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Josephson junctions are the most prominent nondissipative and at the same time nonlinear elements in
superconducting circuits allowing Cooper pairs to tunnel coherently between two superconductors separated by a
tunneling barrier. Due to this, physical systems involving Josephson junctions show highly complex behavior and
interesting novel phenomena. Here, we consider an infinite one-dimensional chain of superconducting islands
where neighboring islands are coupled by capacitances. We study the effect of Josephson junctions shunting each
island to a common ground superconductor. We treat the system in the regime where the Josephson energy exceeds
the capacitive coupling between the islands. For the case of two offset charges on two distinct islands, we calculate
the interaction energy of these charges mediated by quantum phase slips due to the Josephson nonlinearities.
We treat the phase slips in an instanton approximation and map the problem onto a classical partition function
of interacting particles. Using the Mayer cluster expansion, we find that the interaction potential of the offset
charges decays with a universal inverse-square power-law behavior.
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I. INTRODUCTION

In a circuit of capacitively coupled metallic islands, static
screening describes the redistribution of polarization charges
on the capacitive plates of the islands in response to a static
offset charge on one of the islands. The resulting voltages
are determined by a (screened) Poisson equation. The way in
which the solution decays with the distance from the offset
charge depends on the effective circuit dimensionality. In
one-dimensional networks, the polarization charge generically
is constant up to the screening length and then follows a
purely exponential decay. For metallic islands coupled by
capacitances C, the screening length

√
2C/Cg is determined

by the ratio of C to the capacitances Cg of the islands to
ground [1].

Josephson junctions in superconducting circuits add an
interesting twist to the screening of static offset charge config-
urations. Conventional, linear inductances coupling two metal
grains are normally not of interest since they invalidate the
notion of islands with well-defined offset charges. In contrast,
nonlinear Josephson inductances only allow tunneling of
single Cooper pairs such that offset charge cannot simply
flow off an island contacted by a junction. While Josephson
junctions formally leave charge quantization on the islands
intact, charge quantization effects are effectively weakened by
large quantum fluctuations of the charge when the charging
energy EC of the islands is much smaller than the Josephson
energy EJ . This gives rise to what we will in the following
refer to as nonlinear screening, an effect that has been exploited
very successfully in the transmon qubit [2].

In the regime of dominating Josephson energy, the dy-
namics of a single junction is dominated by quantum phase
slips corresponding to tunneling of the superconducting phase
difference by 2π . For one-dimensional chains of Josephson
junctions coupling the islands, the effects of phase slips have
been extensively studied theoretically both in infinite [3–5] and
finite [6–9] networks in the past. There has also been consider-
able effort in studying these systems experimentally [10–12].

Although many junctions are present in these systems, the
junctions are not strongly coupled such that the dynamics are
dominated by independent phase-slip events of the individual
junctions and interactions do not play a crucial role.

While the nonlinear screening affected by a single Joseph-
son junction as in the transmon is well studied, the screening
properties of systems of many junctions that are strongly
coupled have not been investigated to the best of our
knowledge. Motivated by the efficient screening of a single
transmon, we therefore study a one-dimensional system of
transmons that are strongly coupled by large capacitances C

(see Fig. 1). This corresponds to a system of superconducting
islands that are coupled by capacitances C and shunted to
ground by a Josephson junction with Josephson energy EJ

and associated capacitance Cg . We are interested in a regime
of nonlinear screening dominated by the Josephson junctions
which corresponds to a very small capacitance Cg to ground
with associated large (linear) screening length

√
2C/Cg . Phase

slips dominate when the Josephson energy EJ is much larger
than the energy EC = e2/2C associated with a nonzero voltage
with respect to the ground on a single island. We will show
below that the nonlinear screening due to the Josephson
junctions leads to a universal power-law decay of the electron-
electron interaction with power two. This implies a power-law
decay of the polarization charge markedly different from the
conventional exponential decay obtained for static screening
due to capacitances.

