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Quantum field theory predicts Weyl semimetals to possess a peculiar response of the longitudinal current
density to the application of a DC magnetic field. This peculiar response, known as the chiral magnetic effect
(CME), has been proposed as one of the signatures of the unique chiral anomaly of Weyl nodes. Here we show
that such a response can in principle exist in a model without Weyl nodes. On the other hand, such a CME is at
odds with a general result showing the vanishing of the bulk current in an equilibrium system on any real material
with a lattice in an external magnetic field. Here we resolve this apparent contradiction by introducing a model
where a current flows in response to a magnetic field even without Weyl nodes. We point out that the previous
derivation of a vanishing CME in the limit of vanishing real frequency is a consequence of the assumption of
periodic boundary conditions of the system. Consistent with recent work, we found the finite frequency CME to
be nonvanishing in general when there was a nonvanishing Berry curvature on the Fermi surface. This does not
necessitate having a topological Berry flux as in the case of a Weyl node. Finally, we study how the perturbation
theory in magnetic field might be more stable in the presence of disorder. We find that in a realistic disordered
system, the chiral magnetic response is really a dynamical phenomena and vanishes in the DC limit.
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I. INTRODUCTION

Weyl semimetals, which are three-dimensional analogs of
graphene, have generated a lot of interest in recent years
because of the combination of their peculiar properties [1–5]
and experimental accessibility [6–11]. Unlike graphene, the
gapless nature of the Weyl points in the energy spectrum
of a Weyl semimetal are protected by topology through the
presence of a nonzero Berry flux in momentum space [4].
The nonzero Berry flux has certain unique characteristics
such as chiral Landau levels when subjected to a magnetic
field [12,13]. Electrons in the zero energy Landau levels in
a Weyl semimetal propagate either parallel or antiparallel to
the magnetic field and can form a closed loop only with the
aid of Fermi arc states on the surface of the Weyl semimetals
[4]. Recently some evidence for such Fermi arcs [3] and the
chiral Landau levels [14] has become available. However, the
Landau level trajectories of electrons by themselves do not
form a macroscopic response function that can be measured
without direct reference to the single electrons. On the other
hand, the topological Berry flux in Weyl semimetals is also
predicted to give rise to such a response through the so-called
“chiral anomaly” in three dimensions known from quantum
field theory [2,15]. It has been shown that this chiral anomaly
could be applicable to Weyl semimetals in the solid state
systems in the form of the “chiral magnetic effect” (CME)
[16–24].

The CME, which is originally a prediction from the
continuum field theory of Weyl fermions in three dimensions,
has been the subject of some debate when applied to solid state
systems on a lattice. Lattice regularization itself is known to
limit Weyl points to exist in pairs so as to ensure the vanishing
of the total Berry flux in momentum space. Denoting the
separation in energy of a pair of such Weyl points by δk0,

the CME predicts a current j = ( e
2π

)
2
δk0B in response to

the application of a static magnetic field B. This is a rather
unusual prediction since in the solid state, with the exception

of superconductors, the flow of a current always requires an
applied electric field. The subtle nature of the field theory
prediction was further substantiated by the demonstration of
regularization schemes where the CME would not occur in
Weyl semimetals [21,22]. Using different limits from field
theory, a variety of other conclusions were reached for the
existence of the CME, such as a critical momentum space
separation of the Weyl points [24] and the presence of a
gap [23]. Semiclassical analysis [18,19] of the magnetic field
response also concluded the CME to be absent in Weyl
semimetals. Following this, direct (numerical) linear response
calculations of CME for specific lattice models [17,20] of
Weyl semimetal concluded that the CME can indeed occur
as predicted by field theory in the appropriate momentum
and frequency limit. However, the numerical confirmation of
the CME by linear response studies of lattice models does
not address the counterintuitive nature of the CME, i.e., how
a current can flow in response to just a magnetic field. In
fact, Vazifeh and Franz [16] and later Yamamoto [25] have
shown rigorously that the current in thermal equilibrium in
any solid state material must vanish in the absence of an
electric field, which would automatically constrain the CME to
vanish.

A finite frequency analog of CME can be defined as
the current flowing parallel to a time dependent magnetic
field j = σ (ω)B(ω); finite frequency CME can be computed
by considering the corresponding component of the linear
response at finite frequency. However, the finite frequency
analog of the CME is indistinguishable from a noncolinear
response to the electric field induced by the time-dependent
magnetic field. As a result, so far studies of CME have been
limited to the static case of ω,q → 0 (we discuss the order of
limits in more detail in Sec. III B) and an explicit calculation
of finite frequency CME in Weyl semimetals is lacking. While
the focus of our work is the more counterintuitive case of
the DC limit of a magnetic field we do find that the finite
frequency response also bears interesting signatures of the
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Berry curvature (as found in independent parallel work in
Refs. [26,27]).

