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Quantization of states and strain-induced transformation of charge-density waves
in the quasi-one-dimensional conductor TaS3
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We report studies of low-field conductivity, σ , of nanosized samples of orthorhombic TaS3 as a function of
strain, ε. The σ (ε) curves show steplike changes associated with the “quantization” of the wave vector, q, of the
charge-density wave. Based on the effect we have revealed the change of the q-vector with strain: its in-chain
component (normalized by the reciprocal lattice constant) is found to increase with sample stretch. A similar
q(ε) dependence results from the analysis of the σ (ε) hysteresis for macroscopic samples. This means that the
strain-induced anomalies cannot be explained by the transition of the CDW to fourfold commensurability with
the pristine lattice (lock-in transition), as it was supposed earlier. We also discuss the metastable length states
and the elastic anomalies in TaS3 in light of the observed q(ε) dependence.
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I. INTRODUCTION

The most remarkable feature of quasi-one-dimensional con-
ductors with incommensurate charge-density waves (CDWs)
is the nonlinear transport associated with the CDW sliding [1].
Some of the compounds which belong to this group show
also unique properties, which, to a wide extent, can be
called mechanical, namely, strain-induced features in con-
duction and thermopower [2–6], anomalous elastic [6–13],
thermal-expansive [14], and electromechanical properties [15–
19]. In particular, abrupt changes in nonlinear and linear
transport under uniaxial stretch [3–6] accompanied with a
feature in the stress-strain relation [13], drop of the Young’s
modulus [7,8,10,11] and shear modulus [6,9,11,12] on the
CDW depinning, hysteresis in thermal expansion [14], large
electric-field-induced deformations (uniform [15] and nonuni-
form [16–18]) have been reported. All these features demon-
strate interplay of the CDW and pristine-lattice properties.

The effects mentioned above are found in a number of
compounds and clearly reveal general features of the CDW.
At the same time, they reflect individual properties of each
CDW compound. For example, a several-percent drop of
the Young’s modulus on the CDW depinning has been
reported for orthorhombic TaS3 (in the text below, TaS3) and
(TaSe4)2I [1,2], —one to two orders of magnitude lower for
NbSe3 [11,20], and no drop (to the accuracy of 5 × 10−5)
for K0.3MoO3 [21]. Such a scattering of properties could
be expected from general consideration (see the discussion
in Ref. [12], p. 2970). If one stretches a sample and no
CDW phase slippage occurs, the wavelength, λ, will grow
proportionally to the length, L, or lattice constant, c. The
condition λ ∝ c also implies conservation of the CDW phase
with respect to impurities [12]. In principle, this value of
λ can be different from the equilibrium λ for the strained
sample. However, in the case of an ideal one-dimensional
(1D) conductor the relation λ ∝ c coincides with the condition
for the equilibrium value of λ. In fact, in the simple 1D
model the CDW wave vector q is exactly equal to 2kF, or
λ ≡ π/kF = 2/n0. Here kF is the Fermi wave vector; n0 is
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the linear concentration of electrons over a conducting chain.
With n0 ∝ 1/c we come to λ ∝ c. Thus, within the simple 1D
model the CDW in a strained sample remains in equilibrium
with respect to the strained lattice and does not contribute
to the elastic energy (Eq. (2) from Ref. [14]). Then, the
mechanical anomalies must originate from individual features
of the compounds, such as charge transfer under strain [22–24],
three-dimensional (3D) effects (nesting), and electron-hole
asymmetry [25,26]. These effects can either violate the relation
n0 ∝ 1/c, or make λ deviate from 2/n0 under strain [24,27]. In
both cases λ/c �= const, or, in terms of q, q/c*�const. Below
this condition is referred to as a “nontrivial” dependence of q

(namely, of the in-chain component of the q-vector) on strain.
For the following it is reasonable to introduce the dimen-

sionless value q ′ ≡ q/c∗. The dependence of q ′ on strain, ε,
gives the most common interpretation of the anomalies, at
least, if longitudinal strains are concerned. In this case the
CDW-lattice coupling can be characterized in terms of the
coefficient g ≡ (δq ′/q ′)/(δc∗/c∗) = –(δq ′/q ′)/ε introduced
in Ref. [27]. If g = 0, the strain dependence of q is trivial,
and no anomalies are expected.