The outline of the paper is as follows. In Sec. II, we
introduce the problem and its corresponding imaginary-time
partition function in the path-integral formulation. We discuss
the dilute instanton-gas approximation in Sec. III and introduce
the equal-time action that is accumulated when slips of the
island phases by 2π occur simultaneously on different islands
in Sec. IV. In Sec. V, we use the equal-time action to compute
the action of an arbitrary tunneling path of the island phases.
The corresponding partition function maps onto a classical
(interacting) partition function which we compute using a
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FIG. 1. In (a) we show a conventional one-dimensional infinite
chain of capacitors with capacitance C. Each island is connected to
the ground by a capacitance Cg . There is a fixed bias charge q0 on a
single island, inducing charges on the neighboring capacitor plates.
However, due to the ground capacitances there is an exponential
screening of this charge along the chain. At each island a fraction of
the induced charge is stored on the ground capacitance so that the
charge on the coupling capacitances C decays exponentially with the
distance to the original bias charge. The system in (b) is similar to
the system in (a) with a Josephson junction (Josephson energy EJ )
providing an additional shunt to the ground. Induced charges can now
also be screened by tunneling through the Josephson junction, giving
rise to a novel nonlinear screening behavior.

Mayer expansion. We use these results in Sec. VI to compute
the ground state energy. We discuss the consequences for
charge screening in Sec. VII and conclude with a short
discussion of our results.

II. SETUP AND MODEL

The system of interest is shown in Fig. 1(b). We analyze an
infinite one-dimensional chain of superconducting islands with
the superconducting phase ϕj on the j th island. The islands
are coupled by capacitances C and connected to the ground
by a Josephson junction with Josephson energy EJ and a
capacitance Cg in parallel. This gives charges the possibility to
tunnel on and off the island, changing the screening behavior of
the chain. We treat the problem within the quantum statistical
path integral approach to calculate the partition function Z of
the system. As the phase variables of the islands are compact
and defined only on the circle [0,2π ) it is useful to introduce the
winding number nj ∈ Z for the j th island. With this, we can
split the path integral for each phase ϕj into sectors containing
paths that wind nj times around the circle. For the full partition
function, we have to sum over all closed paths corresponding
to all possible winding numbers. Additionally, we have to
integrate over the starting positions φj . Hence, the partition
function is given by

Z =
∏
j

⎛
⎝∑

nj

∫ 2π

0
dφj

∫ ϕf =φj +2πnj

ϕj =φj

D[ϕj ]

⎞
⎠e−S/�, (1)

where we have introduced the Euclidean action S =∫ β

0 dτ (LC + Lq) with the inverse temperature β = �/kBT .
The Lagrangian LC corresponding to the circuit without bias
charges is given by

LC =
∞∑

j=−∞

{
�

2

16ECg

ϕ̇2
j + �

2

16EC

(ϕ̇j+1 − ϕ̇j )2

− EJ [1 − cos(ϕj )]

}
, (2)

where ϕ̇i = dϕi/dτ . The first term in the sum describes
the capacitive coupling to the ground, the second term the
coupling between the islands, and the last term the Josephson
junctions with Josephson energy EJ connecting the islands to
the ground. The energy scales of the capactive terms are given
by ECg

= e2/2Cg and EC = e2/2C. To study the screening
effect of the system in the presence of bias charges on selected
islands, we need the additional Lagrangian

Lq =
∞∑

j=−∞

i�

2e
qj ϕ̇j (3)

which implements the bias charges qj on the j th island. This
term is special for two reasons: On one hand, it is a total time
derivative and thus does not enter the classical equations of
motion. On the other hand, it is imaginary so that it only adds
a phase to the partition function underlining its nonclassicality.

From the free energy F = −� log(Z)/β, we can calculate
the ground state energy E of the system by applying the low
temperature limit

E = lim
β→∞

F. (4)

The aim of this work is to calculate this ground state energy as
a function of two bias charges and use it to gain information
about the screening behavior of the chain.

III. PARTITION FUNCTION

We are in particular interested in the regime where
EC � EJ � ECg

so that the conventional capacitance to the
ground Cg is very small and the Josephson junctions are
mainly responsible for any charge screening on the islands.
From the fact that EJ /EC � 1, we know that the ground state
of the system will be well localized in the phase variables
ϕj . Therefore, the main contributions in (1) are due to paths
starting and ending in the minimum of the cosine potentials.
As we are only interested in exponential accuracy for the
calculation of the ground state energy with (4), we can set
φj = 0 and omit the integral over φj . We are left with the
evaluation of

Z0 =
∏
j

⎛
⎝∑

nj

∫ ϕf =2πnj

ϕj =0
D[ϕj ]

⎞
⎠e−SC/�+iπn·q/e. (5)

