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K -dependent exchange interaction of the 1S orthoexciton in Cu2O
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When treating the exchange interaction of Wannier excitons, usually only the leading terms of the analytic
and the nonanalytic exchange interaction are considered. However, higher-order terms can lead to a splitting of
exciton states, for which reason a splitting of the 1S exciton in cuprous oxide (Cu2O) depending on its total
momentum �K has been attributed to a K-dependent analytic exchange interaction by Dasbach et al. [Phys.
Rev. Lett. 91, 107401 (2003)]. Going beyond the common treatment of the exchange interaction, we derive
the correct expressions for these K-dependent higher-order terms using k · p perturbation theory. We prove
that the appearance of a K-dependent exchange interaction is inseparably connected with a K-independent
exchange interaction of P and D excitons. We estimate the magnitude of these terms for Cu2O from microscopic
calculations and show that they are far too small to explain the observed K-dependent splitting. Instead, this
splitting has to be treated in terms of the dispersion of the excitons. Furthermore, we prove the occurrence of a
coupling between longitudinal and transverse excitons in Cu2O due to the K-dependent nonanalytic exchange
interaction.
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I. INTRODUCTION

Excitons are the quanta of the fundamental optical exci-
tations in both insulators and semiconductors in the visible
and ultraviolet spectrum of light. They consist of a negatively
charged electron in the conduction band and a positively
charged hole in the valence band. Wannier excitons extend
over a huge number of unit cells and can be described within
the simple band model as hydrogenlike particles [1]. Recently,
the corresponding hydrogenlike exciton absorption spectrum
could be followed up to a principal quantum number of n = 25
in cuprous oxide (Cu2O) [2]. This recent experiment led to a
variety of new theoretical and experimental investigations on
the topic of excitons in Cu2O [3–11].

When investigating exciton spectra of Cu2O using high-
resolution spectroscopy and crystals of high quality, two of
the most striking experimental findings are the observation of
F excitons and a splitting of the 1S exciton depending on its
total momentum �K . Both effects cannot be understood within
a simple effective mass model. Therefore, the K-dependent
splitting of the 1S exciton was attributed by Dasbach et al. [12–
14] to a K-dependent exchange interaction. This is beyond the
scope of the common treatment of the exchange interaction
for Cu2O, where only a K-independent analytic exchange and
a vanishing nonanalytic exchange interaction are considered.

Since we have recently shown that the observed split-
ting could also be explained by taking full account of the
anisotropic dispersion of the �+

5 orbital Bloch states [10],
we believe that the influence of a K-dependent exchange
interaction on the 1S orthoexciton in Cu2O deserves a closer
investigation as it is a priori unknown whether dispersion and
exchange interaction are of the same size.

Although a preliminary investigation as regards the pres-
ence of a K-dependent exchange interaction was undertaken
by Kavoulakis et al. [15], their treatment was limited to the
nonanalytic part of the exchange interaction only and lacking a

consideration of the complete valence band structure of Cu2O.
Using k · p perturbation theory, we derive general expressions
for both the analytic and nonanalytic part of the exchange
interaction for all direct excitons up to basically arbitrary
order in K . This allows us not only to show the unknown fact
that the appearance of a K-dependent exchange interaction is
inseparably connected to a K-independent exchange interac-
tion of P and D excitons but also to estimate the magnitude
of the K-dependent terms from microscopic calculations for
both parts of the interaction. This is furthermore in contrast
to the simple group theoretical treatment of the exchange
interaction of Refs. [12–14], which leads to K-dependent
terms of the correct form but does not yield their prefactors.
Since every K-dependent energy as regards states of the
symmetry �+

5 must lead to matrices of the form presented in
Ref. [13], the unambiguous assignment of the experimentally
observed K-dependent splitting to the exchange interaction is
not possible by these means.

Moreover, as regards the nonanalytic exchange interaction,
we go beyond the treatment of Kavoulakis et al. [15] and pay
special attention to its angular dependency. This allows us to
prove the occurrence of a coupling between longitudinal and
transverse excitons in Cu2O due to the K-dependent terms of
this part of the exchange interaction. Hence, we show that all
three orthoexciton states couple to light if the wave vector is
not oriented in a direction of high symmetry.

The paper is organized as follows. In Sec. II we discuss
the exchange interaction of Wannier excitons and derive the
expressions for the K-dependent terms of the analytic and the
nonanalytic exchange energy. Having pointed out the specific
properties of excitons in Cu2O in Sec. III, we investigate in
Sec. IV A the analytic and in Sec. IV B the nonanalytic ex-
change interaction for the 1S exciton of cuprous oxide as well
as the coupling between longitudinal and transverse excitons.
Finally, we give a short summary and outlook in Sec. V.
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II. EXCHANGE INTERACTION

In this section we derive the K-dependent terms of the
analytic and the nonanalytic exchange interaction based on
the main expressions of the exchange interaction given in
Refs. [1,15–18]. Within the scope of the simple band model
the wave function of an exciton is given by

�vc ν K =
∑

q

fvc ν(q)�στ
vc (q − γ K , q + αK ). (1)

The envelope function fvc ν(q) is the Fourier transform of the
hydrogenlike solution Fvc ν(β) of the Wannier equation [1,19],

fvc ν(q) = 1√
N

∑
β

Fvc ν(β)e−iqβ, (2)

with ν being a short notation for the three quantum numbers
n, L, and M . Note that the coordinate β is a lattice vector,
which takes in general only discrete values. The constant
factors α = me/(me + mh) and γ = 1 − α depend on the
effective masses of electron and hole. Additionally, the wave
function (1) contains a Slater determinant of Bloch functions
with one electron being in a Bloch state of the conduction
band and N − 1 electrons in Bloch states of the valence
bands,

�στ
vc (kh, ke)= Aψvk1αψvk1β · · ·ψvkhσψckeτ · · ·ψvkN β. (3)

Here A denotes the antisymmetrization operator.
In the Wannier equation the exchange energy is missing

since it is often treated as a correction to the hydrogenlike
solution [1]. In general, the exchange energy between two
exciton states �vc ν K and �v′c′ ν ′ K ′ reads [1,16]

Eexch(vc ν K , v′c′ ν ′ K ′)

= δστ δσ ′τ ′δK ,K ′
∑
q,q ′

f ∗
vc ν(q)fv′c′ ν ′ (q ′)

∫
d r1

∫
d r2ψ

∗
cq(r1)

× ψvq−K (r1)
e2

4πε0ε|r1 − r2|ψc′q ′(r2)ψ∗
v′q ′−K ′(r2). (4)

The exchange energy includes the term δστ δσ ′τ ′ . Introducing
the total spin S = Se + Sh = τ − σ of electron and hole, this
term can be written with singlet and triplet states as 2δS,0 [20].

