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Quantum impurity in a Luttinger liquid: Exact solution of the Kane-Fisher model
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A Luttinger liquid coupled to a quantum impurity describes a large number of physical systems. The
Hamiltonian consists of left- and right-moving fermions interacting among themselves via a density-density
coupling and scattering off a localized transmitting and reflecting impurity. We solve exactly the Hamiltonian
by means of an incoming-outgoing scattering Bethe basis which properly incorporates all scattering processes.
A related model, the weak-tunneling model, wherein the impurity is replaced by a tunnel junction, is solved by
the same method. The consistency of the construction is established through a generalized Yang-Baxter relation.
Periodic boundary conditions are imposed and the resulting Bethe ansatz equations are derived by means of the
off-diagonal Bethe ansatz approach. We derive the spectrum of the model for all coupling constant regimes and
calculate the impurity free energy. We discuss the low energy behavior of the systems for both repulsive and
attractive interactions.
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I. INTRODUCTION

It has long been known that interactions can have drastic
effects in low dimensional systems [1]. A striking example of
this was elucidated by Kane and Fisher [2]. It was shown that
a local impurity can be a relevant or irrelevant perturbation
to a Luttinger liquid depending on the sign of the interaction
in the liquid. For repulsive interactions among the fermions
the strength of the impurity will grow at low energy and the
one-dimensional system will be split into two Luttinger liquids
weakly coupled at their edges by a tunneling term (weak-
tunneling Hamiltonian), while for attractive interactions the
strength of the impurity will decrease and the system will
heal itself. Hence one finds a vanishing conductance at the
impurity site at low temperature in the first case and in a
perfect conductance in the second.

This has implications for many experimentally realizable
quantum systems. Among these are chiral edge states of
quantum Hall materials [3] and electronic quantum circuits [4].
More exciting perhaps is the possibility to realize such a system
with cold atomic gases [5]. The measure of control afforded by
these experiments in addition to the ability to tune parameters
including the interaction strength makes this the perfect setting
to study the effects of interactions on a localized impurity.
Isolated one-dimensional systems are readily achievable and
recent advances have made it possible to study transport albeit
with two-dimensional leads [6,7]. In such isolated quantum
systems, integrability also has a large effect. The existence of
a large number of conserved quantities strongly constrains the
dynamics [8] and will have implications for transport.

In this article we introduce a type of coordinate Bethe ansatz
for use in quantum impurity models with bulk interaction. We
present the method by solving exactly the Kane-Fisher model
of an impurity in a Luttinger liquid with arbitrary boundary
conditions. The method uses a scattering Bethe basis which
incorporates the impurity scattering processes that lead to
a varying number of left and right movers. The boundary
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condition problem leads to a quantum inverse scattering
problem which is in turn solved using the off-diagonal Bethe
ansatz (ODBA) [9] approach of deriving the Bethe ansatz
equations. It has the advantage that it does not require an
explicit reference state and so is suited to problems where it is
absent, which is the case in the present model. Incorporating
twisted boundary conditions being physically equivalent to
driving a persistent current around the system allows for the
possibility of studying transport across the impurity.

We also study the weak-tunneling Hamiltonian describ-
ing two separate Luttinger liquids coupled via a tunneling
parameter. The model is of great interest by itself and is
thought to describe the strong coupling fixed point of the Kane-
Fisher model. We find that the weak-tunneling Hamiltonian
is solvable by the same procedure requiring only simple
modifications and show it is dual to the impurity model.

The rest of the article is organized as follows: In Sec. II
we introduce the scattering Bethe basis which incorporates
the impurity’s selecting-scattering mechanism and prove its
consistency by introducing a generalization of the Yang-Baxter
and reflection equations. In Sec. III we provide a similar con-
struction for the weak-tunneling Hamiltonian. The spectrum
of the model is found in Sec. IV. The system of Bethe ansatz
equations is shown to be formally similar to that of the open
XXZ model with boundary terms. One diagonal boundary
corresponds to the twist and the other describes the impurity.
Using the ODBA we are able to obtain the eigenvalues
and Bethe equations. The thermodynamics of the model are
discussed in Sec. V where we calculate the free energy and
specific heat of the impurity as well as the difference in the
impurity entropy in the UV and IR when interactions are
repulsive. The weak-tunneling Hamiltonian is examined, its
complementarity with the Kane-Fisher model is shown, and
the thermodynamics in the attractive regime briefly discussed.

II. BETHE BASIS OF THE
IMPURITY-LUTTINGER MODEL

The Hamiltonian of the impurity model we seek to
diagonalize is H = Hk + Hg + HI , with the various terms
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given by

Hk =
∑

σ=±,a=↑,↓

∫
σψ†

σ,a(−i∂x − A)ψσ,a(x), (1)

Hg =
∑
a,b

4g

∫
ψ

†
+,aψ

†
−,bψ−,bψ+,a, (2)

HI =
∑

a

U [ψ†
+,a(0)ψ−,a(0) + ψ

†
−,a(0)ψ+,a(0)]

+U ′[ψ†
+,a(0)ψ+,a(0) + ψ

†
−,a(0)ψ−,a(0)]. (3)

Here ψ
†
±,a,ψ±,a with a =↑ , ↓ are creation operators for the

right (+) and left (−) moving fermions with spin, U ′ and U

describe the forward and backward scattering off the impurity,
respectively, and g is the fermion-fermion interaction strength.
We have set vf = 1 and εf = 0. In addition we have included
a gauge field A which, when the system is placed on a ring,
means it is threaded by a flux � = ∫

x
A. Equivalently we may

solve for the wave function with twisted boundary conditions.
This will induce a persistent current throughout the system and
allow the effect of the impurity on the current to be studied.
Since we have chosen the interaction to be isotropic in spin we
will assume these indices as implicit in what follows.

To begin we discuss the construction of the eigenfunctions
of H . In the presence of the impurity only the total number
of fermions N = N+ + N− is conserved, hence the wave
functions must consist of components of left and right movers
consistent with N . We start with the single particle eigenstates,
the most general form for which can be written as∫

dx[(eikxA
[10]
+ ψ

†
+(x) + e−ikxA

[10]
− ψ

†
−(x))θ (−x)

+ (eikxA
[01]
+ ψ

†
+(x) + e−ikxA

[01]
− ψ

†
−(x))θ (x)]|0〉. (4)

Applying the Hamiltonian to the wave function fixes two of
these amplitudes A

[··]
± . Here we wish to take a physical picture

and define a S10 which maps a particle past the impurity. This
is in contrast to what is standard in Bethe ansatz where the S

matrix maps between regions of configuration space to the left
and right of the impurity. Therefore we consider A

[10]
+ and A

[01]
−

as the incoming amplitudes and A
[10]
− and A

[01]
+ as the outgoing

ones. The solution of the Schrödinger equation relates the two
sets via (

A
[01]
+

A
[10]
−

)
= S

(
A

[10]
+

A
[01]
−

)
, S =

(
α β

β α

)
, (5)

α = 1 − U 2/4 + U ′2/4

1 + iU ′ + U 2/4 − U ′2/4
, (6)

β = −iU

1 + iU ′ + U 2/4 − U ′2/4
. (7)

We recognize α and β as the transmission and reflection
coefficients, respectively, and note the unimportant role of
the forward scattering term. Its presence merely redefines
these coefficients but does not change the left-right mixing
imposed by the backward scattering term. In what follows we
set U ′ = 0.

The form in which we have written the above equation
allows us to easily apply periodic or twisted boundary

conditions,

e−ikL

(
A

[10]
+

A
[01]
−

)
=

(
ei� 0
0 e−i�

)
S

(
A

[10]
+

A
[01]
−

)
. (8)

We now proceed to the two particle case. The interaction
term Hg couples left to right movers only and preserves
their number unchanged unlike the impurity term. Thus
in the absence of the impurity a state consisting of one
left mover and one right mover takes the form |FL,R〉 =∫

dx dy F (x,y)ψ†
+(x)ψ†

−(y)|0〉, where the wave function
F (x,y) must satisfy the eigenvalue equation,

[−i(∂x − ∂y) + 4gδ(x − y)]F (x,y) = EF (x,y).