Here, the action SC is SC = ∫ β

0 dτ LC and we have already
carried out the time integral over the term∫ β

0
dτ Lq = i�

2e

∑
j

qj

∫ β

0
dτ ϕ̇j = i�π

e
n · q (6)
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FIG. 2. A possible saddle-point solution of the equations of
motion for a single island with phase variable ϕ. Every step (phase
slip) in the curve is described by an instanton particle localized in
time. The action corresponding to such a path can be approximated
by the action of a single phase slip times the number of total phase
slips. This is possible because the constant parts of the steps do not
contribute to the action.

due to the bias charges. The vector n with components nj

encodes the winding sector and q with components qj is the
vector of bias charges. As we are analyzing a regime where
the phases are good variables, fluctuations around the classical
paths defined by the solutions of the Euler-Lagrange equations
(corresponding to LC) are small. Hence, we apply an instanton
approximation where we replace the path integral by a sum
over all classical solutions, while quantum fluctuations around
the classical paths play just a subdominant role. In general, the
main contributions to these fluctuations arise from Gaussian
integration of the action expanded to second order around
the classical paths. We assume that the fluctuations can be
factorized so that they simply renormalize the bare parameters.
This amounts to introducing the weight prefactor K(n,ϕcl),
accounting for the fluctuations. By summing over all saddle-
point solutions of the Euler Lagrange equations {ϕcl(n)}, the
partition function in the instanton approximation reads

Z0 =
∑

n

∑
{ϕcl(n)}

K(n,ϕcl)e
−Scl[ϕcl]/�+iπn·q/e, (7)

where Scl[ϕcl] is the action corresponding to the classical
path ϕcl(n). An example of such a simple path for just a
single island (only one nj is different from 0) is shown in
Fig. 2. The fact that we analyze the semiclassical regime
where the phase is well localized allows one to use the dilute
instanton gas approximation. The approximation holds as the
phase-slip rate is so small that the phase slips (instantons)
are well separated from each other, i.e., there is at most a
single phase slip present within the duration τ0 = �/

√
EJ EC

of a single phase-slip process. Thus, the classical paths consist
of almost instantaneous individual phase slips that are well
separated in (imaginary) time. These phase slips are centered
at their occurrence times τj for the j th phase slip. In between
the phase slips, the phase stays constant. In that way, we treat
paths with more than a single phase slip at the same island as
independent phase slips, i.e., there is no temporal interaction
between the instantons. As a consequence the total action
is simply the sum of individual instanton contributions [13].

However, simultaneous phase slips at different islands cannot
be treated independently because they are subject to a spatial
interaction due to the coupling between the islands. Therefore,
this case needs special treatment that we deal with in the next
section.

In principle, we also have to calculate the prefactor K(n)
due to the fluctuations around the classical action. These
fluctuations are not important when it comes to exponential
accuracy. However, due to time translation invariance, in the
single instanton sector, the second-order integration for the
fluctuations additionally contains an integration of a zero
mode, corresponding to a simple shift of the full instanton
solution in time. We separate the prefactor K(n) = K̃(n)β
into a factor K̃(n) containing the real fluctuations on one
side and the imaginary time interval β resulting from the zero
mode integration on the other side. Thus, every contribution
is weighted by the fluctuations K̃(n) and the length of the
time interval β in which we consider the evolution of the
system. For a single instanton on a single island, which
is a noninteracting problem, it is known that K̃ � 1/τ0

(compare, e.g., to Refs. [2,6,10]). However, as the precision
of this prefactor is not as important as the precision for the
exponentiated instanton action, we assume the single instanton
value 1/τ0 to be sufficient even for the interacting problem
with many simultaneous instantons at different islands [14].
This approximation is appropriate because the terms become
smaller with the number of instantons such that in the end
only prefactors K̃ with a moderate amount of instantons are
relevant.

IV. EQUAL-TIME ACTION

Considering a single island with a single phase variable,
the dilute instanton gas approximation allows one to treat
the different phase slips (in imaginary time) independently.
However, in our problem we have many interacting phase
degrees of freedom (in space) rendering the situation more in-
volved. Therefore, in this section, we determine the irreducible
equal-time action SET including the simultaneous phase-slip
processes explicitly. For a proper definition of the equal-time
action, we use the fact that within a time interval of size τ0

there can be at most a single phase slip per island. Together
with the diluteness of the instanton gas, it is convenient to
define the equal-time action as the action picked up by the
total system in a time window τ0 around a given time τ ∗. In
this context it is useful to imagine the (imaginary) time to be
discrete with a temporal lattice constant τ0. Figure 3 illustrates
an example configuration on such a lattice. For the calculation
of SET at the time τ ∗, we only need the information which of the
phases execute an (anti-)phase slip. Later on, we will employ
the equal-time action in the limit of short instanton processes
τ0 → 0, which applies in our regime of interest, to construct the
full action by adding the different contributions independently
in accordance with the dilute gas approximation.