Inserting the Fourier transform [17,21]

1

r
= 4π

NVuc

∑
G

∑
k∈BZ

1

(k + G)2
ei(k+G)r (5)

with the volume of one unit cell of the lattice Vuc and reciprocal
lattice vectors G in Eq. (4), we can write the exchange energy
as

Eexch = 2δS,0δK ,K ′
∑

G

m∗
vc ν(K , G)mv′c′ ν ′ (K , G)

ε0εVuc(K + G)2
(6)

with

mvc ν(K , G) = e√
N

∑
q

fvc ν(q)〈uvq−γ K |e−iGr |ucq+αK 〉.

(7)

The functions unk(r) denote the lattice-periodic part of the
Bloch functions ψnk(k) = eikrunk(r) [21]. In the representa-

tion of Eq. (6) the exchange energy can be divided into the
nonanalytic part ENA

exch, which is the summand with G = 0,
and the analytic part EA

exch, which is the sum of the remaining
terms. Note that if the exchange energy is formulated in the
Wannier representation [1] instead of the representation with
Bloch functions, it is generally separated into a long-range and
a short-range part. However, according to Refs. [16,17,22]
there is no identity between the nonanalytic exchange and
the long-range part or between the analytic exchange and the
short-range part but only a close correspondence.

In the limit Ka � 1 one obtains the simple expres-
sion [1,16]

ENA
exch = 2δS,0δK ,K ′

1

ε0εVucK2
(μ∗

vc ν K K )(μv′c′ ν ′ K K )

+O(K2a2) (8)

for the nonanalytic exchange energy of excitons in a cubic
crystal. By a we denote the lattice constant of the solid. The
expression (8) depends only on the two angles between K and
the dipole moments μ∗

vc ν K or μv′c′ ν ′ K with

μvc ν K =
∫

d r r ρvc ν K (r). (9)

The localized charge density or transition density [1,16]

ρvc ν K (r) = e
∑

β

Uvc ν K (β)acβ(r)a∗
v0(r), (10)

with Uvc ν K (β) = Fvc ν(β)eiαKβ is often given in terms of
Wannier functions

anR(r) = 1√
N

∑
k

e−ikRψnk(r). (11)

If μ is parallel or perpendicular to K , one speaks of
longitudinal or transversal excitons, respectively [1]. The
nonanalytic exchange energy therefore causes a longitudinal-
transverse splitting (LT splitting) of spin singlet states near
K = 0. It is obvious that the nonanalytic exchange energy is
nonzero only for longitudinal excitons and that it is therefore
connected to a macroscopic polarization. Thus, the effect
can be compared to the LT splitting of phonons. Since
the splitting between transverse and longitudinal excitons
depends on |μvc ν K |2 for vc ν = v′c′ ν ′, it is proportional to the
oscillator strength fν0 for exciting one exciton from the ground
state of the solid by light. This oscillator strength reads for
Ka � 1 [1]

fν0 = 4δS,0

�2e2m0
Eν K |êξ K · μvc ν K |2 (12)

with the energy Eν K of the exciton state [5], the free electron
mass m0, and the polarization vector êξ K perpendicular to
K . Thus, the splitting caused by ENA

exch is identical to the LT
splitting when treating polaritons [23] and it is of appreciable
size only if the exciton is dipole allowed.

It is now important to note that light is always transversely
polarized and that only transverse excitons are produced in
optical absorption [24] [cf. Eq. (12)]. Longitudinal excitons
cannot be seen in optical absorption spectra. Thus, the LT
splitting in the case of polaritons increases the transverse
excitons by an energy �LT. On the other hand, the LT splitting
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connected to the nonanalytic exchange interaction increases
the energy of the longitudinal excitons by the same amount
�LT. Finally, both states are again degenerate at K = 0, which
is required for reasons of symmetry.

We can see from Eq. (8) that longitudinal and transverse
exciton states are not coupled for Ka � 1. As has been
stated in Ref. [1], this uncoupling is accidental since it is
expected that these states are decoupled only if they transform
according to different irreducible representations of the group

of K [25,26]. However, the higher-order terms O(K2a2) in
Eq. (8) may lead to a coupling of longitudinal and transverse
exciton states unless they transform according to different
irreducible representations. This will be shown for Cu2O in
Sec. IV B. If a coupling occurs, the longitudinal states will
become observable in experiments due to the admixture of
transverse states [24].