In this paper, we address these questions by studying the
magnetic field response of the current in metals in different
situations. We start in Sec. II by using a model Hamiltonian to
demonstrate that an adiabatically increasing magnetic field
can generate a charge current along the direction of the
magnetic field even without any topological properties such
as Weyl nodes in the dispersion. This establishes that not
only is a CME-like current response possible, it is not unique
to topological systems. In Sec. III we carefully re-examine
the linear response properties and distinguish two kinds of
linear response, namely thermal equilibrium response and
dynamical response in the DC limit. In Sec. III A, we review
how the equilibrium linear response must identically vanish.
Furthermore, we show that for finite wave-vector magnetic
fields in periodic boundary condition systems the DC limit
of the dynamical response coincides with the equilibrium
response and therefore also vanishes. In Sec. III B we explain
the apparent discrepancy between linear response and existing
field theory calculations, we also provide an explicit expression
for finite frequency CME in Weyl semimetals and show that
it has a universal nonzero limit at ω � q. In Sec. III C, we
resolve the apparent discrepancy between the results of Sec. II,
which show a finite CME-like response, the linear response
calculations in this section that prove vanishing CME. We find
here that the open boundaries in Sec. II lead to the DC limit
of the dynamical response being different from the vanishing
equilibrium response and remaining finite. Finally in Sec. IV,
we show that while disorder might be used to make the notion
of a perturbative magnetic field more well defined, it still leads
to a vanishing CME response due to scattering.

II. CHIRAL MAGNETIC RESPONSE OF CONVENTIONAL
SYSTEMS AT FINITE B FIELD

In this section we present an example of a system which
develops a DC current in response to the application of a DC
magnetic field B that is parallel to the direction of the current.
Therefore, in a sense we will see that the key surprising aspect
of the chiral magnetic response, i.e., a current response to
a magnetic field is not only possible, but is not unique to
nontopological systems.

The model we study is described by the Hamiltonian

Ĥ (k) = k4 + αkF k3
z − k4

F (1)

which is parametrized by kF and α. In the limit α → 0, kF

describes the Fermi wave vector of the system. The parameter
α is key to breaking time-reversal and inversion symmetries
along the z direction, which are symmetries that would forbid
a current response. We will choose this parameter to be small,
i.e., α � 1, so that the modification of the dispersion around
the Fermi surface can be computed perturbatively in α.

Applying a constant magnetic field along the z axis in
Landau gauge changes it to

Ĥ (kx − eBy, − i∂y,kz)

= [
(kx − eBy)2 − ∂2

y + k2
z

]2 + αkF k3
z − k4

F . (2)

This has the same eigenstates as a two-dimensional electron
gas in magnetic field; these eigenstates are well known [28].
The spectrum for states in the bulk is given by

E(B,n,kz) = [
ωc

(
n + 1

2

) + k2
z

]2 + αkF k3
z − k4

F (3)

where ωc = eB is the cyclotron frequency. Since the vector
potential Ax(y) = By is not periodic in the y i, we will consider
the system to to be open along the y direction with width W and
have periodic boundary conditions along the x and z direction.
For this system the bulk extends for a range of |kx | < W/2eB

beyond which the bulk states merge into chiral edge states.
Assuming that the system is to be terminated in the y direction
by a potential V (y), which varies smoothly on the scale of the
magnetic length, the dispersion including both bulk and edge
states is given by

E(B,n,kx,kz) = [
ωc

(
n + 1

2

) + k2
z

]2 + αkF k3
z

− k4
F + V

(
kx

eB

)
. (4)

The mean current carried by the system along the z direction
in steady state can be written as

〈jz〉 = −e
∑
n,kx

∫
BZ

dkz

2π

∂E(B,n,kx,kz)

∂kz

fn(kx,kz), (5)

where ∂E(B,n,kx ,kz)
∂kz

is the group velocity of the electrons along
the z direction and fn(kx,kz) is the occupation of the electronic
states in the nth Landau level at wave vector kx,kz. For
simplicity, we consider a system starting at a finite uniform
magnetic field B = B1. At such a finite magnetic field B, the
Landau levels indexed by n at any given momentum point
(kx,kz) are separated in energy, and adiabatically increasing
the magnetic field B from B = B1 to B = B2 preserves the
initially equilibrium occupation of the electronic levels which
is given by

fn(kx,kz) = nF (E(B1,n,kx,kz)), (6)

where nF (E) is the Fermi function at some temperature T .
It should be noted that as the magnetic field is raised the

distribution no longer remains an equilibrium distribution. In
fact, the current can be shown to vanish in equilibrium in
complete agreement with Refs. [16,25] since

〈jz〉 = −e
∑
n,kx

∫
BZ

dkz

2π

∂ñF (E(B,n,kx,kz))
∂kz

, (7)

where ñF (x) = ∫ x

−∞ dx ′nF (x ′) is the integrated Fermi func-
tion. Noting that this function must approach a constant at the
edge of the BZ where nF = 0, the current density vanishes as
〈jz〉 = −e

∑
n,kx

[ñF (E → ∞) − ñF (E → ∞)] = 0.
On the other hand, in the limit of a small but finite change

in the magnetic field, the current density acquires a finite
expectation value that can be expanded to lowest order in
(B2 − B1) as

〈jz〉 = − e(B2 − B1)
∑
n,kx

∫
BZ

dkz

2π

∂2E(B,n,kx,kz)

∂B∂kz

∣∣∣∣
B=B1

× nF (E(B1,n,kx,kz)). (8)

115160-2



ROLE OF BOUNDARY CONDITIONS, TOPOLOGY, AND . . . PHYSICAL REVIEW B 94, 115160 (2016)

Assuming the zero temperature limit, the above integral can be
restricted to be between kz = kz,1 and kz = kz,2, which are the
unperturbed Fermi points defined by E(B,n,kx,kz) = 0. With
this simplification, the current density is written as

〈jz〉 = − e

2π

∑
n,kx

(B2 − B1)[∂BE(B,n,kx,kz2)

− ∂BE(B,n,kx,kz1)]|B=B1 . (9)

Substituting in E from equation (4) gives

〈jz〉 = −e2

π

∑
n,kx

(
n + 1

2

)
(B2 − B1)

(
k2
z2 − k2

z1

)
. (10)

Using kz1,kz2 to first order in α we obtain

〈jz〉 = e2

π
αkF (B2 − B1)

×
∑
n,kx

(
n + 1

2

)[(
k4
F − V

(
kx

eB

))
1/2 − eB1

(
n + 1

2

)]3/2

(
k4
F − V

(
kx

eB

))
1/2

(11)

which is nonzero in general even though the original Hamil-
tonian has no Berry curvature.