In principle, for the explicit calculation of SET at time τ ∗, we
need to extract the part of the classical paths matching the time
window of size τ0 around τ ∗ and insert this into the Lagrangian.
However, as the phase slips are almost instantaneous, we are
only interested whether a particular island j exhibits a phase
slip (n∗

j = 1), an antiphase slip (n∗
j = −1), or no phase slip
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FIG. 3. Example configuration of the system where we have
sliced the time dimension into a lattice to better visualize the
finite time an instanton process needs. The arrows pointing up
correspond to instantons, while the arrows pointing down correspond
to anti-instantons. (Anti-)instantons occurring at the same time are
subject to a spatial interaction (here marked by the same gray scale)
and add a contribution to the full action given by their equal-time
action. For the full partition function, we need to sum over all possible
configurations. To that end, we consider each phase slip event at an
island as a particle with the island position, occurrence time, and
instanton type as generalized coordinates. In this picture, evaluating
the full partition function corresponds to calculating the the classical
grand-canonical partition function of the particles.

(n∗
j = 0) at time τ ∗. Moreover, since the system does not pick

up any action as long as the phases are constant, we can extend
the time integration from minus infinity to plus infinity as
the phases are only nonconstant for the short time interval τ0

around τ ∗. This yields SET = ∫ ∞
−∞dτ LC1(τ ), where LC1 is the

circuit Lagrangian with the classical solution for a single phase
slip per phase inserted. The boundary conditions are provided
by

ϕj (τ ) = 2π

{
m∗

j , τ < τ ∗ − τ0/2,

m∗
j + n∗

j , τ > τ ∗ + τ0/2.
(8)

Here, the discrete variable m∗
j ∈ Z contains the information

about the phase before the time interval of size τ0 around τ ∗.
The task is the calculation of the classical action for

an interacting nonlinear system that in general cannot be
carried out exactly. Therefore, we introduce an approximation
to the nonlinear Josephson cosine potential by replacing it
by a periodic parabolic potential called the Villain approxi-
mation [15], i.e., 1 − cos(ϕj ) ≈ minmj

(ϕj − 2πmj )2/2 with
mj ∈ Z. Taking the minimum with respect to the discrete
variable mj corresponds to taking the phases modulo 2π . In
the case of no phase slip with n∗

j = 0 this means mj = m∗
j

independent of the time. However, in the case of n∗
j = ±1 we

have mj = m∗
j for τ < τ ∗ and mj = m∗

j + n∗
j for τ > τ ∗. This

can be summarized for all cases as

mj (τ ) = m∗
j + n∗

j�(τ − τ ∗), (9)

where �(τ ) is the Heaviside theta function. With the Euler-
Lagrange equations for the Villain potential, it is straightfor-
ward to show that the Lagrangian LC1 is mirror symmetric
with respect to the time τ ∗. Thus it is sufficient to calculate

the action for times before τ ∗ and double the result yielding
SET = 2

∫ τ ∗

−∞ dτ LC(τ ). Additionally, the symmetry provides
the boundary condition ϕj (τ ∗) = π (m∗

j + n∗
j ).

Except from the bias charge term that does not change
the classical equations of motion, the system is translationally
invariant and thus can be diagonalized by the Fourier transform

ϕj = 1

2π

∫ 2π

0
dk eikjϕk, ϕk =

∑
j

e−ikjϕj . (10)

Expressing the circuit Lagrangian LC1 for τ � τ ∗ in terms of
ϕk gives rise to

LC1 = 1

2π

∫
dk

{
�

2

16EC�

[
1 − cos(k)

1 + ε2

]
|ϕ̇k|2+EJ /2|ϕk|2

}
,

(11)

where EC�
= e2/2(Cg + 2C) is the full charging energy and

ε = √
Cg/2C (12)

the inverse screening length. At this point we make use of the
fact that the Hamiltonian corresponding to LC is a conserved
quantity. For the instanton, it is equal to zero because the
instantons correspond to saddle-point solutions in the minima
of the potentials. The conservation of the Hamiltonian directly
yields

�
2

16EC�

[
1 − cos(k)

1 + ε2

]
|ϕ̇k|2 = EJ

2
|ϕk|2. (13)

