrix τAB and removes the self-energy term in the
lead 1 of systems B [see Fig. 2(b)]. This procedure creates the
three terminal device. The VAB matrix can be mathematically
written as

VAB =
[

0 τ
†
AB

τAB �1,B

]
.

Having VAB and G0 one may compute selected elements
of G using the standard approach which solves the Dyson
equation (37).

Let us consider another example of two channels created
from two different materials, e.g., ferromagnetic A and
superconducting B channels or p-n junction as discussed in
the next section [see Fig. 3(a)]. Similarly as previously, we
can easily compute the Green’s function of separated channels
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(a) (b)

FIG. 3. (a) Schematic picture of two uncoupled infinite channels
describing different materials. (b) After gluing with proper coupling
matrix the systems form a quantum junction.

and then glue them together to form a quantum junction with
proper coupling matrix which removes the self-energies in lead
2 of channel A and lead 1 of channel B [see Fig. 3(b)]

VAB =
[
�2,A τ

†
AB

τAB �1,B

]
. (38)

V. APPLICATION TO GRAPHENE

Graphene and its transport properties [54] have been under
an intense investigation for over a decade. The crystal structure
with two nonequivalent triangular sublattices produces a
gapless energy band structure with carriers that behave as
massless Dirac fermions near the charge neutrality point. The
presence of two sublattices and the resulting two nonequivalent
Dirac points (K and K ′ valleys) forming a symmetric couple
under the time inversion leads in particular to the suppression
of the backscattering of chiral carriers by long-range potentials
[55] and to half plateaux of conductance in the quantum Hall
regime [56–59].

A. Current equilibration in graphene p-n junction

In graphene the regions of hole or electron conductivity
are induced by external gates, with formation of the n-p
junction in the intrinsic material of homogeneous chemical
composition. The n-p junction is transparent for electrons
incident normally [60] to the junction (Klein tunneling), and a
strong angular dependence of the transfer probability was used
for construction of the Fabry-Pérot interference in the n-p-n
junctions [61,62]. However, in the quantum Hall regime, in
high magnetic fields, the n-p junctions serve as waveguides
for the charge currents [27,28]. The current confinement at the
junction can be classically understood as due to the Lorentz
force that acts in opposite directions for the carriers of the
conduction and valence bands. The carriers move along the
junction on snake orbits [63–67].

The values of conductance plateaux of the n-p junctions in
the quantum Hall regime can be derived from the assumption
of current equilibration, i.e., mixing of the modes at the
contact between the edge and the n-p junction [27,68]. The
mixing is a noncoherent process and its simulation requires
an account taken for dephasing. One of the procedures [15]
uses averaging the conductance through junction over Nsamp

different configurations of random on-site potential introduced
on p-n interface, i.e., atoms which belong to the green areas in
Fig. 4(a). We set the nearest neighbor carbon-carbon hopping
energy to 2.7 eV. The potential energy in p region is tuned by
external gate VLG. The number of carbon atoms in the lead
cell (see green areas in Fig. 4) is set to 426 which gives a
ribbon of width ∼450 Å for zigzag edge. The total number of

p-region n-region

(a) (b)

FIG. 4. (a) Sketch of two infinite systems which define p and n

parts of the graphene p-n junction. Two systems are then glued with
coupling matrix Vpn. (b) The p-n junction after gluing process. The
green areas denote the lead unit cells.

atoms in the whole structure is 17 466 with total length ∼50 Å.
Note that for this case the size of the Gint is 2 × 426 = 852.
The magnetic field is set to 67 T at which the quantum Hall
effect appears. The on-site energy is uniformly distributed in
range [−W/2,W/2] with the disorder strength W = 10 eV.
Additionally, for each configuration we choose randomly 105
of all interface atoms to be affected by on-site energy.

Green’s function of the graphene p-n junction can be
constructed by gluing two infinite systems together. The
schematics of the gluing process is depicted in Fig. 4(a).
Numerically, the Green’s function of each separated system
is calculated with efficient recursive formulas (34) and (35)
and the coupling matrix Vpn defined in Eq. (38) removes the
self-energy matrices and adds hoppings between carbon atoms
at the p-n interface [see black segments in Fig. 4(a)]. Then the
Green’s function matrix Gint of atoms at the p-n interface can
be computed directly from Dyson equation

Gint = (
1 − G0

pnVpn
)−1

G0
pn,

where

Gint =
(

Gpp Gpn

Gnp Gnn

)
,

G0
pn =

(
Gp 0
0 Gn

)
.

