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In the conventional theory of density wave ordering in metals, the onset of spin density wave (SDW) order
coincides with the reconstruction of the Fermi surfaces into small “pockets.” We present models which display
this transition, while also displaying an alternative route between these phases via an intermediate phase with
topological order, no broken symmetry, and pocket Fermi surfaces. The models involve coupling emergent gauge
fields to a fractionalized SDW order, but retain the canonical electron operator in the underlying Hamiltonian. We
establish an intimate connection between the suppression of certain defects in the SDW order and the presence of
Fermi surface sizes distinct from the Luttinger value in Fermi liquids. We discuss the relevance of such models
to the physics of the hole-doped cuprates near optimal doping.
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I. INTRODUCTION

A number of recent experiments [1–4] have highlighted
a remarkable transformation in the electronic state of the
hole-doped cuprates at a hole density around p = pc ≈ 0.19:
many electronic properties change from those characteristic of
a Fermi gas of charge +e carriers of density p for p < pc, to
those of a Fermi gas of charge +e carriers of density 1 + p for
p > pc. As the density of holes is conventionally measured
relative to those of the insulator at unit density, a conventional
Fermi liquid is required by the Luttinger theorem to have a
Fermi surface of size 1 + p, as found for p > pc.

Starting from the Fermi liquid with a Fermi surface of
size 1 + p, there are two reasonable routes to a Fermi surface
reconstruction of size p that could apply to the cuprates:

(i) The conventional route involves the onset of spin density
wave (SDW) order (other density wave orders have also been
suggested [5]), which reconstructs the “large” Fermi surface
to pocket Fermi surfaces. This route appears appropriate for
the electron-doped cuprates, where antiferromagnetic order is
observed [6] not too far from the critical electron doping.

(ii) The more “exotic” route relies on the development of
topological quantum order in the metallic state, which has
been linked to changes in the Fermi surface size [7–9]. This
is an attractive and exciting possibility for the hole-doped
cuprates, given the absence in observations so far of significant
correlations in any order parameter which breaks translational
symmetry near p = pc.

The purpose of this paper is to present the simplest models
in which the existence of the three metallic phases mentioned
above (the Fermi liquid, the Fermi liquid with SDW order, and
the metal with small Fermi surfaces and topological order) can
be reliably established. We wish to describe models which can
serve as convenient starting points for analyzing the quantum
phase transitions between these metals, and which do not
have extraneous exotic phases which are ultimately unstable
to confinement.

The models described below are closely connected to
previous work [10–13] using an SU(2) gauge theory and a
Higgs field to represent local antiferromagnetic correlations in
a metal. These previous works, along with related works using

a Schwinger boson formulation [14,15] or a quantum dimer
model [16], show that the phases we obtain below are allowed
ground states of a single-band Hubbard model. However, in the
interests of simplicity and of keeping this paper self-contained,
we will not introduce the models using these prior connections.
Instead, we will emphasize the relationship of our models to
those using a conventional Landau-Ginzburg-Wilson (LGW)
order parameter framework for the onset of spin density wave
order in metals; as emphasized by Hertz [17], the general rules
of LGW theories apply to such quantum phase transitions in
metals, and the main role of the Fermi surface is to damp with
dynamic order parameter fluctuations. Developing our model
by deforming the LGW theory will clearly expose the intimate
link between topological defects in the SDW order and the
possibility of metallic states which have Fermi surface sizes
distinct from the Luttinger value.

As the LGW-Hertz theory is an expansion around weak
coupling, our analysis below can be viewed as providing the
minimal ingredients necessary to put strong-coupling Mott-
Hubbard physics back into the LGW-Hertz model. Indeed in
the limit of p = 0, our model will have a Mott insulator with
Z2 topological order [18,19] (and other topological orders in
related models), in addition to the “Slater” insulator with Néel
order present in the LGW-Hertz model.

Easy-plane model

The most transparent introduction to our models is obtained
by focusing on the case in which the spin density wave order
parameter is restricted to lie in the x-y plane in spin space. Such
a restriction can only arise from spin-orbit couplings, which
are known to be rather weak in the cuprates. Nevertheless, we
will describe this case first because of its simplicity.

1. LGW-Hertz theory

The LGW-Hertz theory for the onset of SDW order can be
described by the following Hamiltonian:

Hsdw = Hc + Hθ + HY , (1.1)
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where Hc describes electrons [of density (1 − p)] hopping on
the sites of a square lattice

Hc = −
∑
i,j

(tij + μδij )c†iαcjα (1.2)

with ciα the electron annihilation operator on site i with spin
α = ↑,↓. We represent the SDW order by a lattice XY rotor
model, described by an angle θi , and its canonically conjugate
number operator Ni , obeying

Hθ = −
∑
i<j

Jij cos(θi − θj ) + 4�
∑

i

N2
i , [θi,Nj ] = iδij ,

(1.3)
where Jij are positive exchange constants, and � is pro-
portional to the bare spin-wave gap (the 4 is for future
convenience). A term linear in Ni is also allowed in Hθ , but we
ignore it for simplicity; such a linear term will not be allowed
when we consider models with SU(2) symmetry in Sec. IV.
Finally, there is a “Yukawa” coupling between the XY order
parameter, eiθ , and the fermions

HY = −λ
∑

i

ηi[e
−iθi c

†
i↑ci↓ + eiθi c

†
i↓ci↑], (1.4)

where

ηi ≡ (−1)xi+yi (1.5)

is the staggering factor representing the opposite spin orienta-
tions on the two sublattices. Note that the Yukawa coupling,
and the remaining Hamiltonian, commute with the total spin
along the z direction:

Sz =
∑

i

(
Ni + 1

2
c
†
i↑ci↑ − 1

2
c
†
i↓ci↓

)
. (1.6)

The Hamiltonian Hsdw displays the two conventional metallic
phases noted above. These phases can be conveniently ac-
cessed by tuning the value of �/J , where J is the nearest-
neighbor exchange. For large �/J , the correlations of eiθ

are short-ranged, and we obtain the Fermi liquid with a large
Fermi surface controlled mainly by Hc; we can account for
HY perturbatively in λ, and the large Fermi surface leads
to damping in the order parameter correlation functions. On
the other hand, for small �/J , we expect long-range XY
order with 〈eiθ 〉 �= 0; now HY has a stronger effect, and in
the presence of the XY condensate the fermion dispersion is
modified, leading to a reconstruction of the Fermi surface into
small pockets. These phases of Hsdw are illustrated by the
small K regime of Fig. 1, where they are labeled A and B,
respectively (the parameter K will be introduced below).

The phase transition between these two phases has been ex-
tensively studied [20–27] since the original work by Hertz [17],
including by recent sign-problem-free quantum Monte Carlo
simulations [28–30]. Note that in such a phase transition, two
important physical changes happen at the same point in the
phase diagram: the appearance of long-range XY order, and
the reconstruction of the Fermi surface.

It is also interesting to consider the p = 0 limit of phases A
and B. The large Fermi surface has size 1 + p and so phase A
is not sensitive to p approaching 0: it remains a Fermi liquid.
On the other hand, in phase B, the hole pockets disappear at

Δ

K

eiθ = 0eiθ = 0

eiθ = 0

Proliferation of 
single vortices

Proliferatio
n of 

double vortice
s

(C) Metal with
Z2 topological order

(B) SDW metal (A) Fermi liquid

LGW-Hertz
transition

FIG. 1. Schematic, minimal phase diagram of the easy-plane
Hamiltonian H1 in Eq. (1.9). The vortices are the usual defects in
the XY SDW order eiθ . The Fermi surfaces are shown in the first
Brillouin zone: those in A and B are of electrons, while those in C
can be either of electrons or chargons. In phase C, the single vortices
in the SDW order are gapped excitations, identified as the visons of the
Z2 topological order. The sketched Fermi surfaces are for hole doping
with the cuprate band structure: in phases B and C only hole pockets
are shown, but electron pockets will appear near the boundaries to
phase A. We propose that the SU(2) spin rotation invariant analogs
of phase C (discussed in Sec. IV) describe the pseudogap state in the
hole-doped cuprates. Other less-correlated superconductors (such as
the pnictides) are proposed to bypass phase C and evolve directly
from phase B to A.

p = 0, so phase B is an insulator. This insulating behavior
is a direct consequence of the presence of strong long-range
XY order, and so B should be considered a Slater insulator at
p = 0. We note that in between the Slater insulator and the
large Fermi surface Fermi liquid, there is a metal with hole
and electron pockets, and this is not shown in Fig. 1.