With this equation, we can express the equal-time action as

SET(n∗) = 2
∫ τ ∗

−∞
dτ LC1

=
∫

dk

π

∫ πn∗
k

0
d|ϕk|

√
EJ

8EC�

[
1 − cos(k)

1 + ε2

]
|ϕk|

=
∫

dk U (k)|n∗
k |2, (14)

with U (k) = π
√

[1 − cos(k)/(1 + ε2)]EJ /32EC�
and n∗

k the
Fourier transform of n∗

j . In real space, we obtain the expression

SET(n∗) =
∑
i,j

n∗
i U (i − j )n∗

j , (15)

where U (j ) is the Fourier transform of U (k). For small ε

an accurate approximation for the real-space potential can be
given by

U (j ) = α
2εjK1(2εj )

1
4 − j 2

≈ α
1

1
4 − j 2

(for εj � 1). (16)

Here, K1 is the first modified Bessel function of the second
kind with K1(x) ≈ 1/x for x � 1. Hence the potential shows
an inverse-square decay until it reaches the screening length
ε−1 and turns into an exponential decay [16]. The coupling
strength is given by

α = π
√

EJ /8EC. (17)

Note that the equal-time action of interacting instantons can be
fully described by the two-particle interaction U (j ) between all
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corresponding instantons. Additionally, we want to highlight
that although the equal-time action describes the action picked
up at a selected time it does not explicitly depend on the time
but only on the underlying instanton configuration n.

With the action at a given moment in time, we can proceed
to calculate the full action for a specific instanton configuration
within the dilute gas approximation. In the next section, we
are going to use the equal-time action to calculate the partition
function by summing over all instanton configurations n and
integrating over all times the instantons occur; this step is
analogous to going over from a first to a second quantized
description of the problem.

V. GROUND STATE ENERGY

We now turn to the estimation of the ground state energy
E. As a first step, we calculate the full partition function Z0.
With the instanton approximation and the equal-time action
in real space, this is equivalent to a classical interacting
statistical mechanics problem. To make this correspondence
clearer, we introduce a particle picture for the phase slips. The
general task is to evaluate (7) in the dilute gas approximation,
which means summing over all configurations of instantons
on all islands at all possible times. In the particle picture,
the sum over all configurations is realized by a sum over all
numbers of instanton particles together with the sum over
the generalized coordinate xa of every particle a = 1, . . . ,N .
The generalized coordinate xa of every particle includes its
island coordinate ra ∈ Z, the time τa , and the instanton type
σa ∈ {+,−} (instanton or anti-instanton). Hence, such an
instanton particle corresponds to a single phase slip at a specific
time and location. We use the shorthand notation∫

dxa =
∑
ra,σa

∫ β

0

dτa

τ0
(18)

to express the summation over all configurations of the ath
particle. With that, we can rewrite (7) as

Z0 =
∞∑

N=0

zN

N !

∫
dx1 · · · dxN

× exp

⎡
⎣−

∑
1�a<b�N

Va,b + i
∑

1�a�N

πσaq(ra)/e

⎤
⎦,

(19)

which is a classical partition function in the grand-canonical
ensemble. Note that the factor N ! prevents overcounting of the
configurations. The fugacity z is defined by the self-interaction
part of Eq. (15) (with a = b) of a single instanton with
z = exp[−U (0)]. In this context we can interpret z/τ0 as the
instanton rate. As z � 1 there will be much less than a single
instanton per time τ0 on average, justifying the dilute gas
approximation. The rest of the interacting part is absorbed
in the interaction potential

Va,b =

⎧⎪⎨
⎪⎩

∞, ra = rb,|τa − τb| � τ0/2

2σaU (ra − rb)σb, ra �= rb,|τa − τb| � τ0/2

0, else.
(20)

We implement the potential as a hard-core potential, so that
only a single phase slip can happen on a given island at
a given time. For phase slips occurring at different times,
the interaction potential is zero because in the dilute gas
approximation a spatial interaction between phase slips is only
included for simultaneous events as explained in Sec. IV. The
bias charge part is implemented by the single-particle potential
πσaq(ra)/e, where q(r) is the charge distribution over the
islands.

