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Spin splitting of electron states in lattice-mismatched (110)-oriented quantum wells
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We show that for lattice-mismatched zinc-blende-type (110)-grown quantum wells a significant contribution
to the zero-magnetic-field spin splitting of electron subbands comes from strain-induced spin-orbit coupling.
Combining the envelope function theory and atomistic tight-binding approach, we calculate spin-orbit splitting
constants for realistic quantum wells. It is found that the strain due to lattice mismatch in conventional
GaAs/AlGaAs structures may noticeably modify the spin splitting while in InGaAs/GaAs structures it plays
a major role and may even change the sign of the spin splitting constant.
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I. INTRODUCTION

The k-linear spin-orbit splitting of electron states in zinc-
blende-type quantum wells (QWs) is usually discussed in
terms of the Rashba spin-orbit coupling stemming from struc-
ture inversion asymmetry (SIA) [1–3] and the Dresselhaus
spin-orbit coupling originating from k-cubic terms in the bulk
crystal spectrum (also named BIA contribution) [4,5] and
interface inversion asymmetry (IIA) [6–10], or their interplay
[11–21]. Here, k is the electron wave vector. Although it is
well known that all QW structures are strained in a varying
degree depending on the lattice mismatch between the QW
and the buffer layer and that strain may also give rise to
k-linear spin-orbit coupling in bulk crystals [22–24], the effect
of strain on spin splitting is commonly neglected. This is
largely due to the fact that, in the most studied GaAs/AlGaAs
heterostructures, the lattice mismatch does not exceed 0.5%
and the whole epilayer adopts the GaAs substrate lattice
parameter.

Recently, it has been demonstrated experimentally that
strain may give a significant contribution to spin splitting in
real lattice-mismatched heterostructures [25], but there are a
lack of theoretical studies of this effect. The strain caused
by lattice mismatch can affect the spin splitting in QWs
of any crystallographic orientation. However, this effect is
expected to be more pronounced in QWs of any orientation
other than (001) since the shear (in cubic axes) strain
naturally occurring in low-symmetry heterostructures directly
couples the conduction-band and valence-band states [22,23].
Therefore, we focus here on (110)-grown quantum wells. We
combine the envelope function theory and advanced atomistic
tight-binding calculations and prove that this strain-induced
effect can be large as to dominate the spin properties of some
lattice-mismatched (110)-grown structures. The tight-binding
approach allows us to take into account the effect of local
strain determined by the local arrangement of atoms on the
band structure as well as interface effects. It is found that
the strain-induced spin-orbit coupling is already sizable for a
GaAs/AlGaAs QW when the lattice mismatch is supported by
the GaAs well. The calculations performed for a InGaAs-based
QW yield that the strain is the major source of spin-orbit
coupling in the conduction subbands. The resulting Dressel-
haus constant of the spin-orbit splitting in InGaAs-based QWs

considerably exceeds that in GaAs/AlGaAs structures and,
more importantly, can be of different sign depending on the
buffer layer used.

II. EFFECTIVE HAMILTONIAN

The effective Hamiltonian describing k-linear spin splitting
of electron states in a (110)-grown QW may be generally
presented as a sum of three contributions [26]

Hso = βσzkx + α+(σxky − σykx) + α−(σxky + σykx), (1)

where σj (j = x,y,z) are the Pauli matrices, x ‖ [11̄0] and
y ‖ [001̄] are the in-plane axes, and z ‖ [110] is the growth
axis. The first term on the right-hand side of Eq. (1) is the
k-linear Dresselhaus term which originates from BIA and
IIA. This term will be drastically affected by strain. The
second term describes the isotropic Rashba spin-orbit coupling
stemming from SIA. The third term emerges if both the atomic
structure of the QW interfaces and the QW structure inversion
asymmetry are taken into account. Both the second and the
third terms vanish in symmetrically grown QWs.

Atomistic tight-binding calculations carried out recently for
(110) GaAs/Al0.3Ga0.7As QWs [26] revealed that the values
of β and α+ are in a good agreement with the results of
the envelope function calculations and α−, which is absent
in the isotropic Rashba model, is an order of magnitude
smaller than α+. We note that misfit strain was “switched
off” in the calculations of Ref. [26] since it is rather weak in
GaAs/AlGaAs heterostructures.

