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Tight-binding theory of NMR shifts in topological insulators Bi2Se3 and Bi2Te3
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Motivated by recent nuclear magnetic resonance (NMR) experiments, we present a microscopic sp3 tight-
binding model calculation of the NMR shifts in bulk Bi2Se3 and Bi2Te3. We compute the contact, dipolar, orbital
and core polarization contributions to the carrier-density-dependent part of the NMR shifts in 209Bi, 125Te, and
77Se. The spin-orbit coupling and the layered crystal structure result in a contact Knight shift with strong uniaxial
anisotropy. Likewise, because of spin-orbit coupling, dipolar interactions make a significant contribution to the
isotropic part of the NMR shift. The contact interaction dominates the isotropic Knight shift in 209Bi NMR, even
though the electronic states at the Fermi level have a rather weak s-orbital character. In contrast, the contribution
from the contact hyperfine interaction to the NMR shift of 77Se and 125Te is weak compared to the dipolar and
orbital shifts therein. In all cases, the orbital shift is at least comparable to the contact and dipolar shifts, while the
shift due to core polarization is subdominant (except for Te nuclei located at the inversion centers). By artificially
varying the strength of spin-orbit coupling, we evaluate the evolution of the NMR shift across a band inversion
but find no clear signature of the topological transition.
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I. INTRODUCTION

Nuclear magnetic resonance (NMR) constitutes a powerful
experimental technique to study a wide array of chemical
and electronic properties of materials [1]. For decades, NMR
experiments have provided important information on ordered
phases of matter such as superconductivity and magnetism.

In the last five years, NMR has been applied to the study
of topological phases of matter [2], which are characterized
by topological invariants that result in peculiar surface states.
A priori, NMR is not the best tool to characterize topological
phases of matter. On one hand, NMR is a local probe, while
topological invariants are nonlocal. On the other hand, NMR
is a bulk probe, while the main manifestations of topological
invariants occur at the boundaries/surfaces of the material.

Yet, the aforementioned difficulties have not dissuaded
numerous experimental attempts [3–17] aiming at direct or
indirect signatures of topological invariants in NMR. Most
of these experiments have focused on Bi2Se3 and Bi2Te3,
which are model topological insulators. To mention but a few,
Koumoulis et al. [6,14] and Podorozhkin et al. [13] searched
for NMR signals of topological surface states. Nowak et al. [8]
measured a positive 209Bi NMR shift for topologically trivial
YPdBi, and a strongly negative shift for topologically nontriv-
ial YPtBi. They considered this difference to be a “possibly
universal fingerprint” of a change in the strong topological
invariant. This idea was echoed by Shi et al. [9], who proposed
that it is possible to detect electronic band inversions through
NMR shifts. Koumoulis et al. [15] used NMR to address the
band inversion in certain topological crystalline insulators.
Mukhopadhyay et al. [12] reported a large isotropic Knight
shift for 209Bi in n-doped Bi2Se3, which they attributed to
the contact hyperfine coupling, with an estimated contact
hyperfine coupling “comparable to or higher than the values

*samuel.boutin@usherbrooke.ca

determined for GaAs electron systems exhibiting pure s-like
wave functions.” These authors suggested that the orbital shift
is negligible. In contrast, MacFarlane et al. [10] noted that
the diamagnetic orbital response of the free carriers may
be important in topological materials where diamagnetism
is particularly strong. More recently, Georgieva et al. [17]
ascribed the large magnetic-field-independent NMR linewidth
observed by various groups to an unusually strong indirect
nuclear coupling mediated by bulk electrons. It was argued
that the reason behind this observation could be an unusually
strong Bloembergen-Rowland coupling between nuclear spins
in Bi2Se3.

On the theoretical front, aside from early work on lead
salts [18–22] predating the discovery of topological phases
of matter, there has been a lack of detailed calculations
concerning NMR shifts in doped topological crystals. To our
knowledge, the only theoretical activities along this direction
consist of just a few continuum model calculations, mainly
concerned with the topological surface state contribution to the
Knight shift [23,24]. Both of these works consider the contact
interaction between the nuclei and the itinerant electrons as the
only source of the Knight shift. In addition, neither Ref. [23]
nor [24] make an attempt to incorporate the variation of the
shift from one nucleus to another, or to calculate the hyperfine
coupling (instead leaving it as a phenomenological parameter).

Partly due to the lack of theoretical guidance, some of
the aforementioned experiments appear to offer conflicting
responses to a number of basic questions. Is the contact
hyperfine interaction dominant or not in the observed Knight
shifts? Is the orbital shift significant or negligible? Does core
polarization play a major or a secondary role? What is the
influence of spin-orbit interactions and band inversions in
NMR? To quote Ref. [12], “a better understanding (· · · ) would
require new theoretical studies.” The objective of this paper is
to present a theory that addresses these questions by predicting
the carrier-density-dependent portion of the contact, dipolar,
core polarization, and orbital contributions to the NMR shift.
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The rest of this work is organized as follows. In Sec. II,
we review the microscopic sp3 tight-binding theory of bulk
Bi2Se3 and Bi2Te3, which is our method of choice for
the calculation of NMR shifts. Compared to earlier k · p
model calculations in lead salts [18–22], the tight-binding
approach is more powerful in that it allows to compute the
NMR contributions from more electronic bands and from the
entire Brillouin zone. This advantage is especially important in
heavily doped semiconductors, as well as in systems (such as
Bi2Se3 and Bi2Te3) where the bottom of the conduction band
and the top of the valence band are not at the same point in
the Brillouin zone. Indeed, the popular k · p model proposed
in [25] would not be a good starting point for the calculation
of the NMR shift in p-doped Bi2Te3 because the top of the
valence band is away from the � point (in fact, it is not located
in a high-symmetry point of the Brillouin zone). The tight-
binding theory we present has no such problem. In addition,
our calculation has the advantage of yielding the g factors and
hyperfine couplings without resorting to experiment. The main
limitation of the sp3 tight-binding theory, which is shared by
the k · p theory, is that it is conceived to accurately reproduce
the electronic bands in the vicinity of the Fermi level, but not
those far from it. Consequently, it can reliably describe the
carrier-density-dependent part of the NMR shift, but not the
density-independent part that originates from core electrons
(also known as the chemical shift). Density-functional theory
(DFT) calculations, commonly used for chemical shifts [26],
do not suffer from this limitation. However, a DFT calculation
of NMR shifts in conducting and strongly spin-orbit coupled
crystals remains a computationally difficult task [27], not
undertaken thus far. In view of this, the tight-binding approach
strikes a useful compromise which allows us to predict
the dependence of NMR shifts on the carrier density. This
dependence is experimentally accessible [5,19] by measuring
the variation of the resonance field with carrier concentration
and subtracting the reference field, i.e., the field at which
resonance would occur in absence of carriers.

In Sec. III, we compute the contact, dipolar, and core
polarization contributions to the Knight shift, which emerge
from a magnetic-field-induced spin polarization of the itinerant
carriers. Contrary to what is occasionally assumed, we find that
the contribution from the contact interaction to the Knight shift
is strongly anisotropic, and that the dipolar interaction does
contribute to the isotropic part of the Knight shift. These two
observations are direct consequences of the strong spin-orbit
interactions in Bi2Se3 and Bi2Te3. We demonstrate that the
209Bi NMR shift in n-doped Bi2Se3 is dominated by the
contact interaction; however, for other shifts, the dipolar and
orbital parts are often considerable and at times dominant.
With the exception of the 125Te NMR shift, core polarization
is not a major factor. In comparing Bi2Se3 with Bi2Te3, we
find that the hyperfine coupling for Te nuclei located at the
inversion centers is much larger than the hyperfine coupling
for Se nuclei located at the same place. As a by-product of our
calculation, we evaluate the contact hyperfine fields for Bi, Te,
and Se, as well as the g factors for Bi2Se3 (at the � point),
and find a rather good agreement with experiment.

In Sec. IV, we evaluate the contribution of the valence
electrons to the orbital shift, which emerges from magnetic-
field-induced orbital currents. The density-dependent part of

this shift is comparable to that of the Knight shift. As a result,
contact, dipolar, and orbital mechanisms can all be comparably
important for the NMR shifts in Bi2Se3 and Bi2Te3.

Section V summarizes the main results and draws the
conclusions. Besides, we discuss the effect of a band inversion
in the carrier-density-dependent part of the NMR shifts, and
show that the latter do not contain generic signatures of
topological invariants. The technical aspects of the theory are
relegated to Appendixes A, B, and C.

II. TIGHT-BINDING MODEL

The crystal structure of Bi2Se3 consists of an ABC stacking
of monoatomic triangular lattices normal to the c axis. These
layers are grouped into quintuple layers (QL) of strongly
bounded planes, while neighboring QL interact mainly through
van der Waals forces. Each QL contains two equivalent “outer”
Se planes (Seout), two equivalent Bi planes, and another “inner”
Se plane (Sein) located at the center of inversion [25]. Due to
the ABC stacking, the primitive rhombohedral unit cell spans
three QL and contains five atoms: two Seout, one Sein, and
two Bi. An identical crystal structure applies to Bi2Te3, upon
replacing Se by Te. For all atoms, the valence electrons are in
p-type orbitals.

In this work, we adopt a sp3 tight-binding description of
the single-electron Hamiltonian with spin-orbit interactions,

H = p2

2m
+ V (r) + �

4m2c2
(∇V × p) · σ , (1)

where V (r) = V (r + R) is the lattice potential, R are the
Bravais vectors giving the positions of the unit cells, m is the
bare electron mass, p = −i�∇ is the canonical momentum, c is
the speed of light in vacuum, and σ is a vector of Pauli matrices
denoting the spin degree of freedom. The electronic velocity
operator, which plays a central role in the theory of NMR shifts,
is given by v = (i/�)[H,r] = p/m + (�/4mc2)σ × ∇V .

In the tight-binding description of the electronic structure,
each lattice site is ascribed a localized electronic state
|Rjμσ 〉 = |Rjμ〉|σ 〉, j labels the five atoms inside the
primitive unit cell, μ = {s,px,py,pz} denotes the atomic
orbitals considered in the sp3 model [30], and σ is the
spin index. The states |Rjμσ 〉 are Löwdin orbitals, obeying
〈Rjμσ |R′j ′μ′σ ′〉 = δRR′δjj ′δμμ′δσσ ′ .