The free energy corresponding to such an interacting
partition function can be evaluated perturbatively in z by the
Mayer cluster expansion [17]. The idea is to rewrite

e−Va,b = 1 + fa,b, (21)

so that we split the contribution into a noninteracting part
and an interacting part. The interacting part fa,b is, in the
limit τ0 → 0, proportional to a Dirac delta function [18]
τ0δ(τa − τb) with the width τ0. This again reflects the fact that
in a dilute gas spatial interaction affects only simultaneous
instantons. For large distances |ra − rb|, the interacting part
fa,b is negligibly small, hence suggesting an expansion in
the number of interacting particles. We can proceed similarly
with the bias charge potential. Here, we consider only
two charges separated by M with the charge distribution
q(r) = q0δr,0 + qMδr,M . We can write

eiπσaq(ra )/e = exp
(
iπσaq0δra,0/e

)
exp

(
iπσaqMδra,M/e

)
= (1 + g0,a)(1 + gM,a), (22)

where ga,b = exp[iπσbqaδrb,a/e] − 1 expresses the interac-
tion of phase slip b with the charge on island a. Using these
relations, the partition function assumes the form

Z0 =
∞∑

N=0

zN

N !

∫
dx1 · · · dxN

×
∏
a<b

l

(1 + fa,b)(1 + g0,l)(1 + gM,l), (23)

where the part in the product of the partition function contains
terms with different numbers of f functions like∏

a<b

(1 + fa,b) = [1 + (f1,2 + f1,3 + · · · )

+ (f1,2f1,3 + f1,2f1,4 + · · · ) + · · · ] (24)

and similar for the g functions. A simple way to keep
track of the terms appearing in the expansion is given by a
diagrammatic approach: For every particle coordinate xa in an
n-particle term we draw a circle (node) with the particle label
a inside. If an f function fa,b is part of the term, we connect
the ath and bth circles by a straight line (link). A g0/M,l is
accounted for with a wiggly line starting from the lth circle
and ending in a circle with the corresponding label q0 or qM .
In the end, we have to carry out a dxa integral for every node.
Connected nodes represent interacting clusters of particles,
which means that the integration of connected coordinates
(clusters) is not necessarily independent, while nonconnected
parts of the diagrams can be integrated independently.

It is important to realize that the value of such clusters after
the integration does not depend on their labels, but only on
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FIG. 4. The contributions to the cluster variables b1 and b2 as
given in Eq. (25). The first-order diagrams in b1 contain no spatial
interaction at all, while the last diagram in b2 mediates an interaction
between the charges q0 and qM . The factor of 2 in front of some of the
diagrams is due to the fact that these contributions can additionally
be realized with the labels 1 and 2 interchanged.

the cluster topology and the number of coordinates included.
Thus, we introduce the cluster variables bj given by

b1 = 1

1!L

∫
dx1(1 + g0,1 + gM,1),

b2 = 1

2!L

∫
dx1 dx2 f1,2 [1 + g0,1 + gM,1 + g0,2 + gM,2

+ g0,1gM,2 + g0,2gM,1 + g0,1g0,2 + gM,1gM,2],

... (25)

where L is the number of islands in the system so that
bn is a finite quantity that includes all connected diagrams
with n particles and all their possible interactions with the
bias charges. Terms corresponding to a single phase slip that
are interacting with two charges at different islands do not
contribute and thus terms involving g0,agM,a vanish. In Fig. 4
we show the diagrams corresponding to b1 and b2.

Every term in (23) consists of different numbers of one-,
two-, three-, and more-particle clusters. A term including m1

single-particle clusters, m2 two-particle clusters, and so on
contains N particles with N = ∑

j mjj . It contributes

T = C(1!Lb1)m1 (2!Lb2)m2 (3!Lb3)m3 · · · ,

C = N !

[(1!)m1 (2!)m2 · · · ][m1!m2! · · · ]
, (26)

where the Faà di Bruno coefficient C counts the number
of ways of partitioning the N particles into the different

particle clusters. The sum over the instanton number N in (23)
translates into a sum over all cluster numbers mi . Finally, we
arrive at the expression for the partition function

Z0 = lim
L→∞

∑
m1,m2,...

[
(Lzb1)m1

m1!

