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We study electron and spin transport in interacting quantum wires contacted by noninteracting leads. We
theoretically model the wire and junctions as an inhomogeneous chain where the parameters at the junction
change on the scale of the lattice spacing. We study such systems analytically in the appropriate limits based on
Luttinger liquid theory and compare the results to quantum Monte Carlo calculations of the conductances and local
densities near the junction. We first consider an inhomogeneous spinless fermion model with a nearest-neighbor
interaction and then generalize our results to a spinful model with an on-site Hubbard interaction.

DOI: 10.1103/PhysRevB.94.115162

I. INTRODUCTION

An important tool to study the physics of quantum wires is
measurements of their conductance as a function of parameters
such as the filling fraction or temperature [1–7]. In order to
understand the results of such experiments, it is important
to find an appropriate model not only for the quantum wire
itself but for the full system including the leads. Typically,
the properties of the quantum wire are strongly affected by
electron-electron interactions. Fermi-liquid theory has to be
replaced by Luttinger liquid theory in one dimension [8–10].
The leads, on the other hand, form a higher-dimensional
electron gas in which interactions can be neglected. This
suggests that a lead-wire-lead system can be modeled as
an inhomogeneous quantum wire where the interaction and
hopping parameters, as well as the chemical potential, change
at the junctions. A sketch of such a setup and how it is modeled
as an inhomogeneous wire is shown in Fig. 1. Quantum wires
have been analyzed using Luttinger liquid theory previously
and it has been shown that for perfect adiabatic contacts, the
conductance of the wire is controlled by the parameters of
the lead rather than of the wire [11–26]. The conductance
for adiabatic contacts with noninteracting leads is therefore
given by the perfect quantum conductance, G = ne2/h for n

channels, instead of being renormalized by the Luttinger liquid
of the wire as might be expected from a naive calculation for an
infinite wire. However, for any reasonably sharp junction, there
will be scattering at the junction even for otherwise perfect
ballistic connections. Such scattering becomes renormalized
by the interaction and can lead to a vanishing dc conductance
in the low-temperature limit for repulsive interactions [27–33].

In two recent papers [24,26], we have shown that for an
inhomogeneous spinless fermion model, as depicted in Fig. 1,
it is, however, still possible to obtain perfect conductance by
tuning the parameters of the wire and the leads. Using Luttinger
liquid calculations and a comparison with numerical quantum
Monte Carlo (QMC) results for static local response functions,
it was possible to establish the existence of a highly nontrivial
conducting fixed point described by two effective Luttinger
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liquid parameters [24,26]. Here, we want to generalize these
studies in two ways. First, we will check the existence of
conducting fixed points more directly by calculating the con-
ductance numerically using QMC. Second, we will generalize
the study of the conductance in inhomogeneous wires to
spinful systems. We will concentrate on two microscopic
models: (1) The spinless fermionic chain with Hamiltonian
H = H0 + HI , where

H0 = −
∑

j

(tj�
†
j+1�j + H.c. + μjnj )

and

HI =
∑

j

Ujnjnj+1. (1)

Here, �
(†)
j is the annihilation (creation) operator of a spinless

fermion at site j and nj = �
†
j�j is the density operator. The

site-dependent parameters tj ,μj , and Uj are defined as shown
in Fig. 1. (2) The inhomogeneous Hubbard model,

H0 = −
∑
j,σ

(tj�
†
j+1,σ �j,σ + H.c. + μjnj )

and

HI =
∑

j

Ujnj,↑nj,↓ , (2)

right leadleft lead
wire

FIG. 1. A quantum wire connected to two noninteracting leads.
The identical leads are modeled as a chain with hopping t�, chemical
potential μ�, and interaction U� = 0. The wire has parameters
Uw, tw, μw . The junction between the leads and the wire is modeled
as being abrupt.
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where �
(†)
j,σ is now the annihilation (creation) operator of an

electron with spin σ . The particle number for each spin species
is given by nj,σ = �

†
j,σ�j,σ and the total number operator

is nj = nj,↑ + nj,↓. For the numerical simulations, we will
consider systems with periodic boundary conditions with half
of the system representing the noninteracting leads and the
other half the interacting quantum wire. It is important to note
that the backscattering at the two junctions will not influence
each other as long as we ensure that the distance between
the junctions is large compared to the correlation length in the
quantum wire, ξ ∼ u/T , where u is the velocity of elementary
excitations and T the temperature.

Our paper is organized as follows. In Sec. II, we will
introduce the QMC method used to calculate the conductance
and discuss cases of homogeneous and inhomogeneous wires
where exact results are available which can be used to check the
accuracy of the numerical results. In Sec. III, we then present
results for the spinless fermionic chain, given by Eq. (1).
Next, in Sec. IV, we derive the bosonized theory for the
inhomogeneous Hubbard chain and compare the theoretical
predictions with QMC data. We summarize our main results
and discuss some of the remaining open questions in Sec. V.

II. QMC METHOD

We have implemented a quantum Monte Carlo (QMC) algo-
rithm, the stochastic series expansion (SSE) [34], to calculate
imaginary-time correlation functions [35]. The conductance
of the wire in the linear response regime can then be obtained
from these imaginary-time correlation functions [36]. We
calculate the linear response to an infinitesimal drop in electric
and magnetic field at site k for charge and spin, respectively,

P c
k = e

∑
m>k

(nm,↑ + nm,↓),

(3)
P s

k = μB

2

∑
m>k

(nm,↑ − nm,↓) ,

where e is the elementary charge, m is the site, and μ the
Bohr magneton. Accordingly, we define a local charge and
spin current operator,

jc
k = itke

∑
σ

(ψ†
k,σψk+1,σ − ψ

†
k+1,σ ψk,σ ),

j s
k = itkμB

2
[(ψ†

k,↑ψk+1,↑ − ψ
†
k+1,↑ψk,↑)

− (ψ†
k,↓ψk+1,↓ − ψ

†
k+1,↓ψk,↓)]. (4)

Following Ref. [36], we calculate the charge and spin conduc-
tance (ν = c,s) in the linear response regime using

gν
x,y(ωn) = −ωn

�
Re
∫

�β

0
eiωnτ

〈
P ν

x P ν
y (iτ )

〉
dτ

= −ωn

�

∫
�β

0
cos(ωnτ )

〈
P ν

x P ν
y (iτ )

〉
dτ, (5)

where y = 0 is the location of the perturbation Py (quadratic
in the Fermi operators) and x is the location where we
determine the response to that perturbation, where |x − y|
must be small. Here, ωn = 2πn/β are the bosonic Matsubara
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FIG. 2. The charge conductance gc
x,y(ωn) for a noninteracting

chain of spinful fermions with length L = 200, periodic boundary
conditions, and inverse temperature βt = 50. Results for different
distances x − y between the perturbation and the measurement are
displayed; for x − y = 0, results are also shown for βt = 20 (red
circles). They all extrapolate in the ω → 0 limit to a conductance of
gc

x,y(ω → 0) → 2e2/h as expected; see main text. The errors in the
data are smaller than the point size.

frequencies, which are used to extrapolate to ω = 0 to obtain
the dc conductance. For the spinless fermionic chain (1),
we can only define a charge conductance using a voltage
drop P c

k = e
∑

m>k nm. The charge current operator jc
k is then

defined as in Eq. (4), but without the spin index σ .
Numerically, the task of obtaining conductances is now

reduced to calculating expectation values in imaginary time.
The technique for this is described in Ref. [35]. QMC provides
us with the expectation values 〈P ν

x P ν
y (iτ )〉, which are periodic

in τ with a period of β. As a final step, we have to numerically
perform the integral in Eq. (5) to obtain the conductances.