The deformation of a bulk zinc-blende-type crystal leads
to a k-linear spin splitting of the electron spectrum [23]. The
corresponding bulk Hamiltonian written in the cubic axes x̃ ‖
[100], ỹ ‖ [010], and z̃ ‖ [001] has the form

Hstr = 1
2 (C3 σ · ϕ + C ′

3 σ · ψ), (2)

where C3 and C ′
3 are material constants, ϕ and ψ are the

pseudovectors constructed from the components of the strain
tensor ε and the wave vector k,

ϕ =
⎡
⎣εx̃ỹkỹ − εx̃z̃kz̃

εỹz̃kz̃ − εx̃ỹkx̃

εx̃z̃kx̃ − εỹz̃kỹ

⎤
⎦, ψ =

⎡
⎣(εỹỹ − εz̃z̃)kx̃

(εz̃z̃ − εx̃x̃)kỹ

(εx̃x̃ − εỹỹ)kz̃

⎤
⎦. (3)
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In the (xyz) coordinate frame relevant to (110)-grown struc-
tures, the scalar products σ · ϕ and σ · ψ assume the form

σ · ϕ = 1
2 (εzz − εxx)(σxkz − σzkx)

−εxy(σykx + σzky) − εyz(σxky − σykx),
(4)

σ · ψ = 1
2 (εxx − 2εyy + εzz)(σxkz + σzkx)

−εxz(σxkx − 2σyky + σzkz).

Lattice mismatch in a (110)-grown structure leads to the
emergence of the strain tensor components εxx = εyy and εzz

while the off-diagonal components (in the QW coordinate
frame) do not occur. The strain tensor can be decomposed
in two parts: isotropic part which induces only a change of
the band positions, effective mass, and the bulk Dresselhaus
constant and anisotropic part with the zero trace which gives
rise to k-linear spin-orbit coupling. Taking into account that
electrons are confined in a QW along the z direction, i.e.,
〈kz〉 = 0, one obtains the strain-induced contribution to the
spin Hamiltonian

H
QW
srt = 1

4 (C3 − C ′
3)(εxx − εzz)σzkx, (5)

which corresponds to an additional contribution βstr to the
Dresselhaus constant [see Eq. (1)]

βstr = 1
4 (C3 − C ′

3)(εxx − εzz). (6)

It is interesting to compare βstr with the usual Dresselhaus
constant β for a standard (110)-grown GaAs/Al0.3Ga0.7As
QW. The deformation constants for GaAs obtained from the
ab initio calculations of Ref. [27] are C3 ∼ 4–8 eV Å and
C ′

3 ∼ 2 eV Å. Recent experimental estimations give C3 ≈
8.1 eV Å and C ′

3 is negligibly small [28]. The typical values
of β are in the range 7–15 meV Å [26] while the lattice
mismatch is ε = εxx − εzz ∼ 1 × 10−3. Assuming that misfit
strain is supported by the GaAs well, we conclude that the
strain-induced spin-orbit coupling is only few times smaller
than the regular BIA term in such AlGaAs heterostructures.

Conversely, in a In0.2Ga0.8As/GaAs QW, where the strain
ε ∼ 0.02 is typically 20 times larger and the deformation
constant C3 is also larger (see below), the strain-induced spin
splitting dominates over the other mechanisms.

To conclude this section, we note that in addition to
the renormalization of the Dresselhaus term, nonsymmetric
strain near interfaces in realistic structures may also produce
electric-field-independent contributions to the α+ and α−
Rashba terms.

III. TIGHT-BINDING CALCULATIONS

To calculate the electron dispersion in a QW and extract the
parameters of spin-orbit coupling we use the well-established
sp3d5s∗ tight-binding method [26,29]. The method is
described in a number of papers and will not be repeated here.
Instead, we focus in this section on the procedure of strain
incorporation into tight binding.

We use the standard crystallographic coordinate system
with a cation atom located at the origin and one of its
neighboring anions located at (a0/4,a0/4,a0/4), with a0 being
the lattice constant. Note that the opposite choice of the
coordinate frame leading to the opposite sign of the bulk

Dresselhaus constant γc and the deformation constant C3 is
also utilized in literature.

The strain is microscopically calculated in the valence
force field (VFF) approximation [30] which is able to provide
reliable results for small and intermediate strains [31]. To
model realistic structures, we set the lateral lattice constant
fixed to mimic the lattice-matched growth on a substrate. Then,
we keep the lateral periodic boundary conditions fixed and vary
the positions of atoms using the conjugate gradient method
to minimize the VFF elastic energy. After the minimization,
we obtain the atomic positions for the fully relaxed structure.
This allows us to extract a microscopic strain tensor acting on
atomic orbitals using an approach similar to that described in
Ref. [32], as explained below.