III. LINEAR RESPONSE IN THE CLEAN SYSTEMS

A. Vanishing of low-frequency linear response
for periodic boundary conditions

In apparent contradiction to the previous section, the
dynamical linear response of the current to a low frequency
magnetic field has been shown to vanish. To facilitate a
direct comparison with our example, we review the argument
in some detail. The key ingredient in this argument is to
consider the response function in thermal equilibrium referred
to as the equilibrium response, which is distinct from the DC
limit of the dynamical response in general. The DC limit of
the dynamical response is that real frequency response with
the frequency being finite but small.

The response of the current operator j(r) in thermal
equilibrium to linear order in an external magnetic field is
given by

〈ĵa(r)〉 = T r[ĵa(r)e−β(Ĥ0+
∫

dr′j(r ′).A(r ′))]

T r[e−β(Ĥ0+
∫

dr′j(r ′).A(r ′))]
+

〈
δĵa(r)

δB

〉
0

(12)

where the second term counts for the intrinsic change of the
current operator j due to the application of the magnetic field.
Here A(r) is the vector potential generated by the magnetic
field and β = 1/kBT is the inverse temperature. Defining

û(β) = e−β(Ĥ0+
∫

dr′j(r ′).A(r ′))eβĤ0

= 1 +
∫

dr ′
∫ β

0
dτe−τĤ0 j(r ′).A(r ′)eτĤ0 + O(A2)

(13)

and using it to expand equation (12) to first order gives

〈ĵa(r)〉 = 〈ĵa(r)〉0 +
〈
δĵa(r)

δB

〉
0

+ T r
[ ∫

dr ′ ∫ β

0 dτ ĵa(r)e−τĤ0 j(r ′).A(r ′)e(τ−β)Ĥ0
]

T r[e−βĤ0 ]

−〈ĵa(r)〉0
T r

[ ∫
dr ′ ∫ β

0 dτe−τĤ0 j(r ′).A(r ′)e(τ−β)Ĥ0
]

T r[e−βĤ0 ]
. (14)

The first and the fourth terms evaluate to zero since 〈ĵa(r)〉0 =
0. For a translational invariant system we can write

〈ĵa(r)〉 = T r
[( ∫

dr ′ ∫ β

0 dτ ĵa(r)e−τĤ0 ĵb(r ′)e(τ−β)Ĥ0
)]

T r[e−βĤ0 ]

× Ab(r ′) +
〈
δĵa(r)

δB

〉
0

=
∫

dr′
ab(r − r′)Ab(r′) +
〈
δĵa(r)

δB

〉
0

. (15)

Translational invariance suggests that the transformation
to Fourier domain would simplify the results. However, it
turns out that periodic boundary conditions restrict us from
using a strictly uniform magnetic field and we must consider
a magnetic field with a finite but small wave vector q. At such
a wave vector we can readily choose the Fourier transform of
the vector potential l A(r) to be A(q) = i

q2 B × q. Using this,
we can obtain the response of the lowest Fourier components

of the current density as

〈ĵa(q)〉 = T r
[( ∫ β

0 dτ ĵa(q)e−τĤ0 ĵb(−q)e(τ−β)Ĥ0
)]

T r[e−βĤ0 ]
Ab(q)

=
∑

b


ab(q)Ab(q) +
〈
δĵa(q)

δB

〉
0

. (16)

The second term vanishes in many of our examples and will
be assumed to be zero for simplicity in the remainder of this
section. By relating the vector potential to the magnetic field,
we can rewrite equation (16) as

〈ĵc(q)〉 =
(

εabc

1

2iq

(

R

ab

)ant
)

Bc ≡ σchBc, (17)

where (
R
ab)ant is the antisymmetric part of 
ab. Expanding

the current operator in terms of the creation operators ĉ
†
n,k for

eigenstates |m,k〉 of the Bloch Hamiltonian with eigenvalues
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εn,k as

ĵa(q) =
∑
n,m,k

〈
n,k − q

2

∣∣∣∣Ĵa(k)

∣∣∣∣m,k + q
2

〉
ĉ
†
n,k− q

2
ĉm,k+ q

2
(18)

where Ĵa(k) are the single particle current operators that are
derived from the Bloch Hamiltonian. The response function

ab in Eq. (16) can be expanded in the single particle energy
basis to look like


ant
ab (q) = T r

[( ∫ β

0 dτ ĵa(q)e−τĤ0 ĵb(−q)e(τ−β)Ĥ0
)]

T r[e−βĤ0 ]

= e2
∑
n,m,k

[∫ β

0 dτe
−τε

m,k+ q
2 e

(τ−β)ε
n,k− q

2

T r[e−βĤ0 ]

]

×
〈
n,k − q

2

∣∣∣∣Ĵa(k)

∣∣∣∣m,k + q
2

〉

×
〈
m,k + q

2

∣∣∣∣Ĵb(k)

∣∣∣∣n,k − q
2

〉
; (19)

performing the τ integral turns this expression to the form,


ant
ab (q) = e2

∑
n,m,k

nF

(
εn,k− q

2

) − nF

(
εm,k+ q

2

)
εn,k− q

2
− εm,k+ q

2

×
〈
n,k − q

2

∣∣∣∣Ĵa(k)

∣∣∣∣m,k + q
2

〉

×
〈
m,k + q

2

∣∣∣∣Ĵb(k)

∣∣∣∣n,k − q
2

〉
. (20)

This expression is identical to the result obtained for the
dynamical linear response formalism in the limit ω → 0 or
more precisely ω � q.