In the following, we discuss several consistency checks.
It is important to note that this method was described and
applied to homogeneous chains in Ref. [36], but here it is
applied to inhomogeneous chains, which is the case we are
interested in. As a first check of our QMC algorithm, we show
results for the spin and charge conductance of a homogeneous
chain of spinful noninteracting fermions [Eq. (2) with Uj ≡ 0]
in Figs. 2 and 3. Independent of the distance x − y between
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FIG. 3. The spin conductance gs
x,y(ωn) for the same system and

parameters as in Fig. 2. All curves extrapolate in the ω → 0 limit
to the theoretically expected ideal conductance of gs

x,y(ω → 0) →
0.5μ2

B/h. As for Fig. 2, the errors are smaller than the point size.
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the perturbation and the response, all curves have the same
direct current (dc), i.e., ω → 0, limit. Furthermore, we can
see that the conductances at finite frequencies only depend
on the absolute value |x − y|. Thus we extrapolate the curves
for different distances |x − y| and average their gν(ω = 0)
values in order to obtain the dc conductance, gν . For the
extrapolation, we use a polynomial fit of degree six, gν

x,y (ωn) =
gν(ω = 0) +∑6

i=1 Ciω
i
n. The fitting procedure and the dif-

ferences in gν(ω = 0) for the different distances |x − y| give
an estimate for the error of the numerically obtained dc
conductance. It is important to stress that the errors are
completely dominated by the extrapolations. The statistical
errors of the simulations at frequencies ωn are very small and
have almost no influence on the extrapolated value for the dc
conductance. Note also that we can only provide a sensible
error estimate. The true error is unknown and might in some
cases be larger than the estimated error.

In order to ensure that the junctions behave independently
of each other, we require T 	 u/L to be satisfied. In this
case, the simulation results remain independent of length, so
that no additional finite-size scaling is required. Therefore, the
systematic extrapolation to a vanishing Matsubara frequency
will give results in the thermodynamic limit.

When we run our simulations at higher temperatures, the
Matsubara frequencies are further apart from each other (see
Fig. 2), which makes the extrapolation to the zero-frequency
limit more difficult. On the other hand, since SSE is a high-
temperature expansion, lower temperatures will increase the
simulation time, especially because in our case measurements
of imaginary-time correlation functions are necessary for
all τ , and we will require larger system lengths to satisfy
T 	 u/L. It turns out that βt = 50 is a good compromise
between reasonable simulation times and a good accuracy of
the extrapolation ω → 0. As expected for a noninteracting
system, the dc conductance is perfect, i.e., we find 2e2/h for
the charge conductance, since we have two independent charge
channels (σ =↑ , ↓); see Fig. 2. Similarly, we find 0.5μ2

B/h

for the spin conductance, consistent with the spin being 1/2 in
units of μB ; see Fig. 3.

Next, we consider the homogeneous interacting Hubbard
model which is integrable by Bethe ansatz. In particular,
the Luttinger liquid (LL) parameters Kν as well as the
spin and charge velocities uν of the elementary excitations
can be determined exactly [37]. For the conductances and
compressibilities, one finds, in particular [10,37–39],

κν = 2Kν

πuν

, gc = 2e2

h
Kc, and gs = μ2

B

2h
Ks. (6)

We are considering here only the SU(2) symmetric case
where the spin LL parameter is fixed, Ks = 1. In Fig. 4(a),
we show a comparison between the QMC result for the
charge conductance at fixed chemical potential μ = t and
various interaction strengths U after extrapolating to the
zero-frequency limit and the Bethe ansatz result (6). To obtain
the LL parameter Kc, an integral equation obtained by Bethe
ansatz [37] has been evaluated numerically. In Fig. 4(b), we
show a similar comparison for the charge compressibility. The
QMC data in Fig. 4 generally agree quite well with the exact
results for all interaction strengths U .
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FIG. 4. Comparison between QMC data for the homogeneous
Hubbard chain (2) with parameters μ = t , βt = 50, and L = 150,
and the exact Bethe ansatz results. (a) Charge conductance; (b) charge
compressibility.

For the half-filled case, μj = 0, it is known that the Hubbard
model shows a Mott transition at arbitrarily small U > 0 from
a conducting to an insulating ground state. The charge gap

c(U ), measured in units of t , can be calculated by Bethe
ansatz and is given by [37]


c = −2 + U

2
+ 2

∫ ∞

0

ds

s

J1(s) exp(−sU/4)

cosh(sU/4)

≈ 4

π

√
U exp

(
−2π

U

)
, (7)

where J1(s) is a Bessel function. The second line in Eq. (7)
represents the result for small U where the charge gap is
exponentially small. For large U , the charge gap will scale
linearly in the Hubbard interaction U . The spin channel,
on the other hand, remains gapless; the spin conductance is
independent of U and the Luttinger parameter is fixed in the
thermodynamic limit to Ks = 1 due to the SU(2) symmetry.
In the QMC data shown in Fig. 5, the spin conductance is
indeed close to gs = μ2

B/2h. Note that for finite lengths L,
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FIG. 5. The Hubbard chain at half filling (μ = 0, βt = 50, L =
150). The charge conductance only drops slowly to zero because of
the exponentially small charge gap at small U . The drop in gc is well
described by Eq. (8) (blue dashed line). The spin conductance, on the
other hand, is independent of U and fixed by the SU(2) symmetry
(red dashed line).
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TABLE I. The parameters of the inhomogeneous system.

−L/2 � j < 0 0 � j < L/2

tj t� = 1 tw
Uj U� = 0 Uw � 0
μj μ� μw

there will be logarithmic corrections, Ks ∼ 1 + 1/ ln(L/L0)
with a characteristic length scale L0 [40], which might partly
explain why the QMC data for the spin conductance are slightly
larger than the thermodynamic limit result. For the charge
conductance, we find finite values for U < 2 and values close
to zero for U > 2.