2. Fractionalizing the order parameter

We now ask whether it is possible, at nonzero p, to realize
a situation in which XY long-range order and Fermi surface
reconstructions happen at distinct points of the phase diagram.
If so, we will obtain an intermediate phase with small Fermi
pockets but no long-range XY order. (At p = 0, such a phase
would be an insulator without long-range XY order, and
so would be a Mott insulator.) To obtain such a phase, we
use the idea of transforming to a “rotating reference frame”
determined by the local orientation of the XY order [10,31,32].
In particular, by a rotation about the z axis in spin space, let us
define the canonical fermion operators

ψ+ = eiθ/2c↑, ψ− = e−iθ/2c↓. (1.7)

Then the Yukawa coupling, HY , takes a simple form indepen-
dent of the orientation of the XY order [10]:

HY = −λ
∑

i

ηi[ψ
†
i+ψi− + ψ

†
i−ψi+]. (1.8)
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In other words, the ψ± fermions move in the presence of
a spacetime-independent XY order, even though the actual
orientation of the XY order rotates from point to point.
Moreover, from the electron hopping term in Hc, we can
obtain an effective hopping Zij tij (ψ†

i+ψj+ + ψ
†
i−ψj−) where

Zij = 〈e±i(θi−θj )/2〉 is a renormalization factor of order unity
[computed later in Eq. (2.21)]. So it appears we can realize
a situation in which the ψ± fermions are approximately free,
and their observation of constant XY order implies that they
will form small pocket Fermi surfaces (or be fully gapped at
p = 0). From (1.6), it can be verified that the ψ± fermions have
Sz = 0, and so these are spinless fermions which carry only
the charge of the electron: we will refer to them as “chargons”
in the remaining discussion. A metallic phase with chargon
Fermi surfaces was called an “algebraic charge liquid” (ACL)
in Ref. [15].

However, further thought based upon the structure of (1.7)
shows that there is a crucial obstacle to realizing nearly free
ψ± fermions in a regime where 〈eiθ 〉 = 0. The phase with no
XY order described by Hsdw has proliferating 2π vortices in
the SDW order, and the half-angle transformation in Eq. (1.7)
shows that ψ± are not single-valued around such vortices. So
the ψ± fermions must be confined at the same point where
the XY order disappears. In other words, we are back to the
conventional scenario in which Fermi surface reconstruction
and XY ordering coincide.

But the above argument also suggests a route around such
an obstacle: the ψ± fermions are single-valued around doubled
4π vortices, and so we need the disappearance of XY order to
be associated with the proliferation of doubled vortices.

There is a simple route to the loss of XY order by doubled
vortices that has been much studied in the literature [33–36]:
it involves coupling the square root of the XY order, the
“spinon” field eiθ/2, to a Z2 gauge field. A microscopic
justification for fractionalizing the order parameter in this
manner can be obtained from the Schwinger boson theory of
frustrated antiferromagnets [10,18,37,38]: eiθ/2 is essentially
the staggered Schwinger boson operator. The model we
wish to study is obtained by replacing Hθ in Hsdw with the
model studied in Refs. [33,34]. In this manner, we obtain the
Hamiltonian (written out completely because of our focus on
it in this paper)

H1 = Hc + Hθ,Z2 + HY ,

Hc = −
∑
i,j

(tij + μδij )c†iαcjα,

HY = −λ
∑

i

ηi[e
−iθi c

†
i↑ci↓ + eiθi c

†
i↓ci↑],

Hθ,Z2 = −
∑
i<j

Jijμ
z
ij cos[(θi − θj )/2]

+ 4�
∑

i

N2
i − g

∑
〈ij〉

μx
ij − K

∑
�

[∏
�

μz
ij

]
, (1.9)

where μx,z are Pauli matrices on the links of the square lattice
representing the Z2 gauge field. The forms of Hc and HY are
the same as those in the LGW-Hertz theory, and only the action
for the spin density wave order has been modified by terms that

are effectively multispin exchange interactions. (It will become
clear from our discussion later that at p = 0 and small �, H1

reduces to the model studied in Ref. [36].) The Hamiltonian
H1 is invariant under the Z2 gauge transformation

eiθi/2 → si e
iθi/2, μz

ij → si μ
z
ij sj , (1.10)

where si = ±1 is an arbitrary function of i, and the other oper-
ators remain invariant. Associated with this gauge invariance
is the existence of an extensive number of conserved charges,
Ĝi , which commute with H1 and obey Ĝ2

i = 1; we restrict our
attention to the gauge-invariant sector of the Hilbert space in
which all the Ĝi = 1:

Ĝi ≡ e2iπN̂i

∏
j∈nn(i)

μx
ij = 1, (1.11)

where j extends over the nearest neighbors of i.
The main term driving the appearance of exotic phases in

H1 is the K term, which penalizes configurations with nonzero
Z2 gauge flux. For small K , we can trace over the Z2 gauge
field in powers of K , and then H1 only has terms with the same
structure as those in Hsdw. However, at large K , the suppression
of Z2 gauge flux implies that single vortices (but not double
vortices) in eiθ become very expensive: the coupling Jij ties
Z2 gauge flux to a 2π vortex in eiθ because of the branch cut
in eiθ/2 around such a vortex. Hence, upon increasing � at
large K , we obtain the needed transition to a phase without
XY order by the proliferation of double vortices. The resulting
Z2 topologically ordered phase supports gapped deconfined
“spinon” excitations that carry a half integer value of Ni , and
gapped vison excitations which are the remnants of the single
vortices in the SDW ordered phase.

This discussion therefore leads to the schematic phase
diagram of H1 shown in Fig. 1. Further details on the structure
of the new phase with Z2 topological order appear in Secs. II
and III. The model (1.9) can support additional phases not
shown in Fig. 1, which we comment on in Appendix A.

One important distinction between H1 and previous studies
of fractionalization in doped Mott insulators [10,33,39,40] is
worth noting here. In all previous works, the Hamiltonian is
presented in terms of emergent, fractionalized spinon and char-
gon degrees of freedom. The electron operator does not appear
explicitly in the Hamiltonian, but is described as a composite
operator. In contrast, in our model H1 we have fractionalized
the order parameter only into the spinons, while retaining the
bare electron operator in the Hamiltonian. In our approach,
it is the chargon, rather than the electron, which appears as
a composite particle, as a bound state of the electron and
the spinon in (1.7). We believe this difference in perspective
is important, and that it leads to an efficient and controlled
description of the metallic states observed in the cuprates.

We also comment here on an important subtlety in the
structure of the metallic phase with Z2 topological order.
We have given arguments above on the appearance of recon-
structed pocket Fermi surfaces of the ψ± chargons in this
phase. However, as we will see in our computations below,
there remains a strong residual attraction [14–16,41] between
the chargons and the spinons due to the hopping terms tij in
Hc. Because of this attraction, it is possible that some or all
of the chargons form bound states with the spinons, leading
to a pocket Fermi surface of electron-like quasiparticles
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with charge e and spin Sz = ±1/2. If all of the chargons
undergo this bound-state formation, then we obtain a FL*
metal [7,16,42–46]. Microscopic details of the Hamiltonian
will determined whether we obtain an ACL, or FL*, or an
intermediate phase with coexisting chargon and electron Fermi
surfaces [15]—the charge transport properties of all these
phases are expected to be very similar, and so we will not
focus much on the distinction here. Note that, in the discussion
above, even if all chargons bind with spinons to form electrons,
we do not obtain back the large Fermi surface Fermi liquid,
but obtain FL*: this is because the Fermi surface size of the
chargons is p and not 1 + p. Thus, an important feature of our
analysis is that the operations of binding fermions to spinons,
and of Fermi surface reconstruction, do not commute.

We note that a model closely related to H1 was studied
by Grover and Senthil [47] in the context of a two-band
Kondo-Heisenberg model. However, their interest was limited
to the regime accessible perturbatively in an expansion in
λ (in our notation), and they did not obtain the analog of
the topological phase C in Fig. 1 with reconstructed Fermi
surfaces. In doped Mott insulators, the coupling λ ∼ U , the
on-site Mott-Hubbard repulsion, and so λ is the largest energy
scale in the Hamiltonian. We will work throughout in the
large-λ limit, and will see below that the topological phase
appears in a regime inaccessible in a small-λ expansion.