At first thought, one may be tempted to approximate |Rjμ〉
by free hydrogenlike atomic orbitals with atomic numbers
Zj that correspond to Bi, Se, or Te. However, this approxi-
mation ignores screening effects and thus overestimates the
probability of finding an electron at the nucleus by roughly
an order of magnitude. More so, such an error propagates
onto the calculation of NMR shifts and gives, for example,
effective hyperfine fields that are ∼10 times larger than the
values known from experiment. Therefore, we calculate the
atomic orbitals’ wave functions using the DFT implementation
of the first-principles quantum chemistry package Psi4 [31].
Our calculation incorporates intra-atomic electron-electron
interactions as well as scalar relativistic effects. As we show
below, this approach gives effective hyperfine fields in good
agreement with experiment. Although the calculated orbitals
centered in different atoms are not completely orthogonal, the
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overlaps
∫

d3r〈r|Rjμ〉〈R′j ′μ′|r〉 for j �= j ′ are small enough
that neglecting them does not result in a significant error.

In the basis of Löwdin orbitals, the Hamiltonian from
Eq. (1) can be recasted in the second quantized form as

H =
∑

Rjμσ

∑
R′j ′μ′σ ′

Hjμσ ;j ′μ′σ ′(R,R′)c†Rjμσ cR′j ′μ′σ ′ , (2)

where c
†
Rjμσ is an operator that creates an electron in

state |Rjμσ 〉, and Hjμσ ;j ′μ′σ ′(R,R′) = 〈Rjμσ |H|R′j ′μ′σ ′〉.
In Bi2Se3 and Bi2Te3, the numerical values of
〈Rjμσ |H|R′j ′μ′σ ′〉 have been tabulated for up to third-
nearest-neighboring sites by fitting to results from DFT [30].
Spin-orbit interactions, crucial in these materials, are incorpo-
rated through onsite terms. Fourier transforming Eq. (2), we
have

H =
∑

k

∑
jμσ

∑
j ′μ′σ ′

Hjμσ ;j ′μ′σ ′(k)c†kjμσ ckj ′μ′σ ′, (3)

where k is the crystal momentum (within the first Brillouin
zone), c

†
kjμσ is an operator that creates an electron in a Bloch

spinor,

|ψkjμσ 〉 = 1√
N

∑
R

eik·(R+tj )|Rjμσ 〉, (4)

tj is the position of a given atom in the unit cell (so that R + tj
is its actual position in the lattice), and N is the number of unit
cells in the crystal. The eigenstates and eigenvalues of H are
|ψkn〉 and Ekn, respectively, where n denotes the band index.
In particular, |ψkn〉 are Bloch spinors that obey 〈r + R|ψkn〉 =
exp(ik · R)〈r|ψkn〉 and 〈ψkn|ψk′n′ 〉 = δkk′δnn′ . The set of states
{|ψkjμσ 〉} defined in Eq. (4) form an orthonormal basis. As
such, we may write

|ψkn〉 =
∑
jμσ

Ckn;kjμσ |ψkjμσ 〉, (5)

where Ckn;kjμσ = 〈ψkjμσ |ψkn〉. The matrix elements of the
Hamiltonian H(k) are

Hjμσ ;j ′μ′σ ′(k) = 〈ψkjμσ |H|ψkj ′μ′σ ′ 〉

= 1

N

∑
RR′

eik·(R+tj −R′−tj ′ )Hjμσ ;j ′μ′σ ′(R,R′). (6)

To avoid confusion, we remark that H(k) �= e−ik·rHeik·r. A
numerical diagonalization of H(k) yields the eigenvalues Ekn

and the coefficients Ckn;kjμσ (n = 1, . . . ,40). Figure 1 displays
Ekn along the high-symmetry directions in the first Brillouin
zone [30]. Each energy level is doubly degenerate due to
the combined time-reversal symmetry and spatial inversion
symmetry.

In the remainder of this paper, we make use of Ekn and
|ψkn〉 to estimate the NMR shifts in Bi2Se3 and Bi2Te3. These
shifts are induced by a spatially uniform external magnetic
field B that modifies Eq. (1) through a Zeeman term μBσ · B
and through the minimal coupling p → p + eA, where A =
B × r/2 is the vector potential in the symmetric gauge and e

is the absolute value of the bare electronic charge. This results
in H → H + δH, where

δH = −μ · B + (e2/8m)|B × r|2, (7)
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FIG. 1. Bulk tight-binding bands for Bi2Se3 and Bi2Te3.

μ = −μB (σ + mr × v/�) is the magnetic moment of the
itinerant electrons and μB = e�/(2m) is the Bohr magneton.
Below, we evaluate the NMR shifts to first order in the applied
field. For the Knight shift, this implies that the O(B2) term
in Eq. (7) can be ignored. However, both terms in Eq. (7) are
required for the orbital shift.

III. KNIGHT SHIFT

A. General considerations

The Knight shift originates from a magnetic-field-induced
spin polarization of the itinerant carriers. NMR shifts due to
the orbital motion of electrons will be discussed in the next
section. Let ne be the bulk electronic density measured from
the neutrality point (at zero temperature, ne > 0 when the
Fermi level intersects the conduction bands, ne < 0 when the
Fermi level intersects the valence bands, and ne = 0 when
the Fermi level lies within the gap). Throughout this work,
we assume that ne is spatially uniform. This assumption
allows to take into account the average influence of defects
and dopants on the NMR shift. Spatial inhomogeneities of
the carrier concentration in real samples will produce a
distribution (linewidth) of Knight shifts around the mean value
we calculate. The details of NMR linewidths are beyond the
scope of this work.

The external magnetic field B couples to the magnetic
moment μ of the itinerant electrons [cf. Eq. (7)] and induces
a spin polarization. Then, this spin polarization acts on the
nuclear spins through contact and dipolar interactions as well
as through core polarization effects, thereby producing an extra
carrier-density-dependent magnetic field

δBKnight(r0,ne) =
∑

λ

δBλ(r0,ne), (8)

where λ ∈ {cont, dip, core} labels the different contributions
to the Knight shift, to be defined momentarily. This additional
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magnetic field shifts the resonance frequency of a particular
nuclear spin j0 located at position r0 = R0 + tj0 . Explicitly,
the contribution due to the contact interaction is given by [1]

δBcont(r0,ne) = −2

3
μ0gsμB〈S(r0)〉, (9)

whereas the contribution due to the dipolar interaction reads
as

δBdip(r0,ne) = μ0

4π
gsμB

∫
d3r

[ 〈S(r)〉
|r − r0|3

− 3(r − r0)

|r − r0|5 〈S(r)〉 · (r − r0)

]
. (10)

Here, μ0 is the magnetic permeability in vacuum, gs = 2 is
the bare electronic g factor [20], and 〈S(r)〉 is the expec-
tation value of the local electronic spin-density operator at
position r:

S(r) = σ |r〉〈r|/2. (11)

The reason why gs = 2 in Eq. (9), regardless of the strength
of spin-orbit interactions, is that the contact interaction acts on
atomically short length scales. On the other hand, the effective
g factor of the band eigenstates (which departs from 2 in
presence of spin-orbit interactions) is reflected in 〈S(r)〉. As
a result, the Knight shift scales linearly with the effective g

factor of the band eigenstates [20].
The third mechanism for the Knight shift is the core

polarization, which originates from a Coulomb-interaction-
induced spin polarization of the core s electrons. Because the
valence electrons of Bi2Se3 and Bi2Te3 are predominantly
of p type, core polarization effects could in principle be at
least as important as the contact interaction. The effective
magnetic field felt by the nucleus due to core polarization can
be expressed as [32]

δBcore(r0,ne) = −Bcore
eff (j0)〈sp(r0)〉, (12)

where Bcore
eff (j0) is the effective core hyperfine field per p

electron in an open shell and sp(r0) is the spin operator
projected onto the p orbitals at nucleus j0. The effective
core hyperfine fields (in kOe) are experimentally known [33]
to be −300, − 150, and −50 for Bi (6p), Te (5p), and Se
(4p), respectively; we will adopt these values in our theory.
Similarly, we note that the contact term of Eq. (9) can be
rewritten in a way that is formally identical to Eq. (12) [33]:

δBcont(r0,ne) = −Batom
eff (j0)〈ss(r0)〉, (13)

where Batom
eff (j0) = (2gs/3)μ0μB |〈r0|R0j0s〉|2 is the effective

contact hyperfine field per s electron and ss(r0) is the spin
operator projected onto the s orbitals at nucleus j0. We evaluate
Batom

eff (j0) through atomic DFT calculations [31] and compare
the results to available experimental values in Table I.

The Knight shift depends on ne because 〈S(r)〉 and 〈sp(r0)〉
depend on ne. Given that 〈S(r)〉 and 〈sp(r0)〉 are linear in the
external magnetic field (for weak fields), it is customary to
rewrite Eq. (8) as

δBλ
i (r0,ne) ≡

∑
j

Kλ
ij (j0,ne)Bj (i,j = x,y,z). (14)

TABLE I. Comparison between the atomic hyperfine fields Batom
eff

[cf. Eq. (13)] calculated in this work and the reference experimental
values from Ref. [33].

Batom
eff (kOe) Calculated Experimental value

Bi 49 100 49 000
Se 12 580
Te 20 850 17 200

Here, Kcont(j0,ne), Kdip(j0,ne), and Kcore(j0,ne) are the di-
mensionless Knight shift tensors for the contact, dipolar,
and core polarization at carrier density ne and at a nucleus
j0, respectively. Due to the axial symmetry of the problem,
Kλ

ij ∝ δij and Kλ
xx = Kλ

yy �= Kλ
zz.

As discussed in the Introduction, we focus on the carrier-
density-dependent part of the shifts, i.e.,

�Kλ
ii(j0,ne) ≡ Kλ

ii(j0,ne) − Kλ
ii(j0,0). (15)

Then, the zero of the Knight shift corresponds to the situation
where there are no free carriers in the system (i.e., at a
temperature low compared to the bulk gap and with the
Fermi energy inside the bulk band gap). Equation (15) can
be experimentally accessed by measuring the NMR shifts
as a function of carrier concentration (cf. Sec. V) [34]. The
chemical shift, independent of the carrier density, is canceled
out in Eq. (15). Since the chemical shift is independent of
temperature as well, it can also be separated out through
temperature-dependent measurements of the NMR shift.