We can now take a closer look at mvc ν(K , G) using k · p
perturbation theory. It is [15,21]

umk(r) ≈ um0(r) + �

m0

∑
n
=m

k pnm

(Em − En)
un0(r)

+ �
2

m2
0

⎡
⎣ ∑

n
=m,l 
=m

k pnl k plm

(Em − En)(Em − El)
un0(r) −

∑
n
=m,l 
=m

k pmm k pnmδnl

(Em − En)(Em − El)
un0(r)

⎤
⎦ (13)

with pmn = 〈um0| p|un0〉 and the energy En = En(k = 0) of the band n at the � point. We assume that the point group of the
solid contains inversion as a group element. Then the term pmm vanishes for reasons of parity. Using the expression (13), we
obtain up to second order in K and q:

mvc ν(K , G) ≈ e√
N

∑
q

fvc ν(q)

⎡
⎣Ivc(G) + �

m0

∑
n
=v

(q − γ K ) pvn

(Ev − En)
Inc(G) + �

m0

∑
n
=c

(q + αK ) pnc

(Ec − En)
Ivn(G)

+ �
2

m2
0

∑
n
=v,m
=c

(q − γ K ) pvn (q + αK ) pmc

(Ev − En)(Ec − Em)
Inm(G) + �

2

m2
0

∑
n
=c,m
=c

(q + αK ) pnm (q + αK ) pmc

(Ec − En)(Ec − Em)
Ivn(G)

+ �
2

m2
0

∑
n
=v,m
=v

(q − γ K ) pmn (q − γ K ) pvm

(Ev − En)(Ev − Em)
Inc(G)

⎤
⎦. (14)

Here we have defined Imn(G) = 〈um0|e−iGr |un0〉. The sum over q can be evaluated using

1√
N

∑
q

q
χ

i q
ϕ

j fvc ν(q) = (−i)χ+ϕ ∂χ

∂β
χ

i

∂ϕ

∂β
ϕ

j

Fvc ν(β)

∣∣∣∣∣
β=0

(15)

with χ, ϕ = 0,1,2.
It is evident that the derivatives of the function Fvc ν at the origin must enter the exchange interaction since we could also treat

the interaction in the Wannier representation [16] and obtain higher-order terms using a Taylor expansion at β = 0.
Due to the special properties of the wave functions Fvc ν , the expression (15) is nonzero only if ϕ + χ = L holds. Therefore,

we see that the leading term in Eq. (14) describes the K-independent exchange interaction of S excitons. The terms of higher
order show that the appearance of a K-dependent exchange interaction of S excitons is inseparably connected to a K-independent
exchange interaction of P and D excitons. As the function mvc ν(K , G) enters quadratically the exchange energy (6), the relative
size of the K-dependent exchange energy of S excitons and the K-independent exchange energy of P excitons can be estimated
comparing

|Fvc ν(0)|2K2
0 = Vuc

πa3
exc

1

n3
K2

0 δL, 0 (16)

with ∣∣∣∣∣ ∂

∂β
Fvc ν(β)

∣∣∣∣
β=0

∣∣∣∣∣
2

= Vuc

3πa5
exc

n2 − 1

n5
δL, 1. (17)

Here we have introduced the exciton Bohr radius aexc and the value K0 of K at the exciton photon resonance [1,18]. Note that
there are always polaritons and no excitons in bulk semiconductors due to the coupling between excitons and photons. However,
if this coupling is weak, it is common to speak of excitons and treat the interaction within perturbation theory [1].
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For the nonanalytic exchange interaction, the expression (14) simplifies due to Imn(0) = δmn:

mvc ν(K , 0) ≈ e√
N

∑
q

fvc ν(q)

{
− �

m0

K pvc

Ev − Ec

+ �
2

m2
0

∑
n
=v,c

[
(q − γ K ) pvn (q + αK ) pnc

(Ev − En)(Ec − En)

+ (q + αK ) pvn (q + αK ) pnc

(Ec − Ev)(Ec − En)
+ (q − γ K ) pnc (q − γ K ) pvn

(Ev − Ec)(Ev − En)

]}
. (18)

It can easily be seen that mvc ν(0, 0) = 0 holds, for which
reason the nonanalytic exchange interaction does not diverge at
K = 0. The different terms describe the nonanalytic exchange
energy of S excitons (K-independent and K-dependent) and
of P excitons. In the literature usually only the leading terms
of the exchange energy are treated, which are given by

EA
exch = 2δS,0δK ,K ′

∑
G 
=0

e2

ε0εVucG2

×F ∗
vc ν(0)Fv′c′ ν ′(0)I ∗

vc(G)Iv′c′ (G), (19a)

ENA
exch = 2δS,0δK ,K ′

e2

ε0εVuc K 2
F ∗

vc ν(0)Fv′c′ ν ′(0)

×
(

�

m0

)2 K p∗
vc K pv′c′

(Ev − Ec)(Ev′ − Ec′ )
. (19b)

Note that ENA
exch depends on 1/K2 and that this term cancels

with the K2 of the numerator. So ENA
exch depends only on the

direction of K but not on its amount K = |K |. This explains
the term “nonanalytic”.

III. EXCITONS IN CUPROUS OXIDE

Before we investigate the exchange interaction for the
special case of Cu2O, we have to discuss some specific
properties of this semiconductor. First, we have to consider the
band structure of Cu2O. Neglecting the spin-orbit coupling,
the uppermost valence band has the symmetry �+

5 and is
threefold degenerate at the center of the Brillouin zone. In
the literature, this degeneracy is often accounted for by the
quasispin I = 1 [8,10,27–29]. This quasispin is a convenient
abstraction to denote the three spatial functions φv, xy , φv, yz and
φv, zx , which transform according to �+

5 [10,15,27]. Especially,
if we compare the states |I,MI 〉 with the functions φv, xy , φv, yz

and φv, zx given in Ref. [13], it is

|1,+1〉I = − 1√
2

(φv, yz + iφv,zx), (20a)

|1,0〉I = φv, xy, (20b)

|1,−1〉I = 1√
2

(φv, yz − iφv,zx). (20c)

Cuprous oxide has cubic symmetry, for which reason
the symmetry of the bands is assigned by the irreducible
representations �±

i of the cubic group Oh with the superscript
± denoting the parity. The spin-orbit coupling between the
spin Sh of a hole in the valence band and the quasispin I

splits the sixfold-degenerate band (now including the hole
spin) into a higher lying twofold-degenerate band (�+

7 ) and a
lower lying fourfold-degenerate band (�+

8 ) (see Fig. 1), which

are characterized by the effective hole spins J = I + Sh =
1/2 and J = 3/2, respectively. Within the so-called simple
band model the effective hole spin distinguishes between
two independent exciton series, i.e., the yellow (J = 1/2)
and the green exciton series (J = 3/2) [10,29]. Due to the
nonspherical symmetry of the solid and interband interactions,
the valence bands are not parabolic but deformed [10]. This
leads to a coupling between the yellow and the green exciton
series, which is described comprehensively in Ref. [10]. Here
we will discuss only the most important points.