Following the arguments of Refs. [16,25] it is easy to show
that the result of equation (12) and subsequently equation (20)
has to vanish as ω → 0, i.e., for as the magnetic field is varied
slowly compared to q. Therefore we conclude that


ant
ab (ω � q → 0) = 0 (21)

This result is in agreement with Ref. [19] but in contrast
to findings of Ref. [17]. In should be noted that this result
does not prohibit the usual diamagnetic response since it
only restricts the antisymmetric part of 
ab, whereas the
diamagnetic response is related to the diagonal part of the
polarization tensor.

We remark that the validity Eq. (21) assumes the ability to
analytically continue the CME response to real frequency from
an imaginary formalism in the limit ω → 0. This is guaranteed
only if the perturbative response has a finite DC (ω � q →
0) limit. This can break down, for example, in cases with a
vanishing group velocity vn,k in a band; in this case intraband
terms become divergent and as a result the vanishing of the
CME would not be guaranteed.

B. Comparison with field theory results for Weyl semimetals

One of the questions raised by the previous subsection is
how to reconcile field theory predictions of a nonzero chiral
magnetic response with our vanishing results. To investigate

this we explicitly calculate equation (20) for a generic two
band model and use the result to calculate σch defined in
equation (17) (details of this calculation are presented in the
appendix). The final expression is given by

σch = e
∑
n=±

∫
BZ

dk
(2π )3

∇k.mn(k)f (εn(k),t)

+ e2
∑
n=±

∫
BZ

dk
(2π )3

(
v−,k + v+,k

2

)
.n,kf (εn(k),t)

(22)

where

mn(k) = −i
e

2
(∇k〈n,k|) × [Ĥ (k) − εn(k)](∇k|n,k〉) (23)

and

n,k = i(∇k〈n,k|) × (∇k|n,k〉) (24)

is the wave packet orbital magnetization. Our result for σch is
in agreement with Ref. [19] but different from Ref. [17]. Using
periodicity of the lattice the second term in equation (22) can
be partial integrated to look like the first term with the opposite
sign therefore giving a vanishing σch as expected. However if
we work within a low energy effective Hamiltonian description
of the problem, as is usually done in field theory calculations, a
nonvanishing result might be achieved. To illustrate this point
consider the simplest low energy effective Hamiltonian of a
Weyl semimetal, that is two linearly dispersing well fermions
(i.e., H eff = ±vF σ.k), in this case at each k is momentum
space v+,k = −v+,k = vF k̂ and therefore the second term in
equation (22) identically vanishes and we are left with

σ eff
ch = e

∑
n=±

∫
BZ

dk
(2π )3

∇k.mn(k)f (εn(k),t). (25)

Partial integrating equation (25) in zero temperature gives

σ eff
ch = e

∫
FS

da.m+(k)

(2π )3
(26)

where + here corresponds to the conduction band. For a
general two band Bloch Hamiltonian H (k) = e(k) + r(k) · σ

(where σx,y,z are the Pauli matrices) the energy eigenvalues
are given by

ε± = e(k) ± |r(k)|. (27)

Substituting the eigenvalues and eigenvectors into Eq. (23),
the orbital magnetic moment is written as:

m±(k) = ±e|r(k)|(±,k) (28)

where (±,k) is the Berry curvature. Using this we can rewrite
equation (26) as

σ eff
ch = e2

∫
FS

|r(k)|da · (+,k)

(2π )3

= e2
∫

FS

(εF − e(k))
da · (+,k)

(2π )3

= − e2
∫

FS

e(k)
da · (+,k)

(2π )3
(29)

where we used the fact that the total Chern number of the
entire Fermi surface is zero to get from the first line to the
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second line. In case of a two node Weyl semimetal we have
two Fermi surfaces with e2 − e1 = δk0 and opposite values
of uniform Berry curvature (+,k) therefore σ eff

ch = ( e
2π

)2δk0

as expected from field theory [23,29]. This argument can be
easily generalized to include an arbitrary number of Weyl
nodes. Note that even though we recovered the quantum field
theory result, it is not applicable to a real material since it
doesn’t include the second term in equation (22). This term in
a periodic system forces the chiral response σch = 0.

