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Three-layer model for the surface second-harmonic generation yield including multiple reflections
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We present the three-layer model to calculate the surface second-harmonic generation (SSHG) yield. This
model considers that the surface is represented by three regions or layers. The first layer is the vacuum region
with a dielectric function εv(ω) = 1 from where the fundamental electric field impinges on the material. The
second layer is a thin layer (�) of thickness d characterized by a dielectric function ε�(ω), and it is in this layer
where the SSHG takes place. The third layer is the bulk region denoted by b and characterized by εb(ω). Both the
vacuum and bulk layers are semi-infinite. The model includes the multiple reflections of both the fundamental and
the second-harmonic (SH) fields that take place at the thin layer �. We obtain explicit expressions for the SSHG
yield for the commonly used s and p polarizations of the incoming 1ω and outgoing 2ω electric fields, where no
assumptions for the symmetry of the surface are made. These symmetry assumptions ultimately determine which
components of the surface nonlinear second-order susceptibility tensor χ(−2ω; ω,ω) are different from zero,
and thus contribute to the SSHG yield. Then, we particularize the results for the most commonly investigated
surfaces, the (001), (110), and (111) crystallographic faces, taking their symmetries into account. We use the
three-layer model and compare it against the experimental results of a Si(111)(1 × 1):H surface, as a test case,
and use it to predict the SSHG yield of a Si(001)(2 × 1) surface.
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I. INTRODUCTION

Surface second-harmonic generation (SSHG) has been
shown to be an effective, nondestructive, and noninvasive
probe to study surface and interface properties [1–8]. SSHG
spectroscopy is now very cost effective and popular because
it is an efficient method for characterizing the properties
of buried interfaces and nanostructures. The high surface
sensitivity of SSHG spectroscopy is due to the fact that
within the dipole approximation, the bulk second-harmonic
generation (SHG) in centrosymmetric materials is identically
zero. The SHG process can occur only at the surface where
the inversion symmetry is broken. SSHG has useful appli-
cations for studying thick thermal oxides on semiconductor
surfaces [9,10] and thin films [11]. The accurate determination
of these studies is highly dependent on multiple reflections of
both the SH and fundamental waves in the surface region.
These considerations have been taken into account to study
thin films [12–14] and, using the Maker fringe technique [15],
other materials [16,17].

Reference [18] was the first to consider multiple reflections
in their treatment of SHG in a nonlinear slab. However, they
only considered the second-harmonic (SH) fields and derived
results for a dielectric with a small linear reflectance. They also
neglected the multiple reflections of the fundamental waves
inside the media.

Surface effects were modeled by taking the limit of a thin
slab with a thickness much smaller than the wavelength of
the incoming light. Reference [19] used this methodology to
determine the components of the nonlinear optical suscepti-
bility tensor, χ(−2ω; ω,ω), of a fluorescent dye over fused
silica. However, later works [20,21] developed a simplified
method using phenomenological models in which the surface
is treated as an infinitesimally thin dipole sheet. Alternatively,
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the procedure established in Ref. [22] calculates χ (−2ω; ω,ω),
and at the same time, the radiated fields. The inclusion of
multiple reflections is necessary for both the SH radiation and
the incoming fundamental fields; this is later experimentally
verified in Ref. [23], where they show that the line shape of
the SSHG radiation is composed of resonances from both the
SH and fundamental waves. Total internal reflection of these
waves causes a Goos-Hänchen shift [24], a lateral shift of the
reflected beam. This effect was predicted for SHG [25,26] and
successfully observed in metallic metasurfaces [27].

As mentioned above, SSHG is particularly useful for
studying the surfaces of centrosymmetric materials. From
the theoretical point of view, the calculation of χ(−2ω; ω,ω)
proceeds as follows. To mimic the semi-infinite system, we
construct a supercell consisting of a finite slab of material plus
a vacuum region. Both the size of the slab and the vacuum
region should be such that the value of χ (−2ω; ω,ω) is well
converged. A cut function is used to decouple the two halves
of the supercell in order to obtain the value of χ(−2ω; ω,ω)
for either half. If the supercell itself is centrosymmetric, the
value χ (−2ω; ω,ω) for the full supercell is identically zero.
Therefore, the cut function is of paramount importance in
order to obtain a finite value for χ (−2ω; ω,ω) for either side
of the slab [28–30]. The cut function can be generalized to
one that is capable of obtaining the value of χ(−2ω; ω,ω)
for any part of the slab. The depth within the slab for which
χ (−2ω; ω,ω) is nonzero can thus be obtained. We can also
study how χ(−2ω; ω,ω) goes to zero towards the middle of the
slab, where the centrosymmetry of the material is restored [31].
Therefore, for the surface of any centrosymmetric material, we
can find the thickness of the layer where χ (−2ω; ω,ω) is finite.

Based on this approach for the calculation of χ (−2ω; ω,ω),
in this paper we develop a model for the SH radiation from the
surface of a centrosymmetric material. We call this model the
three-layer model, which considers that the SH conversion
takes place in a thin layer just below the surface of the
material that lies under the vacuum region and above the bulk
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of the material. Of course, one can replace the vacuum region
with any medium as long as it is not SH active; however, most
of the experimental setups for measuring the SH radiation take
place in vacuum or air. It is the three-layer model that allows us
to integrate the effects of multiple reflections, for both the SH
and fundamental fields, into the SSHG yield. As mentioned
before, the inclusion of these effects is necessary to accurately
model the SSHG radiation, and as far as we know, has not
been treated before in rigorous detail. Our model considers
dielectric materials of any linear reflectance, in contrast with
Ref. [18], which assumes a small linear reflectance for their
results.

We develop the model and derive general expressions for the
SH radiation for the commonly used polarization combinations
of the incoming and outgoing electric fields. We particularize
the results for the (111), (110), and (001) crystalline surfaces
of centrosymmetric materials. As an example, we present
results for the SH yield of the Si(111)(1 × 1):H surface, and
compare with the experimental results from Ref. [32], showing
that the multiple reflections of the three-layer model improve
the similarity with the experimental spectra; in particular,
we can contrast with recently published results for the same
surface [30]. We also present theoretical SSHG predictions
for a Si(001)(2 × 1) surface reconstruction. We note that our
treatment is strictly valid within the dipole approximation,
and we assume that the bulk quadrupolar SHG response is
negligible compared to the dipolar contribution, as reported in
the experimental works of Refs. [8,20,33–36].

This paper is organized as follows. In Sec. II, we present the
relevant equations and theory that describe the SSHG yield; in
Secs. II A and II B we present the details for including multiple
reflections for both the SH radiation and fundamental fields,
respectively. In Sec. III, we present the explicit expressions
for each combination of input and output polarizations for the
(111), (110), and (001) surfaces. We present our calculated
results against the experimental data for the Si(111)(1 × 1):H
surface in Sec. IV, and in Sec. V we show the predictions for
the Si(001)(2 × 1) surface. Finally, we list our conclusions and
final remarks in Sec. VI.

