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Dynamical calculation of third-harmonic generation in a semiconductor quantum well
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Nonlinear phenomena in optically excited semiconductor structures are of high interest. Here we develop
a model capable of studying the dynamics of the photoexcited carriers, including Coulomb interaction on a
Hartree-Fock level, on the same footing as the dynamics of the light field impinging on an arbitrary photonic
structure. Applying this method to calculate the third-harmonic generation in a semiconductor quantum well
embedded in a Bragg mirror structure, we find that the power-law exponent of the intensity dependence of
the third-harmonic generation depends on the frequency of the exciting pulse. Off-resonant pulses follow the
expected cubic dependence, while the exponent is smaller for resonant pulses due to saturation effects in the
induced carrier density. Our study provides a detailed understanding of the carrier and light field dynamics during
nonlinear processes.
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I. INTRODUCTION

Semiconductors exhibit a multitude of nonlinear optical
responses for resonant as well as nonresonant excitation
[1]. One of the most prominent nonlinear features is the
generation of higher harmonics of the exciting frequency.
When the frequency of the incoming field is tripled one
speaks of third-harmonic generation (THG). Such THG can
be employed in spectroscopy and provides important insights
into biological processes [2,3] or even for palaeontology [4].
In semiconductors, THG has, for example, been studied in
coupled quantum wells [5,6], quantum cascade structures [7],
quantum wires and dots [8,9], while it is also of interest in
newly developed materials like graphene [10] and atomically
thin semiconductors [11].

In order to understand THG one requires a description of
the optical fields and the material which is excited by them
and generates the nonlinear interaction. Here we focus on
the photointeraction of semiconductor quantum wells (QWs)
with ultrashort light pulses. To this end, we employ an
auxiliary differential equation finite difference time domain
(FDTD) approach to describe the dynamics of the light
field along with the dynamics of the carriers in the QW.
This approach goes beyond rotating wave approximation
and slowly varying envelope approximation, allowing us to
treat fundamental and third harmonic on the same footing
and describe photonic structures that vary on scales much
smaller than the wavelength. The combination of FDTD with
density matrix models through auxiliary differential equations
includes not only the effect of the field on the material but
also self-consistently describes the effect of the material on
the field. This feature allows us, for example, to describe
propagation of SIT solitons in one and two dimensions
[12–14] and to study loss compensation and lasing dynamics
in metamaterials [15–18] or plasmonic stopped-light lasers
[19]. However, the few-level models employed in those studies
cannot describe the complicated behavior of an interacting
electron gas excited in semiconductor QWs [20–22].
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On the other hand, more complex wave-vector resolved
semiconductor models have been developed that also consider
Coulomb interaction between excited carriers within different
levels of approximation [1,22,23] or spatially resolved quan-
tum kinetics calculations [24–26]. Such models have been used
to investigate various nonlinear effects such as the two-band
Mollow triplet in thin GaAs films [27], the carrier-wave Rabi
flopping in bulk GaAs [28], and THG from carbon nanotubes
both in the perturbative and nonperturbative regime [29,30].
These approaches, however, do not include the self-consistent,
spatially resolved resolution of electromagnetic fields.

Combining a spatially dependent full time-domain (FDTD)
approach with a description of semiconductor QWs containing
a wave-vector resolved, many-level density matrix description
of the QW in a two-band approximation, has been pioneered
by Böhringer and Hess [31,32] to describe the spatiotemporal
dynamics of semiconductor lasers and recently to describe
lasing of semiconductor nanowires [33]. Here we extend
the previous description by taking into account Coulomb
interaction in Hartree-Fock approximation, which allows us
to describe the excitonic nature of the QW absorption.

In this work we are going to consider specifically the
ultrashort pulse excitation of a QW embedded in a Bragg
mirror structure typical for a semiconductor saturable absorber
mirror (SESAM). We obtain the carrier dynamics associated
with excitation of the QW exciton and study the intensity
dependence of THG in this QW. We find that the power-law
exponent of the intensity dependence of the THG strongly
varies with excitation frequency. For far off-resonant pulses
the expected cubic behavior is found, while for pulses resonant
with the exciton energy the exponent is reduced due to
saturation effects. Similar findings have been reported in
theoretical and experimental studies on the excitation of carbon
nanotubes with ultrashort laser pulses [29,30].