The coupling between the valence bands or the anisotropic
dispersion of the orbital �+

5 Bloch functions has to be
considered in the Wannier equation by the so-called Hd term.
The complete Hamiltonian of excitons in Cu2O therefore
reads [10]:

H = Eg − e2

4πε0ε

1

β
+ Hs + Hd + Hso + Hexch + HC.

(21)

The term

Hs = γ ′
1p

2

2m0
(22)

describes the average kinetic energy without the nonparabolic-
ity and the coupling between the bands. The Hd term is given

FIG. 1. Band structure of Cu2O [2]. Due to the spin-orbit coupling
the valence band splits into a higher lying twofold-degenerate band
(�+

7 ) and a lower lying fourfold-degenerate band (�+
8 ). We treat the

yellow and green exciton series, which are connected with these two
valence bands and the lowest lying conduction band of symmetry �+

6 .
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by

Hd = γ ′
1

2�2m0

(
−μ′

3
P (2) · I (2) +

√
70δ′

15
[P (2) × I (2)](4)

0

+ δ′

3

∑
k=±4

[P (2) × I (2)](4)
k

)
(23)

with the irreducible tensors P (2) and I (2) defined in Ref. [10].
The parameters γ ′

1, μ′ and δ′ are connected to the Luttinger
parameters of Cu2O [8,10,29]. The Hd term couples the quasi
spin I to the angular momentum L of the envelope function.
The first summand in Eq. (23) has spherical symmetry while
the other terms have cubic symmetry.

The anisotropic dispersion of the orbital �+
5 Bloch functions

is in direct competition with the spin-orbit coupling

Hso = 2

3
�

(
1 + 1

�2
I · Sh

)
, (24)

which is diagonalized by introducing the effective hole
spin J . For an infinite spin-orbit coupling � → ∞ the �+

7
valence band would be parabolic at the � point. However,
as � = 0.131 eV [9] is comparatively small in Cu2O, the
nonparabolicity of �+

7 and �+
8 valence band already occurs

in the vicinity of the � point with a simultaneous mixing of
both bands.

The Hd term was first introduced by Baldereschi et al.
(see, e.g., Refs. [28,30–33] and further references therein) to
describe the situation for an uppermost �+

8 valence band in
semiconductors such as germanium mathematically correct.
The decisive breakthrough of their description is the use of
modified Bloch functions, i.e., Bloch functions with a lattice
periodic part u, which does not depend on the wave vector
k. These functions form a complete basis and are thus just as
suitable to describe excited states of the solid. The modification
of Baldereschi et al. is always required if the lattice periodic
part of the common Bloch function varies strongly with k.
Only due to the constant lattice periodic part the Coulomb
interaction between electron and hole will be proportional to
1/r if the Wannier equation is transformed from momentum
space to position space via a Fourier transformation. The
exciton envelope function in the formalism of Balderschi et al.
then contains only constant �+

7 and �+
8 components, i.e., the

spin states with J = 1/2 and J = 3/2 given below.
A simple restriction to the �+

7 band neglecting the �+
8 band

and considering the nonparabolicity via k4 terms does not treat
the problem correctly. Consequently, the exchange interaction
has to be treated within the same formalism, for which reason
we use k · p perturbation theory at the � point. This is in
contrast to the treatment by Kavoulakis et al. [15] and to the
best of our knowledge this has not been done before.

The term HC in Eq. (21) accounts for the central cell
corrections [15], which are needed to describe the 1S exciton
correctly. Since the radius of this exciton is very small, it is an
intermediate exciton between a Frenkel exciton and a Wannier
exciton [1]. Therefore, the 1S exciton cannot be described

within the effective mass approach due to its large extension
in momentum space. However, we neglect the central cell
corrections in the following. The usage of the kinetic energy
in the form of Eqs. (22) and (23) and the neglecting of
higher-order terms in p is then justified if we use an average
curvature of the bands instead of the curvature at the center of
the Brillouin zone. Hence, the Bohr radius of the 1S exciton is
smaller than the one of excitons with n � 2. Furthermore,
we have to replace the dielectric constant ε = 7.5 by its
high-frequency value ε∞ = 6.46 [15].

Let us consider at first the Hamiltonian (21) without the
Hd term and the exchange interaction. In this case we can
treat spins and Wannier or Bloch functions separately from
the envelope function. The yellow and green exciton series are
described by the two states with J = 1/2 of symmetry �+

7∣∣∣∣12 ,+1

2

〉
J

=
√

2

3
| + 1〉I | ↓〉h − 1√

3
|0〉I | ↑〉h, (25a)

∣∣∣∣12 ,−1

2

〉
J

= 1√
3
|0〉I | ↓〉h −

√
2

3
| − 1〉I | ↑〉h, (25b)

and the four states with J = 3/2 of symmetry �+
8∣∣∣∣32 ,+3

2

〉
J

= | + 1〉I | ↑〉h, (26a)

∣∣∣∣32 ,+1

2

〉
J

= 1√
3
|1〉I | ↓〉h +

√
2

3
|0〉I | ↑〉h, (26b)

∣∣∣∣32 ,−1

2

〉
J

=
√

2

3
|0〉I | ↓〉h + 1√

3
| − 1〉I | ↑〉h, (26c)

∣∣∣∣32 ,−3

2

〉
J

= | − 1〉I | ↓〉h. (26d)

If we now add the electron spin and the Wannier func-
tion φc, s of the conduction band, which transform together
according to �+

6 ⊗ �+
1 = �+

6 , we obtain states with the total
momentum G = J + Se = 0 and G = 1. Subsequently, these
states have to be multiplied by the hydrogenlike envelope
function Fν(β).