As has been pointed out, this situation can be partially
circumvented by the chiral magnetic response at nonzero
frequencies where ω � q. While this limit can produce
nonvanishing results even in lattice systems, it is difficult
to disentangle the contribution of the electric field generated
by the time dependence of the magnetic field in this limit.
The finite frequency generalization of the linear response
calculation is given by [28]


ab(q,ω) = e2
∑
n,m,k

f
(
εn,k− q

2

) − f
(
εm,k+ q

2

)
ω + εn,k− q

2
− εm,k+ q

2

×
〈
n,k − q

2

∣∣∣∣Ĵa(k)

∣∣∣∣m,k + q
2

〉

×
〈
m,k + q

2

∣∣∣∣Ĵb(k)

∣∣∣∣n,k − q
2

〉
(30)

to investigate behavior of σch as a function of frequency; we
will numerically calculate equation (30) for a simple model
two band model of Weyl semimetal with two Weyl nodes
at zero temperature. In this calculation, the vanishing of the
ω � q → 0 response comes to our aid and we can use this fact
to argue that the interband terms must cancel with the ω → 0
limit of the intraband (i.e., Fermi surface) terms. Therefore,
the finite frequency response only Fermi surface properties
contribute to equation (30) and therefore no further knowledge
of the microscopic details of the Hamiltonian are necessary.
Focusing on the intraband contribution to Eq. (30) we obtain


intra
ab (q,ω) = e2

∑
n,k

θ
(
εn,k− q

2

) − θ
(
εn,k+ q

2

)
ω + εn,k− q

2
− εn,k+ q

2

×
〈
n,k − q

2

∣∣∣∣Ĵa(k)

∣∣∣∣n,k + q
2

〉

×
〈
n,k + q

2

∣∣∣∣Ĵb(k)

∣∣∣∣n,k − q
2

〉
. (31)

The results of this calculation are plotted in Fig. 1. It starts
from zero at ω � q as expected from equilibrium theory, then
peaks at some frequency and then approaches σch = 2

3σ eff
ch at

ω � q; note, however, that since E ∝ ωA and B ∝ qA in this
limit E � B and therefore nonzero σch in this limit is more
of an electric field effect rather than magnetic field one. It is
worth mentioning that in the limiting case of ω = q � 1 we
get σch = σ eff

ch ; we believe this feature is coincidental, since
this limit does not correspond to B �= 0 and E = 0 as required
in the DC chiral magnetic effect.

Also note that the topology of a Weyl semimetal is not
necessary to obtain a nonzero σch [26,27,30]. One way to
see this is to look at the limit ω � q direct calculation of

FIG. 1. Frequency dependence of the chiral magnetic response
σch(q,ω) in a bulk Weyl semimetal in a two band two nodes model.
It vanishes in the DC (i.e., ω → 0) limit as expected from the
equilibrium theory. We chose the parameter q = 0.0001.

equation (30) for an isotropic model in this limit gives

σch = 2

3
σ eff

ch = 2

3
e
∑
n=±

∫
BZ

dk
(2π )3

∇k.mn(k)f (εn(k),t); (32)

all the steps from equation (25) to equation (29) goes through
here as well. Interestingly e(k) and (±,k) in Eq. (29) are
independent of each other since the Berry curvature only
depends on eigenstates not eigenvalues. Therefore as long as
Berry curvature is not zero everywhere on the Fermi surface we
can choose e(k) arbitrarily such that σch is nonzero. Therefore,
similar to the magnetoelectric effect [31], topology, which is
defined by Fermi surface components with nonvanishing Berry
flux [13], is not necessary to a get nonzero σch. Similar finite
frequency CME resulting from nontopological Berry curvature
has been previously reported [26,27,30].

C. B-field response under open boundary conditions

The second issue raised by the vanishing DC limit of the
dynamical response, which has not been resolved earlier, is
the apparent contradiction between equation (21) and the
example presented in Sec. II. As we will show, the crux of
this discrepancy lies in the fundamental difference in the
description of the magnetic field for systems with open and
periodic boundary conditions.

Unlike in the case of periodic boundary conditions, where
a magnetic field must be applied with a finite wave-vector q,
open systems can be subject to a strictly uniform magnetic
field as in experiments. A uniform magnetic field B in an
open system can be represented in the circular gauge by a
vector potential A that is given by A = 1

2 B × r. In this case,
the magnetic field perturbation δB affects the Hamiltonian
as H → H − MzδB, where M̂b = 1

2

∫
dr(J(r) × r)b is the

magnetic moment operator. Using this from Sec. III A and
noting that

∫
dr′J(r′) · A(r′) transforms to MzB in the present

notation, the response of the equilibrium current density to
magnetic field is

δ〈j 〉 =
∫

dτ
T r[je−(β−τ )H0Mze

−τH0 ]

T r[e−βH0 ]
, (33)
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where j ≡ jz is the current operator in the z direction. Note
that j.A term could have been written as MzδB in the previous
section as well, however we find that the latter form is suited
better for dealing with open boundary conditions, where the
wave vector q is no longer a good quantum number, whereas
for periodic boundaries using the former expression makes
it easy to relate σch to the usual form of the current current
correlation in Eq. (37). Expanding in the quasiparticle operator
eigenbasis H0 = ∑

p εpc
†
pcp and the other operators as j =∑

p,q Jp,qc
†
pcq and M = ∑

r,s mr,sc
†
r cs the current response

matrix element becomes

δ〈j 〉 =
∑

p,q,r,s

Jpqmrs

∫
dτ

T r[c†pcqe
−(β−τ )H0c

†
r cse

−τH0 ]

T r[e−βH0 ]
.

(34)

Noting that eτH0c
†
r e

−τH0 = c
†
r e

−εr τ ,

δ〈j 〉 =
∑

p,q,r,s

Jpqmrs

T r[c†pcqe
−βH0c

†
r cs]

T r[e−βH0 ]

∫ β

0
dτe−τ (εr−εs ).