B. Perturbation theory expression for the itinerant spin density

Assuming a pristine crystal and recalling that the nuclear
resonance frequency is negligible compared to electronic
energy scales, the average local spin density to first order in B
is given by standard perturbation theory (cf. Appendix A)

〈S(r)〉 �
∑

kk′nn′
〈ψkn|S(r)|ψk′n′ 〉〈ψk′n′ |δH|ψkn〉fnn′ (k,k′),

(16)

where δH includes only the first term in the right-hand side of
Eq. (7), k and k′ are within the first Brillouin zone,

fnn′ (k,k′) ≡ (fkn − fk′n′ )/(Ekn − Ek′n′), (17)

and fkn is the Fermi-Dirac occupation number for a Bloch
state with energy Ekn. The calculation of 〈sp(r0)〉, relevant
for the core polarization, follows an identical derivation.
Equation (16) contains a noninteracting expression for the
local spin susceptibility. The exchange enhancement of the
spin susceptibility can be ignored because the static dielectric
constant of Bi2Se3 and Bi2Te3 is large (∼100).

In Eq. (16), it is illustrative to separate the sums over
the band indices into intraband (Ekn = Ekn′) and interband
(Ekn �= Ekn′) parts, which are associated with Pauli and Van
Vleck susceptibilities, respectively. When k = k′, intraband
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transitions give a contribution to the NMR shift that scales
as the density of states at the Fermi energy [35], while
the contribution from interband transitions depends relatively
weakly on the carrier density and remains nonzero even when
the Fermi energy lies within the bulk gap. In experiments [5],
it is customary to identify the Knight shift with the part
of the NMR shift that depends on carrier density (i.e.,
largely the intraband part). The density-independent part of
the shift, frequently believed to have an orbital origin, is
customarily lumped together with the chemical shift. However,
in strongly spin-orbit coupled materials such as Bi2Se3 and
Bi2Te3, the Van Vleck term makes a large density-independent
contribution to the itinerant spin density.

The numerical evaluation of Eq. (16) requires calculating
the matrix elements of δH to first order in B. This task

is somewhat delicate because δH contains the unbounded
operator r. There exist various approaches to treat this
issue [28,36]; here, we follow the method of Ref. [37],
according to which the matrix elements of the po-
sition operator in the Bloch states can be written
as 〈ψk′n′ |r|ψkn〉 = −i∇k〈ψk′n′ |ψkn〉 + iδkk′ 〈ukn′ |∇kukn〉cell,
where |ukn〉 = √

Ne−ik·r|ψkn〉 is the lattice-periodic part of
the Bloch spinor, and the subscript “cell” means that the spatial
integral is carried out within a unit cell. Using this, and saving
the details of the derivation for Appendix A, Eq. (16) becomes

〈S(r)〉 =
4∑

j=1

〈S(r)〉j , (18)

where

〈Si(r)〉1 = μB

∑
k

∑
nn′

〈ψkn|Si(r)|ψkn′ 〉〈ψkn′ |σ · B|ψkn〉fnn′ (k,k),

〈Si(r)〉2 = mμBIm
∑

k

∑
nn′

〈ψkn|Si(r)|ψkn′ 〉fnn′ (k,k)
∑

En′′ �=En′

(〈ψkn′ |v|ψkn′′ 〉 × 〈ψkn′′ |v|ψkn〉) · B
Ekn′ − Ekn′′

,

(19)
〈Si(r)〉3 = mμB

�
Im

∑
k

∑
nn′

〈ψkn|Si(r)|ψkn′ 〉fnn′ (k,k)
∑

En′′ =En′

(〈∇kukn′ |ukn′′ 〉cell × 〈ψkn′′ |v|ψkn〉) · B,

〈Si(r)〉4 = −mμB

�
Im

∑
kk′

∑
nn′

δkk′ {∇k × [〈ψkn|Si(r)|ψk′n′ 〉fnn′ (k,k′)〈ψkn′ |v|ψkn〉]} · B.

The terms 〈S(r)〉1, 〈S(r)〉2, and 〈S(r)〉3 only involve transitions
that are diagonal in the crystal momentum, unlike 〈S(r)〉4.
In the expression for 〈S(r)〉4, one must take the derivative
with respect to k before applying Kronecker’s δkk′ . The
expression 〈S(r)〉 is invariant under gauge transformations
of the form |ψkn〉 → Ukn|ψkn〉, where Ukn is any unitary
matrix, differentiable with respect to k, acting on the twofold-
degenerate subspace of band n at momentum k. It is worth
noting that 〈S(r)〉1 and 〈S(r)〉2 are separately gauge invari-
ant, while only the sum of 〈S(r)〉3 and 〈S(r)〉4 is gauge
invariant.

In absence of spin-orbit interactions, we find 〈S(r)〉2 =
〈S(r)〉3 = 〈S(r)〉4 = 0, and the interband part of 〈S(r)〉1

vanishes as well. What is left in this case is the textbook
expression for the Knight shift in simple metals [1], which
scales like the Pauli spin susceptibility with an electronic
g factor of 2. Nevertheless, since Bi2Se3 and Bi2Te3 are
strongly spin-orbit coupled narrow-gap semiconductors, it is
insufficient to consider solely the intraband part of 〈S(r)〉1. For
one thing, in presence of spin-orbit interactions, the effective
g factor of the electronic bands departs strongly from 2. The
intraband part of 〈S(r)〉2 quantifies how such a departure
affects the Knight shift. Thus, the intraband part of 〈S(r)〉1 +
〈S(r)〉2 has been used repeatedly in calculations of the
Knight shift in spin-orbit coupled semiconductors (see, e.g.,
Ref. [22]).

The meaning of 〈S(r)〉3 and 〈S(r)〉4 is less intuitive. These
terms originate from spin-orbit interactions and, in that sense,
appear to be related to the “spin-orbit contribution” discussed

from a different viewpoint in Ref. [22]. Insofar as we restrict
our attention to the intraband transitions (Ekn = Ekn′), and
insofar as the temperature is low and the Fermi level lies
close to a band extremum at k0 (a circumstance that is
common in self-doped semiconductors such as Bi2Se3 and
Bi2Te3), then 〈S(r)〉3 + 〈S(r)〉4 is small. This is because
〈ψk0n|v|ψk0n′ 〉 = δnn′∂Ekn/(�∂k)|k=k0 = 0 for Ek0n = Ek0n′ .
Yet, when a semiconductor is moderately doped, the intraband
parts of 〈S(r)〉3 and 〈S(r)〉4 can make a sizable impact. Our
expression for the intraband part of 〈S(r)〉3 can be directly
connected to early theoretical attempts [38,39] to determine
how the g factor changes away from a band extremum.
These theories were nonetheless aware of the lack of gauge
invariance of this term. This is where the importance of 〈S(r)〉4

becomes manifest in our theory, as it restores the overall
gauge invariance. We stress that in order to obtain 〈S(r)〉4,
it is essential to allow for k �= k′ in Eq. (16).

Equation (19) is applicable to any single-particle electronic
structure, be it based on k · p, tight-binding, or DFT methods.
In the tight-binding formalism that concerns us here, the vari-
ous matrix elements appearing in Eq. (19), are straightforward
to compute. For example,

〈ψkn′ |σ |ψkn〉 =
∑

jμσσ ′
C∗

kn′;kjμσCkn;kjμσ ′ 〈σ |σ |σ ′〉, (20)

where we have used 〈Rjμσ |σ |R′j ′μ′σ ′〉 = δRR′δjj ′δμμ′

〈σ |σ |σ ′〉. Likewise, the matrix elements of the velocity
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operator are

〈ψkn1 |v|ψkn2〉 =
∑
jμσ

∑
j ′μ′σ ′

C∗
kn1;kjμσCkn2;kj ′μ′σ ′

× [∇kHjμσ,j ′μ′σ ′(k)/�+iωkn1;kn2 djμσ,j ′μ′σ ′],

(21)

where ωkn1;kn2 = (Ekn1 − Ekn2 )/� and djμσ,j ′μ′σ ′ =
δσσ ′δjj ′ 〈0jμ|r|0jμ′〉 is the intra-atomic dipole matrix
element [40]. In the derivation of Eq. (21), we have
used v = i[H,r]/� and r|Rjμσ 〉 = (R + tj )|Rjμσ 〉 +∑

μ′ dμμ′ |Rjμ′σ 〉. Incorporating d into the theory ensures
nonzero matrix elements of v in the limit where the atoms
are infinitely far apart from one another. However, we find
that d has a minor quantitative impact in the Knight shift
of Bi2Se3 and Bi2Te3; hence, it will be ignored hereafter.
Finally, the matrix elements of the local spin density operator
read as

〈ψkn|S(r)|ψkn′ 〉 � 1

2N

∑
σσ ′

〈σ |σ |σ ′〉
∑
Rj

∑
μμ′

× 〈Rjμ|r〉〈r|Rjμ′〉C∗
kn;kjμσCkn′;kjμ′σ ′,

(22)

where we have neglected the overlaps between wave functions
localized at different atoms. Moreover, because |Rjμ〉 are
localized, the main contribution to the sum over R and j

in Eq. (22) comes from the nucleus nearest to the point
r. Additional details concerning the numerical evaluation of
Eq. (19) can be found in Appendixes A and B.

C. Estimates of the g factors

As a partial reality check of our theory, we determine the
electronic g factors at band extrema, gnα(k0), where n is the
band label and α = 1,2,3 denotes the principal values. In order
to do so, let |ψk0n+〉 and |ψk0n−〉 be the two Bloch states of
energy Ek0n in absence of a field, related to one another by
the product of time-reversal and spatial inversion operations.
Following Ref. [38], [gnα(k0)]2 are given by the eigenvalues
of the real symmetric tensor Gij = ∑

l GilGlj , where

−μBGix = 2 Re〈ψk0n+|μi |ψk0n−〉,
−μBGiy = −2 Im〈ψk0n+|μi |ψk0n−〉,
−μBGiz = 2〈ψk0n+|μi |ψk0n+〉,

(23)

and the indices (i,j,l) run over (x,y,z). Here, x and y are
the crystallographic axes in the plane of the quintuple layers,
while z is the axis perpendicular to them. The matrix elements
needed to obtain G are computed according to

〈ψk0n′ |μ|ψk0n〉 = −〈ψk0n′ |σ |ψk0n〉 + im

×
∑

En′′ �=En

〈ψk0n′ |v|ψk0n′′ 〉 × 〈ψk0n′′ |v|ψk0n〉
Ek0n − Ek0n′′

,

(24)

where Ek0n = Ek0n′ and the sum is over n′′. In absence
of spin-orbit interactions, we have verified that gnα(k) = 2
for all k. From the point of view of the Knight shift,
the most relevant g factors are those at the bottom of the

conduction band (for n-doped samples) and at the top of
the valence band (for p-doped samples). In Bi2Se3, we
find 〈|gn1(0)|,|gn2(0)|,|gn3(0)|〉 = 〈16,16,20〉 when n is the
lowest conduction band, and 〈|gn1(0)|,|gn2(0)|,|gn3(0)|〉 =
〈17,17,35〉 when n is the highest valence band. At k = 0,
the principal axes 1, 2, and 3 coincide with x, y, and z,
respectively; such correspondence no longer applies away
from the � point. Although the signs of individual gnα

can vary depending on convention, the sign of gn1gn2gn3

is invariant and physically measurable [41]. In Bi2Se3,
sgn[gn10)gn2(0)gn3(0)] = −1 (+1) for the top of the valence
band (bottom of the conduction band) [42]. Consequently,
as we show below, the Knight shift can change sign if
Bi2Se3 transitions from being electron doped to being hole
doped.