For each atom we calculate the “local strain tensor”
based on the positions of its four neighboring atoms. For a
cation C surrounded with four anions Ai (i = 1 . . . 4) located
at arbitrary positions, the local strain acting on the cation
is defined according to the following procedure. First, the
nominal anion positions r (0)i are determined from the bond
lengths corresponding to the CAi bulk lattice parameters in
the absence of bond bending. After the structure relaxation,
this nominal tetrahedron determined by r (0)i transforms into
the actual one given by the real positions of the atoms r i . The
nominal and actual tetrahedrons can be uniquely characterized
by three vectors Rj and R(0)j (j = 1 . . . 3), respectively. We
choose them as follows: R(0)1 = r (0)2 − r (0)1, R(0)2 = r (0)4 −
r (0)3, and R(0)3 = [r (0)4 + r (0)3 − r (0)2 − r (0)1]/2. Then, we
calculate the matrix T connecting the nominal and strained
sets Rj = T R(0)j . The local strain tensor ε is then defined
by the polar decomposition T = (1 + ε)R, where R is the
orthogonal matrix of rotation.

One may check that, for a homogeneously strained bulk
binary compound, this approach reproduces the classical
definition of strain tensor. However, the approach allows one to
generalize the concept of the strain tensor to the atomic scale.

We notice that the tensor ε does not fully describe the local
atomic configuration: It is uniquely defined by the relative
coordinates of four anions surrounding a given cation (or,
vice versa, by the cation relative coordinates surrounding a
given anion) while the change in the cation position does
not affect ε. To account for the cation position change, we
additionally introduce an internal strain vector u defined as
the displacement of the cation from the point equidistant from
the surrounding anions and scaled to the unstrained interatomic
distance. For homogeneously strained bulk crystal, the strain
tensor ε and the strain vector u are proportional to each other
and related by the Kleinman parameter [30]. However, this
is not generally the case for equilibrium atom positions in a
structure with different chemical bonds.

The local strain tensor ε and the local strain vector u are then
incorporated into the tight-binding Hamiltonian. The strain
contribution to the tight-binding Hamiltonian has three rather
distinct parts. The first one is a scaling of the transfer matrix
elements due to the change in the bond lengths [29]

Vn1,n2; ijk = V 0
n1,n2; ijk

(
dn1,n2

d0
n1,n2

)nijk

, (7)
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TABLE I. Tight-binding parameters used in calculations.

InAs GaAs AlAs
a 6.0580 5.6500 5.6600

Ea
s −6.0738 −5.9820 −6.5474

Ea
s∗ 17.2502 19.4477 18.9475

Ec
s 0.2582 −0.3803 0.3883

Ec
s∗ 17.2393 19.4548 18.9438

Ea
p 2.8784 3.3087 2.9314

Ea
d 11.7833 13.2015 12.4961

Ec
p 5.6829 6.3801 5.7735

Ec
d 11.7991 13.2055 12.4992

ssσ −1.5096 −1.6874 −1.8436
s∗
a scσ −2.0155 −2.1059 −1.7884

sas
∗
c σ −1.1496 −1.5212 −1.3059

s∗s∗σ −3.3608 −3.7170 −3.6128
sapcσ 2.2807 2.8846 2.5778
scpaσ 2.6040 2.8902 2.7962
s∗
apcσ 1.9930 2.5294 2.1581

s∗
c paσ 2.0708 2.3883 2.2397

sadcσ −2.8945 −2.8716 −2.5624
scdaσ −2.3175 −2.2801 −2.3841
s∗
a dcσ −0.6393 −0.6568 −0.8046

s∗
c daσ −0.5949 −0.6113 −0.7492

ppσ 3.6327 4.4048 4.1971
ppπ −0.9522 −1.4471 −1.3146
padcσ −1.1156 −1.6035 −1.6473
pcdaσ −1.3426 −1.6260 −1.7603
padcπ 1.2101 1.8423 1.7647
pcdaπ 1.5282 2.1421 2.1100
ddσ −0.8381 −1.0885 −1.2241
ddπ 1.9105 2.1560 2.1770
ddδ −1.3348 −1.8607 −1.7585


a/3 0.1558 0.1745 0.1721

c/3 0.1143 0.0408 0.0072

where n1 and n2 are the indices denoting two neighboring
atoms, ijk encodes the corresponding Slater off-diagonal
parameter, V 0

n1,n2; ijk is the transfer matrix element in the
unstrained bulk binary compound, dn1,n2 and d0

n1,n2
are the

relaxed interatomic distance and the chemical bond length
in the corresponding unstrained compound, and nijk is the
power-law scaling exponent [29]. For calculations here we use
a set of tight-binding parameters listed in Table I.