(35)

Separating the r �= s and r = s contribution to the current
response δ〈j 〉 = δ〈j 〉r �=s + δ〈j 〉r=s , the r �= s contribution is
written as

δ〈j 〉r �=s = e2
∑
r �=s

f (εr ) − f (εs)

εr − εs

× 〈r|Ĵz|s〉〈s|M̂z|r〉. (36)

This term is equivalent to the DC limit of the finite
frequency linear response. To compare this result to the
dynamical linear response in Eq. (20) we notice that kx,y are no
longer good quantum numbers in the open boundary condition
case and we can simply replace k → kz in the derivation in
Sec. III A. Therefore, the open system limit is obtained from
Eq. (20) by dropping the k,q labels and is written as


z = e2
∑
n,m

f (εn) − f (εm)

εn − εm − ω
× 〈n|Ĵz|m〉〈m|M̂z|n〉. (37)

Now note that at any finite ω > 0, the m = n contribution to
the above sum vanishes so that the DC (i.e., ω → 0) limit of
this expression is identical to that in Eq. (36).

In addition to the DC limit of the dynamic response, there
is also a contribution to the equilibrium current response δ〈j 〉,
which is written as

δ〈j 〉r=s = β
∑
p,r

Jppmrr [f (εr )f (εp)(1 − δpr ) + δrpf (εr )],

(38)

where we note that the p = r and p �= r cases lead to different
terms in the above expression and f (εp) = 〈c†pcp〉 are Fermi
functions. In contrast, the analog of the r = s term does not
contribute to the finite frequency response function. Finally, we
note that the explicit response of the current 〈 δj

δB
〉 is identical

in both real and imaginary frequency cases. We have ignored
this contribution for simplicity.

The r = s term in Eq. (38) can lead to a substantial
difference between the vanishing equilibrium response and
the DC limit of the dynamical response. As a result, while
the equilibrium linear response is required to vanish based on

the argument in Sec. III A, the DC limit (i.e., ω → 0) of the
dynamic response is not necessarily vanishing as suggested by
Sec. II. This is consistent with the nonvanishing CME obtained
for certain open systems [32].

IV. CHIRAL MAGNETIC RESPONSE IN WEAKLY
DISORDERED SYSTEMS

The necessity of a finite but small wave vector q for
the magnetic field used in the linear response derivation in
Sec. III A leads to some subtle difficulties in the order of limits.
This is because that the vector potential scales as A ≈ B

q
and

therefore it diverges as q → 0, so that as q → 0, the range
of B over which the perturbation theory is valid shrinks to
zero. This difficulty can be avoided by introducing another
length scale into the problem so that the response function
becomes independent of q at small enough q. One way to do
this is to introduce the length 1

τ
given by the inverse of the

scattering rate; in this case the wave vector q just needs to
be much smaller than the mean free path q � 1

τ
rather than

going to zero q → 0. To address this problem we’ll consider
the problem of static CME in a disordered metal in the last
section. There we’ll show that equation (21) remains valid in
the presence of weak disorder.

As mentioned in the introduction, disorder introduces a
length scale to the system 1

q
that can help make the perturbation

theory valid when the magnetic field is turned on. We introduce
disorder into a lattice realization of a Weyl semimetal through
a potential term in the Hamiltonian, which is written as:

V =
∑
r,a

ua(r)ca(r)†ca(r) (39)

where r labels unit cells and a labels atoms inside the unit cell.
For our calculations, we use a Gaussian white-noise disorder
model for the functions ua(r) with a correlation function
〈ua(r)ub(r′)〉 = νDδa,bδr−r′ , where ν characterizes the strength
of the disorder. The potential perturbation V in Fourier space
is written as

V =
∑
k,q,a

ua(q)ca(k + q)†ca(k) (40)

where 〈ua(q)u∗
b(q′)〉 = νDδa,bδq−q′ . Starting with this per-

turbation, the disordered averaged Green function can be
calculated within the Born approximation [28] as G(̃k)−1 =
ω − Ĥ (k) − �(ω) where

�ab(ω) = νDδab

∫
dqdωG(0)

aa (q,ω) (41)

is the electron self-energy within the Born approximation and
G(0) is the bare time-ordered Green function (i.e., G(0)(q,ω) =
[ω + isign(ω)η − H (k)]−1). Note that for compactness we
have introduced the notation k̃ := (k,ω).

To calculate the disorder averaged response σch, we use
the Kubo formula as in the clean case modified to include
weak disorder. Following the standard diagrammatic theory for
disorder [28], we do this by calculating the Feynman diagrams
shown in Fig. 2. In these diagrams, the double lines correspond
to disorder-averaged Green functions G(̃k) and the shaded
boxed correspond to disorder scattering by the fluctuations in
the potential V . We can sum all of the contributing diagrams
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FIG. 2. Feynman diagrams contributing to the correlator 
a,b. Double lines correspond to G(̃k) (i.e., dressed propagator) and the shaded
boxes correspond to two particle irreducible diagrams [28].

into a renormalized current vertex, �a (shown in the second
line of Fig. 2), so that the response function is written as:


a,b(q,ω) = e2T r

[ ∫ ∞

−∞

dω

2π

∫
BZ

d3k

(2π )3
Ĵa(k)

×G

(
k̃ + q̃

2

)
�b

(
k̃ + q̃

2
,̃k − q̃

2

)
G

(
k̃ − q̃

2

)]
(42)

where

�b

(
k̃ + q̃

2
,̃k − q̃

2

)
= Ĵb(k) + νD

∫
dq̃′

2π
G

(
k̃ + q̃

2
+ q̃ ′

)

×�b

(
k̃ + q̃

2
+ q̃ ′ ,̃k − q̃

2
− q̃ ′

)

×G

(
k̃ − q̃

2
− q̃ ′

)
. (43)

We note that the validity of this approach requires being in
the diffusive limit (i.e., mean-free path � Fermi wavelength).
This is different from the Weyl semimetal regime with
vanishing density of states that is being debated for chemical
potential near the Weyl node [33–37]. We will avoid this
regime by choosing a finite chemical potential with a Fermi
energy much greater than the disorder scattering rate.