II. THE THREE-LAYER MODEL FOR THE SSHG YIELD

In this section, we will derive the formulas required for the
calculation of the SSHG yield, defined by

R(ω) = I (2ω)

I 2(ω)
, (1)

with the intensity given by [37,38]

I (ω) =
{ c

2π
n(ω)|E(ω)|2 (CGS units),

2ε0c n(ω)|E(ω)|2 (MKS units),
(2)

where n(ω) = [ε(ω)]1/2 is the index of refraction with ε(ω) as
the dielectric function, ε0 is the vacuum permittivity, and c is
the speed of light in vacuum.

There are several ways to calculate R, one of which is
the procedure followed by Cini [22]. This approach calculates
the nonlinear susceptibility, and at the same, time the radiated
fields; however, we present an alternative derivation based on
the work of Mizrahi and Sipe [21], since the derivation of
the three-layer model is straightforward. In this scheme, the

FIG. 1. Sketch of the three-layer model for SHG. The vacuum
region (v) is on top with εv = 1; the layer � of thickness d = d1 + d2

is characterized by ε�(ω), and it is where the SH polarization
sheet P�(2ω) is located at z� = d1. The bulk b is described by
εb(ω). The arrows point along the direction of propagation, and
the p-polarization unit vector, P̂�−(+), along the downward (upward)
direction is denoted with a thick arrow. The s-polarization unit vector
ŝ points out of the page. The fundamental field Ev(ω) is incident
from the vacuum side along the κ̂z plane, with θ0 being its angle of
incidence and νv− its wave vector. �ϕi denotes the phase difference
between the multiple reflected beams and the first layer-vacuum
transmitted beam, denoted by the dashed red arrow (of length L2)
followed by the solid black arrow (of length L1). The dotted lines in
the vacuum region are perpendicular to the beam extended from the
solid black arrow (denoted by solid dark blue arrows of length L6).

surface is represented by three regions or layers. The first layer
is the vacuum region (denoted by v) with a dielectric function
εv(ω) = 1, from where the fundamental electric field Ev(ω)
impinges on the material. The second layer is a thin layer
(denoted by �) of thickness d characterized by a dielectric
function ε�(ω); it is in this layer where the SHG takes
place. The third layer is the bulk region denoted by b and
characterized by εb(ω). Both the vacuum and bulk layers are
semi-infinite (see Fig. 1).

To model the electromagnetic response of the three-layer
model, we follow Ref. [21] and assume a polarization sheet of
the form

P(r,t) = Peiκ̂ ·Re−iωt δ(z − zβ) + c.c., (3)

where R = (x,y), κ̂ is the component of the wave vector νβ

parallel to the surface, zβ is the position of the sheet within
medium β, and P is the position-independent polarization.
Reference [39] demonstrates that the solution of the Maxwell
equations for the radiated fields Eβ,p± and Eβ,s with P(r,t) as
a source at points z �= 0 can be written as

(Eβ,p±,Eβ,s) =
(

γ iω̃2

w̃β

p̂β± · P,
γ iω̃2

w̃β

ŝ · P
)

, (4)

where γ = 2π in CGS units or γ = 1/2ε0 in MKS units, and
ω̃ = ω/c. Also, ŝ and p̂β± are the unit vectors for the s and p

polarizations of the radiated field, respectively. The ± refers to
upward (+) or downward (−) direction of propagation within
medium β, as shown in Fig. 1. Also, w̃β(ω) = ω̃wβ , where

p̂β±(ω) = κ(ω)ẑ ∓ w̃β (ω)κ̂

ω̃nβ (ω)
= sin θ0ẑ ∓ wβ (ω)κ̂

nβ (ω)
, (5)
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with

wβ(ω) = [εβ(ω) − sin2 θ0]1/2, (6)

where θ0 is the angle of incidence of Ev(ω), κ(ω) = |κ̂ | =
ω̃ sin θ0, nβ (ω) = [εβ (ω)]1/2 is the index of refraction of
medium β, and z is the direction perpendicular to the surface
that points towards vacuum. If we consider the plane of
incidence along the κ̂z plane, then

κ̂ = cos φx̂ + sin φŷ (7)

and

ŝ = − sin φx̂ + cos φŷ, (8)

where φ is the azimuthal angle with respect to the x axis.
In the three-layer model, the nonlinear polarization respon-

sible for the SHG is immersed in the thin layer (β = �), and is
given by

Pa
� (2ω) =

{
χ abc

surface(−2ω; ω,ω)Eb(ω)Ec(ω) (CGS),

ε0χ
abc
surface(−2ω; ω,ω)Eb(ω)Ec(ω) (MKS),

(9)

where χ surface(−2ω; ω,ω) is the dipolar surface nonlinear
susceptibility tensor, and the Cartesian superscripts a, b, and
c are summed over if repeated. Also, χ abc(−2ω; ω,ω) =
χ acb(−2ω; ω,ω) due to the intrinsic permutation symmetry,
since SHG is degenerate in Eb(ω) and Ec(ω). As in Ref. [21],
we consider the polarization sheet [Eq. (3)] to be oscillating
at some frequency ω in order to properly express Eqs. (4)–(8).
However, in the following, we find it convenient to use ω

exclusively to denote the fundamental frequency and κ̂ to de-
note the component of the incident wave vector parallel to the
surface. The generated nonlinear polarization is oscillating at
� = 2ω, and will be characterized by a wave vector parallel to
the surface K = 2κ . We can carry over Eqs. (3)–(8) simply by
replacing the lowercase symbols (ω,ω̃,κ,nβ ,w̃β ,wβ ,p̂β±,ŝ)

with uppercase symbols (�,�̃,K,Nβ ,W̃β ,Wβ ,P̂β±,Ŝ), all

evaluated at 2ω. Of course, we always have that Ŝ = ŝ.
From Fig. 1, we observe the propagation of the SH field as

it is refracted at the layer-vacuum interface (�v), and reflected
multiple times from the layer-bulk (�b) and layer-vacuum (�v)
interfaces. Thus, we can define

T�v = ŝT �v
s ŝ + P̂v+T �v

p P̂�+ (10)

as the transmission tensor for the �v interface,

R�b = ŝR�b
s ŝ + P̂�+R�b

p P̂�− (11)

as the reflection tensor for the �b interface, and

R�v = ŝR�v
s ŝ + P̂�−R�v

p P̂�+ (12)

as the reflection tensor for the �v interface. The Fresnel factors
in uppercase letters, T

ij
s,p and R

ij
s,p, are evaluated at 2ω from

the following well-known formulas [40]:

t ijs (ω) = 2wi(ω)

wi(ω) + wj (ω)
,

t ijp (ω) = 2wi(ω)
√

εi(ω)εj (ω)

wi(ω)εj (ω) + wj (ω)εi(ω)
,

rij
s (ω) = wi(ω) − wj (ω)

wi(ω) + wj (ω)
,

rij
p (ω) = wi(ω)εj (ω) − wjεi(ω)

wi(ω)εj (ω) + wj (ω)εi(ω)
. (13)