In absolute value, our calculated g factors fall slightly
short from the early experimental estimates [43] in Bi2Se3

(〈23,23,32〉 for the bottom of the conduction band at the �

point), but lie within the expected range from recent experi-
ments [44]. On the other hand, our results differ significantly
from those predicted theoretically by the k · p method [25],
where a much larger XXZ anisotropy was found in the g

factors. While our work was being finalized, first-principles
results for the g factor of Bi2Se3 have appeared in the
literature [45]; the local density approximation (LDA) and
generalized gradient approximation (GGA) methods therein
give g factors that are in good quantitative agreement with
ours.

D. Results

Let us return to the Knight shift. For the contact interaction
contribution to the NMR shift [Eq. (9)], we are interested
in 〈S(r0)〉, where r0 = R0 + tj0 is the position of a particular
nucleus j0. Then, within the tight-binding approximation, only
R = R0 and j = j0 contribute to the sum in Eq. (22). In
addition, we set μ = μ′ = s in Eq. (22) because p orbitals
have vanishing wave functions at the nucleus. Consequently,
the contact shift becomes sensitive to factors of the type
|〈r0|R0j0s〉|2|Ckn;kj0sσ |2, which provides a quantitative mea-
sure of the contact hyperfine coupling associated to the band
eigenstate |ψkn〉 at the nuclear site j0. There are two aspects
that influence this coupling. First,

∑
σ |Ckn;kj0sσ |2 depends on

how “s like” |ψkn〉 is when projected onto the site of atom
j0. Figure 2 shows

∑
σ |Ckn;kj0sσ |2 for the highest valence

band and lowest conduction band. The orbital character of
these bands is predominantly of p type both in Bi2Se3 and
Bi2Te3, which suppresses the contact hyperfine coupling.
Between different atoms,

∑
σ |Ckn;kj0sσ |2 is by far largest for

Bi, followed by Te and Se. Second, |〈r0|R0j0s〉|2 depends
on the atomic number and the principal quantum number of
the s orbital centered in the atom j0. Heavier atoms enhance
|〈r0|R0j0s〉|2, which is hence largest for Bi, followed by Te
and Se. Consequently, we anticipate (and corroborate below)
that the contact Knight shift is much larger in 209Bi than in
either 77Se or 125Te.

Figures 3–5 display the Knight shift tensors in Bi2Se3 and
Bi2Te3, and illustrate two qualitative points that have been
either missed or at least not emphasized in recent experi-
ments on topological materials. First, the contact interaction
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FIG. 2. The s-orbital projection of the tight-binding wave functions
∑

σ |Ckn;jsσ |2 as a function of k for the different atoms j in the unit
cell, where n is either the lowest conduction band or the highest valence band. For Bi2Se3 [panels (a) and (b)], our results at � agree with
those of Ref. [46]. Parity is a good quantum number at the time-reversal-invariant momenta (�,Z,F,L). In those points, the full wave function
of an odd-parity band has a vanishing projection onto the centers of inversion (Sein and Tein for Bi2Se3 and Bi2Te3, respectively). Recalling
that

∑
jμσ |Ckn;jμσ |2 = 1, this figure confirms that the low-energy bands have a weak s-type character (of the order of 1% for Bi, and markedly

less for the other atoms). Relative to Bi2Se3, the lowest conduction band and the highest valence band of Bi2Te3 have a significantly higher
s-orbital character on the Tein site [panels (c) and (d)]. This, together with the fact that 〈r0|R0Te ,s〉 > 〈r0|R0Se ,s〉, explains why the contact
Knight shift is larger in 125Te than in 77Se.

contribution to the NMR shift has a strong XXZ anisotropy,
which originates from combined crystalline anisotropy and
spin-orbit interactions. This anisotropy is most prominent
in Se and Te, where �Kcont

xx and �Kcont
zz can even have

opposite signs. Second, the trace of �Kdip does not vanish
(i.e., K

dip
xx �= −K

dip
zz /2), again as a consequence of spin-orbit

interactions. Accordingly, dipolar interactions do contribute

to the isotropic part of the Knight shift (Kzz + 2Kxx)/3. On
a separate note, we remark that the product �Kcont

xx �Kcont
zz

changes sign for Bi, Seout and Teout, but not for Sein and
Tein, when transitioning from electron-doped to hole-doped
samples. This result is a consequence of spin-orbit interactions,
in absence of which the signs of �Kcont and �Kdip are
independent of ne.
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FIG. 3. Room-temperature contribution of the contact interaction to the Knight shift of Bi2Se3 and Bi2Te3, in parts per million (p.p.m.), as
a function of carrier density ne [cf. Eq. (15)]. For illustration, we include panels where the spin-orbit coupling is turned off by hand, for which
Kcont

zz = Kcont
xx .
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FIG. 4. Room-temperature contribution of the dipolar interaction to the Knight shift of Bi2Se3 and Bi2Te3, in parts per million, as a
function of carrier density ne [cf. Eq. (15)]. For illustration, we include panels where the spin-orbit coupling is turned off by hand, for which
Kdip

xx = −Kdip
zz /2.

From a quantitative standpoint, �Kcont(Bi,ne) is positive
for n-doped samples and is of the order of ∼0.2% for
ne � 5 × 1019 cm−3. Notably, in spite of the dominant p-type
character of the low-energy states in Bi2Se3 and Bi2Te3,
|�Kcont(Bi,ne)| is of the same order as |�Kdip(Bi,ne)|. In
contrast, when it comes to Te and (especially) Se nuclei,
the dipolar shift is much larger than the contact shift. While
comparing Bi2Se3 and Bi2Te3, the most salient feature is
that |�Kcont(Tein)| � |�Kcont(Sein)|. The underlying reason

for this, explained in Fig. 2, is that the hyperfine coupling
for Tein is much larger than the hyperfine coupling for Sein.
This result is consistent with the experimental findings of
Ref. [4], where it was observed that the isotropic Knight shifts
and the spin-lattice relaxation rates are much larger for 125Te
(in Bi2Te3) than for 77Se (in Bi2Se3). Concerning the core
polarization, �Kcore(Bi) is at least one order of magnitude
smaller than �Kcont(Bi). The reason for this result may
be that Batom

eff � 100Bcore
eff [cf. Table I and Eq. (12)], while the
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FIG. 5. Room-temperature contribution of the core polarization to the Knight shift of Bi2Se3 and Bi2Te3, in parts per million, as a function of
carrier density ne [cf. Eq. (15)]. For illustration, we include panels where the spin-orbit coupling is turned off by hand, for which Kcore

zz = Kcore
xx .
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s-orbital projection at low-energy bands is only ∼10 smaller
than the p-orbital projection. Similarly, the core polarization
shift in Se is small compared to the contact and dipolar shifts.
However, core polarization plays a larger role in the case
of Te.

IV. ORBITAL SHIFT

Thus far, we have analyzed the NMR shift due to the
coupling between the nuclear spin and the spin density of
the itinerant electrons. It is well known [1] that there is an
additional NMR shift that originates from the orbital currents
of the itinerant electrons. Namely, an applied magnetic field
B induces an electric current density 〈J(r)〉, which in turn
produces a magnetic field

δBorb(r0) = μ0

4π

∫
d3r 〈J(r)〉 × r0 − r

|r0 − r|3 , (25)

acting on the nuclear spin located at r0. This extra magnetic
field constitutes the orbital shift, and the associated dimension-
less Knight shift tensor Korb is defined much like in Eq. (14),

δBorb
i (r0,ne) ≡

∑
j

Korb
ij (j0,ne)Bj , (26)

where i,j = x,y,z. Similarly to the case of the Knight shift,
we have Korb

ij ∝ δij and Korb
xx = Korb

yy �= Korb
zz due to the axial

symmetry of the problem. The objective of this section is to
compute

�Korb
ii (j0,ne) ≡ Korb

ii (j0,ne) − Korb
ii (j0,0), (27)

the carrier-density-dependent part of the shift.
To do so, we separate the current density operator J(r) into

J(r) = JP (r) + JD(r), where

JP (r) = −e{v,|r〉〈r|}/2 (28)

is the paramagnetic current operator, {. . . , . . . } is an anticom-
mutator, and

JD(r) = −(e2/m)A(r)|r〉〈r| (29)

is the diamagnetic current operator. Only the sum of the two
currents is gauge invariant. Standard linear response in A yields
(cf. Appendix A)

〈J(r)〉 = −e2

m
A(r)

∑
kn

fkn〈ψkn|r〉〈r|ψkn〉

+
∑

kk′nn′
〈ψkn|JP (r)|ψk′n′ 〉〈ψk′n′ |δH|ψkn〉

× fnn′ (k,k′). (30)

In Eq. (30), δH includes the Zeeman term μBσ · B, which
produces orbital currents in presence of spin-orbit interactions.
Although both terms in the right-hand side of Eq. (30)
diverge for r → ∞, their sum converges [28]. As a result,
for the purposes of our estimates, we assume that the main
contribution to the spatial integral in Eq. (25) comes from the
current density in the vicinity of r = r0. Clearly, the second
term on the right-hand side of Eq. (30) is formally identical to
Eq. (16); therefore, we compute it using Eqs. (18) and (19),
with JP in place of S. However, some of the statements made
below Eq. (19), while valid for the local spin density, no longer
apply for the orbital current density. For example, 〈JP (r)〉3

and 〈JP (r)〉4 are no longer zero in absence of spin-orbit
interactions. Likewise, 〈J(r)〉 depends on the direction of the
magnetic field even in absence of spin-orbit coupling, while
〈S(r)〉 does not. These differences have to do with the fact
that the XXZ anisotropy of the lattice is inherited by all orbital
observables (like the charge current), while it is communicated
to the spin response only in presence of spin-orbit interactions.
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FIG. 6. Room-temperature orbital shift of Bi2Se3 and Bi2Te3, in parts per million, as a function of carrier density ne [cf. Eq. (27)]. For
illustration, we include panels where the spin-orbit coupling is turned off by hand.
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In the tight-binding model, we approximate the first term
of the right-hand side of Eq. (30) with

〈ψkn|r〉〈r|ψkn〉 � 1

N

∑
Rj

∑
μμ′σ

C∗
kn;kjμσ

×Ckn;kjμ′σ 〈Rjμ|r〉〈r|Rjμ′〉, (31)

where the main contribution to the sum over R and j comes
from the nucleus nearest to the point r. Similarly, a simple way
to estimate the matrix elements of the paramagnetic current
operator is

〈ψkn|JP (r)|ψk′n′ 〉 � − ie�

2m
〈ψkn|r〉←→∇ 〈r|ψk′n′ 〉, (32)

where f
←→∇ g = (∇f )g − f ∇g and we have approximated

〈r|v|Rjμ〉 � (−i�/m)∇〈r|Rjμ〉. This approximation, which
neglects the spin-orbit part of the velocity operator, is qual-
itatively valid if the most important values of r in Eq. (25)
are close to the nuclear position r0, where the electronic
wave function is approximately that of an isolated atom.
A more accurate but cumbersome treatment would involve
using 〈r|v|Rjμ〉 = (i/�)〈r|[H,r]|Rjμ〉. Additional details
concerning the numerical calculation of Eq. (30) may be found
in Appendix C.