II. THEORY

The Hamiltonian describing the semiconductor structure is
given by the three parts [22]

Ĥ = Ĥc + Ĥcc + Ĥc-l , (1)
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with the free carrier part Ĥc, the carrier-carrier interaction
Ĥcc, and the carrier-light field interaction Ĥc-l . We assume a
two-band structure with one conduction and one valence band,
such that the free carrier Hamiltonian reads

Ĥc =
∑

k

[
εe

kĉ
†
kĉk + εh

k d̂
†
kd̂k

]
. (2)

ĉ
†
k/d̂

†
k and ĉk/d̂k are the electron/hole creation and annihilation

operators with wave-vector k and ε
e/h

k are the corresponding
energies. We consider a QW, where the energy is quantized
in the z direction with a fixed kz, while k always refers
to the two-dimensional in-plane wave vector k = (kx,ky,0).
The confinement along z is included by applying the envelope
function approximation [34], while the in-plane bands are
assumed to have parabolic dispersion. The electron and hole
energies are

εe
k = �

2k2

2me

+ �
2k2

z

2me

+ εgap, (3a)

εh
k = �

2k2

2mh

+ �
2k2

z

2mh

, (3b)

with the effective masses me/h and the band gap εgap.
The carrier-carrier interaction is given by the Coulomb

potential

Ĥcc = 1

2

∑
k,k′,q

[
V ee

|k−k′|ĉ
†
k+qĉ

†
k′−qĉk′ ĉk

+V hh
|k−k′|d̂

†
k+qd̂

†
k′−qd̂k′ d̂k

− 2V eh
|k−k′|ĉ

†
k+qd̂

†
k′−qd̂k′ ĉk

]
, (4)

with the Coulomb matrix elements V
ee/hh/eh

|k−k′| obtained by
multiplying the ideal two-dimensional (2D) Coulomb matrix
elements by a band-dependent form factor obtained from the
envelope function approximation. We consider the plasmon-
pole [23] approximation to the screening of the Coulomb
potential, where the inverse screening length is kept constant
at the initial value κ0, as screening typically builds up on time
scales longer than those considered here [35,36].

We treat the carrier-light field interaction in dipole approx-
imation resulting in

Ĥc-l = −
∑

k

dE(zQW; t)[ĉ†kd̂
†
−k + d̂−kĉk], (5)

with dipole matrix element d for the transition from valence to
conduction band. The classical light field E(zQW; t) is assumed
to be spatially constant over the region of the QW, denoted by
the parametric dependence of the light field on zQW.

To calculate the dynamics of the system we set up the
equations of motion for the occupations ne

k = 〈ĉ†kĉk〉 and nh
k =

〈d̂†
kd̂k〉 and the polarization pk = 〈d̂−kĉk〉 via the Heisenberg

equation of motion

∂tpk = −i ωkpk − i �k
[
ne

k + nh
k − 1

] − γppk,

∂tn
e
k = i [�kp

∗
k − �∗

kpk], (6)

∂tn
h
k = i [�kp

∗
k − �∗

kpk].

Here ωk is the transition frequency, γp is a phenomenological
dephasing rate, and �k is the Rabi frequency beyond rotating
wave approximation, i.e., calculated with the time dependent
electric field E(zQW; t). Due to the homogeneity of the prob-
lem, we only take into account the k-diagonal elements of the
density matrix. The off-diagonal elements are known to play
a crucial role for spatially inhomogeneous problems [24–26].

The equations of motion [Eq. (6)] already include Coulomb
interaction under Hartree-Fock approximation, which is justi-
fied for ultrashort time scales. Within this approximation the
interaction leads to a renormalization of the transition energies

�ωk = εe
k + εh

k −
∑
k′ �=k

(
V ee

|k−k′|n
e
k′ + V hh

|k−k′|n
h
k′
) + δECH, (7)

with the Coulomb hole self-energy

δECH =
∑
q �=0

(
V s

q − V b
q

)
(8)

and the bare (unscreened) Coulomb potential V b
|k−k′|. Also

the light-matter coupling becomes renormalized due to the
Coulomb interaction leading to the renormalized Rabi fre-
quency

��k = dE(t) +
∑
k′ �=k

V eh
|k−k′|pk′ . (9)

The integration of the equations of motion [Eq. (6)]
is performed on a grid of 201 k points, homogeneously
distributed between k = 0 m−1 and k = 15/a0, where a0 is
the Bohr radius in the bulk material. The integration algorithm
is Runge-Kutta of order 4, where the Rabi frequency at the
midpoints is obtained by interpolation of the electric field [13].