To understand these results, it is important to stress that
the QMC results are for finite chains of length L = 150 at a
finite temperature T 	 u/L. The charge gap 
c leads to a
characteristic temperature scale Tc ∼ 
c and we expect the
conductance to scale as

gc(T ,U ) = gc
0 exp(−Tc/T ), (8)

i.e., the conductance will only become zero for temperatures
that are small compared to 
c. We also require chain lengths
which are large compared to Lc(U ), a characteristic length
scale Lc ∼ 1/
c, which will be satisfied due to the condition
on the temperature and T 	 u/L. Since the charge gap is
exponentially small for small U , very small temperatures
are required to see the charge gap in the conductance. The
numerical results are well described by setting Tc ∼ 
c

and using the small U expansion for the charge gap given
in Eq. (7).

So far, we have concentrated on testing the QMC algorithm
for homogeneous systems. As a next step, we consider a
simple example for a noninteracting spinful inhomogeneous
system where the QMC results can be directly compared to
an analytical solution. As in all the inhomogeneous models
discussed, in the following we are considering a periodic chain
of length L with parameters as given in Table I. Here we
set U� = Uw = 0 while the hopping strengths are different,
t� 
= tw. The transmission and reflection amplitudes for nonin-
teracting spinless fermions are known in this case [26]. Since
the noninteracting Hubbard model has two independent spin
channels, the reflection and transmission follow directly from
the spinless result. The two velocities in the left and right part
of the chain for each spin channel are given by

u�,w;σ = 2at�,w sin[ak�,w;σ ], (9)

where k�,w;σ = 1
a

arccos μσ

2t�,w
are the Fermi momenta in the

lead and the wire, and a is the lattice spacing. From this, the
reflection coefficient can be written as

R = −u� − uw

u� + uw

, (10)

leading to a transmission

|T |2 = (1 − |R|2)
u�

uw

. (11)

The conductance for each spin species is therefore given by
G = (1 − |R|2)e2/h so that gc = 2G. An analogous calcula-
tion leads to gs = (1 − |R|2)μ2

B/2h. These analytical results
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gc  [e
2 /h
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B2  /h

]QMC gc

QMC gs

analytical gc

analytical gs

FIG. 6. QMC data for the charge and spin conductances of a
junction of two noninteracting wires (symbols) with tw = t , μ = 1.5t ,
βt = 50, and L = 200 compared to the exact result (lines).

are shown as lines in Fig. 6 and compared to the QMC data.
As soon as both bands start to become filled, the conductance
increases drastically up to a maximum at the homogeneous
point and then slowly drops down. The QMC results are in
good agreement with the theoretical prediction.

III. SPINLESS INHOMOGENEOUS FERMION CHAINS

Here we study the interacting spinless fermion model (1).
Analytically, we have investigated this model already in
two recent publications [24,26]. Our main result was that
there exists a line of nontrivial conducting fixed points
where the backscattering at the junction vanishes despite
the inhomogeneity of the system. In Ref. [26], we have, in
particular, been able to formulate a conformally invariant
boundary theory which describes these fixed points. One
prediction of this theory was that two different boundary
Luttinger parameters exist which determine the scaling of
autocorrelations in imaginary time at the boundary. We have
been able to verify these scaling predictions numerically
by quantum Monte Carlo simulations. Furthermore, we also
obtained an analytic formula for the Friedel oscillations [41]
in the density near the boundary, which are known to have a
characteristic amplitude [42–44] and give information about
the interacting correlation functions and the strength of the
backscattering [24,26,45]. However, at that time, we were not
able to check the main prediction—the existence of a line of
conducting fixed points—directly. The aim of this section is to
provide such a direct check using the QMC method described
in the previous section.

A. The half-filled case

The half-filled case, given by Eq. (1) with μj ≡ 0, is
the easiest to analyze for two reasons. First, the homoge-
neous spinless fermion model is integrable for all interaction
strengths Uj ≡ U and chemical potentials μj ≡ μ. However,
only for μ = 0 (density 〈nj 〉 = 1/2) can the velocity of the
elementary excitations u and the Luttinger liquid parameter K

be determined in closed form,

u = atπ

√
1 − (U/2)2

arccos(U/2)
, K = π

2[π − arccos(U/2)]
. (12)
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These results are valid in the critical regime −2 < U � 2
where the low-energy properties of the model are described
by Luttinger liquid theory. Second, we also found in Ref. [24]
that the criterion for perfect conductance at an abrupt junction
is particularly simple in this case. In general, each local
perturbation in the chain leads to an oscillating backscattering
∼λe−i2kF x�

†
+�−, where �± are the left- and right-moving

fermion fields and kF is the Fermi wave number with kF = π/2
in the half-filled case. The scattering amplitude λ in the
half-filled case takes the simple form

λ ∝
∑

j

e−i2kF j (uj+1 − uj ). (13)

While this amplitude averages to zero in the bulk of the lead
and the bulk of the wire, it is nonzero exactly at the boundary
with

λ ∝ u� − uw. (14)

For all interaction strengths in the critical regime, we there-
fore obtain a powerful and simple prediction for perfect
conductance, i.e., conductance across a junction without any
backscattering: The conductance is perfect if the velocity
of excitations in the lead u� exactly matches the velocity
of excitations uw in the interacting quantum wire. If the
condition (14) is fulfilled, then the conductance across a
junction of a semi-infinite wire with LL parameter K�

and a semi-infinite wire with LL parameter Kw is given
by [24,26]

G = e2

h
K̄ with K̄ = 2K�Kw

K� + Kw

. (15)

For a noninteracting lead, this reduces to K̄ = 2Kw/(1 + Kw).
In Fig. 7, we provide a numerical test of this prediction
comparing the conductance from QMC with the theoreti-
cally predicted value for ideal conductance (15) if u� = uw.

1 1.2 1.4 1.6 1.8
tl [t]

-0.1

-0.05

0

G
-e

2 
K

/h
 [e

2 /h
]

FIG. 7. Comparison between QMC data (symbols) for the inho-
mogeneous spinless chain (1) with parameters μ = 0, tw = t , U� = 0,
βt = 50, Uw = 1.8t (black), Uw = 0.4t (blue), and L = 400, and
the analytical expression, given by Eq. (16) (solid red line and
dashed purple line), with α a fitting parameter. The dotted line shows
perfect conductance K̄e2/h, given by Eq. (15), with K̄ ≈ 0.739 and
K̄ ≈ 0.940, respectively. The arrows at the t� axes indicate the points
u� = uw .