Figure 6 illustrates �Korb(j,ne) as a function of ne. We find
that the contribution from the diamagnetic current operator
to the density-dependent part of the Knight shift, �Korb, is
negligible. However, the paramagnetic current operator leads
to a �Korb that is of the same order of magnitude as �Kcont and
�Kdip. Accordingly, orbital currents play an important role in
the density dependence of the NMR shifts in Bi2Se3 and
Bi2Te3. This result is unexpected because the orbital shift is
frequently believed to have a much weaker dependence on the
carrier concentration than the contact and dipolar shifts. Also,
we find �Korb(j0,ne) > 0 for ne > 0 and �Korb(j0,ne) < 0
for ne < 0, which means that the orbital shift tends to become
more paramagnetic as the number of itinerant electrons
increases, even though the total shift Korb(j0,ne) (not shown)
is often diamagnetic. In absence of spin-orbit interactions, the
orbital shift is significantly weakened but remains anisotropic
(�Korb

xx �= �Korb
zz ) because of the layered crystal structure.

V. DISCUSSION AND CONCLUSIONS

In summary, we have presented a sp3 tight-binding the-
ory of NMR shifts in two model topological insulators
Bi2Se3 and Bi2Te3. Specifically, we have focused on the
density-dependent parts of the contact, dipolar, core polariza-
tion, and orbital shifts, for which our theory is more reliable.
This part of the NMR shift can be accessed by doing measure-
ments on samples with different carrier concentrations. Along
the way, we have introduced gauge-invariant expressions for
the local spin and current densities [e.g., Eq. (19)], which
can also be used to evaluate NMR shifts in materials other
than Bi2Se3 and Bi2Te3. The tight-binding approach has
enabled us to obtain the first theoretical estimates of the
hyperfine couplings for different nuclei in Bi2Se3 and Bi2Te3,
as well as to evaluate the g factors. These results could not
have been attained with a minimal k · p model describing
the electronic structure in the vicinity of the � point (cf. the

Introduction). Granted, the tight-binding approach is not a full-
blown first-principles approach. Fully first-principles studies
of carrier density-dependent NMR shifts in strongly spin-orbit
coupled crystals with complex lattice structures have not
been yet completed. Thus, the tight-binding method strikes a
compromise allowing to obtain realistic estimates of the carrier
density-dependent portion of the NMR shifts in topological
materials with a modest computational effort. In addition, the
tight-binding formalism is versatile enough that it will enable
to calculate the topological surface state contributions to NMR
in thin films and nanowires [7]. Considering that the density-
independent chemical shift can be efficiently calculated from
first-principles [26,47,48], an interesting research direction
would be to combine the tight-binding approach to calculate
the density-dependent part of the NMR shift, with ab initio
methods to calculate the chemical shift contribution from the
core electrons.

The experimentally measured NMR shift is the sum of
all individual parts (contact, dipolar, core, orbital). Our
calculated values for the density-dependent part of the total
shift are shown in Fig. 7. In particular, this figure dis-
plays the isotropic and anisotropic components of the shift,
i.e., �Kiso = (�K tot

zz + 2�K tot
xx )/3 and �Kaxial = (�K tot

zz −
�K tot

xx )/3. Some thought is required when comparing our
theoretical results to experiment. At weak fields, the resonance
frequency for a nucleus j0 measured in a sample with carrier
density ne can be written as

ω(j0,ne) = γ (j0)[1 + K(j0,ne)]B, (33)

where γ (j0) is the nuclear magnetogyric ratio and B is the
external magnetic field and K is the total shift (we drop the
superscript “tot” for brevity). Nowak [49] has pointed out
that, in 209Bi NMR, the experimentally reported values [3,5]
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FIG. 7. Total [sum of Eqs. (15) and (27)] room-temperature NMR
shift for Bi2Se3 and Bi2Te3, in parts per million, as a function of
carrier density ne. The “iso” curves show the trace of the total NMR
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of the absolute shifts K(j0,ne) may vary in magnitude and
even in sign depending on the chosen standard for γ (j0) and
the shift reference. While this problem affects largely the
chemical shift, it becomes much less severe for the relative
shift �ω(j0,ne) = ω(j0,ne) − ω(j0,0), whose sign will not
depend on the choice of the standard (the magnitude of the
shift will depend slightly on the standard). By construction,
our theoretical value for �K(j0,ne) is independent of γ (j0),
and is equivalent to the experimentally measurable quantity
�ω(j0,ne)/[γ (j0)B]. Admittedly, in bulk crystals it is not
easy to control the carrier density, and thus it may be
a challenge to measure ω(j0,0) directly. However, one is
often able to measure the shift at two or more different
carrier concentrations (e.g., n1 and n2, not necessarily van-
ishing). Then, [ω(j0,n1) − ω(j0,n2)]/[γ (j0)B] is identical to
�K(j0,n1) − �K(j0,n2) and can thus be compared to our
theory.

Overall, the picture drawn from Fig. 7 is rather complex:
Bi shifts are dominated by the contact interaction, Seout and
Teout shifts are dominated by orbital currents, the Sein shift is
dominated by dipolar interactions, and the Tein shift contains
a close competition between contact, dipolar, orbital, and core
polarization contributions. The dominant role played by the
contact interaction in 209Bi corroborates the interpretation of
the experiments by Young et al. [3] and by Mukhopadhyay
et al. [12]. The reason why the contact interaction is relatively
more important in Bi has to do with the fact that it is heavier and
that the low-energy bands have a higher s-orbital projection
on Bi sites. The calculated �Kiso(Bi,ne) � 0.2% for ne � 5 ×
1019 cm−3 is also in quite good agreement with experiment [5]
(see also the Supplemental Material of Ref. [12]).

With the exception of Sein and Tein, we find that
�Kiso(j0,ne) is positive for n-doped samples and negative
for p-doped samples. This is consistent with the experiment
from Ref. [3], as well as with the statement [8] that “for
classical semiconductors, the sign of the Knight shift
measured relative to the resonance of a carrier-free sample
is negative for hole-doped materials and positive for
electron-doped materials.” At low carrier densities and at
room temperature, �Kiso and �Kaxial vary linearly with
|ne|, which is expected in a nondegenerate Fermi gas [50].
At higher |ne|, �Kiso and �Kaniso become nonmonotonic,
a result that is reminiscent to the one measured [19] in
PbxSn1−xTe. In electron-doped Bi2Se3, at carrier densities not
exceeding �5 × 1019 cm−3, |�Kiso|/|�Kaxial| grows with
ne, in apparent agreement with the experimental observation
in the Supplemental Material of Ref. [12]. Another result
from our theory, worth stressing because it has been generally
overlooked in the experiments, is that dipolar interactions can
make a large contribution to the isotropic NMR shift, while
the contact interaction can make a large contribution to the
anisotropic shift. This is a consequence of strong spin-orbit
interactions in Bi2Se3 and Bi2Te3.

Finally, motivated by recent suggestions [8,9,48] that the
NMR shift could contain systematic and possibly universal
differences between topological and trivial insulators, we
compute �K(j0,ne) for different values of the spin-orbit
coupling. As an example, Fig. 8 shows �Kxx(Sein,ne)
for various scalings of the spin-orbit coupling by the
dimensionless factor λeff

soc. Analogous curves for other nuclei
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FIG. 8. The evolution of �Kxx(Sein,ne) across a band inversion.
The atomic spin-orbit parameters are scaled by hand in such a way
that the band gap closes at λeff

soc ∼ 0.5, λeff
soc > 0.5 corresponds to a

topological insulator, and λeff
soc < 0.5 corresponds to a trivial insulator.

The value λeff
soc = 1 corresponds to the actual spin-orbit parameters of

Bi2Se3, used in the previous figures.

are not shown. We observe a sign change of �Kxx(Sein,ne) for
electron-doped systems close to the spin-orbit strength where
the gap closes λeff

soc ∼ 0.5, i.e., close to the topological phase
transition. A similar sign change takes place for �Kxx(Tein,ne)
in the case of hole-doped Bi2Te3. However, these trends are
neither universal nor correlated with a topological invariant;
instead, they simply evidence the major impact that spin-orbit
interaction has in the density dependence of the NMR shift.
Likewise, we believe that the difference observed in Refs. [8,9]
between the shifts of YPdBi and YPtBi is a reflection of the
particular orbital character of the low-energy bands in these
specific materials, as opposed to a universal feature associated
to topological invariants. At any rate, more theoretical
research is needed before generally ruling out genuine
topological signatures from bulk NMR. For instance, based
on Ref. [51], it might be that the carrier-density dependence
of bulk NMR linewidths will display fingerprints of band
inversions.