In the Cartesian basis the ground states of the yellow exciton
are (cf. Ref. [13])

|P 〉 = F1,0,0(β)|0, 0〉G, (27a)

|Oxy〉 = F1,0,0(β)|1, 0〉G, (27b)

|Oyz〉 = 1√
2
F1,0,0(β)(|1,−1〉G − |1,+1〉G), (27c)

|Ozx〉 = i√
2
F1,0,0(β)(|1,−1〉G + |1,+1〉G). (27d)

The state |P 〉 of symmetry �+
2 is the paraexciton state and the

states |Oij 〉 of symmetry �+
5 are the orthoexciton states. It is

possible to express these states using the eigenstates of the
spin S = Se + Sh [13]:

|P 〉 = 1√
6
F1,0,0(β)φc, s[

√
2φv, xy |1, 0〉S + (−φv, yz + iφv, zx)|1,+1〉S + (φv, yz + iφv, zx)|1,−1〉S], (28a)
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|Oxy〉 = −1√
6
F1,0,0(β)φc, s[−

√
2φv, xy |0, 0〉S + (φv, yz − iφv, zx)|1,+1〉S + (φv, yz + iφv, zx)|1,−1〉S], (28b)

|Oyz〉 = 1√
6
F1,0,0(β)φc, s[φv, xy |1,+1〉S + φv, xy |1,−1〉S + i

√
2φv, yz|0, 0〉S +

√
2φv, zx |1, 0〉S], (28c)

|Ozx〉 = −i√
6
F1,0,0(β)φc, s[φv, xy |1,+1〉S − φv, xy |1,−1〉S +

√
2φv, yz|1, 0〉S + i

√
2φv, zx |0, 0〉S]. (28d)

One can see that the paraexciton state does not contain a
singlet component, i.e., a component with S = 0. Therefore,
this state is spin-flip forbidden in optical excitations, which
explains the term “para” or “dark” exciton [2]. However,
we may note at this point that the orthoexciton and paraex-
citon states are not eigenstates of the operators S2 and Sz.
Therefore, it may be misleading to speak of singlet and triplet
states [2,12].

The exciton states are generally mixed by the Hd term (23)
due to the coupling between L and I . Since parity is a good
quantum number in Cu2O, the Hd term mixes only exciton
states with even values of L or with odd values of L [29].
Therefore, D excitons are admixed to S excitons and vice
versa. The coupling due to the Hd term leads to an energy gain
in the system, which was discussed in Ref. [10].

As the radius of the yellow 1S exciton is small in position
space, it is extended in momentum space, for which reason we
expect its coupling to the green series to be strong. Due to the
admixture, the yellow orthoexciton becomes more and more
a pure singlet state as the total spin S = Se + Sh is a good
quantum number in the limit of � = 0.

In this limiting case with � = 0, the introduction of the
effective hole spin J would not be necessary. The exciton
wave function could be written as the product of a space
function, which also depends on I , and a spin function. Without
the Hd term the ground states of the exciton would then
read

|P1,j 〉 = F1,0,0(β)φc, sφv, j |1, 1〉S, (29a)

|P0,j 〉 = F1,0,0(β)φc, sφv, j |1, 0〉S, (29b)

|P−1,j 〉 = F1,0,0(β)φc, sφv, j |1,−1〉S, (29c)

|Oj 〉 = F1,0,0(β)φc, sφv, j |0, 0〉S, (29d)

with j = xy, yz, zx. In this case there are also three or-
thoexciton states. The paraexciton and orthoexciton states
are true triplet states (S = 1) and singlet states (S = 0),
respectively.

The Hamiltonian (21) is given for K = 0. In the general
case with K 
= 0 additional terms appear [10]:

Tt(K ) = �1K
21

−�3
(
K2

1

(
3I2

1 − 2�
21
)+ c.p.

)
/�

2

−�5(K1K2(I1 I2 + I2 I1) + c.p.)/�
2. (30)

As can be seen, these K2-dependent terms are 3 × 3 matrices
and can again be divided into an Hs term, an Hd term of
spherical symmetry, and an Hd term of cubic symmetry, i.e.,

we can write

Tt(K ) = (�1)K2 −
(

�5 + 2�3

15�2

)
K (2) · I (2)

+
(

�5 − 3�3

18�2

)(√
70

5
[K (2) × I (2)](4)

0

+
∑
k=±4

[K (2) × I (2)](4)
k

)
. (31)

To describe the exciton series in Cu2O correctly, the
Schrödinger equation with the operators (21) and (30) has
to be solved for fixed values of K . However, as the effect of
the K2-dependent terms on the relative motion is small, the
effect of Tt(K ) can be treated within perturbation theory.

It has been shown in Ref. [10] that the coefficients �

in Tt(K ) are of the correct order of magnitude to describe
the K-dependent splitting of the 1S exciton state, which
was observed experimentally and originally assigned to the
exchange interaction [12–14]. In Sec. IV we will show that the
exchange interaction is far too small to explain this splitting.

IV. EXCHANGE INTERACTION FOR CUPROUS OXIDE

In this section we want to estimate the maximum size of
the exchange interaction for the exciton ground state in Cu2O
following the explanations given in Refs. [13,15]. Note that it
would be necessary to solve the full exciton Hamiltonian (21)
including all K-dependent terms to determine the true size
of the exchange interaction. As has been stated in Sec. III,
parity is a good quantum number and the exciton ground state
contains mainly S-like but also D-like envelope functions. Due
to the results of Sec. II the (K-dependent and K-independent)
exchange interaction is strongest if the envelope function is
purely S-like and if n = 1 holds. Furthermore, for the exchange
interaction only the singlet component of the states is of
importance. From Eqs. (28) and (29) we see that we can set

ρ
(P )
vc ν K (r) = 0, (32a)

ρ
(O)
vc ν K (r) = cρe

∑
β

Uvc ν K (β)

×φc, s(r − β)φ∗
v, j (r), (32b)

with j = xy, yz, zx. The prefactor cρ is of the order 1.
Even though the exchange energy is not diagonal with
respect to ν, we consider only the dominant contribution
Eexch(vc 1S K , v′c 1S K ′) with ν = ν ′ = 1S or more precisely
ν = (n,L,M) = (1,0,0).
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A. Analytic exchange interaction

The K dependence of the analytic exchange interaction
has been neglected in Ref. [15] and will be treated here. We
estimate its magnitude to show that the K-dependent splitting
of the 1S exciton state treated in Refs. [12–14] cannot be
explained in terms of the exchange interaction.

