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Plasmons in tunnel-coupled graphene layers: Backward waves with quantum cascade gain
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We theoretically demonstrate that graphene-insulator-graphene tunnel structures can serve as plasmonic gain
media due to the possibility of stimulated electron tunneling accompanied by emission of plasmons under
application of interlayer voltage. The probability of plasmon-assisted tunneling is resonantly large at certain
values of frequency and interlayer voltage corresponding to the transitions between chiral electron states with
collinear momenta, which is a feature unique to the linear bands of graphene. The plasmon dispersion develops
an anticrossing with the resonances in tunnel conductivity and demonstrates negative group velocity in several
frequency ranges.
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I. INTRODUCTION

The ultrarelativistic nature of electrons in graphene
gives rise to the uncommon properties of their collective
excitations—surface plasmons (SPs) [1–3]. The deep
subwavelength confinement [2], the unconventional density
dependence of frequency [3,4], and the absence of Landau
damping [4] are their most well-known features. Among
more sophisticated predictions there stand the existence
of transverse electric plasmon modes [5] and quasineutral
electron-hole sound at the charge neutrality [6,7]. It was not
until the discovery of van der Waals heterostructures that the
low-loss SPs supported by graphene could be observed [8].
The reported propagation length to wavelength ratio reaching
25 looks to be the fundamental limit of SP quality factor at
room temperature governed by the electron-phonon interaction
[9], which hinders further experimental studies of plasmonic
effects. The perception of this fact has motivated the search for
the methods to provide the gain of SPs in graphene [10–14].

Here, we theoretically demonstrate that the resonant tun-
neling structures composed of parallel graphene layers can act
as plasmonic gain media by themselves. The very presence
of negative differential resistance (NDR) in the static current-
voltage characteristics of these structures [15] gives rise to the
self-oscillation in electrical circuits [16] and might potentially
lead to to the self-excitation of plasmons [17–19]. However,
the static NDR of graphene tunnel diodes is insufficient to
replenish the plasmon losses [20], which calls for the stability
of electron plasma.

In this paper, we show that the dynamic and nonlocal effects
in the tunnel conductivity radically change the picture of plas-
mon propagation. The calculated dynamic tunnel conductivity
of a double graphene layer biased by voltage V has a negative
real part at frequencies ω < eV/�, even if the static NDR is
absent in the structure. This can be viewed as a consequence
of the “interlayer population inversion.” Surprisingly, the
dynamic nonlocal conductivity possesses sharp resonances at
certain frequencies and wave vectors q due to the prolonged
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tunneling interaction between chiral states with collinear
momenta in neighboring layers. The singularities in the tunnel
conductivity emerge at a series of lines on the ω-q plane, whose
pattern is especially rich in twisted layers. At finite bias V , the
dispersion of acoustic SPs does not develop a low-frequency
gap, as opposed to SPs in coupled layers of massive electrons
in equilibrium [21]. Instead, the SP spectrum develops an anti-
crossing with the tunnel resonances and demonstrates the parts
with negative group velocity. At the same time, the dispersion
is quite close to the tunnel resonances, and the tunnel gain can
exceed the SP loss due to both inter- and intraband absorption.

The paper is organized as follows. In Sec. II we de-
rive the dispersion relation for plasmons in tunnel-coupled
graphene layers. Section III is devoted to the calculation of
high-frequency nonlocal conductivity, which possesses both
tunneling and in-plane components. Both components of con-
ductivity affect the spectrum and damping (or gain) of acoustic
plasmons, which is analyzed in Sec. IV. Section V is devoted
to the effect of interlayer twist on high-frequency conductivity
and SP dispersion. Possible experimental manifestations of the
predicted effects are discussed in Sec. VI. Some cumbersome
calculations are relegated to the Appendices.

II. DISPERSION RELATION FOR PLASMONS IN
TUNNEL-COUPLED LAYERS

We consider the propagation of plasmons in the graphene-
insulator-graphene structure shown in Fig. 1(a). The applica-
tion of interlayer voltage V results in the electrical doping
of layers; the corresponding filling of the bands is shown in
Fig. 1(b). In the absence of built-in voltage, the density of
induced electrons in the top layer equals the density of holes
in the bottom one. This results in equal in-plane conductivities
of the layers σ‖.

The method of obtaining the SP dispersion relies on
the solution of Poisson’s equation and the carrier transport
equations. The interlayer tunnel current, δJ⊥, appears as a
source term in the continuity equation for the charge densities
δQt,b on the top and bottom layers:

−iωδQt,b = −iqδjt,b ∓ δJ⊥. (1)
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FIG. 1. (a) Schematic view of the double graphene layer encap-
sulated in hexagonal boron nitride (hBN) overlaid by the image of
acoustic SP amplified by the tunneling. (b) Band diagram of the
structure biased by voltage V . Inelastic interlayer electron tunneling
transitions accompanied plasmon emission (wavy arrows) are shown
schematically.

Here δjt,b are the in-plane current densities which are related to
the electric potentials δϕt,b via δjt,b = −iqσ‖(q,ω)δϕt,b. The
interlayer current density is

δJ⊥ = G⊥(q,ω)(δϕt − δϕb),

where G⊥(q,ω) is tunnel conductivity. By matching the
solutions of the Poisson’s equation (κ is the background
dielectric constant)

−q2δϕ(z) + ∂2δϕ(z)

∂z2

= −4π

κ
[δQtδ(z − d/2) + δQbδ(z + d/2)] (2)

on graphene planes located at z = ±d/2, we arrive at the
plasmon dispersion equation which can be written as

ε(q,ω) ≡
[

1 + 2πiq

ωκ
σ‖(1 + e−qd )

]

×
[

1 + 2πiq

ωκ

(
σ‖ + 2G⊥

q2

)
(1 − e−qd )

]
= 0. (3)

The zeros of the first and second terms in the dielectric function
ε(q,ω) yield the dispersions of the optical and acoustic SPs,

respectively. It is intuitive that the presence of tunneling does
not affect the optical mode, while it can modify the spectrum
of the acoustic branch considerably. The reason is that the
average interlayer field in the optical mode is zero, and it
cannot stimulate the interlayer carrier transfer, contrary to the
strong field in the acoustic mode. We note here that the ratio
of transverse and in-plane electric fields in the acoustic mode
is approximately 2(qd)−1 � 1, which also speaks in favor of
the strong tunneling effects.