The second contribution, also introduced in Ref. [29], is
the shift of onsite energies proportional to the hydrostatic
component of strain,

δEβ = Eβ − E0
β = −αβ

(
E0

β − Eref
)Tr ε

3
, (8)

where E0
β are the onsite energies in the absence of strain

(Table I), αβ are the deformation parameters given in Table II,
and the index β enumerates the orbitals. We define the
energy shifts with respect to the reference energy Eref =
Es∗ − 6E〈1,0,0〉, where E〈1,0,0〉 = �

2(2π/a)2/2m0 and a is the
lattice constant. The introduction of Eref in Eq. (8) allows us
to avoid the recalculation of the deformation parameter αβ for
heterostructures with band offsets. The present gauge-invariant
formulation is, in the linear limit, strictly equivalent to the one
used in Refs. [29,33] for the free-electron crystal. The choice

TABLE II. Deformation tight-binding parameters used in calcu-
lations. Other parameters are αs∗ = 2.0 and ns∗s∗σ = ns∗dσ = nddσ =
nddπ = nddδ = 2.0.

InAs GaAs AlAs

αa
s 0.5603 0.0000 0.9720

αa
p 1.9539 1.6257 1.8880

αa
d 1.7005 2.4531 2.0600

αc
s 0.5603 0.0000 0.9720

αc
p 1.9539 1.6257 1.8880

αc
d 1.7005 2.4531 2.0600

nssσ 5.4002 4.5619 2.0880
nspσ 4.4014 3.0363 5.7560
nsdσ 6.8053 3.1594 4.4720
nss∗σ 5.8401 3.2676 2.8600
ns∗pσ 6.8116 6.9229 3.2240
nppσ 6.9787 6.2602 5.1560
nppπ 6.0189 7.0824 2.7960
npdσ 2.7559 3.5344 5.5920
npdπ 6.0212 7.3976 4.8080

π001 0.0952 0.1476 0.1000
π111 0.1456 0.1588 0.1160

made for the reference energy is motivated by the aim to keep
the positions of the s∗ orbitals the same as in the free-electron
approximation.

The third contribution is related to the strain-induced
splitting of the onsite energies of the degenerate orbitals p and
d [33–36]. The contribution has not been analyzed in detail so
far. In Ref. [33], a simplified approach has been considered:
the splittings were assumed to be proportional to the strain
tensor. Here, we generalize this approach by introducing the
corrections proportional to the local strain tensor ε and the
local strain vector u.

Using the method of invariants one can show that the
corresponding contribution to the p-orbital same-atom block
in the tight-binding Hamiltonian in the basis of the functions
px , py , and pz has the form

δH=
⎛
⎝λ1(

√
3ε1 − ε2) λ2εxy+ξuz λ2εzx+ξuy

λ2εxy+ξuz −λ1(
√

3ε1+ε2) λ2εyz+ξux

λ2εzx+ξuy λ2εyz+ξux 2λ1ε2

⎞
⎠,

(9)

where ε1 = √
3(εxx − εyy), ε2 = 2εzz − εxx − εyy , and λj

(j = 1,2) are parameters, and we assume ξ = ±λ2 for anions
and cations, respectively. To make the parametrization space
more compact, we assume that the parameters λj for anions
and cations are connected to each other by

λa
1 = 1

2

(
Ea

p − Ea
ref

)
π100, λc

1 = 1
2

(
Ec

p − Ec
ref

)
π100,

(10)
λa

2 = − 8
3

(
Ea

p − Ea
ref

)
π111, λc

2 = − 8
3

(
Ec

p − Ec
ref

)
π111.

The deformation parameters π100 and π111 for several binary
compounds are listed in Table II. We note that similar splitting
occurs for the d orbitals as well. However, to fit the conduction-
band and valence-band deformation-potential constants at the
 point of the Brillouin zone it is sufficient to consider the
splitting of the p orbitals. Therefore, to simplify calculations,
we neglect the splitting of the d orbitals. We keep in mind that
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TABLE III. The band gaps Eg (in eV), the effective electron
masses at the  point me (in the units of free-electron mass),

the bulk Dresselhaus constants γc (in eV Å
3
) (see footnote 1), the

deformation-potential constants ac, av , b, and d (in eV), and C3

(in eV Å) computed using the tight-binding parameters from Tables I
and II.