In the simulation we are not only interested in the light field
acting on the carriers in the QW, but also on the back-action
on the field itself. We model the dynamics of the electric field
E in the whole structure as well as the ingoing and outgoing
field through a one-dimensional FDTD simulation [37]. In
the one-dimensional case, with the field propagating along z,
Maxwell equations can be reduced to

∂H (z,t)

∂t
= ∂E(z,t)

∂z
, (10)

∂E(z,t)

∂t
= 1

εb(z)

[
∂H (z,t)

∂z
− P (z,t)

]
, (11)

where E(z,t) and H (z,t) are the electric and magnetic
fields and εb(z) is the background permittivity. The dynamic
material polarization P (z,t) = P (zQW; t)δ(z − zQW) is zero
everywhere but at the position of the QW. P (zQW; t) can be
calculated from the microscopic polarizations as

P (zQW; t) = 2
∑

k

Re(pk)d. (12)

The spatial grid used to describe the system has a step of
dx = 10 nm. Due to FDTD stability constraints this results
in a time step of dt � 0.0333 fs, which has been used for
the simultaneous resolution of the semiconductor equations of
motion and Maxwell equations. The injection of field inside
the simulation domain is performed through the total field
scattered field (TFSF) technique [37]. The open boundaries
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of the system are simulated through perfectly matched layers
(PML) boundary conditions.

III. RESULTS

To test our model we will start by investigating a QW in
a homogeneous background. We will then study the field and
semiconductor dynamics for a QW embedded in a multilayered
structure. In the simulation different passive materials are
defined by a constant refractive index and different structures
can be modeled by defining a space dependent refractive index
profile. The active medium we chose to investigate with our
model is a In0.2Ga0.8As/GaAs QW. The parameters required
for the simulation are listed in Table I. The system is probed
with pulses having a hyperbolic secant shape

E(t) = E0 cos(ωpt) sech (t/τ ), (13)

with the pulse energy εp = �ωp. The full width half maximum
(FWHM) of the pulse is T � 2τ log (2 + √

3).

A. Quantum well in homogeneous background

We start by analyzing a QW embedded in an homogeneous
background of GaAs material filling the whole simulation
domain, which is 2.01 μm long. This allows us to focus on
the properties of our model, namely the carrier dynamics in
the semiconductor and the light field dynamics. First we study
the linear response of our system to a weak excitation. We use
a pulse with the central frequency close to the semiconductor
band gap (εp = �ωp = 1.2 eV) and a FWHM of 15 fs to
simulate a broad spectrum. Our full time and spatial-domain
description through an FDTD algorithm means that we have
access to the full field dynamics in the simulation domain,
including the back-action from active regions. Through this
we see that for a QW in a homogeneous dielectric environment
the fraction of reflected field is negligible and the incoming
pulse is only transmitted and absorbed, i.e., Iinc = Itrans + Iabs,
where Iinc,Itrans, and Iabs are the incoming, transmitted, and
absorbed intensities, respectively,

I (ε) = E2(ε)

cμ0
, (14)

with the speed of light in vacuum c and the vacuum
permeability μ0. With this we obtain the absorption spectrum
as

α(ε) = 1 − Itrans(ε)

Iinc(ε)
. (15)

TABLE I. Parameters for the carrier dynamics in the QW, with
the free electron mass m0.

Effective electron mass me 0.06 m0

Effective hole mass mh 0.33 m0

QW width w 10 nm
Dipole matrix element d 0.5 nm
Band gap εgap 1.21 eV
Polarization dephasing γp 2 ps−1

nIn0.2Ga0.8As nQW 3.698
nGaAs nbarrier 3.5507
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FIG. 1. Linear absorption α as a function of energy ε of a single
QW immersed in an infinitely extended background of GaAs with
(black) and without (red) Coulomb interaction.