In conclusion, we have presented a theory of NMR shifts
in model topological insulators. This work has been motivated
by an array of recent NMR experiments in Bi2Se3 and Bi2Te3,
and hopes to help the interpretation of upcoming ones in
related materials. Possible avenues for future research include
applying our formalism to thin films in order to calculate the
NMR shifts as a function of the film thickness (which would
incorporate both bulk and surface state contributions), search-
ing for possible band inversion effects in the T1 relaxation
time, reassessing the importance of the Bloembergen-Rowland
interactions in the large magnetic-field-independent NMR
linewidths [17], performing a theoretical modeling of the NMR
anomalies [52] in the superconducting phase of Cu-doped
Bi2Se3, and applying the formalism presented here to other
topological materials.
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APPENDIX A: DERIVATION OF EQ. (19)

In this appendix, we use perturbation theory to derive Eq. (19) of the main text. This equation allows to calculate the
expectation values of local operators 〈O(r)〉 encountered in the calculation of NMR shifts, with O(r) = S(r) for the Knight shift
and O(r) = J(r) for the orbital shift. These expectation values can be expressed in the eigenbasis of the full Hamiltonian {|ψi〉}
via

〈O(r)〉 =
∑

i

〈ψi |O(r)|ψi〉fi, (A1)

where fi is the Fermi occupation factor for the state |ψi〉 with energy Ei . In linear response, we expand O(r), |ψi〉, and Ei to
first order [53] in the perturbation δH = μB(σ + mr × v/�) · B:

〈O(r)〉 �
∑

i

〈
ψ

(0)
i

∣∣O(0)(r)
∣∣ψ (0)

i

〉
f

(0)
i +

∑
i

〈
ψ

(0)
i

∣∣δO(r)
∣∣ψ (0)

i

〉
f

(0)
i +

∑
ij

〈
ψ

(0)
i

∣∣O(0)
∣∣ψ (0)

j

〉〈
ψ

(0)
j

∣∣δH∣∣ψ (0)
i

〉 f (0)
i − f

(0)
j

E
(0)
i − E

(0)
j

. (A2)

Here, the superscript “(0)” refers to the unperturbed case with δH = 0, and δO denotes the term linear in δH when expanding
O. In our case, δS(r) = δJP (r) = 0 but δJD(r) �= 0. Also,

∑
i〈ψ (0)

i |O(0)(r)|ψ (0)
i 〉f (0)

i = 0 for our cases of interest. Incidentally,
i = j terms in

∑
ij (which originate from the changes in the occupation numbers due to the perturbation) must be understood via

(f (0)
i − f

(0)
j )/(E(0)

i − E
(0)
j ) → ∂f

(0)
i /∂E

(0)
i . In addition, in this appendix we shall ignore δO(0)(r), which is nonzero only for the

the diamagnetic current density (cf. Appendix C 2 for a discussion of this contribution). With this proviso, in the band eigenstate
basis where |ψ (0)

i 〉 = |ψkn〉, with |ψkn〉 the eigenstates of Eq. (1), Eq. (A2) reads as

〈O(r)〉 =
∑
kk′

∑
nn′

〈ψkn|O(r)|ψk′n′ 〉〈ψk′n′ |δH|ψkn〉fnn′ (k,k′) for O(r) = S(r),JP (r), (A3)

where fnn′ (k,k′) was defined in Eq. (17). For brevity of notation, we have omitted the superscript “(0)” for O in the right-hand
side of Eq. (A3). We will keep this omission for the remainder of the appendix.

Herein, we are interested in the matrix elements of δH:

〈ψk′n′ |δH|ψkn〉 = μBδkk′ 〈ψk′n′ |σ · B|ψkn〉 + mμB

�
〈ψk′n′ |(r × v) · B|ψkn〉. (A4)

The first term on the right-hand side of Eq. (A4) is diagonal in crystal momentum and straightforward to compute. The second
term is more delicate. Starting from

〈ψk′n′ |r × v|ψkn〉 =
∑
k′′n′′

〈ψk′n′ |r|ψk′′n′′ 〉 × 〈ψk′′n′′ |v|ψkn〉 =
∑
n′′

〈ψk′n′ |r|ψkn′′ 〉 × 〈ψkn′′ |v|ψkn〉, (A5)

and using (cf. Ref. [37])

〈ψk′n′ |r|ψkn〉 = (1/N)
∫

d3r(−i)(∇ke
ik·r)e−ik′ ·ru∗

k′n′(r)ukn(r) = −iδnn′∇k(δkk′) + iδkk′ 〈ukn′ |∇kukn〉cell, (A6)

we obtain

〈ψk′n′ |r × v|ψkn〉 = − i

�
(∇kδkk′) × 〈ukn′ |(∇kHk)|ukn〉cell − i

�
δkk′ 〈∇kukn′ | × (∇kHk)|ukn〉cell, (A7)

where Hk = e−ik·rHeik·r, |ukn〉 = √
Ne−ik·r|ψkn〉, and ∇kHk = � e−ik·rveik·r. In the derivation of Eq. (A7), we have used

�〈ψkn|v|ψkn′ 〉 = 〈ukn|(∇kHk)|ukn′ 〉cell, 〈ukn′ |∇kukn〉cell = −〈∇kukn′ |ukn〉cell, and
∑

n′′ |ukn′′ 〉〈ukn′′ | = 1. Also, 〈 | . . . | 〉cell means
that the spatial integral is carried out within a unit cell. Although not immediately obvious from Eq. (A7), it can be shown
explicitly that 〈ψk′n′ |r × v|ψkn〉∗ = 〈ψkn|r × v|ψk′n′ 〉. Taking advantage of this, it is convenient to rewrite Eq. (A7) in a more
symmetric form

〈ψk′n′ |r × v|ψkn〉 = 1

2
(〈ψk′n′ |r × v|ψkn〉 + 〈ψkn|r × v|ψk′n′ 〉∗)

= − i

2�
(∇kδkk′) × 〈ukn′ |(∇kHk)|ukn〉cell + i

2�
(∇k′δkk′) × 〈uk′n′ |(∇k′Hk′)|uk′n〉cell

− i

2�
δkk′ 〈∇kukn′ | × (∇kHk)|ukn〉cell − i

2�
δkk′ 〈ukn′ |(∇kHk) × |∇kukn〉cell. (A8)
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Combining Eqs. (A3), (A4), and (A8), we arrive at

〈Oi(r)〉 = μB

∑
k

∑
nn′

〈ψkn|Oi(r)|ψkn′ 〉〈ψkn′ |σ · B|ψkn〉fnn′ (k,k)

+ mμB

�2
Im

∑
k

∑
nn′

〈ψkn|Oi(r)|ψkn′ 〉fnn′ (k,k)[〈∇kukn′ | × (∇kHk)|ukn〉cell] · B

− mμB

�
Im

∑
kk′

∑
nn′

δkk′ {∇k × [〈ψkn|Oi(r)|ψk′n′ 〉fnn′ (k,k′)〈ψkn′ |v|ψkn〉]} · B, (A9)

where i = x,y,z and Im stands for the imaginary part. Both k and k′ are within the first Brillouin zone. In the numerical
calculations, we use a Monkhorst-Pack mesh [54] with 100 × 100 × 100 k points. In the derivation of Eq. (A9) we have used

∑
kk′

∇k(δkk′)F (k,k′) = −
∑
kk′

δkk′∇kF (k,k′), (A10)

where F (k,k′) is a differentiable function of k and k′, periodic in the reciprocal space. In the last term on the right-hand side of
Eq. (A9), one must take the derivative with respect to k before applying δkk′ . It can be verified explicitly that 〈O(r)〉 is invariant
under gauge transformations.

Equation (A9) is one of the main results of this appendix. It incorporates interband transitions (Ekn �= Ekn′) and remains valid
when the Fermi energy is far from a band extremum. We use it to compute the Knight shift and the paramagnetic orbital shift
[the diamagnetic orbital shift may be evaluated directly from the δO(r) term in Eq. (A3), which is relatively easy to treat, cf.
Appendix C]. In the numerical evaluation of Eq. (A9), ∇k× in the last term and 〈∇kukn′ | in the second term are evaluated by
discretizing, e.g.,

∑
kk′

δkk′∇k × F(k,k′) = lim
q→0

1

2q

∑
k

∑
α

êα × [F(k + q êα,k) − (q → −q)], (A11)

where êα is a unit vector (α = x,y,z) and F(k,k′) is a vector differentiable with respect to its arguments. Thereafter, we adopt
a smooth gauge, such that |ψk+q êαn〉 → |ψkn〉 as q → 0, which is possible to do in Bi2Se3 and Bi2Te3 because they have zero
Chern number. In this regard, it is useful to split the double degeneracy of each band by a very small Zeeman splitting. In addition,
we employ the relations

∑
n |ukn〉〈ukn| = 1 and

〈uk′n′ |(∇kHk)|ukn〉cell = �〈ψk′n′ |ei(k′−k)·rv|ψkn〉 �
∑
jμσ

∑
j ′μ′σ ′

C∗
k′n′;k′j ′μ′σ ′Ckn;kjμσ∇kHj ′μ′σ ′,jμσ (k), (A12)

where we have neglected the intra-atomic dipole matrix element in the last equality.
Finally, using the closure relation

∑
n |ukn〉〈ukn| = 1, as well as the relation

〈∇kukn|ukn′ 〉cell = 〈ukn|(∇kHk)|ukn′ 〉cell/(Ekn − Ekn′ ) (when Ekn �= Ekn′), (A13)

and upon replacing O by S, Eq. (A9) becomes Eq. (19) of the main text.

APPENDIX B: DETAILS CONCERNING THE CALCULATION OF THE DIPOLAR SHIFT

In this appendix, we present some details of the calculation of the dipolar Knight shift, which are important in order to obtain
Fig. 4. The objective is to evaluate

δBdip(r0) = μ0

4π
gsμB

∫
d3r

1

|r − r0|3
[
〈S(r)〉 − 3

r − r0

|r − r0| 〈S(r)〉 · r − r0

|r − r0|
]

(B1)

numerically. The expectation value 〈S(r)〉 can be calculated from Eq. (A9), which requires the matrix elements of the spin density
operator in the band eigenstate basis. Those are given by

〈ψkn|Si(r)|ψk′n′ 〉 � 1

2N

∑
Rjμσ

∑
μ′σ ′

ei(k′−k)·(R+tj )〈σ |σ |σ ′〉〈ψkn|ψkjμσ 〉〈ψk′jμ′σ ′ |ψk′n′ 〉〈r|Rjμ〉〈r|Rjμ′〉, (B2)

where we have exploited the fact that the atomic wave functions are real and exponentially localized. Because the integrand of
Eq. (B1) is peaked at r � r0, the main contribution to δBdip(r0) comes from the spin density in the vicinity of r0. Longer-range
contributions are neglected. This leads us to further approximate

〈ψkn|Si(r)|ψk′n′ 〉 � 1

2N
ei(k′−k)·r0

∑
μσ

∑
μ′σ ′

〈σ |σ |σ ′〉〈ψkn|ψkj0μσ 〉〈ψk′j0μ′σ ′ |ψk′n′ 〉〈r|R0j0μ〉〈r|R0j0μ
′〉, (B3)
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where we have taken R + tj � r0. Consequently, the spatial integral that we need to compute is∫
d3r

1

|r − r0|3
[
〈ψkn|S(r)|ψk′n′ 〉 − 3

r − r0

|r − r0| 〈ψkn|S(r)|ψk′n′ 〉 · r − r0

|r − r0|
]

� 1

2N
ei(k′−k)·r0

∑
μμ′

∑
σσ ′

〈ψkn|ψkj0μσ 〉〈ψk′j0μ′σ ′ |ψk′n〉

×
∫

d3r
1

|r − r0|3
[
〈σ |σ |σ ′〉 − 3

r − r0

|r − r0| 〈σ |σ |σ ′〉 · r − r0

|r − r0|
]
〈r|R0j0μ〉〈r|R0j0μ

′〉. (B4)

In particular, let us concentrate on∫
d3r

1

|r − r0|3
[
〈σ |σ |σ ′〉 − 3

r − r0

|r − r0| 〈σ |σ |σ ′〉 · r − r0

|r − r0|
]
〈r|R0j0μ〉〈r|R0j0μ

′〉

=
∫

d3r
1

r3
[〈σ |σ |σ ′〉 − 3r̂〈σ |σ |σ ′〉 · r̂]〈r|0j0μ〉〈r|0j0μ

′〉,
(B5)

where the transition from the first to the second line follows from the fact that 〈r|R0j0μ〉 is a function of r − R0 − tj0 = r − r0.
By definition, 〈r|0j0μ〉 is the wave function corresponding to the orbital μ of atom j0, the atomic center being at the origin of
the coordinate system.

