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First-principles DFT+DMFT calculations of structural properties of actinides:
Role of Hund’s exchange, spin-orbit coupling, and crystal structure
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We utilize a combination of an ab initio calculation of effective Coulomb interactions and a DFT+DMFT
calculation of total energy to study the structural properties of pure actinides. We first show that the effective
direct Coulomb interactions in plutonium and americium are much smaller than usually expected. Secondly,
we emphasize the key role of Hund’s exchange in combination with the spin-orbit coupling in determining
the structural parameters of δ-plutonium and americium. Thirdly, using this ab initio description, we reproduce
the experimental transition from low volume early actinides (uranium, neptunium, α-plutonium) to high-volume
late actinides (δ-plutonium, americium, and curium) without the need of an artificial magnetism. Finally, we
compare the energies and structural properties of α, γ , ε, and δ phases of plutonium to experimental data.
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I. INTRODUCTION

The structural properties of pure actinides behave uniquely
in the periodic table: as the atomic number increases, the
volume exhibits a jump [1,2]. This is qualitatively understood
as being the result of the competition between chemical
bonding and Coulomb interaction. Indeed, lighter elements,
including α-uranium, α-neptunium, and α-plutonium, are
usually described as containing delocalized electrons. Thus
their volumes are low. In these systems, indeed, chemical
bonding between 5f orbitals is expected to be strong [1],
explaining the low symmetry of these phases and their low
volumes. Starting with americium, the volumes are high
(see Fig. 3); electron correlation is stronger than chemical
bonding therefore making the crystal structure more compact.
Plutonium is peculiar because it is at the verge of localiza-
tion [1], as shown by the large number of phases with different
volumes, crystallographic structures, and physical properties.
In particular, the δ phase, stable only at 600 K, has a large
volume. In contrast to actinides, lanthanides [3], because of
their localized 4f orbitals, are much simpler and contain
localized electrons that do not participate to the bonding, thus
their equilibrium volumes are large (see, e.g., Refs. [4,5]).

In order to describe the existence of phases with various
degrees of electron localization, a single formalism able to
describe localized and delocalized phases is needed. However,
density functional theory, with the available density func-
tionals, needs an artificial [6] spin and/or orbital moment in
order to increase the localization of electrons and describe
the large equilibrium volumes of localized phases such as
plutonium [2,7–9], americium [10,11], or the structures of
actinides [12]. Without magnetism, DFT/GGA only describes
localized phases as delocalized [2]. Other methods were
designed to describe phases in which the interaction between
electrons leads to localization. Indeed, the self-interaction
correction method [13], hybrid functionals, or the DFT+U

approach have been able to describe some localized phases of
actinides [14–16] or lanthanides [17,18].

A coherent description of spectroscopic, magnetic, and
structural properties of strongly correlated systems was
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obtained in the last 15 years with the combination of
density functional theory and dynamical mean-field theory
(DFT+DMFT) [19]. In particular, the physics of plutonium
has triggered a large number of theoretical studies [20–31] but
only a few of them focused on structural properties: Savrasov
et al. [20] showed that the α-δ transition in plutonium can
be described using DFT+DMFT, and that the main physical
picture can be reproduced by an isostructural transition like in
cerium metal. However, this pioneering calculation had to use
many simplifications. Later, the Gutzwiller approximation was
used [32] to show the importance of the atomic structure. These
calculations, and others [24,26,33], however, relied on values
of effective interactions, taken as ad hoc parameters. Moreover,
because a unified ab initio description of actinide structural and
magnetic properties is lacking, the relative roles of electronic
interactions, crystallographic structure, and relativistic effects
are not understood in the actinide series.

Here, we carry out a self-consistent calculation of the
effective interaction [34–37] and show that the direct Coulomb
term is weak, even for plutonium and americium. Using
these interactions, we use DFT+DMFT to study the structural
properties and the relative stability of phases. We find that—
for elements that are at the verge of localization, such as
plutonium, and americium—structural properties are indeed
driven by the combination of Hund’s exchange [38] and
spin-orbit coupling.

Sections II, III, and IV, respectively, present the methods,
the effective interaction results, and the DFT+DMFT cal-
culations of the structural properties. Appendix A estimates
the uncertainty on the value of our effective interactions.
Appendix B presents the spectral functions of actinides as
computed by DFT+DMFT.

II. METHODS AND COMPUTATIONAL DETAILS

Our computational scheme is summarized in Fig. 1. All our
calculations use the projector augmented wave [43] (PAW)
framework [44] and use a modified version of the open source
code ABINIT [45]. Details about atomic data validation are
given in Ref. [46], Sec. I.

We first compute the effective direct Coulomb interaction
U and Hund interactions J with our self-consistent DFT+U
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FIG. 1. Calculation scheme used in this study. The first part of the calculation is a self-consistent cRPA scheme as implemented by us
and discussed in Ref. [37] and in Sec. II A. The self-consistent values of U and J are used in a fully self-consistent DFT+DMFT calculation
as implemented by us in ABINIT [39] using the same Wannier functions [39,40], and a continuous time quantum Monte Carlo solver [41] to
solve the Anderson impurity model. At full self-consistency, the total internal energy is computed following Refs. [39,42], and the f spectral
function is computed using the maximum entropy method (see also text). Notations in this scheme are the same as in Refs. [37,39,40].
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implementation [37] of the constrained random phase ap-
proximation (cRPA) [34]. We use then our implementation
of DFT+DMFT as in Refs. [39,41,47] to compute the total
energy. Such scheme is a way to carry out parameter-free
DFT+DMFT calculations. This is a simplification of the
more general parameter-free combination [48–56] of the GW

approximation and the DMFT scheme, for which the effective
interaction is also self-consistently computed. Nevertheless,
in GW+DMFT, the screening takes into account the full
DFT+DMFT response function and the dynamical nature of
the interaction is taken into account. However, this method is
still under development by several groups, and computing the
total energy in GW+DMFT is still a formidable task.