For this configuration the method described above allows
for a speedup by a factor of ∼50 in comparison to the
standard WFM method [29,30]. The averaged conductance
for Nsamp = 10 000 and a clean p-n junction is depicted in
Figs. 5(a) and 5(b). This can be compared with Fig. 5(c)
obtained from analytical model for fully equilibrated currents

1.0 0.5 0.0 0.5 1.0
V [eV]

0.6

0.4

0.2

0.0

0.2

0.4

0.6

E
[e

V]

(a)Nsamp =50000

1.0 0.5 0.0 0.5 1.0
V [eV]

(b) Clean

1.0 0.5 0.0 0.5 1.0
V [eV]

(c) Model G 

1

10

20

30

p-n
n-p

n'-n

p'-p

FIG. 5. (a) Averaged conductance as a function of Fermi level
energy and potential energy VLG in the p region obtained for Nsamp =
10 000 random configuration of on-site disorder at p-n junction
interface. (b) Same as (a) but for clean junction (no averaging).
(c) Analytical prediction adapted from Ref. [27].
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EF [eV]
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G
 [
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1.0 0.5 0.0 0.5 1.0
VLG [eV]

1
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5

6 p-n
n-p

p-np-n

FIG. 6. The cross sections along vertical (a) and horizontal (b)
lines in Fig. 5(a). The black dashed lines on each plot show the
analytical prediction for fully equilibrated currents [Fig. 5(c)]. Thick
color lines correspond to averaged conductance from Fig. 5(a).
Dashed color lines correspond to the conductance of clean p-n
junction from Fig. 5(b).

[27]. The letters in Fig. 5(c) denote the different working
regimes.

For unipolar regions (n′-n and p′-p in Fig. 5) we obtain
the same conductance values with or without averaging
which agree with the analytical value of G = e2

h
min(ν1,ν2)

[27], where ν1 and ν2 are the Landau level filling factors
(ν1,ν2 = ±2,±6,±10) for the two parts of the gated ribbon.
In these conditions the conductance equals the maximal
number of conducting modes for the edge transport which
resists backscattering. For the parameters corresponding to
the n-p junction the conductance plateau is given by [27]
G = e2

h

|ν1||ν2|
|ν1|+|ν2| = 1,3/2,3, . . . . For the adopted parameters

of the random potential only the first two lowest values
are resolved as plateaux (see Fig. 6). The applied method
[15] requires optimization of the random disorder parameters
for each subsequent conductance plateaux. Note that also in
the experiment the conductance plateaux at the n-p charge
configuration are less precisely defined than in the unipolar
regime—see left-hand side of Figs. 3(c) and 3(d) of Ref. [28].

B. Magnetic focusing in graphene

The mean free path of the carriers in graphene reaches
several microns at low temperatures. When an external
magnetic field is applied perpendicular to the graphene plane
the electrons move on cyclotron orbits that can be resolved with
the scanning gate microscopy technique (SGM) [23,24,69]. In
the SGM measurements the conductance maps are gathered as
functions of the position of the atomic force microscope tip that
acts as a floating gate. The numerical method described above
is a high-performance tool for evaluation of the conductance
maps since (i) the potential of the tip is short range due to
screening the potential of the floating gate by the electron gas,
and (ii) for evaluation of the conductance map one needs to
solve the quantum scattering problem for each location of the
tip.

The considered device is built from a large electron
reservoir A (see Fig. 7) connected to two smaller leads,
the source L1 and the drain L2 lead (similarly as in the
example in Sec. IV C). The Green’s function of system A

is calculated from recursive formulas (34) and (35) and the
Green’s functions at the interface of attached leads L1 and L2

are computed with the knitting method [49]. We define the
unperturbed system as the one constructed from three areas:

A

L1 L2

(xtip,ytip)

d

FIG. 7. The sketch of the magnetic focusing device. The large
reservoir A is built from 191 000 atoms and is connected with two
smaller vertical leads L1/2 with coupling matrices VmL1/2,A separated

by distance d = 320 Å. The blue disk shows the SGM tip influence
radius. Only the atoms below the blue area are affected by the SGM
potential.

A and the leads L1/2 but without mutual coupling between
them. Then the Green’s function is constructed from the Dyson
equation. However, in that case the disorder matrix VPP results
from (a) the SGM tip potential which is modeled as a smooth
disk of radius dtip = 13 Å with expression

Vtip(r) = Utipe
−(

|r−rtip |
dtip

)8

,

where the center of the tip is located at rtip and Utip =
4 eV and (b) the coupling between leads L1/2 interface
sites and A atoms (see black segments in Fig. 7). For each
position of the tip we list all the atoms for which condition
Vtip(ratom) > 10−3 eV is satisfied, resulting in about 300 atoms
on average. The coupling between L1/2 and A is introduced
at 120 atoms for both leads. Hence, the full coupling matrix
VPP and the reduced Green’s function matrices are of size
about 420 × 420. In our simulations the A system is build
from 191 000 carbon atoms (with 764 atoms in lead unit cell)
and the small leads L1/2 contains 2970 atoms (with 60 atoms
in lead cell) separately. The distance d between the vertical
leads is set to 320 Å. The width and the length of the A ribbon
are 470 Å and 1060 Å, respectively. The Fermi energy EF is
set to 0.5 eV. For this set of parameters we obtain the speedup
∼15 in comparison to the standard method.