The solution is easily found to be

F (x,y) = Aeik1x−ik2y[θ (x − y) + eiφθ (y − x)],

and the scattering phase shift given by

eiφ = 1 − ig

1 + ig
.

For the scattering of two right movers or two left movers
the phase shift is actually undetermined by the Schrödinger
equation, we choose it to be eiφ++ = eiφ−− = 1.

As seen for a single particle the impurity mixes both
the left and right movers. A noninteracting model could
therefore be handled via utilizing an odd-even basis ψe/o(x) =
[ψ+(x) ± ψ−(−x)]/

√
2. However, doing so for the full model

will only serve to complicate the interaction term. On the
other hand, in the absence of the impurity the left-right basis is
appropriate. To diagonalize both we need to use a basis which
naturally incorporates both aspects, we will refer to it as an
in-out scattering Bethe basis.

To construct it we divide configuration space into eight
regions, to be labeled Q, which are specified not only by
the ordering of x1, x2 and the impurity but also according to
which position is closer to the origin. For example if x1 is to
the left of the impurity, x2 to its right with x2 closer to the
impurity then the amplitude in this region is denoted A[102B]

σ1σ2
,

σj = ± being the chirality of the particle at xj . The region in
which x1 is closer is denoted A[102A]

σ1σ2
. The consequence for the

wave function is that we include Heaviside functions θ (xQ)
which have support only in a certain region, e.g., θ (x[102B]) =
θ (x2)θ (−x1)θ (−x1 − x2). A general two particle eigenstate for
H can be written as

|k1,k2〉 =
∑
Q

∑
σ1σ2

∫
θ (xQ)AQ

σ1σ2
eσ1ik1x1+σ2ik2x2

×ψ†
σ1

(x1)ψ†
σ1

(x2)|0〉. (9)

The form of this wave function requires some comment. The
linear derivative acts as ±i(∂1 − ∂2) when the particles are of
opposite chirality and as ±i(∂1 + ∂2) when they have the same
chirality. This allows us to introduce an arbitrary function of
x1 ± x2 when the particles are of the same or opposite chirality.
Accordingly, applying the Hamiltonian to this ansatz fixes
some but not all the amplitudes. In particular, when switching
between the regions weighted by θ [±(x1 − x2)] in the σ1 = σ2

sector and θ [±(x1 + x2)] in the σ1 = −σ2 sector the linear
derivative allows us to choose any S matrix we like provided it
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does not mix the σ1 = σ2 with the σ1 = −σ2 amplitudes [10].
The specific form of this additional S matrix is dictated by the
requirement that the wave function be consistent. Typically this
would require the S matrices be solutions of the Yang-Baxter
equation but here the different configuration space setup will
modify this and will lead to a generalized Yang-Baxter relation.
To make these statements more explicit let us form column
vectors of the amplitudes,

�A1 =

⎛
⎜⎜⎜⎜⎝

A
[120B]
++

A
[102B]
+−

A
[201B]
−+

A
[021B]
−−

⎞
⎟⎟⎟⎟⎠, �A2 =

⎛
⎜⎜⎜⎜⎝

A
[210A]
++

A
[102A]
+−

A
[201A]
−+

A
[012A]
−−

⎞
⎟⎟⎟⎟⎠, �A3 =

⎛
⎜⎜⎜⎜⎝

A
[201A]
++

A
[012A]
+−

A
[210A]
−+

A
[102A]
−−

⎞
⎟⎟⎟⎟⎠,

�A4 =

⎛
⎜⎜⎜⎜⎝

A
[201B]
++

A
[021B]
+−

A
[120B]
−+

A
[102B]
−−

⎞
⎟⎟⎟⎟⎠, �A5 =

⎛
⎜⎜⎜⎜⎝

A
[021B]
++

A
[201B]
+−

A
[102B]
−+

A
[120B]
−−

⎞
⎟⎟⎟⎟⎠, �A6 =

⎛
⎜⎜⎜⎜⎝

A
[012A]
++

A
[201A]
+−

A
[102A]
−+

A
[210A]
−−

⎞
⎟⎟⎟⎟⎠,

�A7 =

⎛
⎜⎜⎜⎜⎝

A
[102A]
++

A
[210A]
+−

A
[012A]
−+

A
[201A]
−−

⎞
⎟⎟⎟⎟⎠, �A8 =

⎛
⎜⎜⎜⎜⎝

A
[102B]
++

A
[120B]
+−

A
[021B]
−+

A
[201B]
−−

⎞
⎟⎟⎟⎟⎠. (10)

We interpret �A1 ( �A2) as the amplitudes where both particles
are incident on the impurity but particle 2 (1) is closer,
�A5 ( �A6) are the amplitudes in which both particles are

outgoing with particle 2 (1) closer to the impurity, �A8 ( �A3)
describes particle 2 (1) having scattered off the impurity and
is still closer to the impurity than 1 (2), while �A7 ( �A4) also
describes particle 2 (1) having scattered but with 1 (2) closer.
The Hamiltonian fixes the following relations between these
amplitudes:

�A8 = S20 �A1, �A3 = S10 �A2, (11)

�A5 = S20 �A4, �A6 = S10 �A7, (12)

�A7 = S12 �A8, �A4 = S12 �A3, (13)

where

S20 = S ⊗ 1, S10 = 1 ⊗ S, (14)

and, as discussed above,

S12 =

⎛
⎜⎝

1 0 0 0
0 eiφ 0 0
0 0 eiφ 0
0 0 0 1

⎞
⎟⎠. (15)

The freedom mentioned previously enters upon considering
�A1 ↔ �A2 and �A5 ↔ �A6. Again these S matrices are restricted

only in that they cannot mix σ1 = σ2 amplitudes with

A1

A2

A3

A5

A4

A7

A8

A6

W 12

S10

S12

S20

S20

S12

S10

W 12

FIG. 1. The amplitudes are related by applying the operators as
depicted here. For consistency we require the amplitudes obtained
by proceeding clockwise or counterclockwise are the same resulting
in (23).

σ1 = −σ2. We choose to take

�A2 = W 12 �A1, �A6 = W 12 �A5, (16)

W 12 =

⎛
⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎠. (17)

This is dictated by the consistency of the wave function which
requires the S matrices to satisfy a reflection equation,

S20S12S10W 12 = W 12S10S12S20. (18)

Inserting (17) and (14) it is easy to see this indeed holds. A
schematic representation is given in Fig. 1. By introducing the
extra regions indexed by A,B we have changed the consistency
condition from the Yang-Baxter equation to a generalized
version that takes the form of a reflection equation. The same
generalized Yang-Baxter equation appears in studies of a two
particle Bose-Hubbard model [11] and in the study of an
impurity in a bose gas with local and nonlocal interactions
[12]. As explained, the partition to these extra regions is
dictated by linear derivative and the degeneracies associated
with it, which require us to choose the correct basis in the
degenerate subspace. This basis, the Bethe basis, corresponds
to the introduction of the S-matrix W 12 which satisfies the
consistency conditions. Such a degeneracy is not present in a
massive theory in which case integrability is inconsistent with
a nontrivial bulk interaction in the presence of a transmitting
and reflecting impurity [13].