In the case of the analytic exchange interaction we consider
only the zero- and first-order terms in the function mvc ν(K , G)
of Eq. (14). As can be seen from Eq. (6), the analytic

exchange energy depends on m∗
vc ν(K , G)mv′c′ ν ′(K , G). When

calculating the exchange energy the second-order terms in
mv′c′ ν ′ (K , G) have to be multiplied with the zero-order term
of m∗

vc ν(K , G) and vice versa. Since the zero-order term is
a diagonal 3 × 3 matrix, the resulting K2-dependent terms
cannot describe a K-dependent splitting of the exciton ground
state. Furthermore, we will estimate the size of these terms in
the following and show that they are negligibly small.

We can write

mvc ν(K , G) ≈ ecρ√
N

∑
q

fvc ν(q)

⎡
⎣Ivc(G) + �

m0

⎧⎨
⎩
∑
n
=v

(q − γ K ) pvn

(Ev − En)
Inc(G) +

∑
n
=c

(q + αK ) pnc

(Ec − En)
Ivn(G)

⎫⎬
⎭
⎤
⎦

= ecρFvc ν(0)Ivc(G) + ecρ

�

m0

[
(−i∇β)Fvc ν(β)

]
β=0

⎧⎨
⎩
∑
n
=v

pvnInc(G)

(Ev − En)
+
∑
n
=c

pncIvn(G)

(Ec − En)

⎫⎬
⎭

+ ecρ

�

m0
Fvc ν(0)

⎧⎨
⎩
∑
n
=v

−γ K pvn

(Ev − En)
Inc(G) +

∑
n
=c

αK pnc

(Ec − En)
Ivn(G)

⎫⎬
⎭. (33)

If we now set ν = ν ′ = 1S, the gradient of Fvc 1S(β) at β = 0 vanishes. Finally, we have

EA
exch = 2δS,0δK ,K ′

e2c2
ρ

ε0ε∞πa3
exc

∑
G 
=0

1

(K + G)2

⎡
⎣Iv′c(G) + �

m0

⎧⎨
⎩
∑
n
=v′

−γ K pv′n

(Ev′ − En)
Inc(G) +

∑
n
=c

αK pnc

(Ec − En)
Iv′n(G)

⎫⎬
⎭
⎤
⎦

×
⎡
⎣Ivc(G) + �

m0

⎧⎨
⎩
∑
n
=v

−γ K pvn

(Ev − En)
Inc(G) +

∑
n
=c

αK pnc

(Ec − En)
Ivn(G)

⎫⎬
⎭
⎤
⎦

∗

. (34)

The component with K = 0 describes the experimentally
observed splitting between orthoexcitons and paraexcitons of
12 meV [34–36]. Therefore, we set

12 meV = 2e2c2
ρ

ε0ε∞πa3
exc

∑
G 
=0

1

G2
|Ivc(G)|2. (35)

A restriction to the six summands with the smallest value
G0 of G as in Ref. [15] is in general not correct. Due to
the symmetry of the Bloch functions other values of G will
contribute even more strongly to the sum in Eq. (34). Indeed,
it is worth mentioning that the symmetry group of the lattice
in Cu2O is only isomorphic to the cubic group Oh [18]. Since
the Cu atoms in Cu2O form an fcc sublattice, it can be seen
from the unit cell of Cu2O that the lattice is not invariant under
reflections but under a glide reflection with a translation of a/2
(see also Supplemental Material of Ref. [2]), where a denotes
the lattice constant a = 4.26 × 10−10 m of Cu2O [37–39]. The
Bloch functions must be invariant under this operation. If we
write unK (r) =∑G CnK (G)eiGr [21], we see that the vector
components of G can only take whole-number multiples of
4π/a instead of 2π/a.

The K dependence of the analytic exchange interaction
arises from the K pmn terms and the factor 1/(K + G)2 in
Eq. (34). At first, we will estimate the effect of the K pmn

terms. Due to reasons of symmetry, the terms linear in K

must vanish when evaluating the product in Eq. (34). The

K2-dependent terms are of the same order of magnitude as
the second-order terms in the function mvc ν(K , G), which we
have neglected. We can now use Eq. (35) to give an upper
limit for their magnitude and to prove that their neglecting
is justified. Using the values | pnm|/� ≈ 1.3 × 109 m−1 and
(Em − En) � �E = 449 meV given in Ref. [15], we obtain(

�

m0
| pnm|K0

1

�E

)2

× 12 meV ≈ 0.4 μeV. (36)

We see that this part of the analytic exchange interaction is
very small.

Nevertheless, we have shown in Sec. II that a K-dependent
exchange interaction of S excitons is connected to a K-
independent analytic exchange interaction of P excitons.
Using the result of Eq. (36), we can estimate the size of the
analytic exchange energy of the 2P excitons via Eqs. (16)
and (17). With the exciton Bohr radius aexc = 0.53nm of
the 1S exciton, the corresponding value aexc = 1.1nm for P

excitons [15] and K0 = 2.62 × 107 m−1 [13], the maximum
size of the analytic exchange energy of the 2P excitons is

(0.53)3

3(1.1)5(0.0262)2

22 − 1

25
× 0.4 μeV ≈ 1.6 μeV. (37)

We see that also this energy is negligibly small. Furthermore,
the line widths of the P excitons in Cu2O are too large to detect
a splitting in the order of a few μeV.
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Let us now treat the K dependence arising from the
prefactor 1/(K + G)2. This factor can written as a Fourier
series at K = 0 for K � G,