In addition to solving Eq. (3) for the mode dispersions
ω(q), we shall study the loss function [22], −Imε−1(q,ω)
(also referred to as plasmon spectral weight [23]). Within
the RPA treatment, this quantity is proportional to the
dynamical structure factor measured with inelastic scattering
experiments. To focus on acoustic plasmons, we define the
acoustic contribution to the loss function:

−Imε−1
ac (q,ω)

= −Im

{
1 + 2πiq

ωκ

(
σ‖ + 2G⊥

q2

)
(1 − e−qd )

}−1

. (4)

The peaks in −Imε−1
ac (q,ω) correspond to the acoustic SPs,

while the sign of the loss function determines whether the
plasmons are damped or amplified.

III. HIGH-FREQUENCY NONLOCAL TUNNEL CURRENT

The only missing ingredient required for the analysis of sur-
face plasmon modes is the expression for the high-frequency
nonlocal tunnel conductivity G⊥(q,ω). The theoretical studies
of the latter have been limited to the dc [24,25] or local (q = 0)
ac cases [26]. Here, we consider the linear response of voltage-
biased graphene layers to the propagating acoustic plasmon
whose distribution of electric potential δϕ(z)eiqx−iωt is highly
nonuniform (see Appendix A for explicit expressions). The
electrons in tunnel-coupled graphene layers are described with
the tight-binding Hamiltonian

Ĥ0 =
(

ĤG+ T̂
T̂ ∗ ĤG−

)
, (5)

where the blocks ĤG± = v0σ p̂ ± Î
/2 stand for isolated
graphene layers, v0 = 106 m/s is the Fermi velocity, 
 is the
voltage-induced energy spacing between the Dirac points, p̂
is the in-plane momentum operator, Î is the identity matrix,
and T̂ = �Î is the tunneling matrix. Such model of tunnel
coupling applies to the AA-aligned graphene bilayer [27,28]
and has proved to be useful for the description of dc tunneling
in van der Waals heterostructures [24,29]. The effects of the
small interlayer twist will be addressed at the end of the paper.

The eigenstates of Ĥ0 can be labeled by the in-plane mo-
mentum p, the index s = {c,v} for the conduction and valence
bands, respectively, and the number l = ±1 governing the z

localization of the wave function. At strong bias, 
 � �, the
state with l = +1 (−1) is localized primarily on the top (bot-
tom) layer, while at zero bias the states l = −1 and l = +1 are
the symmetric and antisymmetric states of the coupled quan-
tum wells, respectively. The states’ energies are εls

p = sv0p +
l
̃/2, where 
̃ = √

4�2 + 
2 is the level spacing governed
by the application of voltage and the tunneling repulsion [30].
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The electron interaction with ac plasmon field is described
by the Hamiltonian δV̂ whose matrix elements are the overlap
integrals between the wave functions of Ĥ0 eigenstates |psl〉
and the potential of the acoustic plasmon. To explicitly
estimate these matrix elements, we switch from a tight-binding
to a continuum description of electron states, and model each
graphene layer as a one-dimensional delta well (see Appendix
B for details). The strength of the well is chosen to provide
the correct value of the work function from graphene to the
surrounding dielectric Ub (0.4 eV for graphene embedded in
WS2). Proceeding this way, we are able to present the matrix
elements of electron-plasmon interaction as

〈psl| δV̂ |p′s ′l′〉 = eδϕ0u
ss ′
pp′Sll′δp,p′−q, (6)

where δϕ0 is the plasmon potential amplitude at the graphene
layer, uss ′

pp′ is the overlap between chiral wave functions of
bands s and s ′, and Sll′ are the dimensionless overlap integrals.
Due to the antisymmetry of the plasmon mode distribution,
S++ = −S−− and S± = S∓.

The evaluation of interlayer conductivity is based on the
solution of the quantum Liouville equation for the electron
density matrix ρ̂. Being interested in the linear response to the
plasmon field, we solve it in the form

i�
∂δρ̂

∂t
= [Ĥ0,δρ̂] + [δV̂ ,ρ̂(0)], (7)

where ρ̂(0) is the density matrix in the absence of the ac field
(but in the presence of strong dc tunneling), and δρ̂ is the
sought-for linear correction. The solution of Eq. (7) in the basis
of Ĥ0 eigenstates is immediate, though it relies on a particular
choice of ρ̂(0). When the frequency of interlayer tunneling
�/� exceeds the energy relaxation frequency in a layer νε,
the electron is “collectivized” by the two layers, and the states
|psl〉 have a well-defined occupancy [31]. For this reason,
we choose ρ̂(0) to be diagonal in this basis, and the diagonal
elements are the Fermi functions f sl

p with quasi-Fermi levels
shifted by eV for different l [32]. The subsequent calculation
is based on the statistical averaging of current operator, which
is the time derivative of the charge operator Q̂t :

∂δQt

∂t
= − i

�
Tr([Q̂t ,Ĥ0]δρ̂). (8)

Equation (8) with the density matrix obtained from (7) lets
us evaluate both in-plane and tunnel conductivities at once,
in accordance with the two terms on the right-hand side of
the continuity equation (1). A lengthy but straightforward
calculation leads to

σ‖(q,ω) = −ig
e2

�
S++ cos θM

×
∑
ss ′p

∣∣vss ′
pp′
∣∣2

εs
p− − εs

p+

f s
p+ − f s ′

p−

εs
p+ − εs

p− − (�ω + iδ)
, (9)

G⊥(q,ω) = −ig
e2

2�
S± sin θM

∑
l �= l′
ss ′p

∣∣uss ′
pp′
∣∣2

× εs ′l′
p− − εsl

p+

εsl
p+ − εs ′l′

p− − (�ω + iδ)

(
f sl

p+ − f s ′l′
p−

)
. (10)

Above, g = 4 is the spin-valley degeneracy factor, θM is
the “mixing angle” characterizing the strength of coupling,
sin θM = 2�/
̃; p± ≡ p ± �q/2, and vss ′

pp′ is the matrix
element of the velocity operator between chiral states |ps〉
and |p′s ′〉.