With these expressions, we easily derive the following useful
relations,

1 + r�b
s = t�bs , 1 + r�b

p = nb

n�

t�bp ,

1 − r�b
p = n�

nb

wb

w�

t�bp , t�vp = w�

wv

tv�
p ,

t�vs = w�

wv

tv�
s . (14)

A. Multiple SHG reflections

The SH field E(2ω) generated by the SH polarization
P�(2ω) will radiate directly into the vacuum and bulk, where
it will be reflected back into the thin layer at the layer-bulk
interface; this beam will be transmitted and reflected multiple
times, as shown in Fig. 1. As the two beams propagate, a phase
difference will develop between them according to

�ϕm = �̃([L3 + L4 + 2mL5]N�

− [L2N� + (L1 + mL6)Nv])

= δ0 + mδ, m = 0,1,2, . . . , (15)

where

δ0 = 8π

(
d2

λ0

)
W� (16)

and

δ = 8π

(
d

λ0

)
W�, (17)

where λ0 is the wavelength of the fundamental field in vacuum,
W� is established in Eq. (6), d is the thickness of layer �, and
d2 is the distance between P�(2ω) and the �b interface (see
Fig. 1). We see that δ0 is the phase difference of the first and
second transmitted beams, and mδ that of the first and third
(m = 1), first and fourth (m = 2), and so on. Note that the
thickness d of the layer � enters through the phase δ, and the
position d2 of the nonlinear polarization P(r,t) [Eq. (3)] enters
through δ0. In particular, d2 could be used as a variable to study
the effects of multiple reflections on the SSHG yield R(2ω).

To take into account the multiple reflections of the generated
SH field in the layer �, we proceed as follows. We include the
algebra for the p-polarized SH field, but the s-polarized field
can be worked out following the same steps. The p-polarized
E�,p(2ω) field that is reflected multiple times is given by

E�,p(2ω) = E�,p+(2ω)T�v · P̂�+ + E�,p−(2ω)T�v · R�b

·P̂�−ei�ϕ0 + E�,p−(2ω)T�v · R�b · R�v · R�b

· P̂�−ei�ϕ1 + E�,p−(2ω)T�v · R�b · R�v · R�b

· R�v · R�b · P̂�−ei�ϕ2 + · · ·
= E�,p+(2ω)T�v · P̂�+ + E�,p−(2ω)T�v

·
∞∑

m=0

(R�b · R�veiδ)m · R�b · P̂�−eiδ0 . (18)
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From Eqs. (10)–(12), it is easy to show that

T�v · (R�b · R�v)m · R�b

= ŝT �v
s

(
R�b

s R�v
s

)m
R�b

s ŝ + P̂v+T �v
p

(
R�b

p R�v
p

)m
R�b

p P̂�−,

then,

E�,p(2ω)

= P̂�+T �v
p

(
E�,p+(2ω) + R�b

p eiδ0

1 + Rv�
p R�b

p eiδ
E�,p−(2ω)

)
,

where we used R
ij
s,p = −R

ji
s,p. Using Eqs. (4) and (14), we can

readily write

E�,p(2ω) = γ i�̃

W�

H� · P�(2ω), (19)

where

H� = W�

Wv

[
ŝ T v�

s

(
1 + RM

s

)
ŝ + P̂v+T v�

p

(
P̂�+ + RM

p P̂�−
)]

,

(20)

and

RM
i ≡ R�b

i eiδ0

1 + Rv�
i R�b

i eiδ
, i = s,p, (21)

defines the multiple (M) reflection coefficient. This coefficient
depends on the thickness d of layer �, and most importantly,
on the position d2 of P�(2ω) within this layer. The final results
will depend on both d and d2. However, using Eq. (16) we can
also define an average R̄M

i as

R̄M
i ≡ 1

d

∫ d

0

R�b
i ei(8πW�/λ0)x

1 + Rv�
i R�b

i eiδ
dx

= R�b
i eiδ/2

1 + Rv�
i R�b

i eiδ
sinc(δ/2) (22)

that only depends on d through the δ term from Eq. (17).
To connect with the work in Ref. [21], where P(2ω) is

located on top of the vacuum-surface interface, and only the
vacuum radiated beam and the first (and only) reflected beam
need be considered, we take � = v and d2 = 0, then T �v = 1,
Rv� = 0, and δ0 = 0, with which RM

i = Rvb
i . Thus, Eq. (20)

coincides with Eq. (3.8) of Ref. [21].

B. Multiple reflections for the linear field

For a more complete formulation, we must also consider
the multiple reflections of the fundamental field E�(ω) inside
the thin � layer. In Fig. 2, we present the situation where Ev(ω)
impinges from the vacuum side with an angle of incidence θ0.
As the first transmitted beam is reflected multiple times from
the �b and the v� interfaces, it accumulates a phase difference
of nϕ (n = 1,2,3, . . .), where ϕ is given by

ϕ = ω

c
(2L1n� − L2nv) = 4π

(
d

λ0

)
w�, (23)

where nv = 1. Besides the equivalent of Eqs. (11) and (12) for
ω, we also need

tv� = ŝtv�
s ŝ + p̂�−tv�

p p̂v− (24)

θ0νv−

z

ŝ κ̂

L2

2L2

3L2

p̂v−

ϕ 2ϕ 3ϕ

p̂�− p̂�+

L1

εv = 1
Vacuum

z = 0

Surface
Layer

ε�

z = −d

Bulk εb

FIG. 2. Sketch for the multiple reflected fundamental field E�(ω),
which impinges from the vacuum side along the κ̂z plane. θ0 and
νv− are the angle of incidence and wave vector, respectively. The
arrows point along the direction of propagation. The p-polarization
unit vectors p̂β± point along the downward (−) or upward (+)
directions and are denoted with black arrows, where β = v or �.
The s-polarization unit vector ŝ points out of the page. (1,2,3, . . .)ϕ
denotes the phase difference for the multiple reflected beams with
respect to the incident field, where the dotted line is perpendicular to
this beam.

to write

E�(ω) = E0[tv� + r�b · tv�eiϕ + r�b · r�v · r�b · tv�ei2ϕ

+ r�b · r�v · r�b · r�v · r�b · tv�ei3ϕ + · · · ] · êi

= E0[1 + (1 + r�b · r�veiϕ + (r�b · r�v)2ei2ϕ + · · · )