In principle, once 
 is calculated using Eq. (42), one can
substitute it back into Eq. (17) to calculate the chiral magnetic
response σch. We now argue that this necessarily vanishes for
a disordered system. To do this, note that the Ward identity
[38] gives:

ω�0

(
k̃ + q̃

2
,̃k − q̃

2

)
− q.�

(
k̃ + q̃

2
,̃k − q̃

2

)

= −G−1

(
k̃ + q̃

2

)
+ G−1

(
k̃ − q̃

2

)
, (44)

which in turn guarantees that in the limit that we are interested
in (i.e. ω

q
→ 0):

�a

(
k̃ + q̃

2
,̃k − q̃

2

)
= ∂ka

G−1(̃k) = ∂ka
Ĥ (k) = Ĵa(k). (45)

This implies that there are no vertex corrections and we need
to consider only the bubble diagram (the first diagram in the
first line of Fig. 2). With this approximation, 
 in Eq. (42)

when expanded to first order in q becomes:


a,b(q,ω) = e2 q

6

∑
a,b,c

εa,b,cT r

[ ∫ ∞

−∞

dω

2π

∫
BZ

d3k

(2π )3

× ∂ka
G−1(̃k)∂kc

G(̃k)∂kb
G−1(̃k)G(̃k)

]
. (46)

This has the form of a Hopf topological invariant [39] and
vanishes since the Green function G has no real frequency
poles (shown in the appendix). Therefore, using Eq. (17), we
conclude that σch = 0 universally for all disordered physical
systems. This is consistent with the equilibrium results
showing that the current must vanish in a magnetic field in
a lattice system [16,25].

On the other hand, for frequencies much larger than the
scattering rate ω � 1

τ
, we expect disorder not to play a role

and therefore finite frequency chiral magnetic response σch

should return to the clean limit value in such a range. In this
case, we have to be careful to ensure that the wave vector q is
chosen to obey the limit ω/q → 0.

To understand how σch crosses over from the vanishing
DC value to the clean-limit value, we numerically calculate

y,z(qx̂,ω) for the model Hamiltonian of Weyl semimetal

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ch
/

ch
,0

FIG. 3. Frequency dependence of the chiral magnetic response
σch(q,ω) in a bulk Weyl semimetal. While σch reaches a value close to
the clean limit of ≈0.6σch,0 = 0.6t(e/2π )2 for frequencies exceeding
the disorder scattering rate 1

τ
= 0.05 ∝ νD , it vanishes in the DC

(i.e., ω → 0) limit as expected from the equilibrium theory. For the
calculation, we chose the parameter t = 0.15 and the wave vector
q = 0.4.
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used in Ref. [17]:

Ĥ =
∑

k

�
†
k[N0,kσ0 + Nk.σ ]�k

N0,k = 8t
∏

i

cos(ki) (47)

Nj,k = sin(kj ).

This model hosts four right-handed Weyl fermions located at
high symmetry points (0,0,0),(π,π,0),(π,0,π ),(0,π,π ) and
four left-handed ones at (π,π,π ),(0,0,π ),(0,π,0),(π,0,0). We
use the disorder realization as in equation (39) and use Eq. (42)
to calculate 
y,z(qx̂,ω) so that we can calculate σch using
Eq. (45) (without taking the limits ω,q → 0). To reduce
the numerical complexity we assume that ω/q is still small
enough so that we can use Eq. (45). Within this approximation,
we then replace the self-energy by a uniform scattering
rate �(ω) ≈ iτ−1 = i0.05. The resulting σch(ω) from our
calculation, which is plotted in Fig. 3, shows that σch vanishes
in the DC limit and approaches ≈ 0.6σch,0 = 0.6t(e/2π )2,
which is consistent with the clean limit for the chosen q = 0.4.

V. CONCLUSION

In summary, we have shown that a CME-like response,
i.e., one where a current flows in response to a magnetic
field is in principle possible with or without Weyl nodes.
This appears to contradict previous claims of the vanishing

of the low frequency CME. We point out that the derivation of
the vanishing CME is a consequence of periodic boundary
conditions of the system. A more realistic system with
open boundary conditions would not be subject to the same
constraints and can have a nonvanishing CME. We also
studied the finite frequency CME with periodic boundary
conditions, and consistent with recent work, we found it to
be nonvanishing in general when there was a nonvanishing
Berry curvature on the Fermi surface. This does not necessitate
having a topological Berry flux as in the case of a Weyl node.
Finally, we study how the perturbation theory in magnetic field
might be more stable in the presence of disorder. Using the
standard diagrammatic treatment of disorder within the Born
approximation, we have found that in a realistic disordered
system, the chiral magnetic response is really a dynamical
phenomena and vanishes in the DC limit. For frequencies in
excess of the scattering rate, the clean limit predictions are
recovered. Numerical evaluation of the associated integrals
for a specific lattice model show how the crossover occurs as
the frequency is increased above the scattering rate.
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APPENDIX

1. Details of the clean linear response calculation

Here we explicitly show how to get from equations (17) and (20) to equation (22). In the limit we are interested in (i.e.,
limq→0 limω→0) we can rewrite equation (20) as:


R
ab(q,ω) = e2

∑
n,m�=n,k

f
(
εn,k− q

2

) − f
(
εm,k+ q

2

)
εn,k− q

2
− εm,k+ q

2

〈
n,k − q

2

∣∣∣∣Ĵa(k)

∣∣∣∣m,k + q
2

〉〈
m,k + q

2

∣∣∣∣Ĵb(k)

∣∣∣∣n,k − q
2

〉

+ e2
∑
n,k

f ′(εn,k)

〈
n,k − q

2

∣∣∣∣Ĵa(k)

∣∣∣∣m,k + q
2

〉〈
m,k + q

2

∣∣∣∣Ĵb(k)

∣∣∣∣n,k − q
2

〉
. (A1)

We now expand to first order in q and keep only the antisymmetric part; for simplicity we divide the expression to four terms
each corresponding to the expansion of:

(1) the numerator of the first term (
1),
(2) the denominator of the first term (
2),
(3) the matrix element in the first term (
3),
(4) the matrix element in the second term (
4).
Now we calculate each one as follows (vn,k = ∇kεn,k everywhere below):

(
1)ant = − e2
∑

n,m�=n,k

f ′(εn,k)

(
vn,k.

q
2

) 〈n,k|Ĵa(k)|m,k〉〈m,k|Ĵb(k)|n,k〉
εn,k − εm,k

= ie2
∑

n,m�=n,k

f ′(εn,k)(vn,k.q)(mn(k))c; (A2)

after shifting k to k − q
2 , for 
2 we have:

(
2)ant = ie2
∑

n,m�=n,k

f (εn,k)
(vn,k + vm,k).q

2

〈n,k|Ĵa(k)|m,k〉〈m,k|Ĵb(k)|n,k〉
(εn,k − εm,k)2

= ie2
∑
n,k

f (εn,k)
(vn,k + vm,k).q

2
(n(k))c. (A3)
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Calculation of 
3 is rather complicated and in order to get a closed form we assume that the model has only two bands, after
a rather lengthy calculation we get:

(
3)ant = ie2
∑
n,k

f (εn,k)|q|[(v+,k + v−,k)a(n(k))a + (v+,k + v−,k)b(n(k))b]. (A4)

Finally for 
4 we have (after expanding the matrix elements and simplifying):

(
4)ant = ie2
∑
n,k

f ′(εn,k)|q|[(vn,k)a(mn(k))a + (vn,k)b(mn(k))b]. (A5)

After putting everything together and changing the sum into an integral we get:

σch = lim
q→0

εabc

1

2iq
lim
ω→0

(

R

ab(q,ω)
)ant

= − e
∑

n

∫
BZ

dk
(2π )3

(vn,k.mn(k))f ′(εn(k),t) + e2
∑
n=±

∫
BZ

dk
(2π )3

(
v−,k + v+,k

2

)
.n,kf (εn(k),t), (A6)

which after partial integrating becomes Eq. (22). Note that because of the assumptions made in calculating 
2 and 
3 this result
is only valid for a two band model.

2. Universal vanishing of the Hopf term

To prove that Eq. (46) is really a topological invariant we consider the effect of changing the Hamiltonian from Ĥ (k) to
Ĥ (k) + δĥ, for small enough δĥ we have:

G−1(̃k) → G−1(̃k) + δĥ G(̃k) → G(̃k) − G(̃k)δĥG(̃k). (A7)

From here on for simplicity we drop k̃ from our expressions. Applying the identities above we find the change in 
a,b(q,ω):

δ
a,b(q,ω) = e2 q

6

∑
a,b,c

εa,b,c

∫ ∞

−∞

dω

2π

∫
BZ

d3k

(2π )3
T r

{[
δĥG∂ka

G−1G∂kb
G−1G∂kc

G−1G
] + [

δĥ∂ka

(
G∂kb

G−1G∂kc
G−1G

)]}

= e2 q

6

∑
a,b,c

εa,b,c

∫ ∞

−∞

dω

2π

∫
BZ

d3k

(2π )3
T r

{[
δĥ∂ka

G∂kb
G−1∂kc

G
] − [

δĥ∂ka

(
∂kb

G∂kc
G−1G

)]}

= e2 q

6

∑
a,b,c

εa,b,c

∫ ∞

−∞

dω

2π

∫
BZ

d3k

(2π )3
T r

{[
δĥ∂ka

G∂kb
G−1∂kc

G
] − [

δĥ∂kb
G∂kc

G−1∂ka
G

]}

= e2 q

6

∑
a,b,c

εa,b,c

∫ ∞

−∞

dω

2π

∫
BZ

d3k

(2π )3
T r

{[
δĥ∂ka

G∂kb
G−1∂kc

G
] − [

δĥ∂ka
G∂kb

G−1∂kc
G

]} = 0, (A8)

where we have used cyclic properties of the trace, partial integrating, and also the fact that any symmetric term inside the trace
vanishes since the total answer is antisymmetric. So we established that 
a,b(q,ω) is a constant; to show that it’s zero note that,
if all Green’s functions have finite imaginary parts in their poles (as they do in the disordered case), then the momentum integral
includes no singularities and is therefore analytic. This means that we can continuously deform our Hamiltonian into a constant
and force 
a,b(q,ω) to vanish, but since we already proved that 
a,b(q,ω) is a constant under continuous deformations of the
Hamiltonian it follows that 
a,b(q,ω) has to be zero everywhere (as long as there are no real poles). Note that in the clean case
this proof doesn’t go through since Green’s function’s poles are therefore real and the integrals are not analytic.
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