Here, the self-consistency loop to determine U is carried
out within DFT+U . This scheme [35] has been used some time
before to compute the effective interactions in gadolinium [35],
NiO [35,36], CuGaS2 [36], transition-metal oxides [36], as
well as cerium and UO2 [37]. More generally, to our knowl-
edge, no calculation (self-consistent or not) has been devoted to
pure actinides. Here, we thus apply the self-consistent method
to compute U in pure actinides from uranium to curium.

Then, fully self-consistent DFT+DMFT—able to deal with
localized/delocalized transition (see, e.g., Ref. [41])—is used
to compute the total energy. Early DFT+DMFT calculations
of total energy were scarce, because of the computational
cost, and pioneering calculations have to make some nec-
essary approximations, such as the use of an approximate
solver [20,22,39,57–59] or the lack of self-consistency on
the density [42,60–65]. However, with the advent of effi-
cient solvers [66,67] for the Anderson impurity model and
the development of supercomputers, precise calculations of
total energy using continuous-time quantum Monte Carlo
(CTQMC) solvers and full self-consistency over electronic
density appeared [41,68–76]. Among them, and because of
the computational challenge to study systems with high
degeneracy, only a few of these studies focused on f -electron
systems [41,76] and none focused on actinides. Here we
compute the total energy of pseudo-α-U, α-Np, α-Pu, γ -Pu,
ε-Pu, δ-Pu, Am, and Cm with self-consistent DFT+DMFT
solved with a CTQMC solver [41,45]. In the following section,
we discuss technical details of the constrained random phase
approximation and then the DFT+DMFT.

A. Calculation of effective interactions

1. Self-consistent cRPA calculation

We use our self-consistent [35] DFT+U implementa-
tion [37] of the constrained random phase approximation [34]
in order to compute the effective direct Coulomb interaction
U and Hund’s interactions J for actinides. The scheme is
detailed in Ref. [37] and sketched in the top of Fig. 1. First a
standard DFT+U calculation is converged (with an arbitrary
value of U ). Wave functions �σ

νk and eigenvalues εσ
νk are used

to compute the constrained noninteracting polarizability χ0. To
do this, the transitions among correlated orbitals are removed
through a weighting scheme (involving the function w, which
depends on correlated Wannier orbitals wRσ

km ) as described in
Fig. 1 and in Refs. [36,37]. The effective interaction matrix
U is then computed by projecting the cRPA interaction on
projected local orbital Wannier functions for correlated orbitals

as discussed extensively in Ref. [37]. Then the static effective
interactions are used in another DFT+U calculation until full
self-consistency is reached on U and J .

2. Computational details

We use a 4×4×4 k-point grid, and energy cutoffs for
the wave functions, the dielectric function and the bare
Coulomb interaction are respectively 20, 10, and 60 Ha. Sixty
bands are sufficient for the calculation of the polarizability.
For simplicity (and only for the cRPA calculation), the fcc
phase was used for all actinides, and spin-orbit coupling was
neglected. We carefully checked the dependency of the energy
window and we find a small increase of U if more bands
are used to define Wannier functions in agreement with our
previous results on cerium [37]. Concerning the calculation on
iron discussed below, we used 11 Kohn Sham bands to define
the energy window, and carefully converged the energy cutoffs
and the k-point mesh.

B. DFT+DMFT

1. Correlated orbital, self-consistency

We briefly remind the basic step of our DFT+DMFT
scheme [39,40,45] in the bottom of Fig. 1, using the notations
of Refs. [39,40]: first we carry out a DFT calculation. We
use the GGA [77] approximation for DFT as proposed by
Söderlind et al. [78] to describe actinides. Then, we use
Kohn-Sham eigenvalues ενk to build the Bloch (bl) lattice
Green’s function Gbl

νν ′k. Kohn-Sham eigenvectors |�νk〉 are
used to define correlated orbitals as Wannier functions [40]
|wRσ

km 〉. As in Ref. [47], we take into account the spin-orbit
coupling and we use an energy window with 26 Kohn-Sham
states per atom (without the semicore states) to built the
5f Wannier functions. Then the local Green’s function is
computed, from which the hybridization function is obtained.
The impurity model is solved using CTQMC (see next section),
from which the self-energy is deduced and then the full Green’s
function is recomputed until self-consistency over the local
Green’s function is achieved. Then the density is recomputed
to update the DFT Hamiltonian as in Refs. [39,41]. In practice,
however, it is much more efficient to update simultaneously
the density and the local Green’s function, as discussed in
Ref. [45]. The full localized limit double counting is used as
in Ref. [39].

2. CTQMC solver

We use our recent implementation [41] of the CTQMC [66]
solver in the density-density approximation (see Ref. [46],
Sec. II), as available in ABINIT [45]. This approximation offers
a good compromise between computational cost and precision.
The results of our calculation suggest that this approach
is sufficient to describe structural properties. As spin-orbit
coupling is taken into account in DFT+DMFT calculations,
we take into account off-diagonal hybridization in the Monte
Carlo calculation. There are no noticeable sign problems. We
use between 5×107 and 109 Monte Carlo steps—depending
on the system studied—in order that the DFT+DMFT total
energy is converged to less than 0.5 meV.
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FIG. 2. Ab initio bare and effective interactions in actinides. Bare
direct Coulomb interaction v [on part (a)], Hubbard U , and Hund
exchange J [on part (b)] interactions for U, Np, Pu, Am, and Cm.