The analysis of this paper will neglect superconductivity.
But it should be noted that all the metallic phases of Fig. 1 are
expected to superconduct at low T [29,30].

The outline of the remainder of the paper is as follows.
Section II will analyze the properties of phase C of the easy-
plane model H1 in a strong-coupling expansion. Section III
will discuss the topological order and dynamics of visons in
H1. We will generalize the results to various cases in models
with full SU(2) spin rotation invariance in Sec. IV. Section V
will summarize our results and discuss the nature of the phase
transitions in Fig. 1.

II. STRONG-COUPLING EXPANSION WITH
TOPOLOGICAL ORDER

This section will present a strong-coupling analysis of the
topological state C of the easy-plane model H1 in Fig. 1.
The conventional metals A and B have the same properties as
those of the phases of the SDW theory Hsdw, and so do not
need further discussion here. Our analysis will establish the
stability of a metallic phase with topological order, and also
determine its excitation spectrum in a limiting regime.

As the conventional phases appear in the limit of small K ,
we will study here the complementary K → ∞ regime. At
K = ∞, we can work in the gauge μz

ij = 1 everywhere. So
the model of interest in Eq. (1.9) reduces to the gauge-fixed
Hamiltonian

H′
1 = −

∑
i,j

(tij + μδij )c†iαcjα

− λ
∑

i

ηi[e
−iθi c

†
i↑ci↓ + eiθi c

†
i↓ci↑]

−
∑
i<j

Jij cos[(θi − θj )/2] + 4�
∑

i

N2
i , (2.1)

describing fermions coupled to an XY rotor model. Note the
crucial and only difference from the conventional SDW theory
Hsdw in Eq. (1.4): the Jij terms now involve couplings between
the spinon field eiθ/2, rather than the XY order parameter eiθ .
Consequently, the rotor states on each site have Ni quantized
in steps of 1/2, and the spin Sz can be half integer or integer.

This section will describe a strong-coupling analysis of H′
1

in which the on-site terms are much larger than the off-site
terms, i.e.,

λ,� � |tij |,|Jij |. (2.2)

We will show that in this limit at p = 0,H′
1 realizes a Mott

insulator with a spin liquid ground state. Furthermore, the
spin liquid has odd Z2 topological order with gapped bosonic
spinon and fermionic chargon excitations: “odd” refers to the
presence of unitZ2 background charge on each site of the Mott
insulator [33,48–50]; the vison excitations have infinite energy
at K = ∞, and will be considered further in Sec. III. Moving
towards p > 0, we occupy the lowest-energy fermonic holon
states and obtain a ACL metal with odd Z2 topological order.

We will also describe the spectrum of states with one
chargon and one spinon excitation above the Mott insulator.
Note that these states have total charge e and spin Sz = 1/2,
and so have the same quantum numbers as the electron. We
will find that along with the scattering states in which the
holon and spinon are well separated from each other, there is
an electron-like bound state below the scattering continuum
whose dispersion we shall compute. Because of the large
spinon gap in the present strong-coupling limit, this holon-
spinon bound state is well above the band of fermionic holon
states. However, away from the strong-coupling limit it is
clearly possible that the bound state becomes the lowest-energy
charged fermionic state [14,15]. Then, at p > 0, these states
will be occupied, leading to Fermi surfaces with electron-like
quasiparticles. Such Fermi surfaces can coexist with holon
Fermi surfaces (leading to the “holon-hole” metal of Ref. [15]),
or they can exist by themselves in a Z2-FL* state.

A. Single-site eigenstates

We begin the study of H′
1 in the limit (2.2) by defining the

on-site Hamiltonian

H0 =
∑

i

(
−μc

†
iαciα − λ ηi[e

−iθi c
†
i↑ci↓ + eiθi c

†
i↓ci↑]

+ 4�
∑

i

N2
i

)
. (2.3)

It is easy to determine all the eigenstates of H0. In this
subsection, we drop the site index, i. We denote the state
with N = 0 (no spinons) and no electrons as |0〉. Then the
eigenstate with n spinons is

N̂einθ/2|0〉 = n

2
einθ/2|0〉. (2.4)

The empty electron state is implicit in |0〉, and all electrons
will be indicated below by creation operators acting on |0〉.
Notice that the H0 conserves n modulo 2, and states with n

odd carry the Z2 gauge charge. The state einθ/2|0〉 carries spin
Sz = n/2. Important low-lying states are the following:
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(i) Mott insulator. This is the state

|G〉 = 1√
2

[(c†↑e−iθ/2 + η c
†
↓eiθ/2)|0〉], EG = −λ + � − μ.

(2.5)

This state carries no total spin, Sz = 0. It also carries Z2

gauge charge, and so the Z2 gauge theory is “odd” [33,48–50],
provided EG is the lowest-energy state at half filling.

(ii) Spinons. These are doubly degenerate states with Sz =
±1/2. The Sz = +1/2 state is

|↑〉 = (a c
†
↑ + ηb c

†
↓e2iθ/2)|0〉,

(2.6)
Es = −μ + 2� −

√
λ2 + 4�2,

where (a,b) is an eigenvector of the matrix(
0 −λ

−λ 4�

)
(2.7)

with eigenvalue 2� − √
λ2 + 4�2, and similarly

|↓〉 = (a c
†
↓ + ηb c

†
↑e−2iθ/2)|0〉,

(2.8)
Es = −μ + 2� −

√
λ2 + 4�2.

Relative to the Mott insulator, the spinon carries no electro-
magnetic charge, and a Z2 gauge charge. We want to be in a
regime where the Mott insulator has a lower energy than the
spinon, and so we require

EG < Es ⇒ λ > 3�/2. (2.9)

The spin gap, �s , of the Mott insulator is

�s = Es − EG = � + λ −
√

λ2 + 4�2. (2.10)

(iii) Holon. This is simply the empty state |0〉, with energy
Ehn = 0. Relative to the Mott insulator, this state has Sz =
0, + e electromagnetic charge, and a nonzeroZ2 gauge charge.

(iv) Doublon. This is the state c
†
↑c

†
↓|0〉, with energy Edn =

−2μ. Relative to the Mott insulator, this state has Sz = 0,−e

electromagnetic charge, and a nonzero Z2 gauge charge.
(v) Holes. These are the doubly degenerate states e±iθ/2|0〉

with energy Eh = �. Relative to the Mott insulator, they
carry electromagnetic charge +e and zero Z2 gauge charge.
They have spin Sz = ±1/2. We can now examine the energy
difference between a pair of sites with hole+Mott insulator
and a pair with holon+spinon

Eh + EG − Ehn − Es = −λ +
√

λ2 + 4�2 > 0. (2.11)

So a hole is unstable to decay into a holon and a spinon in the
strong-coupling expansion of Eq. (2.2). Note that, at λ � �,
this energy difference can become small.

(vi) Electrons. These are the doubly degenerate states
c
†
↑c

†
↓e±iθ/2|0〉 with energy Ee = −2μ + �. Relative to the

Mott insulator, they carry electromagnetic charge −e and zero
Z2 gauge charge. They have spin Sz = ±1/2. The condition
for the instability of an electron state is

Ee + EG − Edn − Es = −λ +
√

λ2 + 4�2 > 0, (2.12)

which is the same as (2.11).

For subsequent analysis, it is useful to introduce the
canonical fermion operators of the holon [this is a linear
combination of the operators in (1.7)]:

ψ = 1√
2

(eiθ/2c↑ + η e−iθ/2c↓). (2.13)

Note that ψ is the holon creation operator; i.e., a holon is an
empty state in a filled ψ band,

|G〉 =
∏

i

ψ
†
i |0〉, (2.14)

which is the Mott insulator.
We also introduce the fermions



†
↑ = a c

†
↑ + ηb c

†
↓eiθ ,

(2.15)



†
↓ = a c

†
↓ + ηb c

†
↑e−iθ .

Then the spinon creation operator is the boson

b†α = 
†
αψ. (2.16)

This creates the spinon excitation via b†α|G〉.

B. Effective holon Hamiltonian

Now we move beyond the single-site Hamiltonian, and
examine the influence of the multisite terms on the single-
holon excitation above the Mott insulator.