GaAs AlAs InAs Al0.3Ga0.7As In0.2Ga0.8As

Eg 1.519 3.130 0.417 2.000 1.207
me 0.0665 0.158 0.0235 0.0904 0.0519
−γc 24.21 9.12 45.39 16.04 28.61

ac −7.17 −5.64 −5.08 −6.74 −6.62
av 1.60 2.47 1.00 1.63 1.22
b −2.00 −2.30 −1.80 −0.74 −1.35
d −4.80 −3.40 −3.60 −4.39 −4.53
−C3 8.12 −3.34 104.5 −2.65 15.10

for fitting simultaneously the deformation-potential constants
at the , X, and L points a complete set of parameters should
be used.

The determination of the strain-related parameters of the
tight-binding Hamiltonian is a challenging task because of
the small number of available well-documented deformation-
potential constants. In fact, the deformation-potential con-
stants at the Brillouin zone center do not provide enough
information to uniquely determine all the tight-binding param-
eters. We expect that any parametrization providing the correct
values of the conduction-band deformation-potential constant
ac and the valence-band deformation-potential constants av ,
b, and d yields satisfactory results for the strain-induced spin-
orbit coupling. Therefore, we adopt the approach described in
Ref. [37] and numerically fit the strain-related tight-binding
parameters to reproduce the recommended values of the
deformation-potential constants in the Brillouin zone center
given in Ref. [38]. The obtained parameters are presented in
Table II. Table III summarizes the band gaps Eg , the effective
electron masses at the  point me, the Dresselhaus constants
γc, and the deformation-potential constants ac, av , b, d, and C3

for some bulk binary and ternary compounds obtained from
the tight-binding calculations with the parameters listed in
Tables I and II.

For alloys, the tight-binding needs a special care to be
taken to reproduce the band-gap bowing properly [39]. Here,
we use an original interpolation scheme [40] to construct
the alloy AxB1−xC tight-binding parameters in the virtual
crystal approximation from the tight-binding parameters of
the binary compounds AC and BC. First, the lattice constant
of the alloy is found as the linear interpolation between
the binaries. Then, we calculate the strain contributions as
described above and construct the parameters of the AC and BC
materials strained to the lattice constant of the alloy. Finally,
the tight-binding parameters of the alloy are determined as
the linear interpolations of the parameters of the strained
binary materials. We note that, unlike the approach from
Ref. [39], this procedure provides the correct bowing without
the introduction of additional parameters.

We also note that the standard sp3d5s∗ tight-binding model
[29] does not take into account the spin-orbit coupling of
the p and d orbitals which yields the major contribution

FIG. 1. Dresselhaus constant β as a function of the QW thickness
(in monolayers, ML) calculated for Al0.3Ga0.7As/GaAs/Al0.3Ga0.7As
QWs with different strain configurations. Solid line shows the
results for QW structures with the lattice constant corresponding
to GaAs, a0 = 5.65 Å (the barrier strain ε = −8.6 × 10−4). Dashed
line shows the results for QWs lattice matched to AlAs with the lattice
constant a0 = 5.66 (the QW strain ε = 2.0 × 10−3, the barrier strain
ε = 2.9 × 10−3).

to the C ′
3 constant [23]. The missing of C ′

3 has the same
origin as the missing of the k-linear spin splitting of the 8

valence band in the bulk crystal [23,41]. Possible solution
of this problem proposed by Boykin [41] is based on the
consideration of second-nearest-neighbor tight-binding model
with the nearest-neighbor spin-orbit interaction and has no
straightforward extension to strained heterostructures.

IV. RESULTS

We use the procedure described in Ref. [26] to extract
the constants of the spin-orbit Hamiltonian (1) from the
tight-binding calculations for GaAs-based and InGaAs-based
QW structures. As distinct from previous calculations, we
now include the atomistic strain as described in Sec. III. The
results show that the constants α± related to structure inversion
asymmetry are almost independent of the strain present in the
QW. Therefore, we focus below on the Dresselhaus parameter
β and consider symmetric QWs.