The generalization to N particles is immediate. The N

particle eigenstate with energy E = ∑N
j kj is

|�k〉 =
∑
Q

∑
�σ

∫
θ (xQ)AQ

�σ ei
∑

σj kj xj

∏
ψ†

σj
(xj )|0〉. (19)

The sum is over the 2NN ! regions consisting of all orderings
of xj and the origin and indexed by which particle is closest
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to the impurity. Just as in the two particle case the amplitudes
A

Q

�σ are related to each other by applying the S matrices,

Sj0 = Sj ⊗k 
=j 1, (20)

Sij =

⎛
⎜⎝

1 0 0 0
0 eiφ 0 0
0 0 eiφ 0
0 0 0 1

⎞
⎟⎠

ij

⊗k 
=i,j 1, (21)

Wij =

⎛
⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎠

ij

⊗k 
=i,j 1. (22)

The subscripts denote which particle spaces the operators act
upon. In order for this wave function to be consistent it must
satisfy the following Yang-Baxter and reflection equations:

Sk0SjkSj0Wjk = WjkSj0SjkSk0, (23)

WjkWjlWkl = WklWjlWjk, (24)

WjkSjlSkl = SklSjlWjk. (25)

Satisfying these is a sufficient condition for the consistency of
the wave function because the S matrices form a representation
of the reflection group just as those in other integrable models
form a representation of the permutation group [14]. This
will be made evident in the next section when the continuous
versions of the S matrices and the Bethe equations are found.

To determine the thermodynamic spectrum of the model
we place the system on a ring of size L. The flux � = AL

through the loop then imposes twisted boundary conditions so
that upon traversing the entire system a particle picks up an
additional phase eσi�, σ being the chirality of the particle. We
obtain the following equations which determine kj :

e−ikj LAσ1···σN
= (Zj )

σ ′
1···σ ′

N
σ1···σN

Aσ ′
1···σ ′

N
, (26)

Zj = Wj−1j · · · W 1jBjS
1j · · · SjNSj0WjN · · · Wjj+1, (27)

where the matrix Zj transfers the j th particle around the ring.
Here the matrices Bj act in the j th particle chirality space and
impose the twisted boundary conditions

Bj =
(

ei� 0
0 e−i�

)
. (28)

Alternatively we could require hard wall boundary conditions
at x = ±L/2 by taking Bj = σx .

Using (23), (24), and (25) it can be shown that all transfer
matrices Zj are equivalent and so we restrict our attention to
solving

(B1S
12 · · · S1NS10W 1N · · ·W 12)

σ ′
1···σ ′

N
σ1···σN

Aσ ′
1···σ ′

N

= e−ikLAσ1···σN
. (29)

This is a feature of many quantum impurity models. It arises
due to the lack of a dimensionful parameter in the Hamiltonian
which results in S matrices which are k independent. We
denote the operator on the left-hand side Z. Its eigenvalues
determine the allowed values of the momenta kj and therefore

the spectrum E = ∑
j kj . However, before proceeding to the

diagonalization of the transfer matrix we turn to the solution
of another closely related model, the weak-tunneling model.

III. BETHE ANSATZ EIGENSTATES OF THE
WEAK -TUNNELING HAMILTONIAN

The embedding of an impurity in a Luttinger liquid could be
viewed from the complementary scenario of two liquids which
are coupled by a weak link or tunnel junction. Therefore,
in addition to the impurity model we will also consider
the weak-tunneling Hamiltonian (HWT), which is believed to
govern the behavior of the system in the vicinity of the strong
coupling point. It includes two Luttinger liquids each described
by Hk + Hg , occupying the regions from −L/2 to 0 and 0 to
L/2 denoted by the subscripts l and r , respectively. These are
coupled to each other via the tunneling term

Ht = t[ψ†
+,r (0) + ψ

†
−,r (0)][ψ+,l(0) + ψ−,l(0)] + H.c., (30)

which allows for tunneling between the otherwise disjoint
Luttinger liquids.

The single particle solution of the weak-tunneling Hamil-
tonian is of a similar form to (4),∫ 0

− L
2

[eikxA
[10]
+ ψ

†
+,l(x) + e−ikxA

[10]
− ψ

†
−,l(x)]|0〉

+
∫ L

2

0
[eikxA

[01]
+ ψ

†
+,r (x) + e−ikxA

[01]
− ψ

†
−,r (x)]|0〉. (31)

Here we have used the same notation as in the impurity case
so that A[10]

σ is the amplitude of a particle of chirality σ in the
left system and A[01]

σ in the right system. Acting on this with
the Hamiltonian and using the boundary conditions ψ

†
+,l(0) =

ψ
†
−,l(0) and ψ

†
+,r (0) = ψ

†
−,r (0) we find that(

A
[01]
+

A
[10]
−

)
= St

(
A

[10]
+

A
[01]
−

)
, St =

(
αt βt

βt αt

)
, (32)

αt = −4it

1 + 4t2
, βt = 1 − 4t2

1 + 4t2
. (33)

The imposition of hard wall boundary conditions at x = ±L/2
gives this time

e−ikL

(
A

[10]
+

A
[01]
−

)
= σxSt

(
A

[10]
+

A
[01]
−

)
. (34)

The set up for higher particle number is the same as for
the impurity model and the analysis of the preceding section
transfers to the present case. This enables us to construct
consistent N particle eigenstates. The two particle S matrices
are given by (21) and (22). The difference is the single particle
S-matrix Sj0 being replaced with S

j0
t = St j ⊗N

k 
=j 1. These are
readily seen to satisfy the consistency conditions (23)–(25).

As before we impose boundary conditions to determine the
spectrum and obtain for hard walls at x = ±L/2,(
σxS

12 · · · S1NS10
t W 1N · · ·W 12

)σ ′
1···σ ′

N

σ1···σN
Aσ ′

1···σ ′
N

= e−ikLAσ1···σN
.

(35)
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We could also have applied periodic or twisted boundary
conditions by including B1 instead of σx . The system with
periodic or twisted boundary conditions no longer describes
two disjoint liquids filling the left and right half lines but rather
a ring containing a weak link. This is the dual system to the
impurity model on a ring. To distinguish with the impurity
model we denote the operator above by Zt .

In what follows we will be concerned with properties of the
impurity and weak link which will be independent of the type
boundary condition imposed.

IV. OFF-DIAGONAL BETHE ANSATZ

In the previous section we showed that in order to determine
the spectrum of H or HWT we must diagonalize Z or Zt .
To achieve this we will make use of the off-diagonal Bethe
ansatz [9]. This method allows one to determine the eigen-
values and eigenvectors of a transfer matrix when a proper
reference state is absent. It has already been successfully used
to obtain the exact solutions for many integrable models with
a broken U (1) symmetry. The present problem will be shown
to be mappable onto one arising when an XXZ Hamiltonian is
diagonalized with open boundary conditions, which is among
those already considered [15]. We will use its solution to obtain
the eigenvalues of Z and Zt . Although the following procedure
can be used with any type of boundary conditions we will do
so only for twisted boundary conditions.

We begin by constructing the monodromy matrix, the
central object of the quantum inverse scattering (QIS) and
of the ODBA approaches. It is formed from an XXZ-like R

matrix and of reflection matrices. The R matrix is

R(u) =

⎛
⎜⎜⎜⎝

1 0 0 0
0 sinh u

sinh (u+η)
sinh η

sinh (u+η) 0

0 sinh η

sinh (u+η)
sinh u

sinh (u+η) 0

0 0 0 1

⎞
⎟⎟⎟⎠, (36)

where u is the spectral parameter and η is the crossing
parameter which encodes the interactions of the model. We
shall identify it in our case as e−η = eiφ = 1−ig

1+ig
, with g as the

Luttinger liquid interaction coupling constant.
The reflection or boundary matrices K±(u) we use take

the form of integrable boundary conditions for the XXZ

model [16] with components,

K−
11(u) = K−

22(u) = 2i cosh (c + θ/2) cosh u, (37)

K−
12(u) = K−

21(u) = sinh 2u, (38)

K+
11(u) = 2[sinh (−θ ) cosh (i�) cosh (u + η)

+ cosh (θ ) sinh (i�) sinh (u + η)], (39)

K+
22(u) = 2[sinh (−θ ) cosh (i�) cosh (u + η)

− cosh (θ ) sinh (i�) sinh (u + η)], (40)

K+
12(u) = K+

21(u) = − sinh (2u + 2η). (41)