Furthermore, we show that the conductance away from the
fixed point is well fitted by the second-order perturbative
result,

G(T ) = e2

h

⎡
⎣K̄ − α(u� − uw)2︸ ︷︷ ︸

λ2

(
T

TK

)2K̄−2
⎤
⎦, (16)

where the amplitude α is a free parameter. Note that for repul-
sive interactions, Kw < 1, backscattering is always relevant
and increases in the limit T → 0. The conductance curve
shown in Fig. 7 is then expected to become singular and
will approach zero everywhere except at the conducting fixed
point.

B. Away from half filling

Next, we want to study the conductance in the spinless
fermion model (1) with a constant but nonzero chemical
potential, μj ≡ μ 
= 0. In this case, the condition u� = uw for
perfect conductance across a junction no longer holds. Instead,
we can calculate the backscattering amplitude λ only to lowest
order in the interaction and find [26]

λ ≈ a

2π

(
t�

sin[akF�]
+ U�

π
− tw

sin[akFw]
− Uw

π

)

− aμ

4π
(cot[akF�] − cot[akFw]). (17)

Surprisingly, the scattering amplitude in lowest order is real.
Numerically, we have found that this seems to be the case even
for strong interactions. As a consequence, it should still always
be possible to find a conducting fixed point. Equation (16)
continues to describe the scaling of the conductance if the
proper backscattering amplitude is used. The LL parameter
Kw for the interacting wire can no longer be written in closed
form. However, it is possible to determine Kw to high accuracy
by numerically solving integral equations obtained by Bethe
ansatz [37]. In a previous paper [26], we showed that for every
chemical potential μ, it is possible to induce a sign change
in the Friedel oscillations near the junction by tuning the
parameters of the lead and wire. Since the Friedel oscillations
are linear in the backscattering amplitude λ (see Ref. [26] and
Sec. IV), this shows that one can change the sign of λ, thus
providing an indirect proof for a conducting fixed point where
λ = 0.

Here we want to show the existence of conducting fixed
points away from half filling directly. In Fig. 8, we present
QMC data for the conductance across a junction of a lead
and an interacting quantum wire for various spatially constant
chemical potentials. Note that we plot the measured conduc-
tance G minus the ideal conductance without backscattering
given by K̄e2/h, i.e., the zero line in the plot indicates perfect
conductance where backscattering at the junction is absent. For
all chemical potentials shown, the curves indicate the existence
of a perfectly conducting fixed point. As expected based on
the lowest-order result of the backscattering amplitude, given
by Eq. (17), the position of the fixed point shifts as a function
of chemical potential.
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FIG. 8. Conductance G − K̄e2/h for the inhomogeneous spin-
less chain (1) with parameters tw = t , Uw = 1.8t , U� = 0, βt = 50,
and L = 400, for different chemical potentials μ. The density
varies between n ≈ 0.51 (μ/t = 0.1) and n ≈ 0.75 (μ/t = 1.5). The
dashed line indicates perfect conductance. The solid lines show fits to
−A(u� − B)2 with A and B fitting parameters [see Eq. (17)], the most
general correction consistent with the model. The arrows indicate the
points when u� = B.

IV. THE INHOMOGENEOUS HUBBARD MODEL

While the spinless case is the easiest to analyze theoretically
and nicely demonstrates the existence of nontrivial perfectly
conducting fixed points for abrupt lead-wire junctions, its value
as a realistic model to describe experiments on quantum wires
is limited. While one could potentially spin polarize electrons
in strong magnetic fields, making them effectively spinless,
the typical experimental setup involves spinful electrons. As a
next step, we therefore want to generalize the investigation of
a perfectly conducting fixed point to the Hubbard model (2).
We will concentrate here on the experimentally most common
case without magnetic fields, Bj ≡ 0. The Hubbard model
then possesses a SU(2)-spin symmetry, which fixes the spin
Luttinger liquid parameter to Ks ≡ 1.

In the following, we will first present the low-energy
effective theory for an inhomogeneous Hubbard chain and
then compare this theory with QMC data for the conductances
across a lead-wire junction.

A. Luttinger liquid theory

The homogeneous Hubbard model at low energies in the
critical regime where both spin and charge excitations are
gapless can be described by an effective quadratic bosonic
theory: the Luttinger liquid. In the following, we assume
that we can generalize this effective theory directly to the
inhomogeneous case. Such an approach where only a narrow
band of states near the Fermi momenta are kept is certainly
justified if the hopping and interaction parameters as well as
the chemical potentials in lead and wire are close enough
so that backscattering is weak and only states close to the
Fermi momenta will be mixed. In the following, we implicitly
assume that we are in such a limit. For large inhomogeneities
at the junctions, only numerical data can clarify if the Luttinger
liquid theory results still hold qualitatively.

The lead-wire junction at low energies is described by the
effective Hamiltonian H = Hq + Hbs (see Appendix A for

details), where

Hq = 1

2

∫
dx
∑
ν=c,s

[
uν

x

Kν
x

(∂xφi)
2 + uν

xK
ν
x (∂xφ̃i)

2

]
(18)

describes the bosonic modes which obey [φν(x),�η(x ′)] =
iδνηδ(x − x ′) for ν,η = c,s, with �ν(x) = ∂xφ̃ν(x) a con-
jugate momentum. The spin (ν = s) and charge (ν = c)
velocities and Luttinger parameters, uν

x and Kν
x , respectively,

completely characterize the system’s low-energy properties.
We focus again on the case of a sharp jump where we have
two different regions with uν

x<0 = uν
� and uν

x>0 = uν
w. Provided

the two boundaries of the wire are far enough apart, this is
sufficient to characterize the required properties of the system.

Additionally, we have local backscattering terms at the
junctions,

Hbs ≈ λR cos[
√

2πφc(0)] cos[
√

2πφs(0)]

+ λI sin[
√

2πφc(0)] cos[
√

2πφs(0)]. (19)

Here, λR denotes the real part and λI the imaginary part of
the scattering amplitude. Note that the sin[

√
2πφs(0)] term

is forbidden by the SU(2) symmetry in the case without
magnetic fields which is considered here. To lowest order in the
interaction, one can calculate the backscattering coefficients
and we find

λR = 1

π

(
v1

�

sin2[akF�]
− v1

w

sin2[akFw]
− 2aU�

π

+ 2aUw

π
+ aμ� cot[akF�] − aμw cot[akFw]