First, we note the on-site Hamiltonian

Hh0 =
∑

i

(−μ + � − λ)ψ†
i ψi, (2.17)

which describes the on-site energy of the holon states.
Next, we include the hopping terms tij and Jij . We perform

a canonical transformation to eliminate the θ/2 excitations
to obtain an effective Hamiltonian for the holons. This
transformation should be performed around single-particle
excitations of the band insulator of ψ , which is the Mott
insulator |G〉. For this transformation, it is convenient go
back to the original c fermion formulation. We make a list
of all states among a pair of sites, 1,2, which are important to
second-order perturbation theory in t , J with a total charge of
e and a total Sz of 0; there turn out to be 12 such states:

c
†
1↑e−iθ1/2|0〉, c

†
1↓eiθ1/2|0〉, c

†
2↑e−iθ2/2|0〉,

c
†
2↓eiθ2/2|0〉, c

†
2↑e−iθ1/2|0〉, c

†
2↓eiθ2−iθ1/2|0〉,

(2.18)
c
†
2↓eiθ1/2|0〉, c

†
2↑e−iθ2+iθ1/2|0〉, c

†
1↑e−iθ2/2|0〉,

c
†
1↓eiθ1−iθ2/2|0〉, c

†
1↓eiθ2/2|0〉, c

†
1↑e−iθ1+iθ2/2|0〉.

Each site in all of these states is limited to have a spin of
Sz = 0,±1/2. A conventional computation then eliminates the
last 8 of these states to yield the effective holon Hamiltonian.

To leading order in J/λ, only hopping within the same
sublattice contributes, and the effective holon Hamiltonian
turns out to be

Hh = Hh0 + Hh1 (2.19)
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with

Hh1 = −
∑

i<j, nnn

t2J2Z(ψ†
i ψj + ψ

†
j ψi)

−
∑

i<j, nnnn

t3J3Z(ψ†
i ψj + ψ

†
j ψi), (2.20)

where

Z = (λ + 2�)

2�λ
. (2.21)

Here, “nnn” and “nnnn” stand for second- and third-neighbor
sites, respectively, and the renormalization factor Z is related
to the Zij mentioned in Sec. I 2. One feature of Hh1 is that the
holons on the two sublattices do not mix with each other; i.e.,
hopping between same-sublattice sites on the square lattice is
forbidden. This is an exact property of this model due to a
symmetry of the XY model: the holon operator in (2.13) is
odd or even under the spin inversion Sz → −Sz,θ → −θ on
the two sublattices.

C. Effective spinon Hamiltonian

Next we examine the hopping of the single-spinon excita-
tions above the Mott insulator. In this case, the computation
is simpler than the holon case, and the spinon Hamiltonian is

easily obtained by first-order perturbation theory:

Hs =
∑

i

(� + λ −
√

λ2 + 4�2)b†iαbα

− (a + b)2

2

∑
i<j

Jij (b†iαbjα + b
†
jαbiα). (2.22)

D. Holon and spinon bound state

We are now ready to consider the states with both a holon
and a spinon present. The most important coupling between
them appears already at first order in tij when the holon and
the spinon exchange positions. The matrix element for this is
easily computed and leads to the Hamiltonian

Hhs1 = −
∑
i<j

a2tij (
†
iα
jα + 


†
jα
iα)

= −
∑
i<j

a2tij (ψ†
i ψjb

†
iαbjα + ψ

†
j ψib

†
jαbiα). (2.23)

Introducing the holon operators h = ψ† and collecting all
terms, the Hamiltonian acting on the Hilbert space of one holon
and one spinon is

Hhs =
∑

i

[(μ − � + λ)h†
i hi + (� + λ −

√
λ2 + 4�2)b†iαbα] +

∑
i<j, nnn

t2J2(λ + 2�)

2�λ
(h†

i hj + h
†
jhi)

+
∑

i<j, nnnn

t3J3(λ + 2�)

2�λ
(h†

i hj + h
†
jhi) − (a + b)2

2

∑
i<j

Jij (b†iαbjα + b
†
jαbiα) +

∑
i<j

a2tij (h†
jhib

†
iαbjα + h

†
i hj b

†
jαbiα),

(2.24)

along with a hard-core constraint which prevents the holon and
spinon from residing on the same site.

A number of interesting features of Hhs deserve notice. In
the strong-coupling limit of (2.2), the holon+spinon states are
at larger energy than the energy of a single holon. However,
there is an attractive interaction between the holon and spinon
(∼t) which is parametrically larger than the bandwidth of the
holon (∼tJ/λ). This implies that there will be a clear sepa-
ration between the energy of the holon+spinon bound state
and the bottom of the holon-spinon continuum, and this will
be evident from our numerical results below. Although such
an electron-like bound state does form in the strong-coupling
limit, its energy remains higher than the energy of the single-
holon band. This implies that doping the Mott insulator will

lead to a Fermi surface of holons only, realizing a Z2-ACL
metal in the limit (2.2). However, as we move away from (2.2),
the conditions are favorable for the holon+spinon bound state
to become the lowest-energy charged fermion, and doping
will then lead to a Z2-FL* metal. In particular, FL* is favored
in the limit λ � � � |tij | � |Jij |, when the on-site energy
cost of the hole state in Eq. (2.11), which is ∼�2/λ, can
be compensated by an energy gain ∼ − |tij | from the kinetic
energy of the hole.

We now establish the above assertions by an exact-
diagonalization study of Hhs in (2.24) in the sector with one
holon and one spinon. This is most conveniently carried out in
the momentum-space Hamiltonian

Hhs =
∑

k

Eh(k)h†
khk +

∑
k

Eb(k)b†kαbkα + 1

L2

∑
k,k′,q

V (k + p + q)h†
k+qb

†
−k,αb− p,αh p+q,

Eh(k) = (μ − � + λ) + t2J2(λ + 2�)

2�λ
[4 cos(kx) cos(ky)] + t3J3(λ + 2�)

2�λ
[2 cos(2kx) + 2 cos(2ky)],

(2.25)

Eb(k) = (� + λ −
√

λ2 + 4�2) − (a + b)2

2
{2J1[cos(kx) + cos(ky)] + 4J2 cos[(kx) cos(ky)] + 2J3[cos(2kx) + cos(2ky)]},

V (k) = a2W + a2{2t1[cos(kx) + cos(ky)] + 4t2[cos(kx) cos(ky)] + 2t3[cos(2kx) + cos(2ky)]},
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(0, 0) (π, 0) (π, π) q (0, 0)

Ehs

22.6

23.0

23.4

23.8

FIG. 2. Lowest-energy eigenvalues of Hhs with one holon and
one spinon with total momentum q on a lattice of size 48 × 48.
There are 482 = 2304 eigenvalues at each q, and eigenvalues above
Ehs = 24.0 are not shown. Note the bound states (which have
charge e and spin Sz = ±1/2) below the two-particle continuum.
The parameter values are λ = 30.0,� = 8.0,t1 = 3.0,t2 = 2.0,t3 =
2.0,J1 = 0.6,J2 = 0.1,J3 = 0.1, and μ = 0. The energy levels shift
uniformly with changes in μ, and the bound state will form a pocket
with electron-like quasiparticles for large enough μ. There is also [15]
a Fermi surface of chargons associated with the single-holon states,
which are not shown above.

where W → ∞ is a large repulsive energy inserted to prevent
the holon and spinon from occupying the same site. We
diagonalized Eq. (2.25) on a L × L lattice: after accounting for
total momentum conservation, the matrix in the holon+spinon
subspace is of size L2 × L2. Results for a convenient choice
of parameters are shown in Figs. 2 and 3.

III. DYNAMICS OF VISONS

We now discuss aspects of the topological order of the Mott
insulator described so far; the metallic phase C in Fig. 1 inherits

qx

qy

(0, 0)

(π, π)

22.6

23.0

Ehs

FIG. 3. Color density plot of the energy of the lowest holon-
spinon bound state in Fig. 2. Parameter values are the same. Note
that there is no particular symmetry of the bound-state dispersion
associated with antiferromagnetic Brillouin zone: the minimum of
the dispersion is not exactly at (π/2,π/2). In contrast, the holon
dispersion given by Eq. (2.19) does have a minimum at (π/2,π/2).

the same topological order. These issues require us to return
to the full gauge-invariant Hamiltonian in Eq. (1.9), and to no
longer work with the large-K gauge-fixed version in Eq. (2.1).