· r�beiϕ] · tv� · êi

= E0
[
ŝtv�

s

(
1 + rM

s

)
ŝ + tv�

p

(
p̂�− + p̂�+rM

p

)
p̂v−

] · êi ,

(25)

where E0 is the intensity of the fundamental field, and êi is
the unit vector of the incoming polarization, with i = s,p, and
then, ês = ŝ and êp = p̂v−. Also,

rM
i ≡ r�b

i eiϕ

1 + rv�
i r�b

i eiϕ
, i = s,p. (26)

rM
i is defined as the multiple (M) reflection coefficient for the

fundamental field. We define Ei
�(ω) ≡ E0eω,i

� (i = s,p), where

eω,i
� = [

ŝtv�
s

(
1 + rM

s

)
ŝ + tv�

p

(
p̂�− + p̂�+rM

p

)
p̂v−

] · êi , (27)

and using Eq. (5), we obtain that

eω,p

� = tv�
p

n�

(
rM+
p sin θ0ẑ + rM−

p w�κ̂
)

(28)

for p-input polarization with êi = p̂v−, and

eω,s
� = tv�

s rM+
s ŝ (29)

for s-input polarization with êi = ŝ, where

rM±
i = 1 ± rM

i , i = s,p. (30)
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C. The SSHG yield

The magnitude of the radiated field is given by E(2ω) =
êF · E�(2ω), where êF is the unit vector of the final, S or P SH
polarization with F = S,P , where êS = ŝ and êP = P̂v+. We
expand the rightmost term in parentheses in Eq. (20) as

P̂�+ + RM
p P̂�− = sin θ0ẑ − W�κ̂

N�

+ RM
p

sin θ0ẑ + W�κ̂

N�

= 1

N�

(
sin θ0R

M+
p ẑ − W�R

M−
p κ̂

)
,

where

RM±
i ≡ 1 ± RM

i , i = s,p. (31)

Using Eq. (14), we write Eq. (19) as

E(2ω) = 2γ iω

cW�

êF · H� · P�(2ω) = 2γ iω

cWv

e 2ω,F
� · P�(2ω),

(32)
where

e2ω,F
� = êF ·

[
ŝT v�

s RM+
s ŝ + P̂v+

T v�
p

N�

× (
sin θ0R

M+
p ẑ − W�R

M−
p κ̂

)]
. (33)

Replacing E�(ω) → E0eω,i
� in Eq. (9), we obtain that

P�(2ω) =
{

E2
0 χ surface : eω,i

� eω,i
� (CGS units),

ε0E
2
0 χ surface : eω,i

� eω,i
� (MKS units),

(34)

where eω,i
� is given by Eq. (27), and thus Eq. (32) reduces to

(Wv = cos θ0)

E�(2ω) = 2ηiω

c cos θ0
e2ω,F
� · χ surface : eω,i

� eω,i
� , (35)

where η = 2π in CGS units and η = 1/2 in MKS units. For
ease of notation, we define

ϒiF ≡ e2ω,F
� · χ surface : eω,i

� eω,i
� , (36)

where i stands for the incoming polarization of the fundamen-
tal electric field given by êi in Eq. (27), and F for the outgoing
polarization of the SH electric field given by êF in Eq. (33).
We purposely omit the full χ (−2ω; ω,ω) notation, and will do
so from this point on.

From Eqs. (1) and (2) we obtain that in CGS units (η = 2π ),

|E(2ω)|2 = |E0|4 16π2ω2

c2W 2
v

|ϒiF |2,

c

2π
|
√

NvE(2ω)|2 = 32π3ω2

c3 cos2 θ0

∣∣∣∣
√

Nv

n2
�

ϒiF

∣∣∣∣
2( c

2π
|√n�E0|2

)2
,

(37)

I (2ω) = 32π3ω2

c3 cos2 θ0

∣∣∣∣
√

Nv

n2
�

ϒiF

∣∣∣∣
2

I 2(ω),

RiF (2ω) = 32π3ω2

c3 cos2 θ0

∣∣∣∣ 1

n�

ϒiF

∣∣∣∣
2

,

and in MKS units (η = 1/2),

|E(2ω)|2 = |E0|4 ω2

c2W 2
v

,

2ε0c|
√

NvE(2ω)|2 = 2ε0ω
2

c cos2 θ0

∣∣∣∣
√

Nv

n2
�

ϒiF

∣∣∣∣
2

× 1

4ε2
0c

2
(2ε0c|√n�E0|2)2,

I (2ω) = ω2

2ε0c3 cos2 θ0

∣∣∣∣
√

Nv

n2
�

ϒiF

∣∣∣∣
2

I 2(ω),

RiF (2ω) = ω2

2ε0c3 cos2 θ0

∣∣∣∣ 1

n�

ϒiF

∣∣∣∣
2

. (38)

Finally, we condense these results and establish the SSHG
yield as

RiF (2ω)

⎧⎪⎨
⎪⎩

32π3ω2

c3 cos2 θ0

∣∣∣ 1
n�

ϒiF

∣∣∣2
(CGS units),

ω2

2ε0c3 cos2 θ0

∣∣∣ 1
n�

ϒiF

∣∣∣2
(MKS units),

(39)

where Nv = 1 and Wv = cos θ0. We mention that χ surface is
given in m2/V in the MKS unit system since it is a surface
second-order nonlinear susceptibility. In this system of units,
RiF is in m2/W.

III. Ri F FOR DIFFERENT POLARIZATION CASES

We now have everything needed to derive explicit ex-
pressions for RiF , Eq. (39), for the most commonly used
polarizations of incoming and outgoing fields (iF = pP , pS,
sP , and sS). For this, we must expand ϒiF from Eq. (36) for
each case. By substituting Eqs. (7) and (8) into Eq. (33), we
obtain

e2ω,P
� = T v�

p

N�

(
sin θ0R

M+
p ẑ − W�R

M−
p cos φx̂

−W�R
M−
p sin φŷ

)
, (40)

for P (êF = P̂v+) outgoing polarization, and

e2ω,S
� = T v�

s RM+
s (− sin φx̂ + cos φŷ), (41)

for S (êF = ŝ) outgoing polarization.
Following a similar procedure, we use Eqs. (7) and (8) with

Eq. (28), and obtain

eω,p

� eω,p

� =
(

tv�
p

n�

)2[(
rM−
p

)2
w2

� cos2 φx̂x̂ + 2
(
rM−
p

)2
w2

�

× sin φ cos φx̂ŷ + 2rM+
p rM−

p w� sin θ0 cos φx̂ẑ

+ (
rM−
p

)2
w2

� sin2 φŷŷ + 2rM+
p rM−

p w� sin θ0

× sin φŷẑ + (
rM+
p

)2
sin2 θ0ẑẑ

]
, (42)

for p incoming polarization (êi = p̂v−), and with Eq. (29),

eω,s
� eω,s

� = (
tv�
s rM+

s

)2
(sin2 φx̂x̂ + cos2 φŷŷ

− 2 sin φ cos φx̂ŷ), (43)
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TABLE I. Polarization unit vectors for êF and êi , and equations
describing e2ω,F

� and eω,i
� eω,i

� for each polarization case.