Herein we have introduced the parameter c =
log [(1 − U 2/4)/U ] for the impurity model, U being
the strength of coupling of the impurity to the liquid, or
c = log [4t/(1 − 4t2)] for the weak-tunneling model. Let us
denote the latter by ct when a distinction is required. The

logarithmic dependence on the bare coupling constant will be
important later when considering thermodynamic quantities,
we will see that it leads to generation of a scale with power-law
dependence on the bare parameters in (1). In addition, we
have also introduced an inhomogeneity parameter θ which
will enable us to relate the monodromy matrix to Z or Zt .
Using the definitions we construct the monodromy matrix,


0(u) = CK+(u)R01(u + θ/2) · · ·R0N (u + θ/2)

×K−(u)R0N (u − θ/2) · · ·R01(u − θ/2), (42)

with C = −βe−η

sinh θ sinh 3θ
2

and β → βt for the weak-tunneling

model. An auxiliary space indexed by 0, very useful for a
convenient formulation of the problem, has been introduced.
The form of (42) is similar to that of the XXZ model with two
boundaries described by K+ and K−.1 The transfer matrix is
given by the trace over this auxiliary space,

t(u) = Tr0 
(u). (43)

The judicious choice of boundary matrices means that the
transfer matrices commute for differing spectral parameter
[t(u),t(v)] = 0 [17] and by expanding in powers of u a set of
operators which commute with t(v) is generated. This proves
the integrability of the transfer matrix.

We now return to our original problem, the diagonalization
of Z. The choice of (36) and (37)–(41) as well as the
dependence of the monodromy matrix on θ means that we can
relate this to the transfer matrix. In particular, setting u = θ/2
we have

Z = lim
θ→∞

t(θ/2), (44)

and similarly Zt with the appropriate replacements. What we
have shown, therefore, is that determining the spectrum of Z

or Zt is related to that of the open XXZ chain with prescribed
inhomogeneities, boundaries, and twists. In addition, we have
established the integrability of both the Kane-Fisher impurity
and weak-tunneling models.

At this point the QIS method ceases to be of use. The reason
for this is the nondiagonal nature of the boundary matrices
means that there is no proper reference state upon which to
build the eigenstates of t(u) and determine the eigenvalues.
This can be circumvented by means of the newly developed
ODBA approach which utilizes certain algebraic properties of
the transfer matrix to completely determine its eigenvalues in
terms of an inhomogeneous T -Q relation. The eigenvalue is
parametrized by Bethe roots μj which are fixed by the Bethe
equations. The states can then also be recovered by means of
separation of variables [18]. Presently we are only interested
in eigenvalues of t(u) and so postpone any discussion of the
states to future work.

The transfer matrix t(u) has previously been considered
in [15] wherein the eigenvalues �(u) and the Bethe equations
were determined. Inserting (37)–(41) and (42) into their results

1It should be emphasized that although this auxiliary problem is a
genuine boundary problem we are only interested in the limit θ → ∞
in which it reduces to an impurity problem. In other words, the Bethe
equations only depend on the difference of Bethe parameters and not
also their sum.
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we find for N even,

�(θ/2) = −4iβeiφ sinh (θ − 2iφ) cosh (c) cosh (θ/2)

sinh (θ − iφ) sinh θ
cosh (θ/2 − i�)

N∏
j

sinh (θ/2 − μj + iφ)

sinh (θ/2 + μj − iφ)
. (45)

We have restricted ourselves to u = θ/2 since we are only interested in determining e−ikL = limθ→∞ �(θ/2). In addition, we
obtain the Bethe equations,[

cosh
(
i(N + 1)φ + c + iπ/2 + i� − θ/2 + 2

∑N
j=1 μj

) − 1
]

sinh (2μj − iφ) sinh (2μj − 2iφ)

2i cosh (μj + c + θ/2 − iφ) cosh (μj − iφ) cosh (μj − iφ + i�) sinh (μj − θ − iφ)

=
N∏

l=1

sinh (μj + μl − iφ) sinh (μj + μl − 2iφ)

sinh (μj + θ/2 − iφ) sinh (μj − θ/2 − iφ)
(46)

along with the selection rules μj 
= μk and μj 
= μk + iφ.
These selection rules are analogous to the exclusion principle
in other Bethe ansatz problems [19]. Upon taking the limit
θ → ∞ (45) and (46) completely determine the spectrum of
Z. Prior to doing so we should consider the dependence of
μj on θ . The dependence of the Bethe parameters on the
inhomogeneity θ follows from the form of (45) and (46) with
half the roots scaling as −θ/2 while the other half go as θ/2.
This is also the case for N odd, as N + 1 Bethe parameters
are required by the ODBA solution [15]. We separate out the
θ dependent part and introduce two sets of Bethe parameters
{λj ,νj },

μj =
{

λj + iφ/2 + θ/2, if j � N
2 ,

−νj−N/2 + iφ/2 − θ/2, if j > N
2 .

(47)

The validity of this assumption will be checked by recovering
the Luttinger liquid spectrum when the impurity is removed.
Inserting (47) into (45) the eigenvalues become

e−ikL = −e−i�

α

N/2∏
j

sinh (λj − iφ/2)

sinh (νj + iφ/2)
e−λj +νj +iφ. (48)

Two sets of Bethe equations for λj and νj are obtained
from (46) and (47),

sinhN (λj − iφ/2)

= −e−2λj −iφ+2c+2i�e2
∑

k (2λk−νk )

×
N/2∏
k

sinh (λj − νk) sinh (λj − νk − iφ), (49)

sinhN (νj + iφ/2)

= 2i cosh (c − νj − iφ/2)

eνj −c+iφ/2 e2
∑

k λk

×
N/2∏
k

sinh (νj − λk) sinh (νj − λk + iφ), (50)

with the selection rules now reading λj 
= νk , λj 
= λk ,
νj 
= νk . The complexity of both the eigenvalues and Bethe
equations is a common feature of models solved by ODBA
and accordingly makes them more difficult to treat. However
we can gain some insight as to the structure of the solutions by
considering the case of weak or vanishing impurity strength

U → 0. This will also serve as a check on (47) by correctly
reproducing the spectrum of the Luttinger liquid. In this
limit the impurity parameter c → ∞ blows up. Inserting
this into (49) and (50) we see that the solutions are either
λj = νj or λj = νj + iφ. In terms of the original parameters
these are μj+N/2 = −μj + iφ or μj+N/2 = −μj + 2iφ. This
leaves half the parameters μj ,j � N/2 undetermined. To fix
these remaining μj , we return to the expression for �(u)
as given by [15] and assume there are M pairs such that
μj+N/2 = −μj + iφ while the other N/2 − M are of the form
μj+N/2 = −μj + 2iφ. Upon taking c → ∞ we find that the
N/2 − M latter pairs decouple and we are left with a T -Q
relation in terms of M parameters μj (see Appendix B). From
this we derive the eigenvalues

e−ikL = eMiφ−i�

M∏
j=1

sinh (λj − iφ/2)

sinh (λj + iφ/2)
. (51)

The Bethe equations are similar to those of the XXZ model,

sinhN (λj − iφ/2)

sinhN (λj + iφ/2)

= ei(N−2M)φ+2i�

M∏
k 
=j

sinh (λj − λk − iφ)

sinh (λj − λk + iφ)
. (52)

The extra phase factor in the Bethe equations will not change
the structure of the solutions which are either real or form
strings in the thermodynamic limit [20] for −π � φ � π .
It is however, crucial in obtaining the correct energy of the
Luttinger liquid. Combining (51) and (52) we obtain

E = 2π

L

N∑
k

nk − 2π

L

M∑
j

Ij − 2M(N − M)

L
φ

+ �

L
(N − 2M). (53)

Here nk and Ij are the quantum numbers associated with
the charge and chiral degrees of freedom. The last term is
recognizable as −A(N+ − N−). This validates our choice
of (47).