3. Total energy and structure

Our DFT+DMFT calculations are done at 800 and 200 K,
and for the studied systems, equilibrium volumes are mainly
insensitive to this variation of temperature. For all phases, we
use the experimental internal parameters, only the volume is
relaxed and we focus on the paramagnetic phase, which is
the stable phase at room temperature. Uranium, neptunium,
plutonium [6], and americium [1] have no local magnetic
moment, so electronic entropy is expected to be weak and
thus neglected. For curium, entropy should probably be taken
into account for a more precise determination of the structural
properties, but it is not the goal of this study. For α-plutonium,
we used the pseudo α phase, proposed by Bouchet et al. [79],
but calculations on the α phase are also performed as a check
(see Ref. [46], Sec. III). See also Ref. [46], Sec I, for some
other computational details.

III. CALCULATION OF EFFECTIVE INTERACTIONS
IN ACTINIDES

Results

The values for effective direct interactions, given in Fig. 2
and Table I, are surprisingly much smaller—� 1 eV for
plutonium—than the value of �4 eV previously assumed, e.g.,
for plutonium and americium [20,24,26,30–32]. In compari-
son, we have computed the value of U in cerium and iron, and
we found respectively 5.5 eV [37] for cerium—in agreement
with Ref. [89]—and 1.62 eV for iron in agreement with the
value of 1.4 eV obtained in Ref. [90] with the same scheme.1

It is thus another validation of our computational scheme to

1Note that for iron, in order to compare with literature, we give
the non-self-consistent value. Besides, the average Udiag of diagonal
elements of the direct Coulomb interaction matrix is sometimes used

TABLE I. Value in eV of effective and bare interactions for
actinides. U crpa is the F 0 Slater integral and U

crpa
diag is the average

of the diagonal elements of the direct Coulomb interaction matrix
(see, e.g., Ref. [37]).

U Np Pu Am Cm

U crpa 0.8 1.0 0.95 1.5 3.4
U

crpa
diag 1.5 1.7 1.7 2.3 4.3

J crpa 0.4 0.4 0.45 0.4 0.55

U bare 17.7 18.4 18.6 18.9 20.0
J bare 0.55 0.55 0.6 0.55 0.6

determine U . Two reasons explain the low values obtained in
actinides. First, the bare interaction (see Fig. 2 and Table I) is
lower for 5f orbitals in comparison to 4f orbitals (24 eV for
cerium [37]) and 3d orbitals (22.9 eV for iron2). Secondly, the
screening due to transitions between f orbitals and noncorre-
lated orbitals is important in actinides, because f orbitals are
near the Fermi level, as in iron but in contrast to cerium [37].
However, coherently to what is observed in lanthanides, the
effective interaction U in curium is more important because
f orbitals are far from the Fermi level [24,91].3 Lastly, it is
interesting to notice in Fig. 2 that uranium and plutonium have
nearly the same interactions U and J in contrast to the usual
values assumed in the literature [20,92].

Concerning Hund’s exchange, Fig. 2 shows that it is nearly
constant for all actinides: it highlights the fact that the Hund’s
exchange is not efficiently screened [93]. We will see below
that Hund’s exchange is the most important mechanism driving
the structural properties.

IV. DFT+DMFT CALCULATIONS OF STRUCTURAL
PROPERTIES OF ACTINIDES: RESULTS

A. Results and discussion

We carried out DFT+DMFT calculations, using these ab
initio interaction parameters. Figure 3 and Table II compares
our DFT+DMFT theoretical equilibrium volumes and bulk
moduli with experiment and other calculations. First, it shows
[see Fig. 3(d)] that the combination of DFT+DMFT and an
ab initio calculation of interaction parameters describes cor-
rectly the structural parameters in actinides without the need
for an artificial ordered magnetism. We will now discuss the
results in more details.

1. α-U, α-Np, and α-Pu

We first discuss early actinides. For α-U, α-Np, and α-Pu,
the GGA/PBE approximation gives reasonable agreement with
experiment. So the need for more advanced theories is less
stringent than for the phases of plutonium, americium, and

in the literature instead of the F 0 Slater integral. We found that
Udiag = 2.8 eV, whereas Shih et al. find 2.4 eV.

2Our value for the average of the diagonal bare interaction is 24.3 eV,
whereas Shih et al. find 22.5 eV

3Our DFT+U density of states is rather similar to the spectral
functions obtained by Gouder et al. [91].
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FIG. 3. Theoretical volumes for actinides compared to experiment. (d) Theoretical volumes as obtained in DFT/PBE (NM) and in
DFT/PBE+DMFT—with calculated values of the effective direct Coulomb and Hund interactions (see Fig. 2) in comparison to experiment
(extrapolated to 0 K for γ -, ε-, and δ-Pu [32]), (a) GGA (AFM) [8,11], (b) GGA+OP (AFM) [12,80], and (c) LDA+GA (NM) [32]. Experimental
data are taken from Refs. [81–88]. NM refers to a nonmagnetic calculation without any local, or global static magnetic moment. AFM refers
to antiferromagnetic calculations. GGA+DMFT, with the ab initio determination of U and J is able to describe the equilibrium volumes of all
elements and all phases of Pu without any magnetic moment, in agreement with experiment. See Sec. IV A for a detailed discussion.

curium. However, is has been shown recently [92] that both the
equilibrium volume and bulk modulus of α-uranium can still
be improved using GGA+U and U = 1.23 eV. These results
were discussed in Refs. [94,95]. However, interestingly, the
GGA+U improvement [96] is similar in magnitude to the
improvement brought by GGA+DMFT in our work.