)
(20)

and

λI = 2aU�

π2
cot[akF�] − 2aUw

π2
cot[akFw],

with v1
�,w being renormalized Fermi velocities defined in

Appendix A, and kF�,w being the Fermi momenta in the lead
and the wire, respectively. This result generalizes Eq. (17) to
the spinful case. Importantly, the scattering amplitude λ is no
longer real. This means that now, in general, two separate
conditions have to be fulfilled to make the backscattering
amplitude zero. Here we want to concentrate on a noninter-
acting lead, U� = 0. In this case, the imaginary part of the
backscattering amplitude is given by λI ∼ Uw cot[kFwa]. In
order for λI to vanish, either (i) Uw = 0 or (ii) cos[kFwa] = 0.
The first case is not of interest to us and leads for μ� = μw

to the trivial fixed point of a noninteracting homogeneous
system. The second possibility implies that the wire is half
filled, kFw = π/2 and μw = 0. Then, Eq. (20) implies that
one can find a point where λR = 0 for any set of hopping
and interaction wire parameters, tw and Uw. This would make
the backscattering in the half-filled inhomogeneous Hubbard
model analogous to the spinless case considered before.
However, even in the absence of backscattering at the junction,
the umklapp scattering term

HU ∼ U

∫
dx cos[

√
8πφc(x)] (21)

is nonoscillating and relevant for repulsive interactions leading
to the charge gap (7) at half filling. Therefore, only the
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spin sector can show ideal conductance at a nontrivial fixed
point for half filling. Note that for attractive interactions, the
charge sector remains gapless, while a gap develops in the
spin sector. In this case, Kc

w > 1 so that backscattering at
the junction is always irrelevant, leading to perfect charge
conductance. Away from half filling, on the other hand,
Eq. (20) suggests that nontrivial conducting fixed points do not
exist at all. However, it is important to stress that this analysis
is based on an expansion of the scattering amplitude to lowest
order in the Hubbard interaction. Only numerical calculations
can clarify if this result also holds qualitatively for strong
inhomogeneities.

The calculation of the conductance in a lead-wire-lead
Hubbard system for weak backscattering is a straightforward
generalization of the result in the spinless case, given by
Eq. (16). In the model considered here, the only backscattering
present is the 2kF spin-conserving backscattering given by
Eq. (19) in bosonized form. In general, other sources of
backscattering—including processes which involve a spin
flip—can also be present at the boundary, which could lead
to different backscattering amplitudes for charge and spin.
The change of the conductance as a function of temperature
(energy scale) is determined by the scaling dimension of the
boundary operator. This scaling dimension is found from the
renormalization-group (RG) equation

1

λ

dλ

d ln T
= K̄c/2 + K̄s/2 − 1, (22)

where

1

K̄ν

= 1

2

[
1

Kν
�

+ 1

Kν
w

]
(23)

and

1

ūν

= 1

2

[
1

uν
�

+ 1

uν
w

]
, (24)

with ν = c,s. For a lead-wire system, i.e., a single junction
between a lead and a wire, the ideal conductance in the absence
of backscattering now reads

g
c,s
0 = 2K

c,s
� Kc,s

w

K
c,s
� + K

c,s
w

{
2 e2

h
for charge

μ2
B

2h
for spin,

(25)

where again Ks
� = Ks

w ≡ 1 for SU(2) invariant models, al-
though finite size and temperature can give significant loga-
rithmic corrections [40]. Finally, one finds, for the differential
conductance [31],

gc,s = g
c,s
0 − αc,s

( |λ|
ūc,s

)2(
T

TK

)K̄c+K̄s−2

, (26)

where TK is the characteristic temperature scale set by the
backscattering strength and αc,s are constants.

B. Conductances from QMC

As for the spinless case, we will, in the following, use
the SSE code to calculate the conductances across an abrupt
lead-wire junction described by the inhomogeneous Hubbard
model (2). Based on the analysis of the lowest-order result
for the backscattering amplitude (20), we might expect that

0.6 0.8 1 1.2 1.4 1.6 1.8 2
tl [t]

0

0.5

1

1.5

2

gc  [e
2 /h

]

gs  [μ
2 B

/h
]

FIG. 9. Charge and spin conductance for the inhomogeneous
half-filled Hubbard model for a chain with L = 150, tw = t , βt = 25,
and Uw/t = 1. We find ideal spin conductance for t� ≈ 1.

the half-filled, particle-hole symmetric case is different from
any other generic filling. We will therefore discuss this case
separately.

1. The half-filled case

For half filling, the backscattering amplitude (20) to lowest
order in the Hubbard interaction is real. If this also holds for
stronger interactions, then we might expect to be able to find a
nontrivial conducting fixed point for any set of wire parameters
by changing the hopping t� in the noninteracting lead. At
this fixed point, we expect ideal spin conductance, while the
charge conductance will become zero in the thermodynamic
limit due to the relevant umklapp scattering term in the bulk,
given by Eq. (21). In Fig. 9, we exemplify results for the
case Uw = 1. The spin conductance indeed reaches its ideal
value gs = μ2

B/2h in a region around t� ≈ 1. The maximum
is, however, quite broad so that it is not possible to determine
the fixed point precisely. The charge conductance also shows a
maximum in the same region. Similar to the homogeneous case
shown in Fig. 5, the conductance is nonzero only because the
temperature in the numerical simulations is large compared to
the exponentially small charge gap (7). In the low-temperature
limit, the charge conductance will vanish for all hopping
parameters t�.

2. Away from half filling

Away from half filling, the analysis of the lowest-order
result for the scattering amplitude suggests that nontrivial
conducting fixed points do not exist. Checking all possible
parameter combinations in the lead and in the wire numerically
is not feasible, so this statement cannot be explicitly shown.
However, it is possible to numerically test several different
cases by keeping the parameters in the noninteracting lead
fixed and vary both interaction and hopping strength in the
wire. Here the density across the junction is kept constant at a
generic value n = 1/4 by choosing the chemical potentials
μ� and μw accordingly. In Figs. 10 and 11, we plot the
relative conductances g

c,s
λ = gc,s − g

c,s
0 so that gc,s

λ = 0 would
correspond to a conducting fixed point. Note that we vary tw
here so that the Luttinger parameter Kc

w and therefore gc
0 is

different for each point shown in Figs. 10 and 11. For both
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0.6 0.8 1 1.2 1.4 1.6 1.8
tw [t]

-1

-0.8

-0.6

-0.4

-0.2

0
gc λ [e

2 /h
] Uw/t=1,2,3,4,6

FIG. 10. Relative differential charge conductance gc
λ = gc − gc

0

for different values of Uw as a function of tw in an inhomogeneous
system of length L = 150 with t� = t , βt = 25 and constant filling
n = 1/4 along the chain.

the spin and the charge conductance, we see that the value for
ideal conductance g

c,s
λ = 0 is never reached. This is in contrast

to the spinless case in Fig. 8, where for a given value on one
side it was possible to achieve perfect conductance by just
varying a single parameter on the other side. While this does
not prove the conjecture—based on the lowest-order results for
the scattering amplitude—that a nontrivial conducting fixed
point does not exist in the spinful case away from half filling,
it shows that the spinful case is different from the spinless
case.