Case êF êi e2ω,F
� eω,i

� eω,i
�

RpP P̂v+ p̂v− Eq. (40) Eq. (42)
RpS Ŝ p̂v− Eq. (41) Eq. (42)
RsP P̂v+ ŝ Eq. (40) Eq. (43)
RsS Ŝ ŝ Eq. (41) Eq. (43)

for s incoming polarization (êi = ŝ). We have summarized the
combination of equations needed to derive the expressions for
all four polarization cases of RiF in Table I. In the following
subsections we will derive the explicit expressions for ϒiF

for the most general case where the surface has no symmetry.
We will then develop these expressions for particular cases
of the most commonly investigated surfaces, the (111), (001),
and (110) crystallographic faces. For ease of notation, we split
ϒiF as

ϒiF = �iF riF , (44)

and omit the “surface” subscript for the χ abc components. A
full, step-by-step derivation for all of these expressions can be
found in Ref. [41], with and without the effects of multiple
reflections.

Many expressions can be greatly simplified by introducing
a matrix representation for χ . Disregarding all symmetry
relations, we have

χ =
⎛
⎝χxxx χxyy χxzz | χxyz χxxz χxxy

χyxx χyyy χyzz | χyyz χyxz χyxy

χzxx χzyy χzzz | χzyz χzxz χzxy

⎞
⎠,

(45)

where all 18 independent components are accounted for,
recalling that χ abc = χ acb for SHG. Notice that the left-hand
block contains the components of χ abc where b = c, and the
right hand block those where b �= c. As mentioned above, we
are interested in the (111), (110), and (001) crystallographic
faces, that belong to the C3v , C2v , and C4v symmetry groups,
respectively. For the (111) surface, we choose the x and y

axes along the [112̄] and [11̄]0 directions, respectively. For the
(110) and (001), we consider the y axis perpendicular to the
plane of symmetry [20]. These are represented in matrix form
as

χ (111) =
⎛
⎝χxxx −χxxx 0 | 0 χxxz 0

0 0 0 | χxxz 0 −χxxx

χzxx χzxx χzzz | 0 0 0

⎞
⎠,

(46)

χ (110) =
⎛
⎝ 0 0 0 | 0 χxxz 0

0 0 0 | χyyz 0 0
χzxx χzyy χzzz | 0 0 0

⎞
⎠,

(47)

and

χ (001) =
⎛
⎝ 0 0 0 | 0 χxxz 0

0 0 0 | χxxz 0 0
χzxx χzxx χzzz | 0 0 0

⎞
⎠. (48)

In general, χ (111) �= χ (110) �= χ (001).

A. R pP ( p in, P out)

Per Table I, RpP requires Eqs. (40) and (42). After some
algebra, we obtain that

�pP = T v�
p

N�

(
tv�
p

n�

)2

(49)

and

rpP =

⎛
⎜⎝

−RM−
p W� cos φ

−RM−
p W� sin φ

+RM+
p sin θ0

⎞
⎟⎠ ◦ χ ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
rM−
p

)2
w2

� cos2 φ(
rM−
p

)2
w2

� sin2 φ(
rM+
p

)2
sin2 θ0

2rM+
p rM−

p w� sin θ0 sin φ

2rM+
p rM−

p w� sin θ0 cos φ

2
(
rM−
p

)2
w2

� sin φ cos φ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(50)

where all 18 independent components of χ can contribute to
RpP . The “◦” symbol is the Hadamard (piecewise) matrix
product. For the (111) surface, we substitute Eq. (46) in
Eq. (50) in lieu of χ to obtain

r
(111)
pP = RM+

p sin θ0
[(

rM+
p

)2
sin2 θ0χ

zzz + (
rM−
p

)2
w2

�χ
zxx

]
−RM−

p w�W�

[
2rM+

p rM−
p sin θ0χ

xxz

+ (
rM−
p

)2
w�χ

xxx cos 3φ
]
, (51)

where the threefold azimuthal symmetry of the SHG signal
that is typical of the C3v symmetry group is seen in the 3φ

argument of the cosine function. For the (110) surface, we
substitute Eq. (47) in Eq. (50) to obtain

r
(110)
pP = RM+

p sin θ0

[(
rM+
p

)2
sin2 θ0χ

zzz + (
rM−
p

)2
w2

�

×
(

χzyy + χzxx

2
+ χzyy − χzxx

2
cos 2φ

)]

− 2RM−
p rM+

p rM−
p w�W� sin θ0

(
χyyz + χxxz

2

+ χyyz − χxxz

2
cos 2φ

)
. (52)

The twofold azimuthal symmetry of the SHG signal that is
typical of the C2v symmetry group is seen in the 2φ argument
of the cosine function. Lastly, for the (001) surface we simply
make χzxx = χzyy and χxxz = χyyz [see Eqs. (47) and (48)],
and the previous expression reduces to

r
(001)
pP = RM+

p sin θ0
[(

rM+
p

)2
sin2 θ0χ

zzz + (
rM−
p

)2
w2

�χ
zxx

]
− 2RM−

p rM+
p rM−

p w�W� sin θ0χ
xxz. (53)
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This time, the azimuthal 4φ symmetry for the C4v group
of the (001) surface is absent in this expression since this
contribution is only related to the bulk nonlinear quadrupolar
SH term [20], which we neglect in this work.

B. Rs P (s in, P out)

Per Table I, RsP requires Eqs. (40) and (43). After some
algebra, we obtain that

�sP = T v�
p

N�

(
tv�
s rM+

s

)2
(54)

and

rsP =

⎛
⎜⎝

−RM−
p W� cos φ

−RM−
p W� sin φ

+RM+
p sin θ0

⎞
⎟⎠ ◦ χ ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

sin2 φ

cos2 φ

0
0
0

−2 sin φ cos φ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (55)

In this case, 9 out of the 18 components of χ can contribute
to RsP . This is because there is no Ez

v(ω) component, as
the incoming polarization is s. As before, we substitute
Eqs. (46), (47), and (48) in Eq. (55) to obtain

r
(111)
sP = RM+

p sin θ0χ
zxx + RM−

p W�χ
xxx cos 3φ (56)

for the (111) surface,

r
(110)
sP = RM+

p sin θ0

(
χzxx + χzyy

2
+ χzyy − χzxx

2
cos 2φ

)
(57)

for the (110) surface, and

r
(001)
sP = RM+

p sin θ0χ
zxx (58)

for the (001) surface.

C. R pS ( p in, S out)

Per Table I, RpS requires Eqs. (41) and (42). After some
algebra, we obtain that

�pS = T v�
s RM+

s

(
tv�
p

n�

)2

(59)

and

rpS =
⎛
⎝− sin φ

cos φ

0

⎞
⎠ ◦ χ ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
rM−
p

)2
w2

� cos2 φ(
rM−
p

)2
w2

� sin2 φ(
rM+
p

)2
sin2 θ0

2rM+
p rM−

p w� sin θ0 sin φ

2rM+
p rM−

p w� sin θ0 cos φ

2
(
rM−
p

)2
w2

� sin φ cos φ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (60)

In this case, 12 out of the 18 components of χ can contribute
to RpS . This is because there is no Pz

� (2ω) component,
as the outgoing polarization is S. As before, we substitute
Eqs. (46), (47), and (48) in Eq. (60) to obtain

r
(111)
pS = −(

rM−
p

)2
w2

�χ
xxx sin 3φ (61)

for the (111) surface,

r
(110)
pS = rM+

p rM−
p w� sin θ0(χyyz − χxxz) sin 2φ (62)

for the (110) surface, and finally,

r
(001)
pS = 0 (63)

for the (001) surface, where the zero value is only surface
related, as we neglect the bulk nonlinear quadrupolar contri-
bution [20].