The expressions for conductivities (9) and (10) are the
main results of this section. Though several limiting cases for
these equations have been studied previously, the treatment
of nonlocal effects with nonequilibrium population has been
missing up to now. We first note that in the limit of large bias,

 � �, Eq. (9) naturally yields the conductivity of a single
graphene layer [33]. In the same limit, the factors S± and
sin θM are each proportional to the small tunneling exponent
e−kbd , where k−1

b is the decay length of the electron wave
function. In the opposite limit � � 
, the electron states of
individual layers are highly mixed (the layer is not a good
quantum number), and the distinction between in-plane and
tunnel conductivities loses its meaning. In the ultimate case
of zero bias, the antisymmetric plasmon field cannot induce
the transitions between states of the same symmetry, which is
reflected in the fact that cos θMS++ = 0. In this limit, σ‖ = 0,
and the spectrum of acoustic plasmons is governed fully by
the tunneling [21].

In the local limit, the tunnel conductivity becomes

G⊥(0,ω) = 2
e2

2�
S± sin θM�ω[n− − n+]

×
[
πδ(
̃ − �ω) − i

2
̃


̃2 − (�ω)2

]
, (11)

where n+ and n− are the carrier densities in the states with
l = +1 and l = −1. This result has been first obtained by
Kazarinov and Suris in the theory of inelastic tunneling in
superlattices [31] and later rederived in the case of tunneling
in double-layer [26] and AA-stacked bilayer graphene [28].
In equilibrium, the low-energy symmetric state has larger
population, n− > n+, the imaginary part of tunnel conductivity
is negative at �ω < 2�, while the real part is positive.
The situation at nonequilibrium and at finite wave vector is
radically different.

The first peculiarity of Eq. (10) in the presence of voltage
bias is the negative value of the real part of tunnel conductivity
at frequencies ω < eV/�. This negativity implies that the
interlayer transitions accompanied by the emission of the
quantum (ω,q) are more probable than the inverse absorptive
transitions. The band filling providing the negative tunnel con-
ductivity [Fig. 1(b)] can be viewed as an interlayer population
inversion similar to that in quantum cascade lasers [34]. The
frequency and wave vector dependence of 2ReG⊥/q2 is shown
in Fig. 2(a), where the “cold” colors stand for the negative and
“warm” colors for the positive conductivity. An analysis of the
energy-momentum conservation reveals distinct regions on the
frequency-wave vector plane, where different types of radiative
and absorptive tunnel transitions are relevant; see Fig. 2(c).
Among those, the most pronounced is the interlayer intraband
emission allowed within the quadrant qv0 � |
̃/� − ω|. The
interband transitions are generally weaker due to the small
overlap of chiral wave functions of different bands [29].

Another distinct feature of the tunnel conductivity
is its large absolute value near the series of lines

115301-3



D. SVINTSOV, ZH. DEVIZOROVA, T. OTSUJI, AND V. RYZHII PHYSICAL REVIEW B 94, 115301 (2016)
)Ve

m(
,ygrenE
hω

0 20 40 60 80 100
0

20

40

60

80

100

hω Δ=

hω= 0

hω= 0

hω Δ= -

hω hω

qv0

qv0

ct cb→
vt vb→

ct vb→

vt cb→

ct cb→
vt vb→

vt cb→

q1

2

3

1 2 3

ω=s
q

(a)

(b)

( )c Emission Absorp on

>0.25
0.2

0.1

0.0

-0.1

-0.2

-0.3

<-0.4

h q2h q3hh

hh

hh

Wave vector, (meV)hqv0

1

Δ ω-h 1 Δ ω-h 2 Δ ω-h 3

hω Δ=

2Re /G q┴
2

FIG. 2. (a) Color map of the tunnel conductivity, 2ReG⊥/q2 (in
units of e2/4�), calculated at temperature T = 77 K and interlayer
voltage V = 0.2 V. Dielectric layer is 3 nm WS2 (effective mass
m∗ = 0.28m0, conduction band offset to graphene Ub = 0.4 eV [35]).
Red dashed line corresponds to the zero conductivity; black dashed
line shows the dispersion of acoustic SP in the absence of tunneling.
(b) Band diagrams illustrating available electron states for plasmon-
assisted tunneling at different frequencies and wave vectors. (c) Map
of the frequency and wave vector ranges, for which various inelastic
interlayer electron transitions are possible.

qv0 = |ω ± 
̃/�|. The effect is demonstrated also in Fig. 3,
where we show the frequency dependence of tunnel conduc-
tivity at certain wave vectors. The origin of these resonances
can be explained by analyzing the possible electron states
involved in plasmon-assisted tunneling at different frequencies
and wave vectors, Fig. 2(b). To be precise, we focus on
the interlayer intraband tunneling. Above the resonance, at
qv0 > ω − 
̃/�, the electrons capable of tunneling occupy a
hyperbolic cut of the mass shell in graphene (case B3 in Fig. 2).
With decreasing the frequency and wave vector, the hyperbola
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FIG. 3. Frequency dependence of the tunnel conductivity
Re2G⊥/q2 at certain wave vectors, i.e., cuts of the plot of Fig. 2 along
�qv0 = 80, 40, 35, 30 meV, as well as along the unperturbed disper-
sion of acoustic SP q = ω/s, where s ≈ 1.1v0. Weak singularity
corresponding to the absorptive transition between like bands is seen
in the red curve; at other wave vectors the transitions corresponding
to tunneling emission are more pronounced.