(Lz2b2)m2

m2!
· · ·

]
(27)

and hence with (4) the ground state energy is given by

E = lim
β→∞
L→∞

(
−L�

β

∑
l

blz
l

)
. (28)

This is an expansion in the fugacity z, where the order l

corresponds to the maximum number of particle clusters we
take into account. Truncating the series at order 2, for example,
does not mean that we consider only terms with two instantons
but that we only take interactions between pairs of instantons
into account. In other words, we treat the system as a sum of
many two-body problems. For small z � 1, like in our case of
EJ /EC�

� 1, such a truncation is justified.
We analyze an infinite system and therefore the extensive

energy E, scaling with the system size L, diverges. As we are
interested in charge screening, we split the ground state energy

E = E0L + E1(q0) + E1(qM ) + E2(q0,qM ), (29)

where E0 is the energy density accounting for the bias charge
nonrelated energy per island that is stored in the chain. From
the latter, corresponding to all diagrams without a bias charge
circle, we can in principle get information about the pressure
and other thermodynamic variables in the system. However,
here we are only interested in the influence due to the bias
charges. The parts including information about these break
the translational invariance of the chain and therefore do not
scale with the system size. This gives rise to the two energies
E1(q) and E2(q1,q2), where the first provides the change in
the ground state energy due to a single charge and the latter
corresponds to the interaction energy between two charges.

VI. SINGLE CHARGE AND INTERACTION ENERGY

We proceed by evaluating the ground state energy. First,
we want to calculate the ground state energy dependency on a
single bias charge corresponding to E1(q0). In our case, it is
enough to consider the first order in (28), because the second
order is already suppressed by an additional factor of the
fugacity z. The task is to calculate the part of b1 corresponding
to E1(q0). The diagrammatic expansion makes it easy to select
the correct terms. There is only a single diagram that we have
to take into account: A single-particle circle connected to a
single bias charge q0 (Fig. 4, the second diagram in b1), which
is given by the simple expression

b1(q0) = 1

1!L

∫
dx1 g0,1

= β

Lτ0
(eiπq0/e − 1) + (e−iπq0/e − 1)

= 2β

Lτ0
[cos(πq0/e) − 1]. (30)
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As the g functions are zero everywhere except at the island
where the corresponding charge is located, they act as
Kronecker-delta functions and project the whole sum over the
instanton coordinate on the location of the bias charge. From
b1, we find

E1(q0) = 2�

τ0
e−π

√
2EJ /EC [1 − cos(πq0/e)]. (31)

This energy is similar to known results for problems with
only single junctions [see, e.g., ([2])]. The exponent is slightly
different from the conventional scaling

√
8EJ /ECg

as every
junction in the chain, different from single junction systems,
is coupled to other junctions. If we redid the calculation in
the limit ε → ∞, which turns off the coupling between the
islands, and scale EJ �→ (8/π2)2EJ to compensate an error
due to the Villain approximation [7], we would recover the
known result.

The next step is the calculation of the interaction energy
E2(q0,qM ). Here, it is not enough to consider only first-
order terms in (28), because single-instanton diagrams can
only contain single charges. Thus, the leading order of the
interaction energy is given by the two-instanton diagrams
where every particle circle is connected to a charge circle
(the last contribution in b2 in Fig. 4) corresponding to the
expression

b2(q0,qM ) = 1

2!L

∫
dx1 dx2 2f1,2g0,1gM,2. (32)

By considering solely the terms depending on both charges in
the result for b2(q0,qM ), we find the interaction energy

E2(q0,qM ) = 2�

τ0
e−2π

√
2EJ /EC

× {[e−2U (M) − 1] cos[π (q0 + qM )/e]

+ [e2U (M) − 1] cos[π (q0 − qM )/e]}. (33)

For large enough M , we have U (M) � 1 and can therefore
expand the interaction energy in U with the result

E2 ≈ 8�

τ0
e−2π

√
2EJ /EC U (M) sin(πq0/e) sin(πqM/e). (34)

In this approximation, the charge interaction is directly
proportional to the instanton interaction U (M) and obeys a
decay proportional to the inverse-square distance between the
charges (below the screening length).

VII. CHARGE SCREENING

In the final section, we return to the original question about
the charge screening effect of Josephson junctions. In a first
step, we treat the case of a single bias charge q0 on island 0. The
presence of a charge on an island induces an average charge
on neighboring capacitor plates. To calculate the latter we
need to know the average voltages VM at the different islands
(M �= 0). We can handle this task by using the results (31)
and (34) and employing linear response theory. The derivative
of the ground state energy with respect to an external parameter
gives the average value of the derivative of the action with
respect to the same parameter. From (3) and (4) and the time
translation invariance in the system, we obtain that the voltages

FIG. 5. Double logarithmic plots of the voltage VM induced on
island M by an offset charge at distance M for EJ /EC = 5 and
ε = 0.01. In panel (a), we show the full result corresponding to
Eq. (36). The screened voltage follows a power-law behavior until the
screening length is reached at which point the exponential screening
due to the ground capacitances Cg takes over. In (b) we compare
the result obtained by using the power-law approximation (37)
represented by the dashed line with the black squares representing
the full result. It can be seen that the decay of the induced voltages
follows the inverse-square law essentially starting from M = 2.