The z component of Eq. (B5) can be written as∫
d3r

1

r3

[
〈σ |σ z|σ ′〉 − 3

z

r
〈σ |σ |σ ′〉 · r̂

]
〈r|0j0μ〉〈r|0j0μ

′〉

= δμμ′ 〈σ |σ z|σ ′〉
∫

d3r
1

r3

(
1 − 3z2

r2

)
〈r|0j0μ〉2 − 3(δμpz

δμ′px
+ δμ′pz

δμpx
)〈σ |σx |σ ′〉

∫
d3r

zx

r5
〈r|0j0px〉〈r|0j0pz〉

− 3(δμpz
δμ′py

+ δμ′pz
δμpy

)〈σ |σy |σ ′〉
∫

d3r
zy

r5
〈r|0j0py〉〈r|0j0pz〉. (B6)

Combining Eqs. (B1), (A9), (B4), and (B6), we arrive at

δBdip
z (r0) � − 1

V

∑
knn′

〈ψkn|Mz
k,k(j0)|ψkn′ 〉fnn′ (k,k)〈ψkn′ |σ · B|ψkn〉

− m

�2
Im

1

V

∑
knn′

〈ψkn|Mz
k,k(j0)|ψkn′ 〉fnn′ (k,k)[〈∇kukn′ | × (∇kHk)|ukn〉cell] · B

+ m

�2
Im

1

V

∑
kk′nn′

δkk′
{∇k × [〈ψkn|Mz

k,k′(j0)|ψk′n′ 〉fnn′ (k,k′)〈ψkn′ |�v|ψkn〉
]} · B, (B7)

where we have defined

Mz
k,k′(j0) =

∑
μμ′

∑
σσ ′

[
β(j0)

(
δμpx

δμ′px
+ δμpy

δμ′py
− 2δμpz

δμ′pz

)〈σ |σ z|σ ′〉 − 3β ′(j0)
(
δμpz

δμ′px
+ δμpx

δμ′pz

)〈σ |σx |σ ′〉

− 3β ′(j0)
(
δμpz

δμ′py
+ δμpy

δμ′pz

)〈σ |σy |σ ′〉]|ψkj0μσ 〉〈ψk′j0μ′σ ′ |. (B8)

Here, δij is Kronecker’s delta, while β(j0) and β ′(j0) are numerical factors computed using the wave functions calculated using
atomic DFT [31]:

β(j0) = Vcell
μ0μ

2
B

4π

∫
d3r

1

r3

(
1 − 3z2

r2

)
〈r|0j0px〉2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.382 eV Å
3

for j0 = Bi in Bi2Se3,

0.458 eV Å
3

for j0 = Bi in Bi2Te3,

0.222 eV Å
3

for j0 = Se in Bi2Se3,

0.333 eV Å
3

for j0 = Te in Bi2Te3,

(B9)

β ′(j0) = Vcell
μ0μ

2
B

4π

∫
d3r

zx

r5
〈r|0j0px〉〈r|0j0pz〉 = 1

2
β(j0). (B10)

Note that β(Bi) takes slightly different values in Bi2Se3 and Bi2Te3 because their unit-cell volumes are not identical. In the
derivation of Eq. (B7), we have used μB = e�/(2m) and N = V/Vcell, where Vcell is the unit-cell volume. In addition, we have
set exp[i(k′ − k) · r0] → 1.

Let us justify setting exp[i(k′ − k) · r0] → 1. In general, we have an expression of the type
∑
k,k′

∇k × [ei(k′−k)·r0 F(k,k′)] =
∑

k

lim
q→0

1

2q

∑
α

êα × [e−iqr0,α F(k + q êα,k) − (q ↔ −q)], (B11)
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where α = x,y,z. When expanding the exponential, there is a term that depends on r0:

1

2

∑
k

∑
α

(r0 · êα)êα × F(k,k). (B12)

In a centrosymmetric crystal (like Bi2Se3 or Bi2Te3), if we measure the position from the inversion center, for every nucleus at
r0 there is another identical nucleus at −r0. Equation (B12) reverses sign under r0 → −r0 and, since the measured NMR signal
averages over all identical nuclei, Eq. (B12) is averaged out. In a noncentrosymmetric crystal, Eq. (B12) is not fully averaged
out, but the average remains finite.

The expression for δB
dip
x (r0) is identical to Eq. (B7), provided that we replace Mz

k,k′(j0) by

Mx
k,k′(j0) =

∑
μμ′

∑
σσ ′

[
β(j0)

( − 2δμpx
δμ′px

+ δμpy
δμ′py

+ δμpz
δμ′pz

)〈σ |σx |σ ′〉 − 3β ′(j0)
(
δμpx

δμ′py
+ δμpy

δμ′px

)〈σ |σy |σ ′〉

− 3β ′(j0)
(
δμpx

δμ′pz
+ δμpz

δμ′px

)〈σ |σ z|σ ′〉]|ψkj0μσ 〉〈ψk′j0μ′σ ′ |. (B13)

Together, Eqs. (B7), (B8), and (B13) allow a numerical calculation of δBdip(r0). To do so, it is convenient to follow Appendix A
and to insert the relation

∑
n′′ |ukn′′ 〉〈ukn′′ | = 1 in the first line of δB

dip
x and δB

dip
z .

APPENDIX C: DETAILS CONCERNING THE CALCULATION OF THE ORBITAL SHIFT

In this appendix, we present some details of the calculation of the orbital Knight shift, which are important in order to obtain
Fig. 6. We discuss the paramagnetic and the diamagnetic parts separately.

1. Paramagnetic term

The contribution from the paramagnetic current to the orbital shift is given by

δBpar(r0) = μ0

4π

∫
d3r〈JP (r)〉 × r0 − r

|r0 − r|3 , (C1)

where JP = (−e/2){v,|r〉〈r|} is the paramagnetic current operator and the integral is over entire volume of the crystal. To first
order in the applied field, the expectation value of the paramagnetic current is

〈JP (r)〉 =
∑
kk′

∑
nn′

〈ψkn|JP (r)|ψk′n′ 〉〈ψk′n′ |δH|ψkn〉fnn′ (k,k′), (C2)

where δH = μBσ · B + (μBm/�)r × v, and fnn′ (k,k′) has been defined in Eq. (17). From Eq. (A9) of Appendix A, we have

〈JP,i(r)〉 = μB

∑
knn′

〈ψkn|JP,i(r)|ψkn′ 〉fnn′ (k,k)〈ψkn′ |σ · B|ψkn〉

+ mμB

�2
Im

∑
knn′

〈ψkn|JP,i(r)|ψkn′ 〉fnn′ (k,k)[〈∇kukn′ | × (∇kHk)|ukn〉cell] · B

− mμB

�
Im

∑
kk′nn′

δkk′ {∇k × [〈ψkn|JP,i(r)|ψk′n′ 〉fnn′ (k,k′)〈ψkn′ |v|ψkn〉]} · B, (C3)

for i = x,y,z. Here, we have kept the term μBσ · B because it contributes to 〈JP (r)〉 in presence of spin-orbit interaction.
The matrix elements of the paramagnetic current operator are

〈ψkn|JP (r)|ψk′n′ 〉 � ie�

2m
[〈ψkn|r〉∇〈r|ψk′n′ 〉 − (∇〈ψkn|r〉)〈r|ψk′n′ 〉]

= ie�

2mN

∑
Rjμσ

∑
R′j ′μ′σ ′

〈ψkn|ψkjμσ 〉〈ψk′j ′μ′σ ′ |ψk′n′ 〉eik′ ·(R′+tj ′ )e−ik·(R+tj )[〈Rjμσ |r〉∇〈r|R′j ′μ′σ ′〉

− (∇〈Rjμσ |r〉)〈r|R′j ′μ′σ ′〉]. (C4)

In the first line, we have approximated 〈r|v|ψkn〉 � −(i�/m)∇〈r|ψkn〉. Because |Rjμσ 〉 = |Rjμ〉|σ 〉, we can write
(∇〈Rjμσ |r〉)〈r|R′j ′μ′σ ′〉 = δσσ ′ 〈r|R′j ′μ′〉∇〈Rjμ|r〉. In addition, the atomic wave functions are real and exponentially
localized. Therefore, we can approximate

〈ψkn|JP (r)|ψk′n′ 〉 � ie�

2mN

∑
Rjμμ′σ

ei(k′−k)·(R+tj )〈ψkn|ψkjμσ 〉〈ψk′jμ′σ |ψk′n′ 〉[〈r|Rjμ〉∇〈r|Rjμ′〉 − (μ ↔ μ′)]. (C5)
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BOUTIN, RAMÍREZ-RUIZ, AND GARATE PHYSICAL REVIEW B 94, 115204 (2016)

Next, we assume that the main contribution to the total orbital shift at r0 comes from the current density in the vicinity of r0.
This allows us to estimate Eq. (C1) via

〈ψkn|JP (r � r0)|ψk′n′ 〉 � ie�

2mN
ei(k′−k)·r0

∑
μμ′σ

〈ψkn|ψkj0μσ 〉〈ψk′j0μ′σ |ψk′n′ 〉[〈r|R0j0μ〉∇〈r|R0j0μ
′〉 − (μ ↔ μ′)]. (C6)