The absorption spectrum for the QW in the case with and
without Coulomb interaction is shown in Fig. 1. The red line
is the absorption of a noninteracting system showing a step
function smeared out around the band edge. When Coulomb
interaction is included in the simulation, we obtain the black
line in Fig. 1, which shows a strong resonance below band
edge. Here the exciton, i.e., a bound state between electron
and hole, is formed. We calculate the binding energy of the
exciton ground state as εb = εgap − εX = 8 meV � 2.16εRy,
where εX is the position of the resonance in the absorption
spectrum and εRy = 3.706 meV is the Rydberg energy of
the exciton in the bulk material [23], calculated with the
parameters in Table I. This energy is mainly determined by
the QW thickness in relation to the effective Bohr radius of the
material [38]. The two limiting cases are an infinitely thin
2D QW, in which εb = 4ε0, and one that is thick enough
to be considered a bulk material (εb = ε0). The width and
height of the resonance are determined by the polarization
dephasing rate, a faster dephasing (i.e., larger dephasing rate)
results in broader less intense resonances, and the dipole matrix
element. The oscillations appearing for high energies in Fig. 1
are due to the finite k-space resolution of the simulation.
The carrier dynamics sensitively depends on the excitation
strength. To quantify it we draw a comparison with a two level
system. Note that, when we neglect the Coulomb interaction
the semiconductor model behaves as a set of two level systems
with the same dipole matrix element. The pulse area of a two
level system with dipole matrix element d is defined as

θ2 =
∫ +∞

−∞
�(t) dt =

∫ +∞

−∞

E(t)d

�
dt = dE0τ

�
π, (16)

where in the last step the integration was carried out for the
hyperbolic secant shaped pulse [Eq. (13)]. A pulse of area
θ = 2π is defined as the pulse which increases the inversion of
the system from the ground state, reaching maximum inversion
at the pulse maximum, and then brings the system back to its
ground state.

Due to the presence of Coulomb interaction in our model the
Rabi frequency is renormalized and different among different
states, i.e., dependent on k. We thus extend the definition to
our system by defining the area of the pulse with respect to the
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FIG. 2. Time evolution of the occupation of electron states (color
map) and of the total electronic density (white line) for (a) a weak
pulse with peak intensity I0 � 1.1 × 1012 W

m2 and (b) a strong pulse
with peak intensity I0 � 2.7 × 1013 W

m2 .

QW as

θs = 1

Nk

∑
k

θk, (17)

θk =
∫

�k(t) dt (18)

= θ2 +
∑
k′ �=k

V|k−k′|
∫

pk′(t) dt, (19)

where we have used Eq. (9) and Nk is the number of states.
Nevertheless the area with respect to a two level system is still
a good approximate measure of the pulse strength.

Next we investigate the dynamic behavior of the system
under excitation from stronger pulses, i.e., in the nonlinear
regime. Figure 2(a) shows the electron dynamics for a weak
excitation with pulse area θ2 � 0.4π . The exciting pulse is
resonant with the exciton and has a FWHM of 100 fs and a
peak intensity of I0 � 1.1 × 1012 W

m2 . We use the time at which
the pulse maximum reaches the QW as the zero of our time
scale. The white overlay in Fig. 2 is the total density of carriers
in the system, which reads

N = 1

2π

∫
g(k)ne

k dk, (20)

where g(k) dk is the number of states between k and k + dk.
From the monotonous increase of density through the pulse
action and the absence of Rabi oscillations, we deduce that
the system behaves like a two level system excited by a pulse
with area θs < π . A more refined picture is given by the color
map in Fig. 2(a) which shows the occupation of the electronic
states as a function of time and wave vector k. The population
is located around the minimum of the conduction band, k = 0,
and its distribution in k space does not significantly change
shape while the pulse traverses the material.