In Fig. 8 we show the conductance between the source
and drain leads as a function of magnetic field amplitude.
The conductance is calculated with a standard method and
the higher conductance means a higher probability that the
electron will get from lead L1 to L2. Three peaks are clearly
visible for B = 27, 54, 81 T.

0 17 33 50 67 83 100
B [T]

0

2

4

FIG. 8. Conductance between vertical leads as a function of
magnetic field amplitude. The insets indicate the trajectories behind
the conductance peaks.
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FIG. 9. (a) The scattering electron density for electron incoming
from lead L1 at B = 27 T. The black dashed line shows the SGM
scan area. (b) Simulated SGM image for the case from (a). Dashed arc
corresponds to the classical cyclotron orbit. (c),(d) same as (a),(b) but
obtained for B = 40 T. The electron densities of (a),(c) are calculated
from direct solution of the scattering problem and the SGM map with
the method introduced in this paper.

For EF = 0.5 eV and VF = 106 m/s, the electron density is

n = E2
F

π(hVF )2 = 18.31 × 1012/cm2, and the dynamical electron

mass [23] equals m∗ = �
√

πn/VF = 0.087m0. Then, the
cyclotron diameter is equal to dc = 2m∗VF /eB = 1000nmT

B
. For

the values of B corresponding to the first conductance peak the
cyclotron radius is equal to 37.5 nm, which agrees well with
the distance between the axis of the vertical leads L1 and L2

that equals 38 nm. We conclude that the peaks correspond to
integer multiples of cyclotron diameters. For magnetic fields
B < 0 the current is deflected towards the left and hence the
current quickly drops to zero.

In Fig. 9(a) we show the scattering electron density obtained
for B = 27.5 T (i.e., the first peak of the conductance in Fig. 8)
calculated as

∑
m |� l1,m|2 for the unperturbed system by a

direct solution of scattering problem using standard method
WFM, i.e., obtained for fully glued system. The skipping orbits
are clearly seen in the density plot. In Fig. 9(b) we show the
SGM image calculated with the method of the present paper
which can be compared with the experimental results given in
Fig. 3(b) of Ref. [23]. Note, in Fig. 9(b) the scattering problem
needs to be recalculated for each position of the SGM tip.
The theoretical result of Fig. 9(a) reproduces the reduced
value of conductance when the tip is above the cyclotron
orbit and thus prevents the electrons from passing from L1

to L2. Moreover, the present result reproduces the region of
increased conductance when the tip is above the cyclotron
orbit, and when it scatters the electrons to L2, and next a
ring of reduced conductance, exactly as observed in Fig. 3(b)
of Ref. [23]. To our knowledge the present result is the first
simulation of the magnetic focusing experiment of Ref. [23]
that is based on the solution of the quantum scattering problem
(Ref. [23] used a classical picture for the interpretation). For
completeness in Figs. 9(c) and 9(d) we show the electron
density at a minimum of the conductance (B = 40 T) with
the simulated SGM image. Formation of a skipping orbit is

observed, but with the size that does not coincide with the
distance between the feeding and drain contacts.

VI. CONCLUSIONS

To summarize, we have shown that by projecting the time
reversed scattering wave function onto Lippmann-Schwinger
equation we may significantly reduce the number of Green’s
function elements needed for computation of the scattering
matrix of arbitrary TB systems in the ballistic transport
approximation.

We have studied the weak perturbation regime for which
we have shown that the first correction to the conductance
does not depend on the Green’s function of the unperturbed
system which resembles the existing formulas obtained from
analytical models. In the case of the one-dimensional wire
with delta-like impurity we have shown that the diagonal
element of the Green’s function (i.e., local density of states)
at the perturbation site can be extracted from conductance
versus impurity strength characteristic. Additionally, we have
discussed the possible applications of our method for (a)
current equilibration at the graphene p-n junction interface,
obtaining fractional conductance steps similar to those found in
the experiment [28], (b) simulation of imaging of the cyclotron
orbits in magnetic focusing experiment with good agreement
with Ref. [23]. For both cases we have obtained significant
speedup in comparison to the standard wave function matching
method.
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APPENDIX

Note on stable calculation of scattering amplitudes

After solution of the scattering problem one has to cal-
culate scattering amplitudes from Eqs. (6) and (7) which
involves inversion of possibly ill-conditioned U l,− matrix [34].
However, one may note that we do not need to calculate
the whole tl

′
l,m and rl′

l,m vectors, but only those elements
which correspond to the propagating modes, i.e., tl