1

(K + G)2
≈ 1

G2
− 2(K G)

G4

+ 1

G6
GT [−1K2 + 4K · K T]G. (38)

Inserting this expression in Eq. (34), the term proportional
to K vanishes for reasons of symmetry. The magnitude of
the K2-dependent term can be estimated assuming that K

is oriented in [100] direction and using the reciprocal lattice
vectors with the smallest modulus 4π/a. This gives an upper
limit of

12 meV × 3K2
0

(
a

4π

)2

≈ 28 neV (39)

for the prefactor of those K2-dependent terms in Eq. (34),
which originate from the Fourier expansion of 1/(K + G)2.
We see that not only the result of Eq. (36) but also the result
of Eq. (39) is at least one order of magnitude smaller than the
experimentally observed values for the K-dependent splitting
of the 1S exciton [13]. As the estimated values are upper
limits for the prefactors, the actual magnitude of the analytic
exchange interaction is generally much smaller.

However, using group theoretical considerations, it is obvi-
ous that in both cases the K2-dependent terms can be written
as a sum of the invariant matrices 1K2, (3K2

i − K2)(êi ⊗ êi)
and KiKj (êi ⊗ êj ) with i,j = 1,2,3 and i 
= j , since every
K-dependent energy as regards states of the symmetry �+

5
must lead to matrices of this form [13,40]. This can be seen,
e.g., from Eq. (30), where the dispersion of the exciton is
described by the same matrices. Hence, the K-dependent
splitting of the 1S exciton states must in any case be described
by matrices of this form [13]. However, from the experimental
point of view the physical origin of these matrices is a
priori unknown. In Refs. [12–14] it has been assumed that
the exchange interaction is responsible for the K-dependent
splitting.

We have now shown that the K-dependent analytic ex-
change interaction is negligibly small in Cu2O and that it
cannot explain the K-dependent splitting of the 1S exciton.
Furthermore, due to the specific form of the exchange
interaction, it would not be experimentally distinguishable
from the dispersion of the exciton described by Eq. (30).

Only the K-dependent nonanalytic exchange interaction
may contribute to the splitting of the 1S ortho exciton. This
will be investigated in Sec. IV B.

B. Nonanalytic exchange interaction

We will now treat the nonanalytic exchange interaction for
Cu2O. As the conduction band and the valence band in Cu2O
have the same (positive) parity and the momentum operator
p has negative parity, the matrix element pvc = 〈uv0| p|uc0〉
vanishes. Therefore, the main contribution to the nonanalytic
exchange interaction comes from the term in square brackets
in Eq. (18).

We can see again the close connection between the
nonanalytic exchange interaction and the oscillator strength:

Inserting the q K-dependent terms of Eq. (18) into Eq. (6),
one obtains the K-independent nonanalytic exchange energy
of P excitons. Since these excitons are dipole allowed,
their oscillator strength is also K-independent. The exchange
energy exactly equals the LT splitting when treating P exciton
polaritons.

The K2-dependent terms of Eq. (18) will lead to a K2-
dependent exchange energy for the S excitons. These excitons
are quadrupole allowed and their oscillator strength is also
K2 dependent. For reasons of symmetry, the energy difference
between longitudinal and transversal S excitons at K = 0 is
exactly zero, as well. The fact that S excitons are quadrupole
allowed for finite values of K can be understood from a
symmetry reduction: The cubic group reduces for finite values
of K to a group of lower symmetry, e.g., C4v , which does not
contain inversion as a group element [25,40]. This leads to a
K-dependent admixture of P excitons to S excitons.

In the following, we will concentrate on the K2-dependent
exchange energy of the 1S excitons to estimate its magnitude
and investigate its angle dependency. Due to the close
connection between exchange energy and oscillator strength,
we expect the ratio of the K2-dependent exchange energy
of S excitons and the K-independent exchange energy of P

excitons to be of the same size as the ratio of the corresponding
oscillator strengths.

We can write

mvc 1S(K , 0) ≈ ecρ�
2

m2
0

Fvc 1S(0)

(
〈uv0|(K p)

[ ∑
n
=v,c

gvc(En)

× |un0〉〈un0|
]

(K p)|uc0〉
)

(40)

with

gvc(En) = γα(Ev − Ec) − α2(Ev − En) + γ 2(Ec − En)

(Ev − En)(Ec − En)(Ev − Ec)
.

(41)

Using group theory, we can determine the nonvanishing terms
of the exchange energy. The operator in square brackets in
Eq. (40) is a projection operator. For reasons of symmetry this
operator has to transform according to the irreducible repre-
sentation �+

1 . On the other hand, the operator p transforms
according to �−

4 . The symmetry of the operator between the
Bloch functions is therefore

�−
4 ⊗ �+

1 ⊗ �−
4 = �+

1 ⊕ �+
3 ⊕ �+

4 ⊕ �+
5 . (42)

The symmetry of the Bloch functions is

�+
5 ⊗ �+

1 = �+
5 . (43)

Consequently, the expression (40) does not vanish only if the
operator has the symmetry �+

5 [41]. We can then consider
the coupling coefficients for the case �−

4 ⊗ �−
4 → �+

5 . With
the basis functions |X〉, |Y 〉, |Z〉 of �−

4 and the basis functions
|X̃〉 = |YZ〉, |Ỹ 〉 = |ZX〉, and |Z̃〉 = |XY 〉 of �+

5 , we see that,
e.g., the �+

5 -like part of the products |X〉1|Y 〉2 and |Y 〉1|X〉2

transforms as |Z̃〉/√2 [40]. So we write

〈Z̃|(|X〉1|Y 〉2) = 1√
2
, 〈Z̃|(|Y 〉1|X〉2) = 1√

2
, (44)
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and the expressions obtained via cyclic permutation. Writing
the exchange energy as a 3 × 3 matrix with the valence band
functions given in the order φv, yz, φv, zx , φv, xy , we finally
obtain the expression

ENA
exch = �Q

K2

K2
0

⎛
⎝ K̂2

y K̂2
z K̂2

z K̂yK̂x K̂2
y K̂xK̂z

K̂2
z K̂yK̂x K̂2

z K̂2
x K̂2

x K̂yK̂z

K̂2
y K̂xK̂z K̂2

x K̂yK̂z K̂2
x K̂2

y

⎞
⎠ (45)

for the nonanalytic exchange energy with K̂ = K/K . Contrary
to dipole allowed excitons, the nonanalytic exchange energy
depends on the fourth power of the angular coordinates of K .