The electron dynamics represented in Fig. 2(b) is obtained
with a stronger excitation, corresponding to a 25-fold increase
in the peak intensity, i.e., θ2 � 2π . Just by looking at the
total density one concludes that the semiconductor as a whole
behaves like a two level system, i.e., it shows Rabi oscillations
with an effective area of θs � 2π . A more complete picture
comes from looking at state occupations. First of all we see that
the population extends itself further from the band minimum
with respect to the weaker excitation, the reason being that the
spectrum of the more intense pulse has stronger high energy
components. We also observe that every state behaves as a
two level system excited by a pulse with a different effective
area. This is the consequence of the Rabi frequency becoming
strongly k dependent and we attribute this to two main reasons.
First, a variation of the Rabi frequency between different
states is due to the introduction of Coulomb interaction as is
exemplified by Eq. (9). Second, Rabi oscillations occur at the
generalized Rabi frequency and thus depend on the detuning
between the central wavelength of the pulse and the optical
transition. This is of particular importance for our system
because of the underlying parabolic dispersion, meaning that
the detuning grows approximately as k2.

The advantage of our model is that it includes a feedback
from the semiconductor to the field, which can give rise to
nonlinear effects in the transmitted field. To investigate this
we start with a weak pulse resonant with the exciton (with
peak intensity I0 � 1.1 × 1012 W

m2 and 100 fs FWHM) and
analyze the transmitted field. The bottom black line in Fig. 3
shows the square of the field spectrum, which is proportional
to the intensity, as a function of photon energy ε. This
spectrum shows a single peak located around 1.2 eV and
corresponding to the spectrum of the incoming pulse (red line
in Fig. 3), resonant with the exciton ε0 = εX = 1.202 eV. Next
we increase the intensity of the exciting pulse and calculate the
spectrum of the transmitted field, to get the series of lines in
Fig. 3. Going from bottom to top (excluding the red spectrum
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FIG. 3. Spectrum of the transmitted pulse in the nonlinear regime
on semilogarithmic scale. The different lines are artificially displaced
and are obtained by changing the peak intensity of the incident pulse.
From bottom to top, the peak intensities of the black spectra are
(1.1,4.3,9.6,17,27) × 1012 W

m2 . The red line is the spectrum of the
incoming pulse for a peak intensity of 1.1 × 1012 W

m2 .
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FIG. 4. (a) Total field transmitted through the QW. (b) Filtered
third-harmonic component of the transmitted field.

of the incoming pulse), the peak intensity of the exciting
pulse are (1.1,4.3,9.6,17,27) × 1012 W

m2 . As the pulse intensity
increases, a second peak centered at ε3 = 3ε0 emerges over
the background, signaling the presence of THG in the model.
For the range of excitation intensities that we explored, the
third-harmonic pulse is several orders of magnitude smaller
than the incoming pulse and thus its presence is not appreciable
in the transmitted field, as shown in Fig. 4(a). It is possible to
obtain the third-harmonic field in time domain by applying
a bandpass filter around the energy ε3. The resulting pulse is
shown in Fig. 4(b).

The results in Figs. 3 and 4(b) show that the our model is
suitable for the study of optical nonlinearities in semiconduc-
tors.

B. Quantum well inside SESAM

After studying the electron dynamics of an isolated QW
in a homogeneous background we proceed by introducing
a more realistic optical environment. For this we choose a
SESAM, which is a well established structure for ultra short
pulse generation [39]. The whole structure is included in our
simulations as a spatially varying background permittivity
εb(z), as shown in Fig. 5, and is surrounded by 2 μm
of air on each side. Table II contains the refractive index
and background permittivity of all materials included in the
structure.
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FIG. 5. Refractive index profile of the SESAM structure (black
solid line) and field profile (red dashed line).
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FIG. 6. (a) Reflection R (black solid line) and transmission T

(red dashed line) coefficients of the SESAM structure. (b) Linear
absorption spectrum. The vertical dashed line indicates the gap
energy.

In order for the structure to be effective, most of the layer
thicknesses need to be proportional to the central wavelength of
the incoming pulse λ. We coated both ends of the structure with
a SiN layer of optical length λ/4 which minimizes reflection
of the pulse coming from air. This allows for a more efficient
in-coupling of the light. The mirror is composed by a set
of alternating GaAs and AlAs layers, each with an optical
length of λ/4. This basic two-layered module is repeated 25
times in order to achieve a very high reflectivity around λ,
as shown in Fig. 6(a), where the pulse is resonant with the
exciton energy εX. Due to the presence of the mirror, a standing
wave is created inside the GaAs layer between the mirror itself
and the antireflective layer. Such an interference pattern has
zeros at even integer multiples of λ/4n and maxima at odd
ones. The QW is then located in such a maximum, in order
to take advantage of the field enhancement provided by this
interference pattern, and is thus at an optical distance λ/4 from
the start of the mirror. Two further layers of arbitrary size are
used to isolate the antireflection coatings from the mirror on
one side and the QW on the other.