Here, a very useful fact is that the Mott insulator in Eq. (2.5)
and the Z2 gauge theory of its bosonic spinon excitations
are essentially identical to the theory of bosonic chargons
presented by Paramekanti and Vishwanath in Sec. V A of
Ref. [9], and the change from the spinon to chargon character
of the bosons makes essentially no difference to the topological
analysis. The main observation is that the Mott insulator in
Eq. (2.5) only has states in which the number 2Ni equals ±1
on every site. (We can view the deviation of 2Ni from ±1 as
a measure of the number of spinon excitations. Or by a slight
abuse of language, we identify 2Ni as the number of spinons
“in the ground state.”) This observation motivates a return to
the Hamiltonian in Eq. (1.9) at p = 0, from which we integrate
out the gapped ciα electronic excitations at large λ, when there
is a large energy cost to deviations of the number, 2Ni , from
±1. So, we obtain an effective Hamiltonian of the form

H̃θ,Z2 = −
∑
i<j

Jijμ
z
ij cos[(θi − θj )/2]

− g
∑
〈ij〉

μx
ij − K

∑
�

[∏
�

μz
ij

]

+ �̃
∑

i

(
4N2

i − 1
)2

, (3.1)

where the �̃ term is a phenomenological representation of the
energy cost for deviation of the “spinon” number 2Ni from
±1. Equation (3.1) is essentially the Hamiltonian HA(I∗) of
Ref. [9]. All of their arguments associated with momentum
balance in the presence of flux insertion in a torus geometry
go through unchanged: so we have established the existence
of the needed Mott insulator described by an odd Z2 gauge
theory [33,48–50], which can then act as a parent for metallic
states with Fermi surfaces of size p [13].

As argued in Ref. [9], we can proceed a step further and
also integrate out the gapped spinon excitations from Eq. (3.1).
Then, we obtain a pure Z2 gauge theory

H̃Z2 = −g
∑
〈ij〉

μx
ij − K

∑
�

[∏
�

μz
ij

]
, (3.2)

where the “spinons” in the ground state can be accounted for
by an “odd” constraint on every site i derived from Eq. (1.11):

Ĝi ≡
∏

j∈nn(i)

μx
ij = −1. (3.3)

This is the most convenient form of the theory to investigate the
dynamics of visons. Note that if we had obtained an effective
theory of visons simply by integrating out the ciα in a weak-
coupling perturbation theory in λ, then we would have obtained
the effective theory in Eq. (3.2), but with the opposite sign even
constraint in Eq. (3.3): this was the procedure used in Ref. [47].
So the important constraint in Eq. (3.3) relies crucially on our
focus on the large-λ physics, and the fact that at large λ each
electron binds a spinon into the state |G〉 in Eq. (2.14).

In the large-K limit, the ground state of H̃Z2 with the
constraint in Eq. (3.3) is the same as an “odd” toric code
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FIG. 4. A gauge-fixed state, |�0v〉 of two visons marked with the
X’s. The dotted line connects links with μz

ij = −1. The state |�̃0v〉 is
obtained after the top vison encircles the site, j , marked with a circle.

model [51]. Starting with the gauge-fixed ground state, |�0〉,
used in Sec. II with all μz

ij = 1, we can obtain a ground state
|�G〉 obeying Eq. (3.3) by summing over all combinations of
gauge transformations applied to this state (normalized on a
torus with an even number of sites)

|�G〉 = 1√
2

∏
i

1√
2

(1 − Ĝi)|�0〉. (3.4)

All the terms on the right-hand side have
∏

� μz
ij = 1 on every

plaquette, and so minimize the energy at large K . Similarly,
we can also obtain the vison excited states in the large-K limit
from a gauge-fixed vison wave function. We show in Fig. 4 a
two-vison state, |�0v〉, with two plaquettes (each marked by
an X) which have

∏
� μz

ij = −1.
The two-vison state obeying Eq. (3.3) is obtained by

|�Gv〉 = 1√
2

∏
i

1√
2

(1 − Ĝi)|�0v〉. (3.5)

Unlike the toric code, these visons are not localized, and
acquire a nonzero dispersion at linear order in a perturbation
theory in g/K . A crucial property of these mobile visons in
a odd Z2 gauge theory is that they experience a Berry phase
of π upon encircling any site of the square lattice [33,48,49].
This is apparent from the state |�̃0v〉 in Fig. 4 in which the top
vison has encircled the site, j , marked with the circle. Then, it
is easy to show that vison states obeying Eq. (3.3) satisfy

|�̃Gv〉 = 1√
2

∏
i

1√
2

(1 − Ĝi)|�̃0v〉 = Ĝj |�Gv〉 = −|�Gv〉.
(3.6)

This Berry phase leads to a double degeneracy in the vison
spectrum at all momenta. Alternatively, we can obtain an
effective Hamiltonian for the visons by applying a duality
transformation to Eq. (3.2): this can be done using the
operator methods described by Kogut [52], by the perturbative
Berry phase computation of Ref. [53], or by path-integral
methods [33,48,49]. The result by any of these methods is
a transverse field Ising model on the dual lattice, with the Ising
order representing the vison field operator. The odd constraint
in Eq. (3.3) leads to π flux per plaquette in the vison hopping
matrix elements. Such a model for visons was extended to FL*
metals in recent work [54].

IV. GENERALIZATIONS TO SU(2) GLOBAL
SPIN SYMMETRY

All of our analysis so far has been restricted to the simplest
case with only a U(1) global spin rotation symmetry, so that the
SDW order is described by an XY order parameter. Now we
consider the generalization to the physically important case of
full SU(2) spin rotation symmetry. There are now significant
differences determined by the specific configuration of the
SDW order. In general, we can characterize a state with long-
range SDW order by the expectation value

〈c†iασ 

αβciβ〉 ∼ 
x
 ei K x ·r i + c.c. + 
y
 ei K y ·r i + c.c., (4.1)

where σ 
 are the Pauli matrices, K x,y are ordering wave vectors
along the x and y directions, and 
x
,
y
 are 6 complex
numbers determining the nature of the spin density order. The
quantum fluctuations of the 
 are controlled by a Landau free
energy of the form [55]

V (
) = s(|
x
|2 + |
y
|2) + u1

2
(|
x
|4 + |
y
|4)

+ u2

2

(∣∣
2
x


∣∣2 + ∣∣
2
y


∣∣2) + w1|
x
|2|
y
|2

+w2|
x

y
|2 + w3|
∗
x

y
|2 + · · · . (4.2)

Depending upon the relative values of the Landau parameters
w1,2,3, the 6 complex numbers 
x
,
y
 can realize physically
distinct types of spin density wave order which we consider
separately in the subsections below. Each type of order leads to
a different route towards taking the “square root” of the order
parameter into fractionalized spinor variables.

A. Spiral order

The case most similar to the easy-plane order is when then
SDW order has a spiral form at a wave vector not equal
to (π,π ). For simplicity, we consider the case with circular
spiral spin correlations only along the wave vector K x ; it
is not difficult to extend the action below to also include
the K y direction. The case corresponds to (after an overall
normalization)


x
 = n1
 + in2
, (4.3)

where n1,2
 are a pair of real orthonormal vectors∑



n2
1
 = n2

2
 = 1,
∑




n1
n2
 = 0. (4.4)

The order parameter defined by Eqs. (4.3) and (4.4) is a doublet
of orthonormal 3-vectors, and this is equivalent to the SO(3)
manifold.

To obtain the intermediate metallic state with topological
order, we need to fractionalize the above order. For the easy-
plane case, we accomplished this by working with the square
root of the order parameter, eiθ/2. Here, we need to introduce a
bosonic complex spinor zα , representing the spinon excitation,
which we take to be of unit length

|z↑|2 + |z↓|2 = 1. (4.5)
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Then the parametrizations in Eqs. (4.3) and (4.4) can be
satisfied by the representation [37,56]


x
 = εαγ zγ σ 

αβzβ. (4.6)

Note that Eq. (4.6) is invariant under the Z2 gauge transforma-
tion zα → −zα , and so we will again obtain here a Z2 gauge
theory, similar to the easy-plane case [which corresponds to
zα = (e−iθ/2,0)].