Before proceeding to a study of the impurity thermodynam-
ics we should note that strings represent gapless excitations of
the Luttinger liquid and their structure depends heavily on
the strength of the interaction. While we have successfully
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diagonalized the model for all φ and U � 0, for clarity we
hereafter restrict ourselves to the simplest structure and take
|φ| = π/ν with ν > 2 an integer. This then fixes the allowed
string lengths and parities. Common to other integrable models
we can have j strings

λ(j,l) = λj + i(2j + 1 − l)φ/2, (54)

for j = 1, . . . ,ν − 1. These are said to have parity vj = 1.
In addition to these we may also have strings of negative
parity vν = −1 which are centered on the iπ/2 axis. As a
consequence of our choice of φ, however only 1-strings of
negative parity is allowed,

λν
α + iπ/2. (55)

Once again these represent bulk excitations and so will not be
affected by the introduction of a local impurity. Our choice
of scattering Bethe has dictated these as the appropriate
excitations of the bulk which diagonalize the impurity.

The formal similarity between the Bethe ansatz equations of
the XXZ systems with boundaries and the impurity Luttinger
system arises from the analogy of spin degrees of freedom in
the first and the chiral degrees of freedom in the second system,
though their dynamics is of course very different. We note that
for the XXZ with generic boundary fields the residual U (1)
spin symmetry is broken by the off-diagonal elements of the
boundary matrices and it is this that necessitates the use of the
ODBA. For the Luttinger liquid we also have a U (1) symmetry
(with charge N+ − N−) which is why we are led to taking the
XXZ R matrix while the inclusion of the impurity breaks this
and forces us to adopt the ODBA.

V. THERMODYNAMICS

Having shown how the spectra of Z and Zt are described
by (48), (49), and (50) we determine from it the spectrum of H

and HWT and proceed to study their thermodynamic behavior.
In particular we calculate the free energy and entropy of the
impurity and tunnel junction. In doing so we are interested
in impurity effects but not finite size effects. As a result we
will lose sensitivity to the influence of the flux � [21]. In the
following we set � to zero and will address transport properties
through the Kubo formula.

Dealing directly with (49) and (50) is arduous due to their
nonstandard form but methods have been developed to extract
physical quantities in the thermodynamic limit [22]. Here we
will adopt a different approach. We have just seen that for
c → ∞ the eigenvalues and Bethe equations are given by (51)
and (52). For large but finite c, corresponding to U 
 1 the
form of these equations are modified by an impurity term
which is necessarily of the order 1/N . Indeed we know that any
bulk properties cannot be modified by introducing an impurity.
Thus, we make the assumption that the Bethe parameters are
either real, form strings of positive parity, such that

Im{λ(j,l)} = Im{ν(j,l)} = (2j + 1 − l)φ/2, (56)

or negative parity Im{λj } = Im{νj } = π/2 in the thermody-
namic limit, or come in pairs Im{λj − νj } = φ.

Proceeding from this assumption we can derive the con-
tinuous form of the Bethe ansatz equations (BAE). The result

is that the distributions for the j strings and holes ρj (x) and
holes ρh

j (x) [20] satisfy

Naj (x) + bj (x) = ρj (x) + ρh
j (x) +

ν∑
k

Ajk ∗ ρk(x), (57)

Naν(x) + bν(x) = −ρν(x) − ρh
ν (x) +

ν∑
k

Aνk ∗ ρk(x), (58)

where we define

aj (x) = 1

2π

d

dx
p(x,nj ,vj ), (59)

Ajk(x) = 1

2π

d

dx
�jk(x), (60)

bj (x) = − 1

4π

d

dx
p(x − c/φ,nj , − vj ), (61)

with

p(x,nj ,vj ) = 2vj arctan [(cot njφ/2)vj tanh φx], (62)

�jk(x) = p(x,|nj − nk|,vjvk) + p(x,nj + nk,vjvk)

+ 2
∑

q

p(x,|nj − nk| + 2q,vjvk), (63)

and ∗ denoting a convolution f ∗ g(x) = ∫
dy f (x − y)g(y).

The change in sign for the v = −1 roots arises because
pj (x,nj ,vj ) changes from monotonically increasing to de-
creasing when vj = 1 → vj = −1. In order to have ρν(x) � 0
we need to introduce the sign. The energy in terms of these
string configurations is

E = −
ν∑

j=1

D

∫
ρj (x)[p(x,nj ,vj ) + θ (vj )π ]. (64)

The form of the Bethe equations is very similar to the that of
the anisotropic Kondo model (AKM). Indeed if we change the
parity of the impurity terms bj (x) from −1 to 1 so that it is now
aj (x) we recover the equations for the AKM with zero external
field [23]. The change in the parity of the impurity term can
be understood by noticing the impurity we presently consider
is not merely a particle at a fixed location but introduces a new
aspect, the mixing of the left and right movers this is in contrast
to the Kondo model or AKM. In addition the change in parity
ensures that if the noninteracting limit is taken, φ → 0, the
impurity term vanishes and the distributions are those of free
fermions.

We now proceed to construct the free energy by means of
the Yang-Yang approach and its generalization. The approach
is well known and we just provide the main steps. The free
energy F = E − T S, where E is given by (64) and S =∑

j

∫
[(ρj + ρh

j ) log (ρj + ρh
j ) − ρj log (ρj ) − ρh

j log (ρh
j )],

is the entropy associated with the distributions, is minimized
with respect to ρj which are solutions of the BAE. The result
of this minimization gives the thermodynamic Bethe ansatz
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equations (TBA)

log ηj (x) = s ∗ log [1 + ηj+1(x)][1 + ηj−1(x)]

+ δj,ν−2s ∗ log
[
1+η−1

ν (x)
]−δj,1

2D

T
arctan eπx,

(65)

log ην−1(x) = s ∗ log [1 + ην−2(x)] = − log ην(x), (66)

with ηj (x) = ρh
j (x)/ρj (x), s(x) = 1

2 cosh πx
. The density D =

N
L

plays also the role bandwidth up to a factor of π for the
linear spectrum: setting kF = 0 the ground state is filled down
to −N 2π

L
.

Having taken the thermodynamic limit and derived the
TBA equations we proceed to take the scaling limit to obtain
universal quantities, eliminating any dependence on D. As we
shall see the the model generates an energy scale TKF which
will be held fixed as D → ∞. Thus high and low temperature
regimes will be defined with respect to TKF and always be small
compared to D. With this in mind we introduce the universal
functions [23]

ϕj (x) = 1

T
log

[
ηj

(
x + 1

π
log

T

D

)]
. (67)

Inserting these into (65) and approximating the driving term
− 2D

T
arctan exp π (x + 1

π
log T

D
) � −2eπx , an approximation

valid since only this range of values contributes to η1(x), we
obtain the universal (or scaling) form of the TBA equations,

ϕj (x) = s ∗ log (1 + eϕj−1(x))(1 + eϕj+1(x)) − δj,12eπx,

j < ν − 2, (68)

ϕν−2(x) = s ∗ log(1 + eϕν−1(x))(1 + eϕν−3(x))(1 + e−ϕν (x)),

(69)

ϕν−1(x) = s ∗ log (1 + eϕν−2(x)) = −ϕν(x). (70)

The free energy can then be written as

F = F LL + F i, (71)

with F LL = E0 − T N
∫

s(x) log {1 + exp[ϕ1(x)]} being the
bulk contribution (E0 is the ground state energy), the impurity
contribution is

F i = −T

∫
dx s

(
x + 1

π
log

T

TKF

)
log (1 + eϕν−1(x)). (72)

We note here the appearance of a scale TKF = Deπc/φ which
has been generated by the model. We will measure all
temperatures relative to this scale and can obtain universal
results by keeping TKF fixed while taking D → ∞. In terms
of the original parameters of the Hamiltonian this is

TKF = D

(
U

1 − U 2/4

) π
2 arctan g

. (73)

This scale is power law in the interaction strength which
matches predictions made by renormalization group tech-
niques [2]. Having identified the scale we can determine the
dependence of the impurity strength on the cutoff D. The

behavior depends on the sign of the interaction strength. For
repulsive interactions g > 0,

U (D) ∼
(

TKF

D

) 2 arctan g

π

, (74)

which show U → 0 as D → ∞, or running the argument
backwards, indicating the strengthening of the impurity at
small energy scales as D is decreased. In contrast, for attractive
interactions the U (D) grows with the scale signifying the
healing of the system at low energy.