We start again by analyzing the linear regime where we
use a pulse with εp = 1.2 eV and a FWHM of 15 fs. From
the reflected and transmitted field we obtain the spectra of
transmittance (T ) and reflectance (R) of the structure, shown in
Fig. 6(a). We see that the mirror used in the simulation reflects
almost perfectly in a broad spectral region around the central
wavelength of the pulse. We further calculate the absorption
of the structure as α = 1 − R − T , shown in Fig. 6(b). The
absorption is mostly determined by the QW and thus we find
a similar behavior as in Fig. 1 with a resonance at the exciton
energy. The resonance height is increased by a factor of 3.7

TABLE II. Refractive index and background permittivity of all
the materials included in the simulation.

Material n εb

SiN 1.884 3.551
In0.2Ga0.8As 3.698 13.675
GaAs 3.551 12.610
AlAs 2.959 8.756
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in comparison with the isolated QW, as a consequence of the
almost fourfold enhancement in intensity introduced by the
structure, while the in-band absorption is now decreasing the
further we go from the band edge. The difference is due to
the mirror which is optimized for the central wavelength of
the pulse and whose reflectance decreases with the distance
from the exciton.

Next, we shine a set of subsequently stronger pulses on
the SESAM structure to investigate the nonlinear regime. The
pulses are resonant with the exciton (εp = εX) and have a
FWHM of 100 fs. Figure 7 shows the spectra of the reflected
intensity for the same peak intensities used in Fig. 3, namely
(1.1,4.3,9.6,17,27) × 1012 W

m2 . Similarly to what happened for
the isolated QW, increasing the intensity of the exciting pulse
brings a second spectral peak above the background. This is
located at three times the pulse energy and is due to THG in the
semiconductor layer of the structure. By comparing the spectra
with Fig. 3 we see that the third harmonic is more intense in
the SESAM structure than it is for an isolated QW excited
with the same pulse. This is due to the structure enhancing the
field at the QW position. The oscillations appearing in Fig. 7,
particularly evident in the fundamental peak, are due to the
Fabry-Pérot resonance associated with the whole structure.

A more quantitative analysis of the intensity is given in
Fig. 8, where we plot the integrated intensity of the THG as
a function of the incoming pulse integrated intensity. The two
sets of data correspond to different excitation energies, where
one is obtained with pulses resonant with the exciton εp = εX

(squares) and one with off-resonant pulses with εp = εX/2
(circles). The spectrally integrated intensity of the fundamental
and its third harmonic are defined as the integral of the intensity
over the corresponding spectral peak,

Pf = 1

�

∫
f

Ir (ε) dε, (21a)

PTHG = 1

�

∫
THG

Ir (ε) dε, (21b)

10-14

10-12

10-10

10-8

10-6

100 101

P
T

H
G

 (
s 

W
/m

2 )

Pf (s W/m2)

εX
εX/2

FIG. 8. THG spectrally integrated intensity PTHG as a function
of the spectrally integrated intensity Pf of the incoming pulse on a
log-log scale for εp = εX (black squares) and εp = εX/2 (red circles).
The dashed lines are the best fit of the data according to Eq. (23).

where the integration is carried out over the width of the
highest intensity peak. We find that the intensity of the THG
has a power-law behavior as a function of the incoming field
Pf as

PTHG ∝ P δ
f . (22)

In the log-log plot this is seen as a linear curve, where we can
get the value of the exponent by performing a linear fit of the
logarithm of the data according to

log(PTHG) = A + δ log(Pf ), (23)

which gives the dashed lines in Fig. 8. The values obtained
for the exponents (slope of the lines) are δ = 2.987 ± 0.009
for the off-resonant configuration and δ = 2.65 ± 0.03 for the
pulses resonant with the exciton energy.