D. RsS (s in, S out)

Per Table I, RsS requires Eqs. (41) and (43). After some
algebra, we obtain that

�sS = T v�
s RM+

s

(
tv�
s rM+

s

)2
(64)

and

rsS =
⎛
⎝− sin φ

cos φ

0

⎞
⎠ ◦ χ ·

⎛
⎜⎜⎜⎜⎜⎝

sin2 φ

cos2 φ

0
0
0

−2 sin φ cos φ

⎞
⎟⎟⎟⎟⎟⎠. (65)

In this case, only 6 out of the 18 components of χ can contribute
to RsS . This is because there is neither an Ez

v(ω) component
as the incoming polarization is s, nor a Pz

� (2ω) component
as the outgoing polarization is S. As before, we substitute
Eqs. (46), (47), and (48) in Eq. (65) to obtain

r
(111)
sS = χxxx sin 3φ (66)

for the (111) surface, and

r
(110)
sS = 0 (67)

and

r
(001)
sS = 0 (68)

for the (110) and (001) surfaces, respectively, both being
zero as the bulk nonlinear quadrupolar contribution is not
considered here [20].

IV. SSHG OF THE Si(111)(1 × 1):H SURFACE

We consider that the Si(111)(1 × 1):H surface is an excel-
lent case to test the three-layer model and study the effects
that multiple reflections have on the SSHG yield. This surface
is well characterized experimentally [32,42,43], and there has
been success in reproducing these experimental results using
the three-layer model without multiple reflections [30]. The
details of the ab initio calculation of χ abc are discussed in
Ref. [30]. We mention that we apply a scissors shift of 0.7 eV
to the theoretical spectra. In a first approximation, this includes
the effects of the electronic many-body interactions within the
independent-particle approach for our ab initio calculation.
This 0.7 eV value allows the SH resonant peaks to acquire their
corresponding energy positions, and is obtained from a G0W0

calculation [30,44]. As mentioned in Sec. I, we are interested
in finding the thickness of the layer � where χ abc �= 0. For this
surface, we found well-converged results for a thickness of
∼ 5 nm, which is equivalent to 24 atomic sheets of Si along
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w/o MR
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FIG. 3. Comparison of RpP between the three-layer model with
the effects of multiple reflections for two different values of d2,
using the average value R̄M

P of Eq. (22), the three-layer model without
the effects of multiple reflections, and the experimental data from
Ref. [32]. All curves that include multiple reflections consider the
thickness of the layer � as d = 10 nm. We use θ = 65◦, φ = 30◦, and
a broadening of σ = 0.075 eV.

the (111) direction. As this represents only the upper half of
the slab, we find it reasonable to choose the thickness d of the
layer � to be between 5 to 10 nm. This corresponds to a half
slab composed of 24 to 48 atomic layers, where we will obtain
well-converged values of χ abc.

In the following figures, we compare the theoretical results
for the SSHG yield with the experimental results from
Ref. [32]. We use θ = 65◦, φ = 30◦, and a broadening of
σ = 0.075 eV. In Fig. 3, we present RpP compared to the
experimental data. With φ = 30◦, the contribution of χxxx

from Eq. (51) is completely eliminated. First, we note that
the experimental spectrum shows two very well defined
resonances which come from electronic transitions from the
valence to the conduction bands around the well-known
E1 ∼ 3.4 eV and E2 ∼ 4.3 eV critical points of bulk Si [45].
The theoretical results reproduce the features of the spectrum,
although we see that the E2 peak is blueshifted by around
0.3 eV; details on the physics that lead to such a blueshifted
theoretical spectrum are given in Ref. [30]. All the curves
in this figure which include multiple reflections consider a
layer thickness of d = 10 nm. We compare the theoretical
SSHG yield for d2 = 0 nm and d2 = 10 nm with the SSHG
yield that neglects multiple reflections. When d2 = 0 nm, we
have placed the polarization sheet at the bottom of the layer
region. This minimizes the effect of the multiple reflections,
and thus the curve is very similar to the three-layer model that
neglects multiple reflections entirely. When d2 = 10 nm, the
polarization sheet is placed at the top of the layer region. This
maximizes the effect of the multiple reflections, and therefore
leads to the largest yield. We also notice that the average
value obtained by using R̄M

i [Eq. (22)] is intermediate between
d2 = 0 and d2 = 10 nm, as expected. This is very similar to
selecting d2 = d/2, which can be interpreted as placing the
nonlinear polarization sheet in the middle of the thin layer �.

It is important to remark that these enhancements are larger
for E2 than for E1. This can be understood from the fact that
the corresponding λ0 for E1 is larger than that of E2. From
Eqs. (16), (17), and (23), we see that the phase shifts are larger

TABLE II. Ratio of peak height (E2/E1) for each different curve
in Fig. 3.

Label E2/E1

d2 = 10 nm 1.9
Average 2.0
d2 = 0 nm 1.8
w/o MR 1.7
Experiment 2.8

for E2 than for E1, producing a larger enhancement of the
SSHG yield at E2 from the multiple reflections. As the phase
shifts grow with d, so does the enhancement caused by the
multiple reflections. We have also verified that the effects of
the multiple reflections from the linear field are significantly
smaller than those of the SH field. This is clear since the phase
shift of Eq. (23) is not only a factor of 2 smaller than that of
Eqs. (16) and (17), but also w� < W�. For larger energies, such
as E2, λ0 becomes smaller and the multiple reflection effects
become more noticeable. The selected value for d 
 λ0, which
comes naturally from the ab initio calculation of χ abc, is thus
very reasonable in order to model a thin surface layer below
the vacuum region where the nonlinear SH conversion takes
place.

Figure 3 shows how the inclusion of multiple reflections
in the calculated SSHG yield is in better agreement with
the experimental spectrum. We can further quantify the
improvement by determining the yield ratio between E2 and E1

for each curve in Fig. 3. Table II presents these values, and we
consider the maximum of each peak for both the experimental
and theoretical spectra. Using the average value R̄M

P yields the
closest match to the experiment, while neglecting the effects
of multiple reflections has the worst peak ratio. The addition
of these effects does indeed improve the theoretical results,
and the average value for placing the nonlinear polarization
would seem to be a reasonable choice. Therefore, from this
point on we will use d = 10 nm and R̄M

i from Eq. (22) for all
theoretical results that include multiple reflections.