2. Phases of plutonium: structural properties

We start this section by outlining some experimental data
concerning plutonium. Concerning the structural data for
the γ , δ, and ε phases of plutonium, which are stable only
at high temperature, one needs to extrapolate the volume
of the phases at zero temperature in order to compare to
ab initio calculations at 0 K. This has been done my Lanata
et al. [32] and the corresponding volumes are given in Table II
and Fig. 3.4 Nevertheless, our DFT+DMFT calculations
are done at finite electronic temperature but we do not take
into account the electronic entropy nor the role of phonons,
so that the effect of temperature is only contained in the
internal energy. Besides, the internal energy differences are
identical for 800 and 200 K, so structural properties are nearly
identical for these two temperatures. So we can assume that
our ground-state properties would be very similar at zero
temperature. This is why we can compare our DFT+DMFT
calculations of ground-state properties to 0 K extrapolated
data. Concerning the magnetic properties of plutonium, the
experimental work of Lashley et al. [6] underlines the absence
of local moment in plutonium, and thus, according to the
authors [6], it rules out the possibility of ordered or disordered
local moment in α or δ plutonium.

Our GGA+DMFT structural properties (Table II and Fig. 3)
show an overall good agreement with experimental data, of
the same quality as the combination of LDA and Gutzwiller
approximation [32]. Interestingly, the volume of α phase
is even slightly better reproduced by our GGA+DMFT in

4This extrapolation has, of course, some degree of arbitrariness.

comparison to LDA+GA [32]. We underline that we do the
calculation for the pseudo-α phase [79], but we show in
Ref. [46] (Sec. III) that the GGA+DMFT results for the
pseudo-α phase and the exact α phase are rather similar.
GGA (AFM) [7,8] gives also a similar good description, at the
expense, however, of creating an artificial ordered magnetism.

Söderlind and coworkers used the combination of GGA
with orbital polarization (OP) [80] to study the phases of
actinides. This orbital polarization is “mean-field correction
of the intra-atomic Coulomb interaction” [97] of 5f electrons,
proportional to the quantum number corresponding to the
projection of the angular momentum. These calculations [80]
give also a good overall description, except for γ and ε phases,
where the agreement with 0 K extrapolated data is less good.
However, the agreement of GGA+OP calculations at 0 K with
experiments at high temperature is better. Another GGA+OP
calculation [98] with only an orbital magnetic moment and no
spin moment gives also good structural parameters, but, how-
ever, magnetic properties are still in disagreement with exper-
iments in which there is not spin or orbital magnetic moment,
local or not [6]. In conclusion of this section, we outline that
GGA+DMFT (as LDA+GA) is able to describe the phases of
plutonium, without the creation of an artificial [6] magnetism.

3. Phases of plutonium: energetics

We now discuss the energetic stability of phases of pluto-
nium (see Table II). We find in agreement with experiment and
other theoretical methods [GGA (AFM), GGA+OP (AFM),
LDA+GA (NM)] that the α phase is the most stable phase
of plutonium. The energetic order of other phases is also
in agreement with some other theoretical methods. We find
that the ε phase is slightly lower (−20 meV) in energy in
comparison to the δ phases. It does not agree with the Hubbard-
I results of Ref. [21] (20 meV). In this last study, indeed,
the entropy is viewed as responsible for the stabilization of
the ε phase. However, we underline that a slight increase of
Coulomb interactions (U = 1 eV and J = 0.5 eV instead of
U = 0.94 eV and J = 0.46 eV) in our calculation can change
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TABLE II. Structural parameters of uranium, neptunium, americium, curium and some phases of plutonium obtained in this work in
comparison to various other methods and experiment. NM, AFM, and OP stand for nonmagnetic calculation, antiferromagnetic calculation,
and orbital polarization (see Sec. IV A 2). See also Ref. [46], Sec. I for a benchmark of our NM GGA calculations with other calculations.

α U α Np α̃-Pu α-Pu δ-Pu γ -Pu ε-Pu Am Cm

Experiment [81,83,85,86,88,99]

V (Å
3
) 20.6 [81] 19.2 [100] 20.08 [83] 25.0 [99] 23.5 [99] 24.4 [99] 29.3 [86] 30.05 [88]

B0(GPa) 115 [81] 120 [101] 54 [83] 29–30 [99] 25.7 [99] 45 [99] 29.7 [86] 30.5 [88]

Experiment extrapolated to 0 K (Lanata et al. [32,102])

V (Å
3
) 19.5 25.5 21.9 22.3

B0 (GPa) 70 [84] 38

GGA/SOC+DMFT (NM) (this work)

V (Å
3
) 20.5 18.8 19.1 24.7 21.1 20.9 28.7 27.8

B0 (GPa) 124 148 110 36 41 34 33.8 36
E (meV) 0 210 100 190

GGA/SOC (NM) (this work)

V (Å
3
) 20.2 18.5 18.0 17.8 19.5 17.9 17.2 19.9 20.8

B0 (GPa) 139 174 193 141 86 124 142 61 54
E (meV) 0 −45 700 400 380

LDA/SOC+GA (NM) [32] 0 K (U = 4.5 eV, J = 0.36 eV)

V (Å
3
) 21.1 25.5 21.3 21.2

B0 (GPa) 50–70 15–35 45–70 35–55
E (meV) 0 26 9 72

GGA NM NM AFM AFM AFM AFM AFM AFM

V (Å
3
) 20.2 [81] 18.4–18.8 [82,103] 18.5 [8] 23.4 [8] 21.9 [8] 21.2 [8] 29.2 [11] 29.34 [11]

B0 (GPa) 134 [81] 158–170 [82,103] 101 [8] 55 [8] 45 [8] 45 [8] 28.3 [11] 40.3 [11]
E (meV) 0 [8] 122 [8] 109 [8] 175 [8]

GGA/SOC+OP (AFM) [12,80]

V (Å
3
) 20.3 24.9 24.3 24.6 29 28.5

B0 (GPa) 50 41 33 23
E (meV) 0 20 15 110

the energetic order of these two phases. So, we cannot be
conclusive concerning the relative energetic stability of ε and
δ phases. We will discuss in more details the interplay of
correlation and crystal structure in Fig. 5 and Sec. V B 1.