Figure 9 shows the value of the exponent δ as a function
of the central wavelength of the pulse. Similarly to Fig. 8 we
have performed a linear fit of Eq. (23) to different sets of data.
We see that when the excitation is enough off-resonant, i.e.,
the pulse energy lies in the band gap of the semiconductor, the
value of δ approaches an asymptotic value of δ ∼ 3 which is
consistent with a phenomenological description in terms of the
nonlinear susceptibility of third order χ (3) [40,41]. Conversely,
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FIG. 9. Power-law exponent δ, obtained by fitting Eq. (23), as a
function of the pulse energy εp . The inset shows the residual density
as a function of the spectrally integrated intensity for resonant and
off-resonant excitations.
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as the excitation gets closer to be resonant we observe a
decrease in δ down to a value of about 2.6. A similar noncubic
dependence has been observed by Haase et al. [42] while
performing four wave mixing experiments on ZnSe QWs with
the central laser energy close to resonance with the exciton.
We want to stress that we are able to uncover this unusual
behavior only due to a self-consistent combination of the Bloch
equations with a description of the light field using a full time-
domain (FDTD) code with spatial resolution on subwavelength
scales.

To further investigate the origin of this subcubic depen-
dence, we analyzed the density of carriers generated by pulses
with different detuning from the excitonic resonance. The inset
of Fig. 9 shows the density remaining in the semiconductor
after the pulse has left the simulation domain as a function
of the spectrally integrated intensity of the exciting pulse.
We see that the amount of population generated in the QW
is significantly higher under resonant excitation, even for the
lowest intensity generating a THG signal, than the population
for the off-resonant excitation via more intense pulses. Also
the amount of population excited in the QW rises linearly
with the pulse intensity for off-resonant excitation, while it
shows a marked saturation behavior under resonant excitation.
In order to test whether the power law changes for smaller
intensities our numerical simulation allows us to repeat the
same analysis analyzing the transmitted field which has a
lower level of background noise. We observe a crossover
from δ = 3 for low intensities, to δ �= 3 at higher intensities.
We find that the minimum intensity for which an exponent
different from 3 is obtained is 1013 W/m2. We have also
checked that the crossover position is independent of the
dephasing time. Because of this and the correlation with
the density of carriers in the QW, we attribute the change
of the power-law exponent δ to the presence of optically
excited carriers and to the saturation of the total density in the
semiconductor.

IV. CONCLUSIONS

In summary, we have studied the emergence of third-
harmonic signals in semiconductor quantum wells (QWs),
photoexcited by intense femtosecond optical pulses. For this

we have introduced a general model combining a full time
and space dependent finite-difference time-domain (FDTD)
description of the light field, i.e., a discretization of Maxwell’s
equations without the inherent limitations of the slowly varying
envelope approximation, with a wave-vector resolved many
level and many-body density matrix approach for the charge
carrier dynamics. For a QW embedded in a homogeneous
background we studied the interplay of light field dynamics
and carrier dynamics, demonstrating the emergence of nonlin-
ear optical effects such as third-harmonic generation (THG).
We further analyzed the intensity dependence of the generated
nonlinear response for a QW embedded in a many-layer
semiconductor saturable absorber mirror (SESAM) structure
and show that the intensity dependence of the THG signal
strongly varies with excitation frequency. For an excitation
well below the band gap of the QW, we found that the
intensity of the THG signal follows a cubic dependence on
the intensity of the exciting pulse. This is in direct agreement
with a description based on an expansion in powers of the
field with nonlinear susceptibilities as constant coefficients.
For a resonant excitation at the excitonic frequency, however,
the intensity dependence still follows a power law, now with
an exponent that is reduced to 2.6, clearly deviating from
the cubic behavior. Although a noncubic dependence can also
be obtained with a more phenomenological approach of an
intensity dependent χ (3) coefficient [43,44], this can only be fit
to existing data rather than emerge from a more fundamental
model. The simultaneous description of the light field and
carrier dynamics not only allows for a deeper understanding
of nonlinear optical effects but is also readily expandable
to other two-dimensional semiconductor systems such as
graphene, transition metal dichalcogenides [11], or more
complex structures like combined plasmonic-semiconductor
structures [45].
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