We can now write down our theory for the interplay between
spiral SDW order andZ2 topological order, which is analogous
to the easy-plane Hamiltonian H1 in Eq. (1.9),

H2 = Hc + Hz,Z2 + HY ,

HY = −λ
∑

i

[
εαγ ziγ σ 


αβziβ ei K x ·r i + c.c.
]
c
†
iασ 


αβciβ,

Hz,Z2 = −
∑
i<j

Jij μz
ij (z∗

iαzjα + c.c.) + �
∑

i

�L2
i

− g
∑
〈ij〉

μx
ij − K

∑
�

[∏
�

μz
ij

]
, (4.7)

where Hc was defined in Eq. (1.2), and �Li are angular momenta
of the O(4) rotor defined by (4.5), analogous to Ni for the
easy-plane case. The on-site eigenstates of H2, in the limit
of K → ∞ and strong coupling as defined by Eq. (2.2), are
described in Appendix B 1.

The analog of the relationship between the chargon and
electron operators in Eq. (1.7) transforming to the rotating
reference frame now becomes the SU(2) rotation(

ψ+
ψ−

)
=

(
z∗
↑ z∗

↓
−z↓ z↑

)(
c↑
c↓

)
. (4.8)

In terms of the chargon operators, the Yukawa term HY in
Eq. (4.7) takes the simple form [11]

HY =−2λ
∑

i

[ψ†
i+ψi− ei K x ·r i + c.c.], (4.9)

which is the analog of Eq. (1.8). So analogously to the easy-
plane case, the ψ fermions move in a background of spatially
uniform spiral order.

The subsequent discussion is a close parallel to that
described above for the easy-plane case. We expect a phase
diagram very similar to that in Fig. 1, with the eiθ order
parameter replaced by 
x
. One difference is that the interpre-
tation of the phase transitions in terms of vortex proliferation
now needs some modification, as the order parameter is no
longer XY-like but takes values in SO(3). Such an order
parameter does haveZ2 vortices, associated with the homotopy
group π1(SO(3)) = Z2. So the topological phase C is now
associated with the suppression of such Z2 vortices, which
become gapped excitations identified with visons. In contrast,
the Fermi liquid phase A has proliferating Z2 vortices.

B. Néel order

Next, we consider the case of two-sublattice collinear anti-
ferromagnetism. For the cuprates, this corresponds in Eq. (4.1)
to the wave vectors K x = K y = (π,π ) and real 
x
 = 
y
,
and is applicable to the electron-doped compounds.

In this case, the order parameters are related to a single, real
vector 
x
 = 
y
 = n
/4 obeying∑




n2

 = 1. (4.10)

We fractionalize this vector by

n
 = z∗
ασ 


αβzβ, (4.11)

which leaves a U(1) gauge invariance under zα → eif zα . So
now, our generalization of the Z2 gauge theory H2 in Eq. (4.7)
is a U(1) gauge theory for SDW order in metals:

H3 = Hc + Hz,U (1) + HY ,

HY =−λ
∑

i

ηi z
∗
iασ 


αβziβ c
†
iασ 


αβciβ,

Hz,U (1) = −
∑
i<j

Jij (z∗
iαeiAij zjα + c.c.) + �

∑
i

�L2
i

+ g
∑
〈ij〉

E2
ij − K

∑
�

cos

(∑
�

Aij

)
, (4.12)

where Aij is a compact U(1) gauge field on the links of the
square lattice, and Eij is the canonically conjugate electric
field. The on-site eigenstates of H3, in the limit of K → ∞
and strong coupling as defined by Eq. (2.2), are described in
Appendix B 2.

The analysis proceeds as in Sec. IV A. We transform to the
rotation reference frame in terms of chargons as in Eq. (4.8),
and the Yukawa coupling for the chargons is [10]

HY =−λ
∑

i

ηi [ψ†
i+ψi+ − ψ

†
i−ψi−], (4.13)

which is the analog of Eqs. (1.8) and (4.9). So the phase
diagram of H3 will be analogous to that for H1 in Fig. 1,
with the chargons experiencing uniform Néel order given by
Eq. (4.13) in phase C.

One important difference between the cases with Z2 and
U(1) gauge theory is that pure U(1) gauge theory is always
confining in two spatial dimensions due to the proliferation of
monopoles. At p = 0, this mechanism will lead to insulating
states with valence bond solid order [57–59]. At nonzero p,
monopoles can be suppressed by Fermi surfaces of particles
carrying U(1) gauge charges [60,61], and this mechanism can
stabilize a U(1)-ACL in the intermediate phase C. But it should
be noted that there is a non-BCS pairing instability of such a
metallic state [62], and after the Fermi surface has been gapped
by pairing, monopole-induced confinement will reappear.

C. Stripe order

Finally, we consider the case of collinear spin order at wave
vectors not equal to (π,π ). By symmetry, such spin order is
accompanied by charge density wave order at twice the wave
vector [63]. Considering the case of unidirectional stripes with
wave vector K x for simplicity, the ordering is described by
Eq. (4.1) with


x
 = eiφ n
, (4.14)
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where n
 is a real vector obeying Eq. (4.10). The order
parameter for a charge density wave at wave vector 2K x is
e2iφ .

Following the discussion in the previous subsections, we
now have to examine fractionalizations of the stripe order
parameter in Eq. (4.14). This question has been considered in
a number of previous works [55,64–68], all of which used a
Z2 gauge theory to fractionalize 
x
 into its charge and spin
components, represented by eiφ and n
, respectively; such a
fractionalization is invariant under

eiφi → sie
iφi , n
 → sin
, (4.15)

with si = ±1 the Z2 gauge transformation. However, this
fractionalization is not suitable for our purposes because it
does not involve spinor variables, and so cannot yield Fermi
surface reconstruction in the phase with topological order. So
we examine combining the above fractionalization with the
spinor decomposition of n
 in Sec. IV B:


x
 = eiφ z∗
ασ 


αβzβ. (4.16)

Then, in terms of the chargon variables in Eq. (4.8), the Yukawa
term coupling the order parameter to the fermions [analogous
to Eqs. (1.8), (4.9), and (4.13)] becomes

HY =−λ
∑

i

2 cos(φ + K x · r i) [ψ†
i+ψi+ − ψ

†
i−ψi−]. (4.17)

This expression makes it clear that the chargons move in the
presence of a nonfluctuating potential only in a state with
long-range charge density wave order with 〈eiφ〉 �= 0. In such
a situation, the theory of SDW order in the stripe model
reduces [10] to the U(1) gauge theory already considered in
Sec. IV B. So Fermi surface reconstruction in a state with
topological order requires charge density wave order in the
stripe model.

V. CONCLUSIONS

This paper has presented an alternative approach to
symmetry breaking and topological order in doped Mott
insulators. Instead of the conventional focus on electron
fractionalization, we set up a formalism based upon order
parameter fractionalization. So our main Hamiltonian for the
case of an XY SDW order parameter in Eq. (1.9) involved a
fractionalized “square root” of the SDW order parameter, but
retained the unfractionalized bare electron operator. Starting
from Eq. (1.9), we obtained the phase diagram in Fig. 1,
containing states that had previously been obtained from the
more common electron fractionalization route. The advantage
of our formalism is that it offers a focus on just the phases
observed in experiments, while being very economical in using
extraneous degrees of freedom which have to be projected
out. Furthermore, generalizations of the models in Eqs. (1.9)
and (2.1) are amenable to sign-problem-free quantum Monte
Carlo simulation by the methods of Refs. [28–30], which can
also study the connection to superconductivity.

We began with the LGW-Hertz theory for the onset of SDW
order in metals: this exhibits phases A and B in Fig. 1, the
Fermi liquid with large Fermi surface, and the SDW metal

with small pocket Fermi surfaces. Both phases have well-
defined electronic quasiparticles and their Fermi surfaces sizes
obey the conventional Luttinger theorem. The phase transition
between A and B has also been extensively studied [20–27].
(In the limit of zero doping, p = 0, phase A remains a Fermi
liquid, while phase B becomes a Slater insulator with long-
range antiferromagnetic order.)

We argued that the LGW-Hertz theory could be modified
to Eq. (1.9) by introducing a Z2 gauge field, and this allowed
a phase transition in which the destruction of SDW order did
not coincide with appearance of a large Fermi surface: this
led to phase C with pocket Fermi surfaces (of chargons and/or
electrons) and no SDW order. (In the limit p = 0, phase C
becomes a Mott insulator with Z2 topological order.) For the
case of easy-plane SDW order, we showed that the transition
from phase B to phase C was associated with the proliferation
of doubled vortices. The universality class of the B-C transition
has been identified in earlier work [47,69] as a relativistic 2+1
dimensional O(2)* field theory for the easy-plane case [O(4)*
for the Heisenberg case] [70].