Hence, the spatial integral that we need to compute is∫
d3r

1

|r0 − r|3 〈ψkn|JP (r)|ψk′n′ 〉 × (r0 − r)

� ie�

2mN
ei(k′−k)·r0

∑
μμ′σ

〈ψkn|ψkj0μσ 〉〈ψk′j0μ′σ |ψk′n′ 〉
∫

d3r
[〈r|R0j0μ〉∇〈r|R0j0μ

′〉 − (μ ↔ μ′)] × (r0 − r)

|r0 − r|3

= − ie�

2mN
ei(k′−k)·r0

∑
μμ′σ

〈ψkn|ψkj0μσ 〉〈ψk′j0μ′σ |ψk′n′ 〉
∫

d3r
[〈r|0j0μ〉∇〈r|0j0μ

′〉 − (μ ↔ μ′)] × r
r3

, (C7)

where we have exploited the fact that 〈r|R0j0μ〉 is a function of r − R0 − tj0 = r − r0. By definition, 〈r|0j0μ〉 is the wave
function corresponding to the orbital μ of atom j0, the atomic center being at the origin of the coordinate system. Next, let us
concentrate on ∫

d3r
1

r3
[〈r|0j0μ〉∇〈r|0j0μ

′〉 − (μ ↔ μ′)] × r, (C8)

one component at a time. The z component reads as∫
d3r

1

r3
[〈r|0j0μ〉∂x〈r|0j0μ

′〉y − 〈r|0j0μ〉∂y〈r|0j0μ
′〉x − (μ ↔ μ′)]. (C9)

The angular integration leads to the following selection rule: μ = px and μ′ = py , or μ = py and μ′ = px . We can factorize
〈r|0j0px〉 = Rp,j0 (r)x/r and 〈r|0j0py〉 = Rp,j0 (r)y/r , where Rp,j0 is the radial part of the wave function (depending only on
|r|). Then, some simple algebra leads to

∫
d3r

1

r3
[〈r|0j0μ〉∂x〈r|0j0μ

′〉y − 〈r|0j0μ〉∂y〈r|0j0μ
′〉x − (μ ↔ μ′)] = −2

(
δμpx

δμ′py
− δμpy

δμ′px

) ∫
d3rR2

p,j0
(r)

x2

r5
,

(C10)

where we have used
∫

d3r Rp,j0 (r) x2/r5 = ∫
d3r Rp,j0 (r) y2/r5. Likewise, the x component of Eq. (C8) reads as

∫
d3r

1

r3
[〈r|0j0μ〉∂y〈r|0j0μ

′〉z − 〈r|0j0μ〉∂z〈r|0j0μ
′〉y − (μ ↔ μ′)] = −2

(
δμpy

δμ′pz
− δμpz

δμ′py

) ∫
d3r R2

p,j0
(r)

x2

r5
.

(C11)

Combining Eqs. (C1), (C3), (C7), (C10), and (C11), we obtain

δBpar
z (r0) � i

V

∑
knn′

〈ψkn|M̃z
k,k(j0)|ψkn〉fnn′ (k,k)〈ψkn′ |σ · B|ψkn〉

+ m

�2
Re

1

V

∑
knn′

〈ψkn|M̃z
k,k(j0)|ψkn′ 〉fnn′ (k,k)〈∇kukn′ | × (∇kHk)|ukn〉cell · B

− m

�2
Re

1

V

∑
kk′nn′

δkk′
{∇k × [〈ψkn|M̃z

k,k′(j0)|ψk′n〉fnn′ (k,k′)〈ψkn′ |�v|ψkn〉
]} · B, (C12)

where we have defined

M̃z
k,k′(j0) = γ (j0)

∑
μ,μ′

∑
σ

(
δμpx

δμ′py
− δμpy

δμ′px

)|ψkj0μσ 〉〈ψkj0μ′σ | (C13)

and

γ (j0) ≡ Vcell
μ0μ

2
B

2π

∫
d3r R2

j0,p
(r)

x2

r5
= 5β(j0). (C14)

In the derivation of Eq. (C12), we have used Im(iz) = Re(z), μB = e�/(2m), and N = V/Vcell, where Vcell is the unit-cell
volume. In addition, we have set exp[i(k′ − k) · r0] → 1 (cf. Appendix B for a justification of this). The numerical values for
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γ (j0) may be read off from Eq. (B9). Note that γ (Bi) takes slightly different values in Bi2Se3 and Bi2Te3 because their unit-cell
volumes are not identical. The expression for δB

par
x (r0) is identical to Eq. (C12), provided that we replace M̃z

μσ,μ′σ ′ by

M̃x
k,k′(j0) = γ (j0)

∑
μμ′

∑
σ

(
δμpy

δμ′pz
− δμpz

δμ′py

)|ψkj0μσ 〉〈ψkj0μ′σ |. (C15)

Together, Eqs. (C12) and (C14) allow a numerical calculation of δBpar(r0). To do so, it is convenient to follow Appendix A and
to insert the relation

∑
n′′ |ukn′′ 〉〈ukn′′ | = 1 in the first line of δB

par
x and δB

par
z .

2. Diamagnetic term

The contribution from the paramagnetic current to the orbital shift is given by

δBdia(r0) = μ0

4π

∫
d3r〈JD(r)〉 × r0 − r

|r0 − r|3 , (C16)

where JD(r) = −(e2/m)A(r)|r〉〈r| is the diamagnetic current operator and the integral is over entire volume of the crystal. To
first order in the applied field, the expectation value of the diamagnetic current is

〈JD(r)〉 = − e2

m
A(r)

∑
kn

fkn〈ψkn|r〉〈r|ψkn〉

= − e2

m
A(r)

∑
kn

fkn

∑
jμσ

∑
j ′μ′

〈ψkn|ψkjμσ 〉〈ψkj ′μ′σ |ψkn〉 1

N

∑
RR′

eik·(R′+tj ′−R−tj )〈Rjμ|r〉〈r|R′j ′μ′〉, (C17)

where in the second line we have used the expansion of the states |ψkn〉 in the localized atomic orbital basis, as well as
〈Rjμσ |r〉〈r|R′j ′μ′σ ′〉 = 〈Rjμ|r〉〈r|R′j ′μ′〉δσσ ′ . Given that the atomic wave functions are localized, we approximate

〈JD(r)〉 � −e2

m
A(r)

∑
kn

fkn

∑
jμμ′σ

〈ψkn|ψkjμσ 〉〈ψkjμ′σ |ψkn〉 1

N

∑
R

〈Rjμ|r〉〈r|Rjμ′〉. (C18)

Once again, we assume that the main contribution to the total orbital shift at r0 comes from the current density in the vicinity of
r0. This allows us to estimate Eq. (C16) via

〈JD(r)〉 � −e2

m
A(r)

∑
kn

fkn

∑
μμ′σ

〈ψkn|ψkj0μσ 〉〈ψkj0μ′σ |ψkn〉 1

N
〈R0j0μ|r〉〈r|R0j0μ

′〉. (C19)

Then,

δBdia(r0) � − μ0e
2

8πmN

∑
kn

fkn

∑
μμ′σ

〈ψkn|ψkj0μσ 〉〈ψkj0μ′σ |ψkn〉
∫

d3r
1

|r0 − r|3 [(B × r) × (r0 − r)]〈R0j0μ|r〉〈r|R0j0μ
′〉. (C20)

Writing (B × r) × (r0 − r) = [B × (r − r0 + r0)] × (r0 − r), and recalling that 〈R0j0μ|r〉〈r|R0j0μ
′〉 depends only on |r − r0|,

we have

δBdia(r0) � μ0e
2

8πmN

∑
kn

fkn

∑
μμ′σ

〈ψkn|ψkj0μσ 〉〈ψkj0μ′σ |ψkn〉
∫

d3r
1

r3
[(B · r)r − Br2]〈0j0μ|r〉〈r|0j0μ

′〉, (C21)

where we have used (B × r) × r = (B · r)r − Br2. Here, we have ignored a term that is linear in r0, by virtue of the discussion
following Eq. (B12).

Then, the relevant spatial integral is ∫
d3r

1

r3
[(B · r)r − Br2]〈0j0μ|r〉〈r|0j0μ

′〉. (C22)

This integral yields the selection rules for the orbitals. For instance, the z component of Eq. (C22) is∫
d3r

1

r3
[Bxxz + Byyz − Bz(x

2 + y2)]〈0j0μ|r〉〈r|0j0μ
′〉. (C23)

Accordingly, an explicit evaluation of the angular integrals yields

δBdia
z (r0) � λ′

pp(j0)
1

V

∑
kn

fkn

∑
σ

[〈ψkn|ψkj0pxσ 〉〈ψkj0pzσ |ψkn〉 + (px ↔ pz)]Bx

+ λ′
pp(j0)

1

V

∑
kn

fkn

∑
σ

[〈ψkn|ψkj0pyσ 〉〈ψkj0pzσ |ψkn〉 + (py ↔ pz)]By
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− λss(j0)
1

V

∑
kn

fkn

∑
σ

|〈ψkn|ψkj0sσ 〉|2Bz

− λpp(j0)
1

V

∑
kn

fkn

∑
σ

[
|〈ψkn|ψkj0pxσ 〉|2 + |〈ψkn|ψkj0pyσ 〉|2 + 1

2
|〈ψkn|ψkj0pzσ 〉|2

]
Bz, (C24)

where the angular integrals can be calculated analytically and the radial integrals estimated numerically leading to the numerical
factors

λss(j0) = Vcell
μ0e

2

8πm

∫
d3r R2

s,j0
(r)

x2 + y2

r3
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.0043 Å
3

for j0 = Bi in Bi2Se3,

0.0051 Å
3

for j0 = Bi in Bi2Te3,

0.0057 Å
3

for j0 = Se in Bi2Se3,

0.0058 Å
3

for j0 = Te in Bi2Te3,

(C25)

λpp(j0) = Vcell
μ0e

2

8πm

∫
d3r R2

p,j0
(r)

(x2 + y2)x2

r5
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.0013 Å
3

for j0 = Bi in Bi2Se3,

0.0015 Å
3

for j0 = Bi in Bi2Te3,

0.0017 Å
3

for j0 = Se in Bi2Se3,

0.0018 Å
3

for j0 = Te in Bi2Te3,

(C26)

λ′
pp(j0) = Vcell

μ0e
2

8πm

∫
d3r R2

p,j0
(r)

x2z2

r5
= 1

4
λpp(j0). (C27)

Similarly, δBdia
x (r0) is obtained under the exchange Bx ↔ Bz and px ↔ pz.
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