Likewise, the weak-tunneling Hamiltonian also generates
a scale TWT = Deπct /φ . The complementary nature of these
models is exposed when written in the bare parameters,

TWT = D

(
4t

1 − 4t2

)− π
2 arctan g

. (75)

The change in the sign of the exponent causes the tunneling
parameter to run oppositely to the impurity strength. The
two systems thus become disjoint when the interactions are
repulsive and completely joined for attractive interactions at
low energies.

Any thermodynamic calculations are valid only when the
generated scale is less than the cutoff. Accordingly we are
hereafter restricted to the repulsive regime of the impurity
model and the attractive regime for the weak-tunneling
Hamiltonian. We will only present the former but the latter
is similar with the appropriate replacement of the scale.

Having taken the scaling limit we turn now to study
the universal temperature dependence of the free energy. It
requires the full solution of the TBA equations which can be
achieved only numerically. Here we shall consider the high
T � TKF and low temperature T 
 TKF limits and leave the
study of the crossover to a later publication. The free energy is
given in terms of ϕν−1 which is coupled to all other ϕj but still
we can obtain some results for high and low temperature. At
T � TKF the integral in (72) is dominated by the behavior at
x → −∞, in this limit the driving term drops out of (65) and
the solutions are constants. Denoting eϕj (−∞) = xj , we get

xj = (j + 1)2 − 1, xν−1 = ν − 1 = 1/xν. (76)

Similarly for low T 
 TKF we look for solutions at x → ∞.
This time we denote eϕj (∞) = yj and find

yj = j 2 − 1, yν−1 = ν − 2 = 1/yν. (77)

Using the expression for the free energy along with (77)
and (76) we can calculate impurity free energy near the UV
and IR fixed points,

F i
UV = T

2
log (ν), F i

IR = T

2
log (ν − 1). (78)

The difference in the impurity entropy between fixed points,

Si
UV − Si

IR = 1

2
log

ν

ν − 1
, (79)

shows the usual decrease as the system flows from the UV to
the IR fixed points (a flow from weak to strong coupling regime
for repulsive interactions), a decrease which in the language
of the renormalization group corresponds to the degrees of
freedom that were integrated out. The form of this result
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agrees with the values calculated for the boundary terms in
both the boundary Sine-Gordon model [24] as well as XXZ

with parallel boundary fields [25], however the degrees of
freedom as well as the interpretation of ν are different in those
cases.

We now consider the corrections to the asymptotic lim-
its (76) and (77) which can also be calculated [25]. The
corrections yield the specific heat which is found to scale
as

C(T 
 TKF) ∼
(

T

TKF

) 2
ν−1

, (80)

C(T � TKF) ∼
(

TKF

T

) 2
ν

, (81)

indicating that both the strong and weak coupling fixed point
are non-Fermi liquid in nature.

Using arguments from boundary conformal field the-
ory [26] we can identify the leading irrelevant operators
at both fixed points and thus determine the scaling of the
conductance as given by Kubo’s formula. At low temperature
the conductance vanishes as G ∼ T

2
ν−1 corresponding to the

effective increase of the strength of the impurity U as D is
decreased noted earlier. Thus the low temperature physics is
governed by strong coupling Hamiltonian where the wire is
cut by the impurity and for which the weak-tunneling model
is the starting point. At high temperatures, in addition to the
wire conductance G0 = Ke2/h, with K = (ν − 1)/ν for our
choice of φ, we have the impurity correction G ∼ T − 2

ν , its
vanishing at high temperatures corresponding to the healing
of the wire [2]. We expect similar results to be obtained from
finite size calculations on a ring threaded by flux �.

VI. ELEMENTARY EXCITATIONS

In the previous section we derived the impurity ther-
modynamics of both the Kane-Fisher impurity model and
weak-tunneling model with spin isotropic bulk interaction.
Here we will discuss the elementary excitation of the models,
which we call chirons owing to their origin in the chiral degrees
of freedom. The ground state of the system contains only real
roots whose distribution is governed by the j = 1 equation
of (57) with the ρh

1 (x) = ρj (x) = 0 for j > 1. Excitations
above this ground state are obtained by adding holes in this
distribution. The chiron energy ε = 2D arctan eπxh

appears as
the driving term in the TBA equations (65) with xh being the
position of the hole in the distribution.

Using the method of [27] we can determine their phase
shift as they scatter past the impurity. To do this we note that
in the absence of the impurity the chiron energy should take on
values 2πIh/L [see Eq. (53)]. The 1/L deviation of ε from this
value gives the chiron-impurity phase shift. Up to an overall
constant phase the impurity S matrix is

Sc,i(ε) = ei�c,i [ 1
π

log (ε/TKF)],

�c,i(x) =
∫

dω

8πiω

tanh (ω/2)

sinh [(π/φ − 1)ω/2]
eiωx. (82)

This is valid for π/φ being an arbitrary rational number
between 0 and 1. We see that the phase shift is nontrivial at

both low and high energies as both IR and UV fixed points are
nontrivial. This is to be compared with bare electrons which
are perfectly transmitted at high energies and reflected at low
energy.

Adding two holes to the ground state distribution allows us
to calculate the chiron-chiron phase shift in the same manner,

Sc,c(ε1,ε2) = ei�c,c( 1
π

log ε1− 1
π

log ε2),

�c,c(x) =
∫

dω

4πiω

sinh ((π/φ − 2)ω/2)eiωx

cosh (ω/2) sinh ((π/φ − 1)ω/2)
, (83)

With εj the energies of the two chirons. The full physical
spectrum is thus built up by adding holes and strings to the
ground state distribution. The interpretation of the strings is
commented on below.

We now turn to discuss the relation between our approach
with the bootstrap approach where the spectrum of the
Hamiltonian and the various S matrices are postulated on the
basis of integrability properties. It is known that the impurity
model without spin is related via bosonization and folding
procedures to the massless limit of the boundary Sine-Gordon
model. Its spectrum is taken to consist of solitons, antisolitons
and their bound states known as breathers. The dressed
S matrices, derived via the bootstrap method of [28], are
nondiagonal for generic interaction strength and calculating
thermodynamic quantities leads to an equation similar in
structure to (26). For special values of the interaction however,
the bulk scattering becomes diagonal and the computations
simplify considerably, the right-hand side becoming a mere
phase. The inclusion of spin in this method is more complicated
and is only achieved in certain interaction regimes [29].

In contrast the present method constitutes a bottom up ap-
proach. We have diagonalized the actual quantum Hamiltonian
with spin for all values of the interaction, our restriction to
φ = π/ν is purely for the convenience of its simplified string
structure. It is in this parameter regime where the TBA and free
energy in both approaches coincide allowing us to identify the
first ν − 2 string distributions with breathers and the last two
with symmetric and antisymmetric combinations of a soliton
and antisoliton.

VII. CONCLUSIONS

In this paper we have solved exactly two related Hamilto-
nians, a spin isotropic Luttinger liquid coupled to an impurity
or a tunnel junction with arbitrary boundary conditions. This
was achieved via a type of coordinate Bethe ansatz that
incorporates the reflecting and transmitting properties of the
impurity in conjunction with the off-diagonal Bethe ansatz.
We found that determining the spectrum is equivalent to an
analogous problem for an open XXZ chain with one boundary
corresponding to the impurity and the other the boundary
condition. The thermodynamics was then studied and it was
shown that a scale is naturally generated by both models
such that the impurity strength and tunneling parameter run
oppositely confirming the duality of the models. The impurity
free energy for the simplest interaction regime was calculated
and was seen to coincide with that obtained in [24] for the case
without spin. The diagonalization of the model allows us to
view the system as a gas of excitations in the chiral degrees
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of freedom, chirons, which scatter with a pure phase off the
impurity.