Phase C [or more properly, its SU(2) spin rotation analogs in
Sec. IV] is proposed as the pseudogap state of the hole-doped
cuprates, present in between the phase B at low p and phase A
above optimal doping. Other less-correlated high-temperature
superconductors (such as the pnictides) are proposed to go
directly from phase B to phase A. We maintain that this
simple connection between different families of supercon-
ductors supports our model and the unified phase diagram in
Fig. 1.

The main problem left open in our analysis is the nature
of the transition from phase C to phase A. This is a candidate
transition for the physics near optimally hole-doped cuprate
superconductors. The simple model in Eq. (1.9) contains
such a transition, but does not easily yield a continuum
theory for the quantum criticality. Phase C is in a deconfined
phase of a Z2 gauge theory, while phase A is in a confined
phase. However, the transition between them is not just a
Z2 confinement transition: the Z2 gauge theory also changes
from an “odd” gauge theory [33,48–50] (with e2πNi = −1) in
phase C to an “even” gauge theory (with e2πNi = 1) in phase
A. Continuum formulations of confinement transitions in Z2

gauge theories in the presence of gauge-charged matter require
duality transforms to vison fields via mutual Chern-Simons
terms [71], which we have not discussed here. It is possible
that such an analysis of the criticality will eventually lead
to the deconfined SU(2) gauge theory for the C-A transition
proposed in Refs. [10–13].
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APPENDIX A: ADDITIONAL PHASES

In our phase diagram in Fig. 1 for the easy-plane Hamil-
tonian H1 in Eq. (1.9), we have 2 phases with no broken
symmetry, phases A and C. In phase C we are in the deconfined
phase of the Z2 gauge theory, and the spinon number obeys
e2iπNi = −1 on each site. In contrast, in phase A we are in
the confined phase of the Z2 gauge theory, and the spinon
number obeys e2iπNi = 1 on each site. There is no fundamental
reason for these assignments of spinon number, and we can
also imagine additional phases with the opposite assignment;
such phases are not shown in Fig. 1.

A Z2 deconfined phase with e2iπNi = 1 would have Fermi
surfaces of chargons and/or electrons of total size 1 + p, by
the flux-piercing arguments in Refs. [8,9,13]. However, such
a phase is energetically disfavored at large λ, and so not
suitable for the physics of the Mott-Hubbard systems under
consideration here.

More relevant is a Z2 confined phase with e2iπNi = −1.
This must have valence bond solid (VBS) order, as established

in early work [33,48,49]. More recent work has shown [54]
that the VBS order can have a variety of complex spatial
configurations, depending upon the nature of frustrating
interactions. The Fermi surface is expected to be small by
the flux-piercing arguments, but with the doubling of the unit
cell by the VBS order, there is no fundamental distinction
between small and large Fermi surfaces. Such a confining
phase with VBS order is a possibility in Mott-Hubbard models
with frustrated exchange interactions [14], but is not shown in
Fig. 1.

APPENDIX B: SINGLE-SITE EIGENSTATES WITH SU(2)
SYMMETRY

1. O(4) model: Spiral order

In the limit K → ∞, the fluctuations of the Z2 gauge field
are frozen, and we choose the gauge μz

ij = 1. Then the model
in Eq. (4.7) reduces to

H′
2 = −

∑
i,j

(tij + μδij )c†iαcjα − λ
∑

i

[
εαγ ziγ σ 


αβziβ ei K x ·r i + c.c.
]
c
†
iασ 


αβciβ −
∑
i<j

Jij (z∗
iαzjα + c.c.) + �

∑
i

�L2
i . (B1)

Analogously to the Z2 case, the Jij term involves coupling to the fractionalized spinon fields zα , which has Sz quantized in units
of 1/2 on every site. We now further specialize to the strong-coupling limit as defined by Eq. (2.2), and show that the ground state
at p = 0 is again a Mott insulator with odd Z2 topological order. To do this, we define the on-site Hamiltonian Ho by dropping
the site index i and letting ξi = ei K ·r i :

Ho = −μc†αcα − λ
[
εαγ zγ σ 


αβzβ ξi + c.c.
]
c†ασ 


αβcβ + �

6∑
μ=1

�L2
μ

= −μc†αcα − 2λ{[ξiz
2
↓ − ξ ∗

i (z∗
↑)2]c†↓c↑ + [−ξiz

2
↑ + ξ ∗

i (z∗
↓)2]c†↑c↓ + (ξiz↓z↑ + ξ ∗

i z∗
↑z∗

↓)(c†↑c↑ − c
†
↓c↓)} + �

6∑
μ=1

�L2
μ. (B2)

We start by looking at the eigenmodes of the O(4) rotor angular momenta
∑6

μ=1
�L2

μ. These are given by the hyperspherical
harmonics Yn

l,m, which are a complete set of eigenfunctions on the 3-sphere S3 (generalizations of the spherical harmonics Y l
m on

S2): (∑
μ

�L2
μ

)
Yn

l,m = n(n + 2)Yn
l,m, n ∈ {0,1,2, . . . }. (B3)

We can conveniently describe these eigenmodes in the toroidal coordinates [72], which we define as follows:

(z↑,z↓) = (cos(β)e−iθ , sin(β)e−iφ), where 0 � β � π/2, 0 � θ, φ < 2π. (B4)

In these coordinates, the hyperspherical harmonics are given by (here we choose a slightly different basis compared to Ref. [72]
for later computational convenience)

Yn
l,m = N n

l,m

eilθ

√
2π

eimφ

√
2π

cos|l|(β) sin|m|(β)P (|l|,|m|)
d [cos(2β)], d = n − (|l| + |m|)

2
∈ Z,|l| + |m| � n, (B5)

where P
(|l|,|m|)
d (u) are the Jacobi polynomials and N n

l,m are appropriate normalization constants, which we provide explicitly
below for completeness:

P
(|l|,|m|)
d (u) = 1

2d

d∑
i=0

(|m| + d

i

)(|l| + d

d − i

)
(u + 1)i(u − 1)d−i

N n
l,m =

√
2(n + 1)d!(|l| + |m| + d)!

(|l| + d)!(|m| + d)!
. (B6)
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Using the above coordinates, we list the important low-lying eigenstates.
(i) Mott insulator. In analogy with the easy-axis case, we look for the lowest-energy state with a single electron per site in the

n = 1 subspace of the hyperspherical harmonics. We choose the following basis, labeling the states as c†σ Y 1
l,m |0〉:{

c
†
↑Y 1

1,0 |0〉 ,c
†
↑Y 1

−1,0 |0〉 ,c
†
↑Y 1

0,1 |0〉 ,c
†
↑Y 1

0,−1 |0〉 ,c
†
↓Y 1

1,0 |0〉 ,c
†
↓Y 1

−1,0 |0〉 ,c
†
↓Y 1

0,1 |0〉 ,c
†
↓Y 1

0,−1 |0〉 }
. (B7)

In this subspace, we have

Ho = (−μ + 3�)I8×8 − 2λ

3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 ξ ∗
i 0 0 0 0

0 0 ξi 0 −2ξi 0 0 0
0 ξ ∗

i 0 0 0 0 0 2ξ ∗
i

ξi 0 0 0 0 0 0 0
0 −2ξ ∗

i 0 0 0 0 0 −ξ ∗
i

0 0 0 0 0 0 −ξi 0
0 0 0 0 0 −ξ ∗

i 0 0
0 0 2ξi 0 −ξi 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (B8)

The lowest-energy Mott insulating state |G〉, with energy EG = −μ + 3� − 2λ, is given by

|G〉 = 1

2

(
c
†
↑Y 1

−1,0 + ξ ∗
i c

†
↑Y 1

0,1 − ξ ∗
i c

†
↓Y 1

1,0 + c
†
↓Y 1

0,−1

) |0〉 = 1

2π
[(c†↑z↑ + c

†
↓z↓) − ξ ∗

i (−c
†
↑z∗

↓ + c
†
↓z∗

↑)] |0〉 ∼ (ψ†
+ − ξ ∗

i ψ
†
−) |0〉 ,

(B9)

where ψ± are the spinless fermionic chargons defined in Eq. (4.8). The last representation makes it evident that the Mott insulating
ground state does not carry any spin. However, it carries Z2 gauge charge, and therefore the Z2 gauge theory is odd.