4. Americium and curium

For americium and curium, the GGA+DMFT gives struc-
tural properties that are comparable to experiment. Other
methods based on magnetic GGA [11,12] give also a good
(or even better) agreement with experiment. It is noticeable
that GGA+DMFT is able to do it without any local magnetic
moment. Indeed, americium carries no local moment. Curium
is antiferromagnetic under 65 K and paramagnetic above.
We focus our DFT+DMFT calculations on the paramagnetic
phase both for simplicity and also because structural param-
eters [88] and spectral functions [91] are determined in the
room-temperature paramagnetic phase. We discuss in the next
section the comparison with other DFT+DMFT works [33].

B. Comparison to other calculations for the same
effective interactions

Three papers [20,32,33] relate DFT+DMFT or DFT+GA
calculations of structural properties of pure actinides. These
calculations, however, use three different computational set-

tings (see also Table III): (a) GGA+DMFT calculations [20]
with J = 0 eV, but with a large (4.0 eV) value of U on
plutonium, (b) LDA+GA calculations with large U (4.5 eV)
and J (0.36 eV ) [32] on plutonium, and (c) LDA+DMFT

TABLE III. Comparison of our DFT+DMFT calculations (∗) of
volumes and bulk moduli with other DFT+DMFT calculations and
DFT+GA calculations. For completeness, we show the structural
data obtained with our ab initio interactions, and with the interactions
proposed by some authors. IS stands for interpolation scheme (see
Ref. [20]).

U,J (eV) V (Å
3
) B0(GPa)

δ-plutonium
GGA+DMFT/CTQMC∗ 0.94, 0.46 24.0 46
LDA+GA [32] 4.50, 0.36 25.5 15–35
LDA+DMFT/CTQMC∗ 4.50, 0.36 24.3 43
GGA+DMFT/IS [20] 4.00, 0.00 26.5
GGA+DMFT/CTQMC∗ 4.00, 0.00 25.8 28
Americium
GGA+DMFT/CTQMC∗ 1.53, 0.42 28.7 33
LDA+DMFT/Hubbard I [33] 4.50, 0.60 27.4 45
LDA+DMFT/CTQMC∗ 4.50, 0.60 28.0 44
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FIG. 4. Role of spin-orbit coupling (SOC) and exchange. Vol-
umes (per atom) of α-Pu, δ-Pu, and Am for the full DMFT
calculations (with J and SOC), for calculations without exchange J

and for calculations without SOC, in comparison to experiment. The
nonmagnetic calculation for curium is not stable without spin-orbit
coupling. These calculations show that the combination of both
the spin-orbit coupling and exchange J is necessary to recover the
equilibrium volume of δ-Pu and Am.

(Hubbard I approximation) calculations with large U (4.5 eV)
and J (0.6 eV) on americium [33]. In these published works,
indeed, high values of U were used. Moreover, in Ref. [32],
the value of J was adapted in order to have a better agreement
with experiment. So, there was really a need for an ab initio
calculation of effective interactions.

Before comparing the calculations to ours, we first check
that we recover the results of these papers with the same
settings (U , J , DFT functional) but with our computational
schemes. Our results are reproduced in Table III. Overall,
the agreement is good between our calculation and the cited
works [20,32,33], and the differences are in the range of what is
expected knowing the various possible definition of correlated
orbitals and the differences in the impurity model solver used.
This comparison of our calculations and the literature is a
further validation of our numerical DFT+DMFT scheme.

Secondly, we find an overall rather good agreement
between our GGA+DMFT calculations with an ab initio
(small U ) effective interactions and the above mentioned
references [20,32,33].

So indeed, for plutonium and americium, three effects play
roughly a similar role concerning the increase of equilibrium
volumes: (a) a large value of U = 4 eV instead of a small U ,5

(b) the use of J � 0.5 eV instead of J = 0 eV (see Fig. 4),
(c) the use of GGA instead of LDA.6 Our analysis therefore

5Indeed, the use of a large value of U in combination with our
calculated value of J leads to an overestimation of volume of δ-Pu; for
U = 3.3 eV, we find V = 28.8 Å

3
, much larger than the experimental

volume. Using a large value of U in americium, would also lead to
an overestimation of volume with respect to experiment.

6For δ plutonium, an LDA+DMFT calculation with U = 3.3 eV

and J = 0.5 eV gives a volume of 23.7 Å
3
, whereas a GGA+DMFT

calculation with the same parameters gives a volume of 28.8 Å
3
.

suggests that high values of U were probably postulated in
early works because they were necessary to describe the
structural properties of δ plutonium or americium, if exchange
interactions were neglected [20] or if the LDA was used
instead of the GGA [32,33].7 Such a variety of DFT+DMFT
schemes underlines the need for an ab initio determination of
the effective interactions as done in this work.

V. DFT+DMFT CALCULATIONS OF STRUCTURAL
PROPERTIES OF ACTINIDES: ANALYSIS

We have seen that our calculations are able to reproduce
the main trends of structural properties of pure actinides. So
in this section, we use our ab initio scheme to understand the
physical origin of the increase of volume in actinides.

A. Interplay of spin orbit coupling and Hund’s coupling

We first highlight the physical effect of the spin-orbit
coupling (SOC), and the Hund’s exchange J : we suppress
successively these two terms in the calculations. Figure 4
shows that the volume of both localized phases (δ-Pu and
Am) and delocalized (α-Pu) phases decrease in both cases.
Thus the combination of SOC and J is necessary for the
description of localized actinides and especially δ-Pu and
Am. The importance of Hund’s coupling has been underlined
recently [38]: indeed, following the so-called Hund’s rule, the
Hund’s exchange restricts the dimension of the Hilbert space
and can increase the role of correlation [24,26]. We show
here that it has a key role for the determination of structural
parameters. Indeed, in plutonium, the Hund’s coupling induces
that the average interaction [104] between 5/2 and 7/2 orbitals
(U5/2-7/2 = 0.78 eV) is larger than U7/2-7/2 = 0.67 eV, which
is itself larger than U5/2-5/2 = 0.62 eV. Thus, if J increases,
the number of electrons inside the 5/2 shell increases in order
to minimize the interactions, and the average local interaction
energy inside this shell increases. This is related to the third
Hund’s rule for atoms; for an atom with less than 7 f electrons,
the 5/2 shell is first filled to reduce the Coulomb interaction.
The role of J is thus to fill the 5/2 shell. As a consequence, the
configuration space is reduced in comparison to J = 0, and
correlations effects are enhanced [38,105]. It thus leads to a
larger volume, as expected when correlation effects increase.