degenerates into a line (case B2), and the tunneling occurs
between states with collinear momenta and equal velocities,
whose interaction lasts for an infinitely long time in the absence
of scattering. Alternatively, the singularities in the tunnel
conductivity can be traced back to the van Hove singularities in
the joint density of states [24]. At even lower frequencies (case
B1), the intraband transitions are impossible, but the weaker
interband tunneling sets in. Without the carrier scattering, the
collinear tunneling singularities are square root, and the real
part of the intraband tunnel conductivity is given by

ReGintra
⊥ = −e2

�

q2

2π
ω

⎧⎨
⎩ I

(
�qv0

2kT
, eV −�ω

2kT

)
√

q2v2
0 − (
̃/� − ω)2

− I
(

�qv0

2kT
,�ω+eV

2kT

)
√

q2v2
0 − (
̃/� + ω)2

⎫⎬
⎭, (12)

where we have introduced an auxiliary integral I(α,β) =∫∞
1 dt

√
t2 − 1[fF (αt − β) − fF (αt + β)] and the dimen-

sionless “Fermi function” fF (ζ ) = [1 + eζ ]−1. The singulari-
ties in Eq. (12) are similar to the those of in-plane conductivity
at the onset of the Landau damping [3]:

Reσ intra
‖ ∝ [q2v2

0 − ω2
]−1/2

. (13)

The actual value of the resonant conductivity in clean
samples is limited by electron-acoustic phonon scattering
[9]. We account for it by replacing the delta-peaked spectral
functions of individual electrons in Eqs. (9) and (10) with
Lorentz functions whose width is proportional to the imag-
inary part of electron self-energy [24]. With the scattering
rate τ−1

tr � (2–8) × 10−11 s−1 at T = 77–300 K [36,37] and
electron density n = 5 × 1011 cm−2, the tunnel resonances are
pronounced up to the room temperature.

From a practical point of view, it is important that the
real part of net “effective conductivity,” σ‖ + 2G⊥/q2, which
enters the SP dispersion is negative in a wide range of
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Fig. 2. The contour of zero conductivity is highlighted with red dashed
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frequencies and wave vectors (Fig. 4). This implies the
possibility of amplified propagation plasmons instead of
their damping. The sign of the net effective conductivity is
governed by the competition of three processes: (1) emission
of surface plasmons upon interlayer tunneling, (2) interband
plasmon absorption, and (3) intraband (free-carrier) plasmon
absorption. The latter two processes are intensified due to the
finiteness of the SP wave vector, and use of the well-known
local limit for the in-plane conductivity would lead to a
considerable underestimate of the absorption (see Ref. [9]
and Appendix C for details). Our numerical calculations show
that the net negative conductivity is still possible as the
collinear tunneling resonance can be tuned into the frequency
range corresponding to the transparency of graphene, i.e.,
the frequencies where the Drude absorption is low while the
interband absorption is suppressed by the Pauli blocking.

The square-root singularities in ReGintra
⊥ above the threshold

of interlayer intraband transitions are mirrored in the singulari-
ties in ImGintra

⊥ below the threshold. This situation is illustrated
in Fig. 5, where we show the color map of the imaginary
part of full “effective” conductivity, Im[2G⊥/q2 + σ‖], and
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FIG. 5. Space-time dispersion of the effective conductivity
Im[σ‖ + 2G⊥/q2] (normalized by e2/4�) governing the spectrum
renormalization of acoustic SPs. The structure parameters are the
same as in Fig. 2. The contour of zero conductivity is highlighted
with red dashed line. The bottom panel shows the cuts of the upper
plot along certain wave vectors.

its cuts at certain wave vectors. The presence of singularity
in the imaginary part of tunnel conductivity at ω = 
̃/� −
qv0 suggests the strong renormalization of the acoustic SP
dispersion, which will be shown in the next section. We note
here that the mentioned singularities are absent in the case of
tunneling between the layers of massive 2d electrons. In the
massive case, the electron states with collinear momenta do not
necessarily have the same velocity, and their interaction does
not necessarily last for a very long time. Loosely speaking, for
massive particles one should average the tunnel conductivity
(12) over the absolute values of particle velocity v0, which
would wash the singularities out.

IV. PLASMONS IN THE PRESENCE OF TUNNELING

The long-wavelength part of the acoustic SP mode in
coupled graphene layers at equilibrium does not qualitatively
differ from that for coupled massive 2d electrons. The SP
dispersion develops a gap, such that

(�ωac)2(q → 0) = (2�)2 + 2�EC, (14)
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where EC = 8πgde2(n− − n+)/(�κ). It is possible to show
that the formation of such gap is generic for coupled layers,
once the in-plane dispersion of electrons is not renormalized
by tunneling [38]. Indeed, the real part of tunnel conductivity
is positive for the photon energy equal to the tunnel splitting of
levels, 2�. Using the Kramers-Kronig relations, one obtains
that the imaginary part of conductivity is negative at �ω < 2�,
which prohibits the existence of TM plasmons. Apart from 2�,
an extra contribution to the plasmon gap in Eq. (14) comes
from the electrostatic energy of electrons, EC .

At finite bias, both the tunneling and in-plane electron
motion govern the plasmon spectrum. The imaginary part of
in-plane conductivity Imσ‖ is positive and singular above the
domain of Landau damping, i.e., at ω → qv0. Such behavior
originating from the linearity of carrier dispersion leads to the
existence of acoustic mode even in the limit d → 0 [4,39],
contrary to the case of parallel 2d layers of massive carriers
in the absence of tunneling [40]. Moreover, the imaginary
part of tunnel conductivity at nonequilibrium is also positive
below the threshold of interlayer transitions. Hence, already at
a very small bias, the condition Im[σ‖ + 2G⊥/q2] > 0 can
be fulfilled, and long-wavelength linear dispersion of SPs
is restored. At higher frequencies, the tunneling resonance
crosses the unperturbed SP dispersion ω = sq. At this point,
the effect of tunneling is the strongest one.