(ii) Spinons. These are doubly degenerate states which have Sz = ±1/2, and a Z2 gauge charge relative to the Mott insulator,
but no electromagnetic charge. We consider only the |↑〉 spinon; the calculations for the |↓〉 spinon are identical. Therefore, we
choose the following basis of states which span the subspace with Sz = 1/2:{

c
†
↑Y 0

0,0 |0〉 ,c
†
↑Y 2

0,0 |0〉 ,c
†
↑Y 2

1,1 |0〉 ,c
†
↑Y 2

−1,−1 |0〉 ,c
†
↓Y 2

2,0 |0〉 ,c
†
↓Y 2

0,−2 |0〉 ,c
†
↓Y 2

1,−1 |0〉 }
. (B10)

In this basis, we have

H = −μ I7×7 +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −
√

2
3λξi −

√
2
3λξ ∗

i
2λξi√

3
− 2λξ∗

i√
3

0

0 8� 0 0 λξi λξ ∗
i 0

−
√

2
3λξ ∗

i 0 8� 0 0 0 −λξ ∗
i

−
√

2
3λξi 0 0 8� 0 0 λξi

2λξ∗
i√

3
λξ ∗

i 0 0 8� 0 λξ∗
i√
2

− 2λξi√
3

λξi 0 0 0 8�
λξi√

2

0 0 −λξi λξ ∗
i

λξi√
2

λξ∗
i√
2

8�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (B11)

For all positive values of λ and �, we find that the
energy of the lowest-lying spinon state is Es = −μ + 4� −√

16�2 + 4λ2. For the Mott insulator to have lower energy
than the spinon, we require EG < Es , which translates to
λ > 15�/4. The spin gap of the Mott insulator is given by

�s = Es − EG = 2λ + � −
√

16�2 + 4λ2. (B12)

(iii) Holon. This is the empty state |0〉, with energy Ehn = 0.
Relative to the Mott insulator, it has Sz = 0, electromagnetic
charge +e, and nonzero Z2 gauge charge.

(iv) Doublon. This is the state c
†
↑c

†
↓ |0〉, with energy

Ed = −2μ. Relative to the Mott insulator, it has Sz = 0,
electromagnetic charge −e, and nonzero Z2 gauge charge.

(v) Holes. These are the 4 degenerate states given by the
n = 1 hyperspherical harmonics, which can be represented as
Y 1

l,m |0〉, for {l = ±1,m = 0} and {l = 0,m = ±1}. Each state
has energy given by Eh = 3�. They have electromagnetic

charge +e and Sz = ±1/2 relative to the Mott insulator, but
no Z2 gauge charge. The energy difference between a pair of
sites with hole+Mott insulator and a pair with holon+spinon
is given by

EG + Eh − Ehn − Es = 2� − 2λ +
√

16�2 + 4λ2 > 0.

(B13)

Therefore, the hole is unstable to decay to a holon and a spinon
in the strong-coupling limit.

(vi) Electrons. These are again 4 degenerate states given by
c
†
↑c

†
↓Y 1

l,m |0〉 for {l = ±1,m = 0} and {l = 0,m = ±1}. One
can check that Hint acting on any of these states gives zero,
so only the diagonal terms matter and, therefore, they have
energy Ee = −2μ + 3�. They have electromagnetic charge
−e and Sz = ±1/2 relative to the Mott insulator, but no Z2

gauge charge. The energy difference between a pair of sites
with electron+Mott insulator and a pair with doublon+spinon
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is given by

EG + Ee − Edn − Es = 2� − 2λ +
√

16�2 + 4λ2 > 0,

(B14)

which is the same condition as Eq. (B13). Therefore, the
electron is also unstable to decay to a doublon and a spinon in
the strong-coupling limit.

Finally, note that we can define a new spinless fermionic
operator as a linear combination of ψi,±, given by

ψi = 1√
2

(ψi,+ − ξi ψi,−); (B15)

ψ is the holon creation operator, and the Mott insulator is a
filled band of ψ , given by

|G〉 =
∏

i

ψ
†
i |0〉 . (B16)

We can also define bosonic spinon creation operators analo-
gously to Eq. (2.16) which will create Sz = ±1/2 excitations
over the Mott insulating ground state using the eigenstates of
Eq. (B11).

2. O(4) model: Néel order

For the fractionalization defined by n
 = z∗
ασ 


αβzβ , the
constraint defined by Eq. (4.10) can be rewritten as |z↑|2 +
|z↓|2 = 1. Therefore, the dynamics of the order parameter
field are described by an O(4) model which is coupled to the c

fermions. We again consider the limits of K → ∞ and strong

coupling as defined by Eq. (2.2), resulting in the following
on-site Hamiltonian Ho [with ηi = (−1)xi+yi ]:

Ho = −μc†αcα − ληi z
∗
ασ l

αβzβ c†ασ 

αβcβ + �

∑
μ

�L2
μ

= −μc†αcα − ληi[2z∗
↑z↓c

†
↓c↑ + 2z∗

↓z↑c
†
↑c↓

+ (z∗
↑z↑ − z∗

↓z↓)(c†↑c↑ − c
†
↓c↓)] + �

∑
μ

�L2
μ. (B17)

The rest of the calculation exactly follows Appendix B 1. Only
the Mott insulator and the spinon eigenstates are different, so
we restrict the following description to these two kinds of
eigenstates.

(i) Mott insulator. In the basis described in Eq. (B7) we
have

Ho = (−μ + 3�)I8×8

− ληi

3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 2
0 0 −1 0 2 0 0 0
0 0 0 −1 0 0 0 0
0 0 2 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 1 0
0 2 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(B18)

The lowest-energy state is given by

|G〉 =
⎧⎨⎩

1√
2

(
c
†
↑Y 1

−1,0 + c
†
↓Y 1

0,−1

) |0〉 = 1
2π

(c†↑z↑ + c
†
↓z↓) |0〉 ∼ ψ

†
+ |0〉 , for ηi = 1,

1√
2

( − c
†
↑Y 1

0,1 + c
†
↓Y 1

1,0

) |0〉 = 1
2π

(−c
†
↑z∗

↓ + c
†
↓z∗

↑) |0〉 ∼ ψ
†
− |0〉 , for ηi = −1.

Therefore, the Mott insulator can be written conveniently in terms of the spinless fermionic chargons as

|G〉 = ψ†
ηi

|0〉 , EG = −μ + 3� − λ. (B19)

In this representation, it is evident that |G〉 does not carry any spin but carries a nonzero Z2 gauge charge, and therefore the Z2

gauge theory is odd.
(ii) Spinons. These are doubly degenerate states which have Sz = ±1/2, and a Z2 gauge charge relative to the Mott insulator,

but no electromagnetic charge. We can find the |↑〉 spinon by using the Sz = 1/2 subspace defined in Eq. (B10):

Ho = −μI7×7 +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 − ληi√
3

0 0 0 0 −
√

2
3ληi

− ληi√
3

8� 0 0 0 0 0

0 0 8� 0 − ληi√
2

0 0

0 0 0 8� 0 − ληi√
2

0

0 0 − ληi√
2

0 8� + ληi

2 0 0

0 0 0 − ληi√
2

0 8� − ληi

2 0

−
√

2
3ληi 0 0 0 0 0 8�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (B20)

The energy of the lowest-lying spinon state is Es = −μ + 4� − √
16�2 + λ2. For the Mott insulator to have lower energy

than the spinon, we require EG < Es , which translates to λ > 15�/2. The spin gap of the Mott insulator is given by

�s = Es − EG = λ + � −
√

16�2 + λ2. (B21)

The descriptions of the (iii) holon, (iv) doublon, (v) holes, and (vi) electrons are identical to Appendix B 1. The only difference
arises from the change in energy eigenvalues EG and Es . This changes the energy gap between a pair of sites with hole+Mott
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insulator (electron+Mott insulator) and a pair with holon+spinon (doublon+spinon):

EG + Eh − Ehn − Es = EG + Ee − Edn − Es = 2� − λ +
√

16�2 + λ2 > 0. (B22)

As before, we observe that the hole (electron) is unstable to decay to a holon (doublon) and a spinon in the strong-coupling limit.
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