B. Role of the crystal structure

As our scheme can describe the experimental volumes, we
will use it to disentangle the role of interactions and atomic
structure on the jump in volume.

1. Interplay of crystal structure dependent chemical
bonding and interaction

First of all, we discuss here and in Fig. 5 two main effects
of correlations on the structural properties of localized and
delocalized phases, taking α-Pu and δ-Pu as an example: both
are the result of the competition of chemical bonding and

7The difference between GGA+DMFT and LDA+DMFT under-
lines the need for a more advanced scheme, such as GW+DMFT.
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δ
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(b)

FIG. 5. Sketch of the role of interactions for two different phases.
The parabolic curves represent total energy vs volume, and the
minima of the curves represent the equilibrium volume. We call α

a delocalized phase with an important chemical bonding, and a low
symmetry and volume (such as α-U, α-Np, or α-Pu), whereas δ is a
compact phase (such as fcc Pu, or dhcp Am), with large interatomic
distances. (a) and (b) are two effects induced by electronic interactions
(see discussion in Sec. V B 1). As discussed in the text (see Secs. V B 1
and V D), we emphasize that even with the same U and J , α-Pu,
and δ-Pu have very different equilibrium volumes in DFT+DMFT
because of their different chemical bonding.

strong interactions. (a) The first effect concerns the equilibrium
volumes: local interactions are known to increase the volume
of solids. However, as chemical bonding is stronger in α Pu
with respect to the fcc δ-phase, correlation has a larger effect
on the structural properties of the fcc phase, leading to a
outstanding increase of the volume for the compact (fcc) δ

phase with respect to the α phase because of correlation (see
DFT versus DFT+DMFT data on Fig. 3). (b) The second
effect concerns the stability of phases: as chemical bonding
and thus delocalization of electrons are larger for the α phase,
the electronic interaction is larger—because it is compensated
by the bonding—and thus the α phase is destabilized (by
interactions) with respect to the fcc δ phase, for which bonding
and thus electronic interactions are weaker. The consequence
of this destabilization depends on the element: for early
actinides (U, Np), there are only a few 5f electrons, thus the
interaction energy is weak and delocalized distorted structures
(α-U and α-Np) are still stable with respect to the fcc phase.
For late actinides, interactions are so important that compact
phases (fcc/dhcp) are more stable than delocalized phases.
For example, we compare interactions effects in uranium and
plutonium which have roughly the same U and J (see Fig. 2),
and the α phases of the two elements have low volumes: as
plutonium has more 5f electrons than uranium, the impact
of interactions on the stability of phases is larger and lead to
the energetic proximity of the α and fcc phases of plutonium.
Indeed, for plutonium, DMFT decreases the energy difference
between the fcc phase and α phase from 700 meV (GGA) to
210 meV (GGA+DMFT). For uranium, the role of DMFT
on the same energy difference is weak (some meV). For
americium, the role of DMFT is huge and invert the stability
of phases.

U Np Pu CmAm

20

24

28

V
ol

um
e 

(Å
3 )

DFT+DMFT Experimental structures
DFT+DMFT δ-Pu (fcc)
DFT+DMFT γ-Pu
DFT+DMFT α-Pu

δ-Pu

γ-Pu

α-Pu

FIG. 6. Role of crystal structure on theoretical volumes. Com-
parison of DFT+DMFT calculations of volumes (per atom) for
actinides with the fcc structure, γ -Pu structure, δ-Pu structure, and
experimental structures. Arrows show the direction of the decrease
of DFT+DMFT energy towards the most stable phase (in agreement
with experiment). For example, for plutonium, we indeed found that
the α phase is more stable than the γ phase, whereas the δ fcc phase
is less stable, in agreement with experiment.

2. Impact of the crystal structure on the jump in volume

As we just saw, the correlation have different effects on
different phases, so that atomic structure and correlation effects
are intricate. So, we compare now the evolution of volume
as a function of Z for fixed structures: we choose the fcc,
γ -plutonium, and α-plutonium structures. Notice that the
coordination and the first nearest-neighbor bond lengths—for
the same volume—are decreasing from fcc to γ -Pu and α-Pu
(see Ref. [46], Sec. III). DFT+DMFT results are given in
Fig. 6, and we now discuss the evolution of volumes for
the three structures, thanks to the general features described
above and in Fig. 5. First, the fcc structure, because of its
compactness, has a large first-neighbors distance, that favors
localized electron phases. This has two consequences: firstly,
for lighter actinides, the fcc volumes are higher, and thus the
volume jump is smaller. Secondly, the jump happens early (for
plutonium, instead of americium). Indeed, the fcc structure is
more sensitive to interactions. On the contrary, if we constrain
the system to adopt the α-plutonium structure and only relax
the volume, the jump is weaker and appears for americium,
because this phase is less sensitive to interaction effects. For
the γ -plutonium phase, we find an intermediate behavior and
still an important jump for americium. So our calculations
highlight that the experimental jump of the volume is due to
electronic effects, because one recovers the jump for a fixed
common structure [(a) effect], but the jump is exacerbated
by the correlation-induced stabilization effects of localized or
delocalized phases [(b) effect].