0
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2.5 3 3.5 4 4.5 5

E1 E2

R
p
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20
×
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2 /

W
)
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w/o 1ω
w/o 2ω

w/o MR
Experiment

FIG. 4. Comparison of RpS between the three-layer model with
the full effect of multiple reflections (MR), without (w/o) the 2ω MR,
without the 1ω MR, and without both 1ω and 2ω MR. All curves use
the average value R̄M

s and d = 10 nm for the thickness of the layer
�. The experimental data are taken from Ref. [32]. We use θ = 65◦,
φ = 30◦, and a broadening of σ = 0.075 eV.
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TABLE III. Ratio of peak height (E2/E1) for each different curve
in Fig. 4.

Label E2/E1

with MR 1.23
w/o 1ω 1.17
w/o 2ω 1.12
w/o MR 1.06
Experiment 1.34

In Fig. 4, we present RpS compared to the experimental
data; from Eq. (61), we can see that it is only proportional
to the χxxx component. The theoretical curve reproduces the
overall line shape of experimental results, both in position and
in intensity, for the E1 and E2 resonant peaks; the resonance
in between the two peaks is slightly overestimated by the
theoretical results. In this figure, we also show the yield for
the cases in which the 1ω and SH multiple reflections are
neglected. We see that the overall effect in RpS of the 1ω

multiple reflections is smaller than that of the 2ω multiple
reflections. As explained above, this stems from the fact of
how the wavelength λ0 enters in the multiple reflection rM

p

(1ω) and R̄M
S (2ω) factors. Of course, the full 1ω and 2ω

multiple reflections are equally important for the SSHG yield.
As before, we compare the yield ratio between E2 and

E1 for the different spectra to determine which is closest to
experiment. These values are presented in Table III for each
curve from Fig. 4. As before, the inclusion of the effects of
multiple reflections yields a theoretical spectra that has peak
proportions closer to experiment. The table also provides a
straightforward review of how the 1ω and 2ω terms contribute
to the peak height. Again, neglecting multiple reflections
produces the spectrum that is least similar to the experiment.

In Fig. 5, we present RsP compared to the experimental
data. It is clear that the effect of the multiple reflections is
almost negligible. In the inset of the figure, we show the
ω2�sP RM+

p prefactor, which comes from Eqs. (39), (54),
and (56), with and without multiple reflections. The prefactor

0

0.02

0.04
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0.08

2.5 3 3.5 4 4.5 5
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R
sP

(1
0−

20
×

cm
2 /

W
)

Two-photon energy (eV)

with MR
w/o MR

Experiment

2.5 3 3.5 4 4.5 5

ω2ΓsP RM+
p

FIG. 5. Comparison of RsP between the three-layer model with
the full effect of multiple reflections (MR), and without (w/o)
them. The inset shows the ω2�sP RM+

p prefactor; see text for details.
Experimental data are from Ref. [32]. We use θ = 65◦, φ = 30◦, and
a broadening of σ = 0.075 eV.

is almost identical in both situations, which leads to the almost
identical RsP , regardless of the effects from multiple reflec-
tions. As we compare our calculation with the experimental
data, we see that both coincide well in position and in intensity.
The experimental E1 and E2 peaks have almost the same
height, and this is well reproduced in the calculated spectrum.
In this case, multiple reflections do not enhance the E2 peak
with respect to the E1 peak, as was the case for RpP and RpS ,
further confirming the reliability of the three-layer model.

V. SSHG OF THE Si(001)(2 × 1) SURFACE

The Si(001)2 × 1 surface has electronic surface states that
are ideal for SSHG probing. Reference [29] demonstrates how
the calculation of χ abc for this surface can be carried out.
Here, we use a scissors shift of �� = 0.5 eV that is the GW

gap reported in Refs. [46] and [47]. We focus onRpS for which
we have found that there is a very well defined surface-related
SH resonant peak at a two-photon energy of 1.42 eV. The
Si(001)2 × 1 surface reconstruction yields a class 1 primitive
triclinic system with all the 12 components required by
RpS [Eq. (60)] independent from each other [48]. Therefore,
we cannot take advantage of any symmetry relations for
this surface. However, this is no problem for the versatile
formulation we derived in Sec. III which can accommodate
all 12 components disregarding any surface symmetries. The
reconstruction of the Si(001)2 × 1 surface is characterized
by a dimer along the [011] crystallographic direction that
corresponds to x in our Cartesian system [29].

In Fig. 6 we show RpS for two different cases. In the first,
we take RpS vs φ for a fixed θ0 = 10◦, and in the second,
vs θ0 for a fixed φ = 90◦. We notice a very intense SSHG
yield around 2�ω ∼ 1.4 eV, with less intense structures above
∼2.5 eV. The former is the surface-related SH resonance, and
the latter are the resonant peaks related to the E1 and E2 critical
points of Si. From this figure, we see that the best conditions for
measurement are for φ = 90◦ with a small angle of incidence
θ0. This azimuthal angle corresponds to incidence of the
fundamental electric field (with p polarization) perpendicular
to the surface dimers, and it is quite interesting to notice that
for illumination along the dimers (φ = 0◦ or 180◦), RpS ∼ 0.
To understand this behavior, we obtain from Eq. (60) that

rpS[φ = 90◦] = −(
rM−
p

)2
w2

�χ
xyy − 2rM+

p rM−
p w� sin θ0χ

xzy

− (
rM+
p

)2
sin2 θ0χ

xzz, (69)

and likewise

rpS[φ = 0◦] = (
rM−
p

)2
w2

�χ
yxx + 2rM+

p rM−
p w� sin θ0χ

yxz

+ (
rM+
p

)2
sin2 θ0χ

yzz. (70)

The calculation of χ abc [29] results in |χyxx | ∼ |χyxz| ∼
|χyzz| ∼ |χxzy | 
 |χxzz| ∼ |χxyy |. For incoming fields along
the dimers, RpS is very small, not because of symmetry
reasons that could cause χyxx = χyxz = χyzz = 0, but from
the electronic structure of the surface that leads to values
that are less than 1.4% of the χxyy and χxzz components
involved when the incoming fields are perpendicular to the
dimers. Both the φ = 0◦ and φ = 90◦ results can be easily
understood from the intuitive fact that the dimer is more
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FIG. 6. RpS vs two-photon energy vs φ for a fixed θ = 10◦

(top panel), and vs θ0 for a fixed φ = 90◦ (bottom panel), for the
Si(001)(2 × 1) surface.

prone to be polarized along its length than across it. For
φ = 0◦, RpS involves χybc components, and the nonlinear
polarization P will point only along y (perpendicular to the
dimer). For φ = 90◦, the χxbc components are the ones that
contribute, and these give a nonlinear polarization Px which
points along the dimer, and thus much larger than Py . Recall
that the nonlinear process mixes the direction of the exciting
electric fields with the outgoing direction of the nonlinear
polarization. Therefore, we clearly see that what is important
is not the direction of excitation along or across the dimer,
but rather how the direction of the nonlinear polarization is
induced by the nonzero Cartesian components of χ abc. This
result constitutes a clear example of what nonlinear optics is
all about.