The methods presented herein we believe to be quite general
and provide a template for solving other impurity models with
interacting bulk. Indeed the coordinate Bethe ansatz is readily
applied to the model with spin anisotropic interaction and with
a Kondo impurity. Moreover the formulation naturally allows
for arbitrary boundary conditions to be imposed allowing for

the potential to study the effects of impurities on mesoscopic
rings with arbitrary flux [30].
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APPENDIX A

In this Appendix we derive the eigenvalues (45) and Bethe equations (46). First we will review the results of [15]. They start
with the following definitions of R and K matrices,

Rij (u) =

⎛
⎜⎜⎜⎝

sinh u+η

sinh η
0 0 0

0 sinh u
sinh η

1 0
0 1 sinh u

sinh η
0

0 0 0 sinh u+η

sinh η

⎞
⎟⎟⎟⎠, K−(u) =

(
K−

11(u) K−
12(u)

K−
21(u) K−

22(u)

)
, (A1)

K−
11(u) = 2(sinh α− cosh β− cosh u + cosh α− sinh β− sinh u), (A2)

K−
22(u) = 2(sinh α− cosh β− cosh u − cosh α− sinh β− sinh u), (A3)

K−
12(u) = eθ− sinh 2u, K−

21(u) = e−θ− sinh 2u. (A4)

Along with these we can define a K+(u) = K−(−u − η) wherein all subscripts − are replaced by +. These then satisfy the
reflection equation (RE), dual reflection equation (the RE for K+), and Yang-Baxter (YB) equations. The parameters η,α±,β±θ±
are free but are related to the various coupling constants, and interactions strengths in the problem at hand. Given these definitions
the authors define the following monodromy and transfer matrices,

�0(u) = K+(u)R0N (u + θN ) · · · R01(u + θ1)K−(u)R0N (u − θN ) · · · R01(u − θ1), (A5)

τ (u) = Tr0 �(u), (A6)

following the boundary inverse method we get [τ (u),τ (v)] = 0 and thus the problem is tractable. Indeed they go on to construct
the eigenvalues, �(u) of τ (u) via an inhomogeneous T -Q relation. For even N the result is

�(u) = a(u)
Q1(u − η)

Q2(u)
+ d(u)

Q2(u + η)

Q1(u)
+ 2c̄ sinh 2u sinh (2u + 2η)

Q1(u)Q2(u)
A(u)A(−u − η). (A7)

Where the functions above are defined to be

A(u) =
N∏

l=1

sinh (u − θl + η) sinh (u + θl + η)

sinh2 η
, (A8)

Q1(u) =
N∏

j=1

sinh (u − μj )

sinh η
, Q2(u) =

N∏
j=1

sinh (u + μj + η)

sinh η
, (A9)

a(u) = −4
sinh (2u + 2η)

sinh (2u + η)
sinh (u − α−) cosh (u − β−) sinh (u − α+) cosh (u − β+)A(u), (A10)

d(u) = a(−u − η), c̄ = cosh

⎡
⎣(N + 1)η + α− + α+ + β− + β+ + 2

N∑
j=1

μj

⎤
⎦ − cosh (θ− − θ+). (A11)

Here the parameters μj are the Bethe parameters and θl the inhomogeneities. From this T -Q relation one obtains the Bethe
equations by demanding that the function has only simple poles whose residues vanish, which gives

c̄ sinh (2μj + η) sinh (2μj + 2η)

2 sinh (μj + α− + η) cosh (μj + β− + η) sinh (μj + α+ + η) cosh (μj + β+ + η)

=
N∏

l=1

sinh (μj + μl + η) sinh (μj + μl + 2η)

sinh (μj + θl + η) sinh (μj − θl + η)
. (A12)

Along with these we have so called selection rules μj 
= μk and μj 
= −μk − η.
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Now our problem is to diagonalize the operator

Z = S12 · · · S1NS1W 1N · · · W 12

in which

Sj =
(

α β

β α

)
, W ij =

⎛
⎜⎝

1 0 0 0
0 eiφ 0 0
0 0 eiφ 0
0 0 0 1

⎞
⎟⎠, α = 1 − U 2/4

1 + U 2/4
, β = −iU

1 + U 2/4
, eiφ = 1 − ig

1 + ig
, (A13)

and Wij = P ij is the permutation of the two spaces. In order to diagonalize this we introduce the R matrix

R(u) =

⎛
⎜⎜⎜⎝

1 0 0 0
0 sinh u

sinh (u+η)
sinh η

sinh (u+η) 0

0 sinh η

sinh (u+η)
sinh u

sinh (u+η) 0

0 0 0 1

⎞
⎟⎟⎟⎠, (A14)

which is related to both the S matrices present in Z,

Rij (0) = Wij , lim
u→∞Rij (u)|η=−iφ = Sij . (A15)

Thus we are lead to try diagonalize the transfer matrix t(u),


0(u) = R01(u + θ/2) · · ·R0N (u + θ/2)K−(u)R0N (u − θ/2) · · ·R0(u − θ/2), (A16)

t(u) = Tr0 
(u). (A17)

Which is related to Z by

Z = lim
θ→∞

t(θ/2), (A18)

provided the boundary matrix is chosen so that it goes to S0 in the limit. We can see that �(u) and 
(u) are similar in structure
and indeed there is a simple mapping between them. Once we have this mapping then we can make the same replacements
in (A7) and (B11) and obtain the eigenvalues and Bethe equations.

First, we should specify the boundary matrices. As there is no K+ in Z we should require that either K+ = 1 or that it is ∝ 1
when u = θ/2 (or B0 for twisted boundary conditions) and after limθ→∞. In addition K− should be proportional to S0 after the
same operations. Therefore we choose

K−(u) = β

sinh θ

(
2i cosh (c + θ/2) cosh u sinh 2u

sinh 2u 2i cosh (c + θ/2) cosh u

)
, (A19)

K+(u) = e−η

sinh 3θ/2

⎛
⎜⎝

2(sinh (−θ ) cosh (i�) cosh (u + η) − sinh (2u + 2η)
− cosh (θ ) sinh (i�) sinh (u + η))

2[sinh (−θ ) cosh (i�) cosh (u + η)
− sinh (2u + 2η) + cosh (θ ) sinh (i�) sinh (u + η)]

⎞
⎟⎠. (A20)

In both cases we have taken the liberty of including an overall constant factor. One can then check that

lim
θ→∞

K−(θ/2) =
(

iβec β

β iβec

)
, lim

θ→∞
K+(θ/2) = −

(
ei� 0
0 e−i�

)
. (A21)

Which is what we want provided ec = α/iβ = (1 − U 2/4)/U . In terms of the parameters introduced previously, these are
obtained by taking

α− = c + θ/2 + iπ/2, α+ = −θ, β− = 0, β+ = i�, θ± = 0, (A22)

and including an overall factor of

−βe−η

sinh θ sinh 3θ/2
. (A23)

Turning our attention to the R matrices we see that they differ by an overall factor

R(u) = sinh η

sinh (u + η)
R(u). (A24)
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We are now able to relate �(u) and 
(u). Specifically we want to go from �(u) to 
(u). To achieve this relabel the spaces so the
orderings match, N − m → m + 1 and take θk = θ/2 ∀k,


(u) = −βe−η

sinh θ sinh 3θ/2

N∏
j=1

sinh η

sinh (u − θ/2 + η)

sinh η

sinh (u + θ/2 + η)
�(u)

∣∣∣∣
θk=θ/2

. (A25)

We are interested in the eigenvalue at u = θ/2 = θj . At this value of the spectral parameter the second and third terms in �(u)
vanish so we are merely interested in

�(θ/2) = −4iβe−η sinh (θ + 2η) cosh (c) cosh (θ/2) cosh (θ/2 + i�)

sinh (θ + η) sinh θ

N∏
j

sinh (θ/2 − μj − η)

sinh (θ/2 + μj + η)
. (A26)

The Bethe equations are[
cosh

(
(N + 1)η + c + iπ/2 + i� − θ/2 + 2

∑N
j=1 μj

) − 1
]

sinh (2μj + η) sinh (2μj + 2η)

2 sinh (μj + c + θ/2 + η) cosh (μj + η) cosh (μj + η + i�) sinh (μj − θ + η)

=
N∏

l=1

sinh (μj + μl + η) sinh (μj + μl + 2η)

sinh (μj + θ/2 + η) sinh (μj − θ/2 + η)
.