C. Friedel oscillations

The inhomogeneity at a lead-wire junction leads to Friedel
oscillations in the local density which are proportional to
the backscattering amplitude λ [24,26,45]. Calculating these
oscillations for small inhomogeneities by field theory and
comparing the results with QMC data is therefore an alternative
way to study backscattering at the junction. In Ref. [26],
we have shown that such an analysis can be used to find
conducting fixed points in the spinless case. In the following,
we will generalize the field theory for the Friedel oscillations

0.6 0.8 1 1.2 1.4 1.6 1.8
tw [t]

-0.2

-0.1

0

gs λ [μ
2 B
/h

] Uw/t=6,4,3,2,1

FIG. 11. Relative differential spin conductance gs
λ = gs − gs

0 for
different values of Uw as a function of tw in an inhomogeneous system
of length L = 150 with t� = t , βt = 25 and constant filling n = 1/4
along the chain.

to the spinful case and compare the result with numerical
data.

The bosonized density operator for spinful fermions is
given by

n(x) = n0(x) − 1√
π

∂xφc(x)

+const

πa
sin[2k∗

Fxx +
√

2πφc(x)] cos[
√

2πφs(x)].

The oscillating contribution to the density is therefore obtained
by the following expectation value:

ρalt(x) ∝ 〈sin[2k∗
Fxx +

√
2πφc(x)] cos[

√
2πφs(x)]〉, (27)

which has to be calculated with the full bosonized Hamiltonian
including the backscattering term. Here, k∗

Fx is the Fermi
momentum which can be found in the grand canonical
setting from the bulk density ρx ≡ 〈n0(x)〉 = k∗

Fx/π , which
is temperature dependent. In the following, we will calculate
the Friedel oscillations (27) to first order in the effective
backscattering coefficient λ. For this, we require the following
integral:

τ (x) ≡ 4
∫ β

0
dτ
∏

ν=c,s

〈ei
√

2π [φν (x,0)−φν (0,τ )]〉

=
∫ β

0
dτ
∏

ν=c,s

eπ[Gν (x,0;τ )−Gν (0,0;0)]. (28)

The Green’s function Gi(x,y,τ ) is defined in Appendix B and
can be obtained as a direct generalization of the spinless case;
see Ref. [26]. Note that in the spinful case, the integral consists
of a product of a spin and a charge vertex operator correlation
function and can therefore no longer be evaluated exactly. The
integral can be cast in the following form:

τ (x) =
∏

ν=c,s

(
4πT a

uν
x

) K̄ν
2
(

uν
x

2πaT
sinh

[
2πT x

uν
x

])− Kν
x

2

×
∫ π

0

dy

πT

∏
ν=c,s

[
zν +

√
z2
ν − 1 cos[y]

]− K̄ν
2 , (29)

with

zν ≡ coth

[
2πT x

uν
x

]
. (30)

The final result for the Friedel oscillations to first order in the
backscattering is

ρalt(x) ∝ −[λR sin[2k∗
Fxx] + λI cos[2k∗

Fxx]]τ (x). (31)

In Fig. 12, we compare the field theory formula (31) with
QMC results for the local density near the boundaries of a lead-
wire junction. Sites with x < 0 represent the noninteracting
lead; sites with x > 0 represent the interacting quantum wire.
The bulk densities in the bulk of the lead and the wire
can be calculated by Bethe ansatz and are consistent with
the numerical data. To fit the alternating part of the local
density, both the position of the scattering center as well as the
amplitude of the oscillations are used as fitting parameters. The
obtained fit describes the data very well, showing that the field
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-20 0 20
x [a]

0.2

0.25

0.3

0.35

 ρ
(x

) [
1/

a]

FIG. 12. Local density at a lead-wire junction. Symbols denote
the QMC results; the solid line denotes the Luttinger liquid result
formula (31). The numerical data are obtained for an inhomogeneous
Hubbard model with length L = 150, hoppings t� = t , tw = 0.8t ,
wire interaction Uw = 2t , and inverse temperature βtw = 25. The
chemical potentials are μ� = 1.7t , μw = 1.7t . Error bars for the QMC
data are smaller than the symbols.

theory description of the inhomogeneous system is working
although the inhomogeneity in the considered example is
not small. A more detailed study of the Friedel oscillations
across the full parameter space of the inhomogeneous Hubbard
model (2) can, in principle, be used to search for conducting
fixed points. Similar to the conductance, however, it is nearly
impossible to show that nontrivial conducting fixed points do
not exist away from half filling because of the large parameter
space which needs to be covered.

V. CONCLUSIONS

Quantum wires—electrically conducting wires with diam-
eters in the nanometer range in which quantum effects strongly
influence the transport properties—offer insights into funda-
mental questions of many-body physics as well as possible
avenues to new electronic devices. It is therefore important
to develop numerical and analytical tools to investigate the
properties of such systems.

In this paper, we have studied, in particular, the simplest
quantum wire device: an interacting quantum wire contacted
by noninteracting leads. Contrary to most previous studies,
we model the lead-wire junction microscopically and include
electron scattering at the junction. The latter is ignored in
the most commonly used field theoretical description of
this setup, where the junctions between leads and quantum
wire are assumed to be perfectly adiabatic. Our microscopic
approach starts from the opposite limit of a sharp junction
leading to models of inhomogeneous tight-binding chains
where parameters such as the hopping amplitude, the chemical
potential, and the screened Coulomb interactions abruptly
change on the scale of the lattice spacing.

To numerically investigate lead-wire junctions, we have
generalized a quantum Monte Carlo algorithm based on the
stochastic series expansion technique, which has been used
previously for homogeneous systems [36]. This method allows
us to calculate response functions in imaginary time. We
calculate the linear response to an infinitesimal drop in electric
or magnetic field. After a Fourier transformation to discrete

Matsubara frequencies, we have shown that at sufficiently
low temperatures, a reliable extrapolation to zero frequency
is possible, giving access to the charge and spin conductance
near zero temperature. To test the validity and accuracy of
this approach, we have studied different homogeneous and
inhomogeneous setups where the conductances are known
exactly. In all of those test cases, we have found very
good agreement of the numerical data with the exact results,
establishing this method as a reliable tool to study quantum
wire devices.

As a first application, we have studied the conductance
across a lead-wire junction in a spinless fermion system. In
two previous publications [24,26], we have predicted by field
theoretical means that nontrivial perfectly conducting fixed
points exist despite the inhomogeneity of the system on the
scale of the lattice spacing. At these fixed points, the amplitude
of the relevant backscattering process exactly vanishes. For the
half-filled spinless fermion system, we have predicted this to
happen when the velocities of the excitations in lead and wire
exactly match. Previously, we have only been able to provide
indirect numerical evidence for this fixed point by studying
Friedel oscillations and autocorrelations near the junction.
Here we have directly calculated the conductance and shown
that the result near the fixed point can be well fitted by the
field theory formula requiring only a single fitting parameter.
Next, we have also studied the conductance in inhomogeneous
spinless fermion wires away from half filling. In this case,
field theory predicts that conducting fixed points still exist;
however, the condition for perfect conductance is no longer
a simple velocity matching. We have verified this prediction
here numerically as well; values close to perfect conductance
are obtained for all fillings investigated.