We narrow our focus onto a particular spectrum to gain
insight into these results. In Fig. 7 we present RpS for φ = 90◦
and θ0 = 10◦, where we see a very well defined surface SH
peak at 2�ω = 1.42 eV, with an intensity 17 times larger than
that of the E2 peak for RpP from the Si(111)1 × 1:H surface
(see Fig. 3). We notice that there are no E1 and E2 single peaks,
but instead there is a mixture of both resonances that produce
a rather wide peak between these values. Also, we see that the
effect of multiple reflections is larger for higher energies as
discussed previously with the Si(111)1 × 1:H surface. From
the bottom panel of the figure we see that the surface SH
peak mainly comes from χxyy . The bulk SH peak is a mixture
of the χxyy and χxzz components, and χxzy is negligible.
This could be geometrically interpreted as follows. χxyy has
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FIG. 7. The top panel shows RpS for θ0 = 10◦ and φ = 90◦ for
the Si(001)(2 × 1) surface. The bottom panel shows the components
of χ abc involved in RpS .

Cartesian components only along the surface; thus, it mainly
has surface-related information. On the other hand, χxzz has
“depth” (z) components; thus, it mainly has bulk-related
features. Of course, χxyy and χxzz have both bulk and surface
information, which manifests itself at the surface due to the
surface’s noncentrosymmetric environment.

Finally, we follow Ref. [29] in order to calculate the layer-
by-layer contribution to χxyy . Each layer in the Si(001)2 × 1
supercell contains two Si atoms. In Fig. 8, we show the
contribution to Im[χxyy] coming from the first (topmost) layer
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FIG. 8. Layer-by-layer decomposition of Im[χxyy] for the
Si(001)(2 × 1) surface (see text for details).
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that contains the dimer, the contributions from the second
and third layers, and the sum of the first eight layers. We
also include Im[χxyy

half-slab], which according to Ref. [29] is
the surface value of Im[χxyy]. It is this “half-slab” value
for χabc that we use in our formulation for the SSHG yield,
presented above. As we compare against Im[χxyy

half-slab], we see
that Im[χxyy

dimer] accounts for most of the surface SH peak at
1.42 eV. The second layer also has a small contribution
to this peak. The third layer has an even smaller positive
contribution, but also a negative part that subtracts from the
total peak intensity. These negative contributions are such that
as we add the first eight layers, we obtain that Im[χxyy

layer 1-8] ∼
Im[χxyy

half-slab]; the latter includes 16 layers (representing half of
the total slab). In general, the contributions from the different
layers could have opposite signs that diminish the contribution
of any one layer towards the half-slab or surface value of χ .
Conversely, a given SH peak can be enhanced by different
layers if those layers produce contributions with the same
sign. Therefore, the layer-by-layer analysis demonstrates that
the predicted SH surface peak primarily comes from the Si
dimers right at the surface of the Si(001)2 × 1 reconstruction.
This is yet another example of the great surface sensitivity of
SSHG.

VI. CONCLUSIONS

We have derived the complete expressions for the SSHG
yield using the three-layer model to describe the radiating
system. This treatment includes the effects of multiple reflec-
tions inside the material from both the SH and fundamental
fields. Our derivation yields the full expressions for the yield
for the commonly used incoming and outgoing s and p

polarizations, and can include all the required components
of χ abc, regardless of symmetry considerations; thus, these
expressions can be applied to any surface symmetry. We also
reduce them according to the most commonly used surface
symmetries, the (111), (110), and (001) cases.

The results obtained from using the theory developed here
were applied to the Si(111)(1 × 1):H surfaces. Our three-layer
model accurately reproduces key spectral features and yields
an intensity very close to experiment for all the cases studied.
We consider it an upgrade over the much reviewed two-layer
model [21], and it comes with very little added computational
expense. The addition of the effects of multiple reflections
either enhances the intensity of the calculated spectra and
improves the peak proportions, or has little effect at all, always
in close agreement with experiment.

We also presented a predictive study of the SSHG yield from
the Si(001)(2 × 1) surface. As mentioned above, our robust
formulation can accommodate all 18 independent components
(for SHG) of χ abc for any surface, and we focused on RpS

which uses 12 of these components. We find clear evidence
of electronic surface states around a two-photon energy of
1.41 eV, and we present a brief overview of the produced SSHG
yield over a wide range of incident (θ0) and azimuthal (φ)
angles, along with a physical understanding of the results. This
type of plot will be quite useful to the experimentalist interested
in this kind of spectroscopy. Overall, our theoretical three-layer
model can be used to quantitatively study the SSHG yield.
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V. Véniard, Improved ab initio calculation of surface second-
harmonic generation from Si(111)(1 × 1)H, Phys. Rev. B 93,
235304 (2016).

[31] J. E. Mejı́a, C. Salazar, and B. S. Mendoza, Layer-by-layer
analysis of second harmonic generation at a simple surface,
Revista Mexicana de Fı́sica 50, 134 (2004).

[32] J. E. Mejı́a, B. S. Mendoza, M. Palummo, G. Onida, R. Del Sole,
S. Bergfeld, and W. Daum, Surface second-harmonic generation
from Si(111)(1 × 1)H: Theory versus experiment, Phys. Rev. B
66, 195329 (2002).

[33] O. A. Aktsipetrov, I. M. Baranova, and Yu. A. Il’inskii, Surface
contribution to the generation of reflected second-harmonic light
for centrosymmetric semiconductors, Zh. Eksp. Teor. Fiz. 91,
287 (1986) [J. Exp. Theor. Phys. 64, 167 (1986)].

[34] Z. Xu, X. F. Hu, D. Lim, J. G. Ekerdt, and M. C. Downer,
Second harmonic spectroscopy of Si(001) surfaces: Sensitivity
to surface hydrogen and doping, and applications to kinetic
measurements, J. Vac. Sci. Technol. B 15, 1059 (1997).

[35] P. Guyot-Sionnest and Y. R. Shen, Bulk contribution in surface
second-harmonic generation, Phys. Rev. B 38, 7985 (1988).

[36] Y. R. Shen, Surface contribution versus bulk contribution in
surface nonlinear optical spectroscopy, Appl. Phys. B 68, 295
(1999).

[37] R. W. Boyd, Nonlinear Optics (Academic Press, New York,
2003).

[38] Richard L. Sutherland, Handbook of Nonlinear Optics (CRC
Press, Boca Raton, 2003).

[39] J. E. Sipe, New Green’s function formalism for surface optics,
J. Opt. Soc. Am. B 4, 481 (1987).

[40] J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley-VCH,
Berlin, 1998).

[41] S. M. Anderson, Theoretical optical second-harmonic calcula-
tions for surfaces, Ph.D. thesis, Centro de Investigaciones en
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