C. Role of effective interaction and number of electrons

We now discuss the electronic origin of the jump. So we do
not discuss here the relative stability of the phases (which was
discussed in the previous section), but the shift of volume due
to DMFT for a fixed structure, as a function of Z. Two main
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DFT+DMFT γ Pu with constant U and J

FIG. 7. DFT+DMFT calculations of volumes (per atom) for
actinides, with the same imposed structure (the γ phase of plutonium).
The graph compares calculations with computed U and J for each
actinides, with calculations with a fixed U and J . For reference,
DFT+DMFT calculations for experimental structures are also given.

tendencies play a role. First, when Z increases, the localization
of orbitals increases and moreover the effective interactions are
more important, as can be seen in Fig. 2: both the bare and
effective interactions increase when Z increases. The second
effect is the increase of the number of electrons when Z

increases. In order to disentangled these two effects, we carried
out a calculation for fixed U = 0.94 eV and J = 0.46 eV
values for Pu, Am, and Cm with the same γ -Pu structure. Then,
in Fig. 7, we compare these calculations with calculations done
with the cRPA computed U and J for each actinides. The
results are contrasted: the jump in volume from plutonium
to americium is kept with a constant U and J . So this jump
is mainly due to the increase of the band filling. However,
with these values of U and J , the volume of curium is small.
Indeed, for curium, the effect of J is weak (see Fig. 4) and a
high value of U , as determined by our scheme, is necessary for
a good description of the structural properties. So our overall
conclusion is that the electronic origin of the jump is a complex
combination of the spin-orbit coupling effect, band filling, and
increase of localization.

D. Which elements and phases are strongly correlated?

In this section, we discuss which actinides or phases are
strongly correlated and which are weakly. A pragmatic view is
to see strongly correlated systems as those where DFT/LDA-
GGA fails. If one thus takes as reference GGA (AFM)
calculations, the main improvement induced by DFT+DMFT
is the correct description of magnetism. As the existence
of magnetism itself is caused by electronic interactions, this
failure of GGA (AFM) to recover the correct magnetism for Pu,
Am, and Cm can be seen as a proof that electronic interactions
are important in these systems. If one takes as a reference GGA
(NM) calculations, then the DFT+DMFT main improvement
is in the description of structural properties and again the main
effect is on Pu, Am and Cm.

Now, we discuss the effect of correlations on the phases
of Pu. In order to evaluate the effect of correlations (induced

by DMFT) on pressure of these phases, an important
quantity is the difference in pressure [32] between GGA
and GGA+DMFT (NM) PGGA(V ) − PGGA+DMFT(V ) =
d(EGGA+DMFT(V ) − EGGA)(V )/dV . We find that this shift is
(nearly) the same for α and δ phases.8

However, in practice, the impact of Coulomb interactions
on both phases is very different: DFT+DMFT increases
dramatically the lattice parameter of δ phase, whereas the
lattice parameter of the α phase is only slightly increased (see,
e.g., Fig. 3). So how can we reconciliate the large impact on
volume but the weak impact on difference of pressure? The
origin of this difference of behavior—already emphasized by
Lanata et al. [32]—is that the α phase has stronger chemical
bonds (hence a larger bulk modulus), and thus, as discussed
in Sec. V B 1 and on Fig. 5, is less sensitive to interactions in
comparison to the δ phase. Indeed the shift in volume depends
on the variation of the pressure as a function of volume, which
is in particular related to the bulk modulus B0. So interactions
are important for total energy and pressure in both the α and δ

phases as discussed earlier [20] but the impact of interactions
on lattice parameters is weaker in α. It is thus the balance
between chemical bonding and interaction which is important
to evaluate if interactions will have an impact on structural
properties.

VI. CONCLUSION

In conclusion, we underlined the stringent need for a
calculation of interactions to describe structural properties in
pure actinides. Our calculations highlight that the physical
origin of the jump in actinides is twofold. First, as commonly
though, the jump has an electronic origin. Second, this jump is
exacerbated by correlation induced stabilization of localized
phases (for Am and Cm), or delocalized phases (for U, Np, and
Pu). This work opens the way to future work concerning first-
order structural phase transitions under pressure or temperature
in actinides, lanthanides, and alloys.
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APPENDIX A: CALCULATION OF EFFECTIVE
INTERACTIONS PARAMETERS: EVALUATION

OF PRECISION

1. Comparison of DFT+U and DFT+DMFT spectral functions

Our scheme to compute U is parameter-free. However,
it relies on a DFT+U description of pure actinides. As we
have shown, DFT+DMFT offers a good description of pure
actinides and thus a self-consistent calculation of U within
DFT+DMFT or GW+DMFT would be indeed more accurate.

8Note that this is not in contradiction to the fact that the internal
energy increase is larger in the α phase as discussed in Sec. V B 1.
Indeed, EGGA+DMFT(V ) − EGGA(V ) is much larger in the α phase with
respect to the δ phase, but this difference is independent of volume
and disappears in the derivative.
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FIG. 8. DFT+DMFT 5f spectral functions of δ-Pu compared to
the GGA and GGA+U 5f projected density of states (DOS) used
for the cRPA calculation of U . Calculations are done at 800 K and
GGA+U and GGA DOS are widened (with a 0.5 eV broadening) to
be easily compared to DFT+DMFT spectral function.

However, as discussed before, a full implementation of these
framework is still in progress and its application to actinides
would be even more demanding than the current work.