This is illustrated in the plot of the acoustic mode contribu-
tion to the loss function, Imε−1

ac (q,ω), Fig. 6(a). The plasmon
peak in the loss function develops an anticrossing with the
tunnel resonance, and the bending of the SP dispersion is
such that its group velocity increases and changes its sign
at some point, passing through infinity. The “locking” of the
long-wavelength SP dispersion in the domain (ω � qv0) ∪
(ω � 
̃/� − qv0) comes, formally, from the interplay of two
singular conductivities, in-plane and out-of-plane, which are
positive and singularly large at the threshold of the respective
transitions (see Fig. 5).

The interaction of unperturbed SP mode with tunnel
resonance leading to abnormally large and negative group
velocities is radically different from the interaction of plasmon
modes with polar phonons [8], cyclotron resonances [41], etc.
In the two latter cases, the interaction leads to the decrease
in group velocity. The origin of the upward bending of
SP dispersion is, actually, the inverted population between
two layers [42]. Similar group velocity enhancement and
divergence occurs for light interacting with a gas of inverted
two-level systems [43], and can be analyzed with a simple
Lorentz oscillator model [44].

The effects of tunneling on SP dispersion are more
pronounced at low levels’ spacing 
̃ and high carrier density
n. By fixing 
̃ and increasing the carrier density (which can be
achieved by extra gates), one can observe a large enhancement
of the SP velocity below the resonance, as shown in Fig. 6(b).
At some critical density the long-wavelength branch of SP
dispersion can disappear entirely. At large level spacing, the
effects of plasmon spectrum renormalization are relevant just
in a narrow vicinity of the threshold of intraband tunneling,
and further broadening of the tunnel resonance by the carrier
scattering can wash out the renormalization effects. However,
our calculations show that the predicted effects of tunneling
on plasmons can survive up to the room temperature and

T=77 K =48 meVΔ
=4.3x10 cmn

T=300 K =100 meVΔ
=9 x 10 cmn

T=77 K =60 meVΔ
=1.5x10 cmn

T=77 K =60 meVΔ
=1.7x10 cmn
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FIG. 6. (a) Acoustic contribution to the loss function of double
graphene layer calculated for 2.5 nm WS2 barrier, T = 77 K and
V = 0.2 V. The plasmon spectrum develops an anticrossing with
the collinear tunneling resonance. (b) Plasmon spectra calculated for
different temperatures, electron densities, and level spacing of tunnel
coupled layers 
̃. Dashed parts of the spectra correspond to the
damped plasmons and solid parts to the amplified plasmons. Black
dashed line is �ω = qv0.

relatively high interlayer voltage. The plasmon dispersion
at T = 300 K and V = 0.3 V shown by the orange line in
Fig. 6(b) still demonstrates the backward-wave behavior as
well as the possibility of plasmon gain.

The net gain of surface plasmons (i.e., negative real part
of the net effective conductivity σ‖ + 2G⊥/q2) is possible
both below and above the tunnel resonance at ω = 
̃/� −
qv0. Below the resonance, the gain is due to the emission
of SPs upon tunneling from the valence band of top layer
to the conduction band of the bottom one [see Fig. 2(c)]. In
this domain, the renormalization of SP dispersion leads to the
reduction of the wave vector at given frequency, and hence,
to the reduction of in-plane loss. Above the resonance, the
gain is due to the emission of SPs upon interlayer intraband
transitions; the linear dispersion of SPs is almost unaffected
by tunneling in this case.

115301-6



PLASMONS IN TUNNEL-COUPLED GRAPHENE LAYERS: . . . PHYSICAL REVIEW B 94, 115301 (2016)

V. EFFECTS OF INTERLAYER TWIST

The effects of rotational twist of graphene layers in the
tunneling heterostructures manifests itself in the relative shift
of their Dirac points by the vectors 
qi in the reciprocal space
(i = 1 . . . 6; see the inset in Fig. 5). With the neglect of small
off-diagonal elements of the T matrix, the tunnel conductivity
of twisted layers GT

⊥(q,ω) is related to the tunnel conductivity
of the aligned layers G⊥ via

GT
⊥(q,ω) = 1

6

6∑
i=1

G⊥(q + 
qi ,ω). (15)

In the presence of twist, the locus of collinear scattering
singularities on the ω-q plane breaks down into six hyperbolas
(or less, for particular angles between q and 
q). The acoustic
plasmon dispersion develops an anticrossing with each of
the hyperbolas, demonstrating several frequency ranges with
negative group velocity and gain. An example of the loss
function for the wave vector parallel to the twist vector 
q in
one pair of valleys is shown in Fig. 7 for �|
q|v0 = 18 meV
(twist angle θT = 0.57◦). In this example, there exist four
curves corresponding to the singular plasmon gain and four
for the singular absorption. Remarkably, the plasmon gain
in twisted layers for certain directions of propagation can
be greater than that in aligned layers, because the tunnel
resonances can come closer to the unperturbed SP dispersion.
Generally, the spectrum of plasmons in twisted layers becomes
anisotropic with sixfold rotational symmetry.

VI. DISCUSSION AND CONCLUSIONS

The renormalization of SP dispersion due to the tunneling
can be observed with the recently introduced tool of scattering-
type near-field microscopy [45]. A more practical and readily
observable effect of tunneling is the enhancement of SP

)Ve
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FIG. 7. Acoustic contribution to the loss function in twisted
layers (twist angle θT = 0.57◦); the wave vector is parallel to
the misalignment vector in one pair of valleys. Inset shows the
positions of K points in the reciprocal space for twisted graphene
layers.

propagation length due to the partial compensation of in-
plane absorption by the tunneling emission. Moreover, our
calculations show that under proper choice of the barrier
layer (2 . . . 3 nm WS2), the full compensation of plasmon
losses and the net plasmon gain are possible in the far-
infrared range �ω ≈ 20 . . . 60 meV. The predicted effect of
the net gain opens up the possibility of creating graphene-
based sources of coherent plasmons—spasers—and nanoscale
sources of photons based, e.g., on the evanescent coupling
of photonic waveguides and graphene-based active media for
plasmons.