Up till now we have dealt with N even, however, there also exists a solution for N odd. This requires the use of N + 1 Bethe
parameters. The energy is still given by (45) but with the sums running up to (N + 1)/2. Additionally the Bethe equations are
modified, [

cosh
(
(N + 3)η + c + i� − θ/2 + 2

∑N+1
j=1 μj

) − 1
]

sinh (2μj + η) sinh (2μj + 2η) sinh (μj ) sinh (μj + η)

2 sinh (μj + c + θ/2 + η) cosh (μj + η) cosh (μj + i� + η) sinh (μj − θ + η)

= 1

sinhN (μj + θ/2 + η) sinhN (μj − θ/2 + η)

N+1∏
l=1

sinh (μj + μl + η) sinh (μj + μl + 2η).

APPENDIX B

In this Appendix we check that upon setting the impurity strength to zero that the solution reduces to the Luttinger liquid. First
we should describe the desired result. For a Luttinger liquid we can specify the number of left and right movers as they are con-
served. Without loss of generality we can set the number of right movers to be M and the number of left movers N − M . For one of
the right movers to traverse the system on a ring of length it must scatter past the N − M left movers and so it has a total phase shift
(N − M)iφ. Therefore the right-mover contribution to the energy is −M(N − M)φ/L. Similarly a left mover has a total phase shift
of Miφ and therefore the left-moving sector also contributes −M(N − M)φ/L. We should hope to find that the energy reduces to

E = · · · − i
2M(N − M)

L
η. (B1)

Where η = −iφ. In addition the degeneracy of this energy is
(
N

M

)
. Now we look to our derived Bethe equations. We will only

consider N even but for N odd the same argument applies. Removing the impurity corresponds to U = 0 or taking c → ∞. We see
that upon doing so the left-hand side vanishes and we are forced to conclude that the Bethe roots form pairs (λj ,νj ), of two types,

(λj , − λj − η) or (λj , − λj − 2η). (B2)

In terms of of the original roots we have the condition that either μj+N/2 = −μj − η or μj+N/2 = −μj − 2η. However there
are still N/2 free parameters μj . To constrain these we need to use this pair structure in the T -Q relation. Let us say that there
are M pairs of roots such that μj+N/2 = −μj − η and that we reorder them so that these occur for j = 1, . . . ,M . We can then
sub this back into our T -Q relation for the eigenvalue �(u) and take the limit c → ∞. Our new T -Q relation is

�(u) = −2eθ/2−u−η

sinh θ sinh 3θ/2

sinh(2u + 2η)

sinh (2u + η)
sinh (u + θ ) cosh u cosh (u − i�)

M∏ sinh (u − μj − η)

sinh (u + μj + η)

sinh (u + μj )

sinh (u − μj )

+ 2eθ/2+u

sinh θ sinh 3θ/2

sinh 2u

sinh (2u + η)
sinh (u + η − θ )

sinhN (u − θ/2) sinhN (u + θ/2)

sinhN (u − θ/2 + η) sinhN (u + θ/2 + η)

× cosh (u + η) cosh (u + i� + η)
M∏ sinh (u − μj + η)

sinh (u + μj + 2η)

sinh (u + μj + η)

sinh (u − μj )
. (B3)
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There are two things to note about this expression, the first is that the N − M pair of roots of the second type have canceled
out and do not contribute and also the inhomogeneous term has also vanished. As before we are only interested in taking the
eigenvalues at u = θ/2 and then in the limit θ/2 → ∞. With this value of the spectral parameter the second term also vanishes,

�(θ/2) = 2e−η

sinh θ

sinh(θ + 2η)

sinh θ + η
cosh (θ/2) cosh (θ/2 − i�)

M∏ sinh (μj + η − θ/2)

sinh (μj − θ/2)

sinh (μj + θ/2)

sinh (μj + θ/2 + η)
. (B4)

If we shift μj = λj + θ/2 − η/2 and take θ → ∞ we get the momenta of the system

e−ikL = e−Mη−i�

M∏ sinh (λj + η/2)

sinh (λj − η/2)
(B5)

from which we get that the energy is given by

E = 2π

L

N∑
k

nk + i
N

L

M∑
log

sinh (λj + η/2)

sinh (λj − η/2)
− i

MN

L
η + N

L
�. (B6)

To evaluate this explicitly we need to use the Bethe equations from our new T -Q relation. As before we demand that � has only
simple poles and that the residues vanish. The simple pole restriction gives us the selection rule μj 
= μk and μj 
= −μk − η.
The vanishing residues then results in the Bethe equations

0 = −2eθ/2−μj −η

sinh θ sinh 3θ/2

sinh(2μj + 2η)

sinh (2μj + η)
sinh (μj + θ ) cosh (μj ) cosh (μj − i�)

M∏ sinh (μj − μk − η)

sinh (μj + μk + η)
sinh (μj + μk)

+ 2eθ/2+μj

sinh θ sinh 3θ/2

sinh 2μj

sinh (2μj + η)
sinh (μj + η − θ )

sinhN (μj − θ/2) sinhN (μj + θ/2)

sinhN (μj − θ/2 + η) sinhN (μj + θ/2 + η)

× cosh (μj + η) cosh (μj + i� + η)
M∏ sinh (μj − μk + η)

sinh (μj + μk + 2η)
sinh (μj + μk + η). (B7)

Performing the necessary algebra give us

e−2μj −η sinh(2μj + 2η) sinh (μj + θ ) cosh (μj ) cosh (μj − i�)

sinh 2μj sinh (μj + η − θ ) cosh (μj + η) cosh (μj + i� + η)

sinhN (μj − θ/2 + η) sinhN (μj + θ/2 + η)

sinhN (μj − θ/2) sinhN (μj + θ/2)

=
M∏ sinh (μj − μk + η) sinh (μj + μk + η)

sinh (μj − μk − η) sinh (μj + μk)
. (B8)

We should make the same change of variables as before. Here do it in two steps for clarity. First let μj = λj + θ/2,

sinh(2λj + θ + 2η) sinh (λj + 3θ/2) cosh (λj + θ/2) cosh (λj + θ/2 − i�)

sinh (2λj + θ ) sinh (μj + η − θ ) cosh (λj + θ/2 + η) cosh (λj + θ/2 + i� + η)

sinhN (λj + η) sinhN (λj + θ + η)

sinhN λj sinhN (λj + θ )

= e−2λj −θ−η

M∏ sinh (λj − λk + η) sinh (λj + λk + θ + η)

sinh (λj − λk − η) sinh (λj + λk + θ )
. (B9)

Now we can take the limit and shift λj by −η/2 and get (52)

sinhN (λj + η/2)

sinhN (λj − η/2)
eNη−2i� = −e2Mη

M∏ sinh (λj − λk + η)

sinh (λj − λk − η)
. (B10)

Taking the log of these we obtain

N log
sinh (λj + η/2)

sinh (λj − η/2)
= −(N − 2M)η + 2i� +

M∑
k

log
sinh (λj − λk + η)

sinh (λj − λk − η)
+ 2πiIj , (B11)

where Ij is a half integer. Using this in our energy equation and the fact that we have a double sum over the antisymmetric
function log sinh (λj −λk+η)

sinh (λj −λk−η) we get (53).
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