While spinless fermions are easiest to study by field theory,
the spinful case is the experimentally more relevant one. To
study whether or not nontrivial conducting fixed points still
exist once the spin degree of freedom is included, we have
analyzed the inhomogeneous Hubbard chain without magnetic
field using bosonization. This analysis provided evidence
for a fundamental difference to the spinless case: while the
amplitude of the relevant backscattering process is always real
for spinless fermions, it is complex, in general, for the spinful
case. For the SU(2) symmetric inhomogeneous Hubbard chain,
in particular, we find to lowest order in the Hubbard interaction
that the imaginary part of the backscattering amplitude only
vanishes at half filling (particle-hole symmetric case). If we
conjecture that this holds to all orders in the interaction,
then nontrivial conducting fixed points only exist for the
half-filled system. Numerically, we have been able to show
the existence of a conducting fixed point at half filling for the
inhomogeneous Hubbard model where the spin conductance
takes its ideal value μ2

B/2h, while the charge conductance
will vanish in the thermodynamic limit due to the charge gap
induced for repulsive interactions by a relevant bulk umklapp
scattering term. On the other hand, a nontrivial fixed point
was not found for several lead-wire setups away from half
filling.

There seem to be therefore two main setups in which
these conducting fixed points—described by a rather un-
usual boundary conformal field theory [26]—can possibly
be investigated experimentally. On the one hand, one might
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consider a quantum wire of spin-polarized electrons which
is effectively described by a spinless fermion model. On the
other hand, it might be possible to use a spinful quantum
wire with a low-energy band structure which can be tuned
to a particle-hole symmetric filling by a gate electrode. In
both cases, the field theory predicts that for a sufficiently
sharp junction, a nontrivial conducting fixed point should be
accessible by tuning the effective bandwidths and chemical
potentials of the leads. For the half-filled spinful model, in
particular, a fixed point with perfect spin conductance can be
found for repulsive interactions, while perfect charge conduc-
tance is expected for attractive interactions, with backscat-
tering at the junction being always irrelevant in the latter
case.

Finally, we note that the experiment described in Ref. [7]
has recently been analyzed using the bosonic model (18),
but without the local backscattering term (19) [46,47]. In
these studies, the authors find backscattering of a wave packet
injected into the lead at a lead-wire junction. We want to stress
that this result is not in contradiction to the results presented
here. While a wave packet is indeed scattered at the junction
in an inhomogeneous Luttinger model (18) even without a
single-electron backscattering term (19) being present, the
conductance will be ideal in this case, as has already been
stressed in Ref. [12].
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APPENDIX A: LUTTINGER LIQUID THEORY

The low-energy behavior of the Hamiltonian, given by
Eq. (2), can be described as a Luttinger liquid [10]. Here
we extend our analysis to a broader class of interactions that
also includes the nearest-neighbor interactions Vj,j+1. We
will set � = 1 everywhere in this appendix. The interacting
Hamiltonian now reads

HI =
∑
j,σσ ′

[Uj : ψ
†
σjψσj :: ψ

†
σ ′jψσ ′j :

+Vj,j+1 : ψ
†
σjψσj :: ψ

†
σ ′j+1ψσ ′j+1 :]. (A1)

Normal ordered operators are given by : ψ
†
j ψj := ψ

†
j ψj −

〈0|ψ†
j ψj |0〉, with |0〉 the ground state. To simplify matters,

we consider a spin-independent, SU(2) symmetric interaction.
The low-energy theory does, however, remain valid for a
spin-dependent interaction provided the interaction is spin
conserving. The derivation of the spatially inhomogeneous
Luttinger liquid theory follows closely the standard homoge-

neous derivation [12,13], but special care must be taken to
include the local scattering at the boundary [24,26].

We assume that we can linearize the dispersion near the
Fermi momenta kFx into left- and right-moving particles via
the ansatz

ψσj√
a

= ψσ (x) =
∑
α=±

eiαkFxxψσα(x), (A2)

where the Fermi momenta are given by

μx = −2tx cos [akFx], (A3)

with a the lattice spacing and x = aj . The α = + and α = −
indices denote the right- and left-moving electrons, respec-
tively. After linearization, we have, for the noninteracting part
of Eq. (2), taking the continuum limit,

H0 = −
∫

dx
∑

α=±,σ

tx[eiakFx ψ†
σα(x)∂xψσα(x) + H.c.]

−
∫

dx
∑

α=±,σ

[2txe
−iαkFx (2x+a) + μxe

−2iαkFxx]

×ψ†
σα(x)ψσᾱ(x). (A4)

We have defined ᾱ = −α. The contribution of the final two
lines can be neglected in a homogeneous system, but will here
still contribute near the boundary where tx and μx can sharply
vary. Using Eq. (A2), the interaction HI can be decomposed
into parallel and perpendicular spin components, which in the
usual nomenclature [10] are written as

H2 =
∑
σ,α

∫
dx

[
g2⊥

x

2
ρσαρσ̄ ᾱ + g

2‖
x

2
ρσαρσᾱ

]
,

H4 =
∑
σ,α

∫
dx

g4
x

2
ρσαρσα, (A5)

and

H1 =
∑
σ,α

∫
dx

[
g1⊥

x

2
ψ†

σαψ
†
σ̄ ᾱψσ̄αψσᾱ − g

1‖
x

2
ρσαρσᾱ

]
.

Here we have suppressed the spatial indices and defined the
local right- and left-mover density ρσ± = ψ

†
σ±ψσ±. Note that

the g
1‖σ
x process has been rewritten from its natural form to

resemble a density-density interaction; however, the final g1⊥
process cannot be formulated as a density-density interaction.
It corresponds to a two-particle backward scattering process.
This is, at best, marginal and will be neglected here. Umklapp
scattering processes, when they are important, lead to a charge
gap; these are discussed in the main text. In addition, there are
scattering terms in HI which originate with the inhomogeneity
of the interaction, which renormalize the backscattering in
Eq. (A4) [24,26].