′
l,m =

(t l
′,1

l,m , . . . ,t
l′,M
l,m ,t

l′,M+1
l,m , . . . ,t

l′,NL′
l,m ), with M being the number

of propagating modes in the lead l′. In order to calculate the
first M elements of vector tl

′
l,m (the procedure for rl′

l,m is the
same) we apply QL factorization of U l′,− matrix

U l′,− = QL, (A1)

115406-10



THEORY OF BALLISTIC QUANTUM TRANSPORT IN THE . . . PHYSICAL REVIEW B 94, 115406 (2016)

with Q being an unitary matrix, and L a lower triangular
matrix. The QL factorization can be done even if U l′,− is
noninvertible. Now, we can use the fact that Q can be easily
inverted (Q−1 = Q†) and L is a triangular matrix to solve
Eq. (6). However, there is no reason for the first M × M top-left
block of the L matrix to be well conditioned, and the algorithm
may lead to numerical errors. To avoid this problem we have
found that performing QL factorization of transformed matrix

U †
SVDU l′,− = Q′L′, (A2)

instead of (A1), leads to well ordered triangular matrix L′,
where U l′,− = USVDSSVDV †

SVD is the definition of SVD [34]
and SSVD is a diagonal matrix, whose diagonal elements
SSVD,k are the singular values which are positive, real, and
ordered in the descending order. From Eq. (A2) we have
U l′,− = USVD Q′L′ which we put to Eq. (6) to get

L′tl
′
l,m = Q′†U †

SVD�L′
l,m ≡ dm.

Since L′ is a lower triangular matrix we may easily calculate
first Mth elements with simple recursion without explicit
inversion of the full L′ matrix

t
l′,k
l,m =

(
dm,k −

k−1∑
i=1

L
′
k,i t

l′,i
l,m

)/
L′

k,k.

We find this approach to be more accurate in comparison to
direct inversion of U l′,− which in general can be noninvertible.
The reason of the improved stability of Eq. (A2) comes from
the property of the SVD which order the singular values
of the U l′,− matrix in descending order, hence the first M

rows and columns of U†
SVDU l′,− = SSVDV †

SVD matrix contain
a contribution of nonsingular values leading to a more stable
algorithm.

[1] S. Datta, Electronic Transport in Mesoscopic Systems (Cam-
bridge University Press, Cambridge, 1995).

[2] H. Sellier, B. Hackens, M. G. Pala, F. Martins, S. Baltazar, X.
Wallart, L. Desplanque, V. Bayot, and S. Huant, Semicond. Sci.
Technol. 26, 064008 (2011).

[3] D. K. Ferry, A. M. Burke, R. Akis, R. Brunner, T. E. Day, R.
Meisels, F. Kuchar, J. P. Bird, and B. R. Bennett, Sem. Sci. Tech.
26, 043001 (2011).

[4] M. A. Topinka, B. J. LeRoy, S. E. J. Shaw, E. J. Heller, R. M.
Westervelt, K. D. Maranowski, and A. C. Gossard, Science 289,
2323 (2000).

[5] M. A. Topinka, B. J. LeRoy, R. M. Westervelt, S. E. J. Shaw, R.
Fleischmann, E. J. Heller, K. D. Maranowski, and A. C. Gossard,
Nature (London) 410, 183 (2001).

[6] A. A. Kozikov, R. Steinacher, C. Rössler, T. Ihn, K. Ensslin, C.
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[51] K. Kolasiński, our simple Knitting algorithm source code can

be found at https://gitlab.com/kmkolasinski/knitinv.
[52] P. A. Khomyakov, G. Brocks, V. Karpan, M. Zwierzycki, and

P. J. Kelly, Phys. Rev. B 72, 035450 (2005).
[53] F. Sols, M. Macucci, U. Ravaioli, and K. Hess, J. Appl. Phys.

66, 3892 (1989).

[54] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S.
Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109
(2009).

[55] T. Ando, J. Phys. Soc. Jpn. 74, 777 (2005).
[56] K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L.

Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and
A. K. Geim, Science 315, 1379 (2007).

[57] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.
Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov,
Nature (London) 438, 197 (2005).

[58] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature (London)
438, 201 (2005).

[59] V. P. Gusynin and S. G. Sharapov, Phys. Rev. Lett. 95, 146801
(2005).

[60] M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nat. Phys.
2, 620 (2006).

[61] A. V. Shytov, M. S. Rudner, and L. S. Levitov, Phys. Rev. Lett.
101, 156804 (2008).

[62] A. F. Young and P. Kim, Nat. Phys. 5, 222 (2009).
[63] P. Carmier, C. Lewenkopf, and D. Ullmo, Phys. Rev. B 81,

241406 (2010).
[64] J. R. Williams and C. M. Marcus, Phys. Rev. Lett. 107, 046602

(2011).
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