The observation of net plasmon gain in coupled graphene
layers poses strong constraints on the tunnel transparency
of the barrier material. At the same time, the spontaneous
emission of SPs upon tunneling [46,47] is observable for a
wide class of dielectrics. The tunneling SP emission with their
subsequent conversion into free-space electromagnetic modes
upon scattering might explain the terahertz electrolumines-
cence from graphene-hBN-graphene diodes observed recently
[48]. The presence of luminescence in [48] correlates with the
magnitude of NDR in the static I (V ) curve supporting the
tunneling origin of the emission.

The tunneling assisted by the spontaneous emission of
plasmons can also manifest itself as an extra peak in the bias-
dependent differential conductivity dG/dV [49]. Such peaks
have not yet been identified with tunneling spectroscopy of
graphene-based structures [50]. The extension of the presented
calculation of tunnel current to the case of spontaneous
emission of surface plasmons would reveal the favorable
conditions for plasmon-assisted resonant tunneling and guide
further experimental work.

In conclusion, we have theoretically demonstrated a number
of unique properties of surface plasmons in tunnel-coupled
voltage-biased graphene layers, including the amplified prop-
agation due to the resonant tunneling under interlayer pop-
ulation inversion, and a strong renormalization of dispersion
law. The pronounced effect of tunneling on both spectrum and
damping of plasmons results from singularities in the tunnel
conductivity which are, in turn, inherited from the linear bands
of graphene.
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APPENDIX A: PLASMON MODES SUPPORTED BY THE
DOUBLE LAYER

In this section, we review the general properties of plasmons
in double-graphene-layer structures [22,51] in the absence
of tunneling. The acoustic SP dispersion in double layers
is equivalent to the plasmon dispersion in graphene with
a perfectly conducting gate [4,39]. The low-frequency part
of the SP spectrum can be obtained with the neglect of
interband conductivity, while the intraband conductivity can
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be calculated in the Boltzmann limit (�qv0 � εF , �ω � εF ):

σ intra
‖ ≈ ig

e2

�

ε̃F

2π�

ω

q2v2
0

⎡
⎣ ω√

ω2 − q2v2
0

− 1

⎤
⎦, (A1)

where ε̃F = T ln(1 + eεF /T ). The dispersion relations of plas-
mons (3) in the absence of tunneling (G⊥ = 0) can be solved
analytically with conductivity given by Eq. (A1). This yields
the linear dispersion of the acoustic mode

ωac = v0
1 + 4αcqF d√
1 + 8αcqF d

q, (A2)

and the square-root dispersion of the optical mode

ωopt ≈ v0

√
4αcqqF . (A3)

Here, we have introduced the Fermi wave vector qF = ε̃F /�v0,
the coupling constant αC = e2/�κv0, and neglected the spatial
dispersion of conductivity for the optical mode. This is possible
as the phase velocity of acoustic SPs greatly exceeds the Fermi
velocity. On the other hand, the velocity of the acoustic mode
always exceeds the Fermi velocity, but can be arbitrarily close
to it. For this reason, the spatial dispersion of conductivity
cannot be neglected for acoustic modes even in the formal
long-wavelength limit q � qF , q � T/�v0 as the inequality
qv0 � ω cannot be generally fulfilled.

The distinct dispersions of optical and acoustic plasmon
modes are seen from the loss functions shown in Fig. 8. The
acoustic part of the loss function is given by Eq. (4), while the
optical part is given by

Imε1
opt(q,ω) = Im

{
1 + 2πiqσ‖

ωκ
(1 + e−qd )

}−1

. (A4)

To account for the plasmon damping one has to go
beyond Eq. (A1) and calculate the real parts of the in-plane
conductivity (see Appendix C for analytical expressions). As
seen from Fig. 8, the plasmon peak in the spectral function
becomes broadened at �ω ≈ 2εF − �qv0, which corresponds
to the onset of interband transitions. Below the threshold of
interband transitions, the plasmon damping is governed by
the free-carrier absorption which can be calculated from the
Boltzmann equation with electron-phonon scattering taken
into account.

The spatial distribution of the plasmon potential δϕ(z) in
acoustic mode is governed solely by the wave vector q and can
be obtained from the Poisson’s equation (2). It is convenient
to present it as

δϕ(z) = δϕ0s(z), (A5)

where ϕ0 is the electric potential on the top layer, and s(z) is the
dimensionless “shape function” having the following form:

s(z) =

⎧⎪⎨
⎪⎩

e−q(z+d/2), z < −d/2,

− sinh(qz)
sinh(qd/2) , |z| < d/2,

−e−q(z−d/2), z > d/2.

(A6)

The spatial dependence of the shape functions for acoustic and
optical modes is shown in the inset of Fig. 8.

FIG. 8. Optical (top) and acoustic (bottom) contributions to the
loss function for double graphene layer in the absence of tunneling.
Fermi energy εF = 100 meV, temperature T = 300 K, insulator
thickness d = 3 nm, dielectric constant κ = 5.

APPENDIX B: ESTIMATE OF THE TIGHT-BINDING
PARAMETERS

To estimate the tight-binding parameters � and Sll′ , we
switch to the continuum description of electron states in the z

direction. We model each graphene layer with a delta well [52]

Ut,b(z) = 2

√
�2Ub

2m∗ δ(z − zt,b), (B1)

where the potential strength is chosen to provide a correct
value of electron work function Ub from graphene to the
surrounding dielectric, and m∗ is the effective electron mass
in the dielectric. The effective Schrödinger equation in the
presence of voltage bias 
/e between graphene layers takes
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on the following form:

− �
2

2m∗
∂2�(z)

∂z2
+ [Ut (z) + Ub(z) + UF (z)]�(z) = E�(z),

(B2)
where UF is the potential energy created by the applied field

UF (z) = 


2

⎧⎪⎨
⎪⎩

1, z < −d/2,

2z/d, |z| < d/2,

−1, z > d/2.