VM are given by the derivative of the ground state energy E

with respect to the bias charge. To this end, we shift the bias
charges on the Mth island such that the ground state energy
E(q0,δM ) depends on the small shift δM . We then find

∂E(q0 + δ0,δM )

∂δM

∣∣∣∣
δ0,δM=0

= i�

2e
〈ϕ̇M〉 = VM ; (35)

here, in order to determine the voltages expectation values VM

on island M , we have used the Josephson relation dϕM/dt =
2eVM/� together with the relation τ = it between real and
imaginary time.

The leading contribution to E(q0 + δ0,δM ) is given by
the interaction energy E2(q0 + δ0,δM ) of (33). Taking the
derivative, we obtain the result (Ṽ = 2π�/eτ0)

VM = Ṽ e−2π
√

2EJ /EC [e−2U (M) − e2U (M)] sin(πq0/e), (36)

which can be approximated by the expression

VM ≈ −4Ṽ e−2π
√

2EJ /EC U (M) sin(πq0/e)

≈ 4Ṽ αe−2π
√

2EJ /EC sin(πq0/e)

M2
. (37)
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By expanding the exponential in (36) we see that all even orders
cancel so that there are no corrections until the third order in
U (M). This makes the approximation (37) already accurate for
M >

√
2α − 1/4, where the exponent is smaller than 1. Even

in the regime of our interest EJ � EC , M does not have to be
too large as α scales with the square root of EJ /EC . Hence for
intermediate distances (smaller than the screening length ε−1,
larger than

√
2α − 1/4) the voltages obey a universal inverse-

square decay given by U (M). In Fig. 5 we show a plot of the
decay of the induced voltages. Note that an additional charge
can be treated by adding up the voltage contributions of every
single charge. Deviations from this simple rule are induced by
a three-particle interaction energy at least. Such contributions
appear in three-instanton diagrams or higher and thus they are
strongly suppressed. For completeness, we provide also the
expression for the voltage on the zeroth island

V0 = Ṽ e−π
√

2EJ /EC sin(πq0/e), (38)

obtained from E ≈ E1(q0 + δ0).
With the voltages at hand, it is a simple task to determine

the charges on all capacitor plates. From the relation for
capacitors C(VM − VM+1) = QM , the charge on the capacitor
plate on the right of the Mth island (relative to the bias
charge) QM is simply proportional to the voltage difference
over the capacitance. The largest voltage difference can be
found between the bias charge island and its two direct
neighbors. Here we have to take the difference of the first-order
contribution (38) and the second-order contribution (36),
where the latter is suppressed by z. Thus, the two capacitor
plates directly attached to the bias charge island are charged
the most. From the second island on, we only need to take
differences of (36). This results in the power-law decay

QM ≈ 8CṼ αe−2π
√

2EJ /EC sin(πq0/e)

M3
(39)

for 1 � M � ε−1. The result is thus fundamentally different
from an exponential decay in usual linear screening.

VIII. CONCLUSION

In this work, we have calculated the effect of Josephson
junctions on the charge screening in the ground state of a one-
dimensional chain of capacitively coupled superconducting
islands in the semiclassical limit EJ /EC � 1. We have solved
the problem of the interacting nonlinear system by using
an instanton approximation within the quantum statistical
path integral approach. To deal with the interactions in the
chain, we have introduced the equal-time action corresponding
to the action picked up by the whole system at a given
moment in time. The latter includes spatial correlations
between simultaneous phase slips on different islands. With
this action and a dilute instanton gas approximation, which
applies in the regime of interest, we have mapped the task
of solving the quantum system onto a classical statistical
mechanics problem. With a slightly modified Mayer cluster
expansion, supporting the interaction with bias charges at
selected islands of the chain, we have calculated a power
series of the ground state energy E(q0,qM ) in the number of
interacting instantons as a function of two bias charges q0 and
qM . We have calculated the average induced voltages in the
linear response regime and furthermore the induced charges
on the capacitor plates. Compared to the known exponential
decay for chains without the Josephson junctions, we have
found that the induced voltages decay with the inverse of
the squared distance. This power-law decay is fundamentally
different from the conventional exponential screening. The
effect arises due to interacting quantum phase slips through
the nonlinear Josephson potentials of the Josephson junctions.
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