We introduce bosonic fields related to the particle
density,

ρσα(x) = − 1√
2π

∂xφσα, (A6)
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which obey the commutation relations

[φσα(x),φσ ′α(x ′)] = − i

2

[
αδσσ ′ sgn(x − x ′) + iσ

y

σσ ′
]

and

[φσα(x),φσ ′ᾱ(x ′)] = − iα

2

(
δσσ ′ + iσ

y

σσ ′
)
. (A7)

The vertex operator is

ψσα(x) = 1√
2πa

eiα
√

2π[φσα (x)]. (A8)

The Hamiltonian can be reformulated as a quadratic Hamil-
tonian in these bosonic fields, Hq, and local scattering terms
Hbs.

First, the quadratic part of the bosonic Hamiltonian is

Hq = 1

8π

∫
dx

⎛
⎜⎜⎜⎝

∂xφ↑+
∂xφ↑−
∂xφ↓+
∂xφ↓−

⎞
⎟⎟⎟⎠

T
⎛
⎜⎜⎜⎜⎝

4πvFx + 2g4
x g

2‖
x − g

1‖
x g4

x g2⊥
x

g
2‖
x − g

1‖
x 4πvFx + 2g4

x g2⊥
x g4

x

g4
x g2⊥

x 4πvFx + 2g4
x g

2‖
x − g

1‖
x

g2⊥
x g4

x g
2‖
x − g

1‖
x 4πvFx + 2g4

x

⎞
⎟⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

∂xφ↑+
∂xφ↑−
∂xφ↓+
∂xφ↓−

⎞
⎟⎟⎟⎠. (A9)

The unrenormalized velocity is vFx = 2atx sin[akFx]. We
make two unitary transformations which suffice to diagonalize
Hq. The first is φσ± = [φσ ∓ φ̃σ ]/

√
2. The new fields obey

[φσ (x),�σ ′(x ′)] = iδσσ ′δ(x − x ′), with the conjugate momen-
tum �σ (x) = ∂xφ̃σ (x). The second transformation is to rotate
to the spin-charge representation: φc/s = [φ↑ ± φ↓]/

√
2 [and

similar for the φ̃σ (x) fields]. These obey similar commutation
relations [φν(x),�μ(x ′)] = iδνμδ(x − x ′), with the conjugate
momentum �ν(x) = ∂xφ̃ν(x) and ν = c,s.

We now have the diagonal representation

Hq =
∫

dx[∂x�(x)]T M∂x�(x), (A10)

where M(x) is the diagonal matrix,

M(x) = 1

2
diag

(
uc

x

Kc
x

,
us

x

Ks
x

,uc
xK

c
x,u

s
xK

s
x

)
, (A11)

and [�(x)]T = (φc,φs,φ̃c,φ̃s). Here, Ks
x and Kc

x are the spin
and charge Luttinger parameters, and us

x and uc
x are the

renormalized spin and charge velocities. These parameters are
functions of the interaction strengths and Fermi velocities, and
to lowest order can be calculated directly:

uc
x ≈ vFx + g4

x

π
,

us
x ≈ vFx, (A12)

Kc
x ≈ 1 − 1

2π

g
2‖
x − g

1‖
x + g2⊥

x

vFx

,

and

Ks
x = 1.

At the noninteracting SU(2) symmetric point, the Luttinger
parameters are given by Ks

x = Kc
x = 1.

Collecting terms from both Eqs. (A4) and (A1), and using

ψ†
σαψσᾱ(x) = iα

2πa
e−iα

√
4πφσ (x), (A13)

the local scattering at the boundary is

Hbs = 1

2πia

∑
x = ja

j ∈ Z

∑
σ

e−2ikFxx−i
√

4πφσ (x)

×
[

e−iakFx u1
x

sin[akFx]
− 2aiUx

π
+ aμx

]
+ H.c., (A14)

which has been written again as a sum. We have used the
renormalized velocity,

u1
x = vFx + 4aV 1

x

π
sin2[akFx], (A15)

calculated to lowest order. We have also defined Ux = Uj and
V 1

x = Vj,j+1 in the continuum limit with x = aj .
On performing the sum, only local contributions from the

discontinuities at the boundary survive. In the case of a single
junction as in Table I, the necessary sum can be approximately
evaluated as∑

x = ja

j ∈ Z

e−2ikFxxFx ≈ iF�e
iakF�

sin[akF�]
− iFweiakFw

sin[akFw]
, (A16)

with Fx varying as the parameters in Table I. The backscatter-
ing Hamiltonian then becomes

Hbs ≈ Reλ cos[
√

2πφc(0)] cos[
√

2πφs(0)]

+ Imλ sin[
√

2πφc(0)] cos[
√

2πφs(0)], (A17)

with

λ = u1
�

π sin2[akF�]
− u1

w

π sin2[akFw]

+ 1

π2
(aπμ� − 2iaU�)(cot[akF�] + i)

− 1

π2
(aπμw − 2iaUw)(cot[akFw] + i). (A18)

The full Luttinger liquid description of the model is given by
the Hamiltonian H = Hq + Hbs.

APPENDIX B: THE GREEN’S FUNCTION

For the spinful Hamiltonian Hq, given by Eq. (18), we can
calculate the charge and spin Green’s functions:

Gν(x,y; τ ) = 〈φν(x,0)φν(y,τ )〉, (B1)

which satisfy the equation[
ω2

m

Kν
x uν

x

− ∂

∂x

(
uν

x

Kν
x

∂

∂x

)]
Gν,m(x,x ′) = δ(x − x ′), (B2)
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where

Gν(τ,x,x ′) = T
∑
m

eiωmτGν,m(x,x ′), (B3)

for ωm = 2πmT with m ∈ Z. We have set the lattice spacing
to a = 1. This is [13,26]

Gν,m(x,y) = K̄ν

2|ωm|e
− |ωn ||x|

uν
x

− |ωn ||y|
uν
y

+ Lx,yK
ν
x

2|ωm|
[
e
− |ωn ||x−y|

uν
x − e

− |ωn |(|x|+|y|)
uν
x

]
, (B4)

and therefore

Gν(x,y; τ ) = − K̄ν

2π
ln

∣∣∣∣∣sinh

[
πT

(
|x|
uν

x

+ |y|
uν

y

− iτ

)]∣∣∣∣∣
+ Lx,yK

ν
x

2π
ln

∣∣∣∣∣∣
sinh

[
πT
( |x|

uν
x

+ |y|
uν

y
− iτ

)]
sinh

[
πT
( |x−y|

uν
x

− iτ
)]
∣∣∣∣∣∣.
(B5)

We have introduced the function Lx,y which is 1 when x and
y are in the same region, and 0 when they are not.
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[40] S. A. Söffing, I. Schneider, and S. Eggert, Europhys. Lett. 101,

56006 (2013).
[41] J. Friedel, Il Nuovo Cimento 7, 287 (1958).
[42] R. Egger and H. Grabert, Phys. Rev. Lett. 75, 3505 (1995).
[43] S. Eggert and I. Affleck, Phys. Rev. Lett. 75, 934 (1995).
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