A. GaAs/AlGaAs quantum wells

The Dresselhaus constant β as a function of the QW
thickness determined for AlGaAs/GaAs/AlGaAs QWs with
different strain configurations is shown in Fig. 1. Here,
we present the results for the same structures but lattice-
matched either to GaAs (solid line) or to AlAs (dashed
line).1 The observed dependencies of β on the QW thickness

1The coordinate system is changed with respect to the one used
in Ref. [26] which results in the opposite sign of the Dresselhaus
constant.
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are nonmonotonic. This is expected for the splitting mainly
originating from the k-cubic terms in the host bulk crystals and
actually reflects the strength of electron quantum confinement
[5,26]. The energy of size quantization is small in narrow or
wide QWs, where electrons reside mostly in the barriers or in
the well, respectively, and reaches a maximum for the QW of
an intermediate thickness.

From Fig. 1 one may conclude that the widely adopted
consideration of GaAs/AlGaAs heterostructures as unstrained
systems is not completely satisfied for the analysis of spin
splitting. The ratio of the Dresselhaus constants β for the
structures lattice matched to GaAs and AlAs would exceed
a factor 2 for a 50-Å-wide QW while the strain itself is only
2 × 10−3. Despite the fact that spin splitting in GaAs/AlGaAs
structures is rather small, the spin splitting constants are among
the most important parameters of QWs since they determine
the spin dynamics and the spin lifetime of electrons [5,19–21].

B. InGaAs/GaAs quantum wells

While the strain contribution to the spin splitting in
GaAs/AlGaAs QWs is still a correction, it is natural to
expect that in heterostructures grown from compounds with
a significant lattice mismatch, like InGaAs/GaAs QWs, the
strain contribution dominates the spin splitting.

In addition to larger lattice mismatch, the deformation
constant C3 in InAs is about an order of magnitude larger
than that in GaAs (see Table III). The large value of C3 can be
explained from the k · p perturbation theory for bulk crystals
where the major contribution to C3 is given by [23]

C3 = 4

3

C2P


Eg(Eg + 
)
, (11)

where C2 is the interband deformation-potential constant, P is
the Kane matrix element, and 
 is the spin-orbit splitting of the
valence band. The growth of C3 for InAs as compared to that
for GaAs is caused by the decrease in Eg and the increase in C2.

To elaborate this expectation, we calculate the Dresselhaus
constant β for GaAs/In0.2Ga0.8As/GaAs QW structures lattice
matched to GaAs and In0.2Ga0.8As. The dependence of the
Dresselhaus constants on the QW thickness for both strain
configurations is shown in Fig. 2. The range of spin splittings
is significantly larger than that in GaAs/AlGaAs structures and
the Dresselhaus constant has a different dependence on the QW
thickness. Importantly, the sign of β is opposite for the QW
structures lattice matched to GaAs and InGaAs layers. In the
first case, β tends to zero for narrow wells and saturates to the
constant βsrt of the strained bulk InGaAs layer for wide wells
(dashed-dotted line). Note that hydrostatic strain may also
renormalize the C3 constant. In the latter case, the behavior is
opposite: β tends to the constant βsrt of the strained bulk GaAs
layer for narrow wells and vanishes for wide wells. The effect
of quantum confinement given by 〈k2

z 〉, which is important for

FIG. 2. Dresselhaus constant β as a function of the QW thickness
calculated for GaAs/In0.2Ga0.8As/GaAs QWs with different strain
configurations. Solid and dashed lines show the results for QW struc-
tures grown on GaAs buffer layer (the QW strain ε = −0.024) and
In0.2Ga0.8As buffer layer (the barrier strain ε = 0.024), respectively.
Dashed-dotted line shows the constant of linear spin splitting in
bulk (110)-grown In0.2Ga0.8As alloy with ε = −0.024 and C3 from
Table III.

GaAlAs QWs, is masked by the interplay between the strain
and the electron probability of presence in the well and the
barriers. Actually, the expected positive value of β for thick
unstrained wells (dashed line in Fig. 2) is recovered only for
very large thicknesses (>60 ML).

V. CONCLUSION

In conclusion, we have performed atomistic calculations
of the spin-orbit splitting of electron subbands in III-V
(110)-grown quantum wells and revealed the important role
of strain which naturally occurs in heterostructures. The strain
contribution to the spin-orbit coupling noticeably renormalizes
the Dresselhaus constant in GaAs/AlGaAs QWs, which are
commonly treated as nearly unstrained, and dominates the
spin splitting in InGaAs/GaAs QWs with a rather large lattice
constant mismatch. Strain engineering thus opens a way to
control the spin splittings in two-dimensional electron gas in
semiconductor heterostructures.
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