However, as DFT+U can be viewed as the (broken-
symmetry) limit of DFT+DMFT in the case where correlation
is strong, we can expect the screening to be more efficient
in DFT+DMFT because electrons will be less localized. So,
the value of effective interactions that we obtain in DFT+U

should be an overestimation of the more complete dynamical
effective interactions computed in GW+DMFT. A rough way
to see if the screening is similar is to compare the spectral
functions computed by the two methods. Figure 8 displays first
the DFT+DMFT spectral function. We also plot the DFT+U

spectral functions (GGA+U ferromagnetic without SOC)
computed for U = 1 eV and also U = 4 eV in comparison
to DFT+DMFT and GGA calculations. The DFT+DMFT
spectral functions are indeed much closer to the DFT+U

with U = 1 eV and the GGA.9 The position of the correlated
bands is important because the important transitions for the
screening are the transitions inside the noncorrelated bands
(not plotted) and more importantly from the correlated f bands
to noncorrelated bands [37]. So, this comparison shows the
following: the position of the f peaks is closer to the Fermi
level in DFT+DMFT in comparison to GGA and DFT+U .
Thus, neglecting dynamical effects, the value of U computed in
DFT+DMFT should be slightly lower than the cRPA obtained
from GGA or DFT+U .

Nevertheless, we will see that the main effect concerning
structural properties—at least for Pu and Am—is the value
of the Hund’s coupling J , which is known to be much less
sensitive to screening, as can be seen in Table I. So we can
be confident that our physical findings are robust and are
independent of a small variation of U.

9Indeed, it was seen also in Ref. [26] that the GGA density of states
has a structure similar to the DMFT spectral function.

2. Variation of the cRPA computed U for different
band structure

Here, we evaluate the role of the band structure on the
value of U as computed in cRPA. Indeed, even the value of
U is weakly dependent on the band structure: we carried out
calculations of U within cRPA with DFT+U band structure
with increasing values of U . In these calculations, thus, the
DFT+U spectral function shows important variations as U

increases. We found that the cRPA computed U varies from
0.9 eV (with the GGA band structure) to only 2.2 eV (for
the GGA+U band structure with U = 4 eV). These values
reinforce our conclusion that in plutonium, the value of the
direct Coulomb interaction is weak.

Concerning americium, even using a DFT+U band struc-
ture with U = 4.5 eV and J = 0.5 eV, gives a value for U

of 2.3 eV, still a weak value. It thus confirms that the direct
Coulomb interaction is weak.

APPENDIX B: DFT+DMFT: ELECTRONIC PROPERTIES
AND SPECTRAL FUNCTIONS

Describing the electronic properties is not the goal of
our scheme. Indeed, as we use an efficient density-density
approximation for the CTQMC solver, we do not expect a
high precision on spectra as we cannot recover the multiplet
structure. However, as we will see below, the most important
electronic properties of actinides are recovered.

Experimental spectra

-5 0 5
(eV)

U

Np

α−Pu

δ−Pu

Am

Cm

DFT+DMFT Spectral functions

-5 0 5
(eV)

U

Np

α−Pu

δ−Pu

Am

Cm

FIG. 9. Experimental photoemission spectra (left) of α-uranium
(398 K) [106], α-neptunium (80 K) [107], plutonium (α at 423 K
and δ at 77 K) [108], americium (at 298 K) [109], and curium (298
K) [91], compared to our DFT+DMFT spectral functions (right)
computed with ab initio effective interactions computed with the self-
consistent cRPA scheme. The full spectral function, and theoretical
direct photoemission spectra are presented in dashed and full lines,
respectively. Results are nearly identical at 800 and 200 K. Magnetic
calculations for curium are indicated by dotted lines.
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1. Number of electrons

For plutonium, we find a number of 5f electrons of 5.05
in agreement with the published results [22,24–26], which
give values between 5.0 and 5.2. The number of electrons
can indeed change slightly as a function of the definition
of the correlated orbitals or Wannier functions. Concerning
americium, we recover the main results of Ref. [33]: the 5/2
shell is filled with 5.75 electrons and only 0.29 electrons are
in the 7/2 shell. We performed DFT+DMFT calculations for
ferromagnetic curium, and in this case, the second Hund’s
rule becomes more important than the third, as noticed
before [24]. Moreover, we find that, because of the GGA
exchange mainly, the number of electrons in the 5/2 and 7/2
shells are respectively 3.77 and 2.84, in agreement with the
results of Ref. [24] also for the magnetic case.

The calculations in this paper are focusing on DFT+DMFT
calculations on paramagnetic curium, which is the stable phase
above 65 K [91]. In this case, we found on average a filled
5/2 shell and one electron in the 7/2 shell. Moreover, we
found logically a weak effect of J (see Fig. 3 of the letter)
because the 5/2 shell is completely filled, and the main
physical effect on structural properties originates here from
the direct Coulomb interaction U , which is large in this case
(see Table I). These nonmagnetic calculations thus differ from
the results of Ref. [110], which find 4.04 and 3.03 electrons,
respectively, for the 5/2 and 7/2 shells. As discussed below,

the difference could arise from our simplified density-density
CTQMC solver.

2. Spectral functions

In Fig. 9, we plot the experimental photoemission spectra of
uranium, neptunium, plutonium, americium, and curium, and
the inverse photoemission spectrum of uranium in comparison
to our DFT+DMFT calculations.

Our calculations reproduce the main trends of the exper-
imental data; for early actinides (uranium, neptunium), the
calculations reproduce the structures around the Fermi level.
For plutonium, the appearance of peaks at the Fermi level is
roughly taken into account. Besides, the spectral function of
plutonium for the δ phase is in reasonable agreement with
Ref. [26] in particular concerning the position of the peaks
even if we use completely different values of interactions.
For late actinides, the appearance of high energy structures is
reproduced, even if the position of the peaks is not perfect.

We emphasize that americium and curium are localized
systems, where the description of multiplets might be im-
portant. We cannot expect to describe the photoemission
spectra in these systems. Indeed, this work uses an efficient
density-density CTQMC solver to focus mainly on the struc-
tural properties. Analyzing spectral functions would probably
require a much more computationally expensive rotationally
invariant solver, and is not the goal of this work.
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