We can now explicitly give the coefficient �Q of
Refs. [12–14] from microscopic calculations and estimate its
size using Eq. (16) and the values | pnm|/� ≈ 1.3 × 109 m−1

and (Em − En) � �E = 449 meV given in Ref. [15]:

�Q = 6c2
ρe

2K2
0

ε0ε∞Vuc

�
4

m4
0

∣∣∣∣∣∣Fvc 1S(0)
∑
n
=v,c

gvc(En)pncpvn

∣∣∣∣∣∣
2

≈ 9 neV. (46)

This value is significantly smaller than the result �Q = 5 μeV
from Ref. [12]. We see that also the K-dependent nonanalytic
exchange interaction is negligibly small in Cu2O.

As has been stated in Sec. II, it is nevertheless interesting
to investigate the possible coupling between longitudinal and
transverse exciton states. In the case of the orthoexciton these
states are uncoupled only if the K vector is parallel to one
of the main symmetry axes of the crystal. We will show that
a general direction of the K vector an LT coupling appears,
for which reason all three exciton states couple to light with a
polarization not being orthogonal to the wave vector involved.

We start with K being oriented in the [100] direction. In this
case the cubic symmetry is reduced to the group C4v, which
leaves K invariant. Since Ky = Kz = 0 holds, the nonanalytic
exchange interaction (45) is zero. Therefore, we are allowed
to choose appropriate linear combinations of the states φv, yz,
φv, zx , φv, xy such that μvc ν K ‖ K and μvc ν K ⊥ K holds. To
this aim, we insert the charge density

ρvc, ν K (r) = cρe
∑

β

Uvc ν K (β)

×φc, s(r − β)[cyzφ
∗
v, yz(r)

+ czxφ
∗
v, zx(r) + cxyφ

∗
v, xy(r)] (47)

into

μvc ν K =
∫

d r r ρvc ν K (r). (48)

Using Eq. (11) and considering again the coupling coefficients
for the case �−

4 ⊗ �−
4 → �+

5 [cf. Eq. (44)], we obtain

μvc ν K ∼
⎛
⎝Kycxy + Kzczx

Kzcyz + Kxcxy

Kxczx + Kycyz

⎞
⎠. (49)

Hence, the two transverse states for K ‖ [100] are given by
cxy = 1, cyz = czx = 0 and czx = 1, cyz = cxy = 0. This is not
unexpected since the K vector causes a symmetry breaking in

the x direction, which affects the functions φv, xy and φv, zx in
a different way than φv, yz.

The fact that longitudinal and transverse exciton states
are decoupled for K ‖ [100] can also be understood from
group theoretical considerations: The exciton states transform
according to �+

5 in Oh while the dipole operator transforms
according to the irreducible representation D1 of the full
rotation group or according to �−

4 in Oh. As the cubic
symmetry reduces to C4v, we have to consider the reduction
of the irreducible representations of the cubic group Oh by the
group C4v:

�+
5 → �4 ⊕ �5, (50a)

�−
4 → �1 ⊕ �5. (50b)

Comparing both equations, we immediately see that the
two �5 states are transverse states and that the �4 state
is a longitudinal state. Since there are now exciton states
transforming according to �5 and a dipole operator, which
transforms according to �5, these exciton states can be excited
by light. This describes the fact that the 1S exciton becomes
quadrupole allowed due to the K-dependent admixture of
P excitons. On the other hand, as the transverse states
and the longitudinal state transform according to different
irreducible representations, no coupling between these states
occurs.

Let us now consider the exchange interaction (45) for
an arbitrary K with all vector components Ki 
= 0. The
eigenvalues λi and eigenvectors vi of the 3 × 3 matrix in
Eq. (45) read

λ1 = 0, v1 = (−b, a, 0)T

√
a2 + b2

, (51)

λ2 = 0, v2 = (−c, 0, a)T

√
a2 + c2

, (52)

λ3 = a2 + b2 + c2, v3 = (a, b, c)T

√
a2 + b2 + c2

, (53)

with the abbreviations a = K̂yK̂z, b = K̂zK̂x , and c = K̂xK̂y .
Even though there is only one state with an eigenvalue λ 
= 0,
we have to prove that this state is connected with a longitudinal
polarization. Inserting v3 into Eq. (49) yields

μvc ν K ∼ K − K
(
K̂3

x , K̂3
x , K̂3

x

)T
. (54)

Due to the second term, the dipole moment is not parallel to
K . Therefore, we have shown that longitudinal and transverse
exciton states are coupled by the nonanalytic exchange
interaction (45) if K is not oriented in a direction of high
symmetry. Furthermore, we see that two eigenstates of the
matrix in Eq. (45) are degenerate. If the nonanalytic exchange
interaction were the only reason for the K-dependent splitting
of the 1S exciton, only two states would be observable in
experiments for any direction of K .

V. SUMMARY AND OUTLOOK

Using k · p perturbation theory, we could derive K-
dependent higher-order terms of the analytic and nonanalytic
exchange interaction of Wannier excitons. We have discussed
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the specific properties of Cu2O and in particular the effects
of the valence band structure. Investigating the K-dependent
exchange interaction of the 1S excitons in this semiconductor,
we could show that the K-dependent terms of the analytic
and the nonanalytic exchange interaction are negligibly small

compared to the effects of the nonisotropic dispersion. A
closer examination of the K-dependent nonanalytic exchange
interaction exhibited a coupling between longitudinal and
transverse exciton states if K is not oriented in a direction
of high symmetry.
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