(B3)

The solutions of the effective Schrödinger equation represent
decaying exponents at |z| > d/2, and a linear combination of
Airy functions in the middle region |z| < d/2:

�M (z) = CAi(−z/a + ε) + DBi(−z/a + ε), (B4)

where ε = 2m∗|E|a2/�
2 is the dimensionless energy and a =

(�2d/2m∗
)1/3 is the effective length in the electric field. A
straightforward matching of the wave functions at the graphene
layers yields the dispersion equation

det

⎛
⎜⎜⎝

e−k1d/2 −Ai(d/2a + ε) −Bi(d/2a + ε) 0
(2kb − k1)e−k1d/2 − 1

a
Ai′(d/2a + ε) − 1

a
Bi′(d/2a + ε) 0

0 −Ai(−d/2a + ε) −Bi(−d/2a + ε) e−k2d/2

0 − 1
a

Ai′(−d/2a + ε) − 1
a

Bi′(−d/2a + ε) (2kb − k2)e−k2d/2

⎞
⎟⎟⎠ = 0, (B5)

where kb =
√

2m∗Ub/�2 is the decay constant of the
bound state wave function in a single delta well, k1 =√

2m∗(E + 
/2)/�2, k2 =
√

2m∗(E − 
/2)/�2. Equation
(B5) yields two energy levels El (l = ±1) which can be found
only numerically [see Fig. 9(a)]. The respective wave functions
are shown in Fig. 9(b); at strong bias they are almost the wave
functions localized on the different layers (see the discussion
below). Despite the complexity of Eq. (B5), the dependence of
El on the energy separation between layers 
 can be accurately
modeled by

El(
) = −Ub + l

2

√
(E+1,
=0 − E−1,
=0)2 + 
2. (B6)

The same functional dependence of energy levels on 
 is
naturally obtained by diagonalizing the block Hamiltonian (5),

El(
) = −Ub + l

√
�2 + 
2

4
. (B7)

This allows us to estimate the tunnel coupling � as half the
energy splitting of states in the double-graphene-layer well in
the absence of applied bias:

� = 1
2 [E+1,
=0 − E−1,
=0]. (B8)

The wave functions corresponding to a relatively strong bias

 = 200 meV are shown in Fig. 9. It is simple to relate the
true eigenfunctions �+(z) and �−(z) to the functions located
on the top and bottom layers �t (z) and �b(z):

�b = cos α�− + sin α�+, (B9)

�t = − sin α�− + cos α�+, (B10)

where

cos α = 2�√
(2�)2 + (
 − 
̃)2

. (B11)

Knowing the wave functions of the coupled layers, we can
estimate the matrix elements of electron-plasmon interaction

and present them in the following form:

〈psl| δV̂ |p′s ′l′〉 = δp,p′−qu
ss ′
pp′eδϕ0Sll′ . (B12)

Here we have introduced the shorthand notations for the
overlap factors of dimensionless plasmon potential and eigen-
functions of coupled layers,

S++ =
∫ ∞

−∞
�∗

+1(z)s(z)�+1(z), (B13)

S± =
∫ ∞

−∞
�∗

+1(z)s(z)�−1(z), (B14)

and, obviously, S−− = −S++.
The dependence of the overlap factors S++ and S± on the

interlayer potential drop 
 is shown in Fig. 10. We note that
these overlap factors weakly depend on the plasmon wave
vector q as far as it is much smaller than electron wave function
decay constant kb. In this approximation, one can set s(z) ≈
2z/d for |z| < d/2, s(z) ≈ 1 at |z| > d/2.

APPENDIX C: ANALYTICAL RESULTS FOR THE
CONDUCTIVITY: IN-PLANE CONDUCTIVITY

Despite the complex structure of Eqs. (9) and (10), several
analytical approximations can be made in the frequency
range of interest �ω < 2εF , where the plasmons are weakly
damped—at least, for the real part of conductivity that
determines absorption or gain. For brevity, in this section we
work with “God-given units” � = v0 ≡ 1. We start with the
evaluation of in-plane interband conductivity [the term with
s = v and s ′ = c in Eq. (9)].

The interband velocity matrix element reads
〈cp−| v̂x |vp+〉 = i sin [(θp+ + θp−)/2], where θp− and
θp+ are the angles between the momenta of initial and
final states with the x axis. The subsequent calculations are
conveniently performed in the elliptic coordinates

p = q

2
{cosh u cos v, sinh u sin v}. (C1)

In these coordinates |p±| = (q/2)[cosh u ± cos v],
|〈cp−|v̂x |vp+〉|2dpxdpy = (q2/4) cosh2 u sin2 vdudv. This
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(a)

(b)

FIG. 9. (a) Dependence of energy levels in coupled graphene
layers on the interlayer potential drop 
. (b) Wave functions of the
coupled layers calculated for 
 = 200 meV. The barrier is 2.5 nm
WS2. Solid lines in (b) show the wave functions corresponding to
l = +1 (red) and l = −1 (blue), while the dashed lines show the
wave functions of the top and bottom layers obtained as a linear
combination (B9) of the eigenfunctions.
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FIG. 10. Dependence of the overlap factors S++ and S± on the
interlayer voltage drop 
 calculated for the 2.5 nm WS2 dielectric
layer.

leads us to (we henceforth omit the factor S++ cos θM )

Reσv→c
‖ = e2

2π

ω√
ω2 − q2

∫ π

0
dv sin2 v

×
{
f v

[
−ω

2
+ q

2
cos v

]
− f c

[
ω

2
+ q

2
cos v

]}
.

(C2)

To proceed further, we note that in the domain of interest
ω > q one always has q cos v < ω. Due to this fact, the
difference of distribution functions is a smooth function of
v, while the prefactor sin2 v varies strongly. This allows
us to integrate sin2 v exactly, and replace the difference of
distribution functions with its angular average. This leads us
to

Reσv→c ≈ e2

4

T ω

q
χ (q,ω) ln

cosh εF

T
+ cosh ω+q

2T

cosh εF

T
+ cosh ω−q

2T

, (C3)

where we have introduced a resonant factor

χ (q,ω) = θ (ω)√
ω2 − q2

. (C4)

Clearly, the neglect of spatial dispersion in the case of acoustic
SPs with velocity slightly exceeding the Fermi velocity
results in an underestimation of the real part of the interband
conductivity and, hence, of the plasmon damping.

We now pass to the in-plane conductivity associated with
the intraband transitions. Here, we can restrict ourselves to
the classical description of the electron motion justified at
frequencies ω � εF , q � qF ; otherwise, strong interband
SP damping takes place. Clearly, one could work out the
terms with s = s ′ and l = l′ in Eq. (9); however, the accurate
inclusion of carrier scattering in such equations is challenging.
Instead, we use the kinetic equation to evaluate σ c→c

‖ ; this
formalism allows an inclusion of carrier scattering in a con-
sistent manner. One should, however, keep in mind that in the
nonlocal case q �= 0 a simple τp approximation is not particle
conserving. A particle-conserving account of collisions is
achieved with the Bhatnagar-Gross-Krook collision integral
[53] in the right-hand side of the kinetic equation,

−iωδf (p) + iqvδf (p) + ieqvδϕ
∂f0

∂ε

= −ν

[
δf (p) + dεF

dn

∂f0

∂ε
δn

]
. (C5)

Here δf (p) is the sought-for field-dependent correction to
the equilibrium electron distribution function f0, δnq is the
respective correction to the electron density, v = p/p is the
quasiparticle velocity, and ν is the electron collision frequency
which is assumed to be energy-independent. Solving Eq. (C5)
and recalling the continuity equation ωδn = qδj we obtain the
in-plane intraband conductivity:

σ intra
‖ = ige2ε̃F

(2π )2q

J2
(

ω+iν
q

)
1 − iν

2πω
J1
(

ω+iν
q

) , (C6)
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FIG. 11. Comparison of the real parts of the interband (red) and
intraband (blue) conductivities of a single graphene layer evaluated
in the local limit (dashed) and at finite wave vector corresponding to
the acoustic SP dispersion q = ω/s (solid). The parameters used in
the calculation are εF = 100 meV, T = 300 K, s = 1.2v0. Acoustic
phonons are considered as the main carrier relaxation mechanism.

where

Jn(x) =
∫ 2π

0

cosn θdθ

x − cos θ
. (C7)

Similarly to the real part of the interband absorption, the
intraband absorption is generally larger in the nonlocal case
q �= 0 compared to the local case. This difference is illustrated
in Fig. 11, where the local (q = 0) and nonlocal expressions
at the acoustic plasmon dispersion (q = ω/s) are compared.
This result is in agreement with the recent measurements of
plasmon propagation length in graphene on hBN: the local
Drude formula underestimated the plasmon damping, and the
account of nonlocality was crucial to explain the experimental
data [9].

APPENDIX D: TUNNEL CONDUCTIVITY

Approximations similar to those used in deriving Eq. (C3)
can be made to evaluate the interlayer interband conductivity.
The only difference is that electrons in different layers have
different chemical potentials. We present these results without
derivation:

2Gv→c
⊥

q2
= −e2 T ω

2q

{
χ (q,
̃ − ω) ln

cosh q+eV −ω

4T

cosh q−eV +ω

4T

− χ (q,
̃ + ω) ln
cosh q+eV +ω

4T

cosh q−eV −ω

4T

}
, (D1)

2Gc→v
⊥

q2
= −e2 T ω

2q

{
χ (q,ω − 
̃) ln

cosh q+eV −ω

4T

cosh q−eV +ω

4T

− χ (q, − 
̃ − ω) ln
cosh q+eV +ω

4T

cosh q−eV −ω

4T

}
. (D2)

An analytical estimate of the tunnel conductivity associated
with intraband transitions is possible only in the limit εF � T ,
which is not always the case in our calculations. Again, passing
to the elliptic coordinates in Eq. (10) and keeping the terms
with s = s ′ one readily finds the result of Eq. (12). The value
of the auxiliary integral at zero temperature is

I(α,β) = θ (β)

2

[
β

α

√
β2

α2
− 1 − ln

(
β

α
+
√

β2

α2
− 1

)]
−{β → −β}. (D3)

Finally, to obtain physically reasonable results one has to
estimate the actual value of the resonant conductivity in the
presence of carrier scattering. The result for in-plane intraband
conductivity is given essentially by Eq. (C6). For all other
terms, the classical approximation used in (C6) is invalid.
To account for the scattering in those terms, we replace the
delta-peaked spectral functions of individual particles in the
expressions for conductivity with Lorentz-type functions using
the following rule:

∑
p

1

ω + iδ − (εsl
p − εs ′l′

p′
)

⇒ 1

(2π )2

∫
dεdε′∑

p

Asl(p,ε)As ′l′(p′,ε)

ω + iδ − (ε − ε′)
. (D4)

The spectral function is given by

Asl(p,ε) = 2γ(
ε − εsl

p

)2 + γ 2
. (D5)

In our calculations, the broadening factor γ equals the
imaginary part of the self-energy due to the electron-phonon
collisions evaluated at the Fermi surface [36]:

γ = Im�(pF ,εF ) = ε

T

D2T 2

4ρs2v2
0

∣∣∣∣
ε=εF

. (D6)

The approximation (D4) corresponds to the neglect of vertex
corrections in the current-current correlator represented by
the bubble diagram. The effect of the vertices is typically to
reduce the collision frequency; hence, the approximation (D4)
underestimates the resonant conductivity. All the more, careful
calculations of the tunnel conductivity show that interference
of the carrier scattering events in different layers leads to a
further decrease of the effective scattering rate [31]. We leave
the determination of the effective scattering rate γ to a future
work, and use its upper estimate in the present paper.
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