The most detailed mechanics-related studies have been
performed for TaS3 [3–10,12–20], a typical Peierls quasi-one-
dimensional conductor with CDW forming at TP = 220 K [1].
For this compound an integral picture of lattice-CDW interplay
has been arranged. Basic for this picture is the assumption
that under uniaxial stretch q ′ decreases and at a critical
strain εc, achieves fourfold commensurability with the lattice,
i.e., shows a lock-in transition. At ε > εc q ′ is supposed to
reduce further [3–6]. This inference is based on a number
of experiments showing pronounced features in conductivity
(both linear and nonlinear) and thermopower at ε close to εc.
The q ′(T) dependence [28] seemed to confirm this picture:
Around 220 K q ′ is slightly above 1/4, but approaches the
fourfold commensurability with T decrease. The dependence
εc(T) was found to be qualitatively similar with q ′(T) [3,4,14].
Confronting the two dependences [14] gave g = 6. This
inference implied that εc is the strain of the lock-in transition.

The nonzero value of g is also a key for explaining the
softening of the lattice with the CDW depinning [12,24,27]
at the electric field E = Et. As we concluded above, g �= 0
means that the CDW in a strained sample appears out of
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equilibrium (with respect to the changed lattice constant) and
contributes to the total elastic energy of a sample. However, in
the sliding state the deformations of the CDW relax (through
phase slippage and creep), their contribution drops out from the
total energy, and the Young’s modulus of the sample decreases.

Thus, by now, a consistent-looking picture of mechanical
anomalies in TaS3 has been arranged. However, an important
element of this picture is lacking: The q ′ change under strain
has not been studied. The experiments presented in this paper
reveal the q ′(ε) dependence. Contrary to the expectations, q ′ is
found to increase with ε. This result appears in contradiction
with the picture described above and gives ground for a serious
reconsideration of the mechanical anomalies in TaS3 and,
evidently, in other CDW compounds.

II. EXPERIMENTAL APPROACHES

Structural studies under strain, including those at low
temperatures, require an unconventional setting of the ex-
periment and can be rather complicated. However, studies
of the transport properties of the CDW conductors in the
linear regime of the current-voltage characteristics can give
unambiguous and precise information about the q ′ change.
The most direct technique is based on the effect of q-vector
“quantization.” In nanosized samples discrete conducting
states corresponding to different integer numbers of CDW
periods can be resolved [29–32]. Transitions between the states
are observed as steplike changes of conductivity, σ , and reveal
production or annihilation of a CDW period through a phase
slip (PS) event. One PS results in δq ′/q ′ = ±λ/L. Counting
the number of steps in σ (T) one can find the q ′ change in the
corresponding temperature range. This approach provides an
extremely high resolution in q ′(T) change, which can exceed
that of the x-ray studies, as in the case of K0.3MoO3 [30,33].
Here we apply this technique to reveal q ′(ε).

Though steps for TaS3 nanosamples were observed pre-
viously [29,34], discrete equidistant conducting states and
regular switching between them with temperature were not
clearly demonstrated. For observation of the “quantization”
the sample must be thin enough for the CDW to be coherent
in cross section, and short enough for the σ steps to be
resolved. The dimensions required for TaS3 are ∼ 10−3 μm2

in cross section and not more than tens of microns in length. In
addition, it is important to impose certain boundary conditions
for the CDW at the contacts [30,35]. This requirement can be
fulfilled, if the contacts are deposited with the laser ablation
technique [30]. We have prepared such samples and have
observed stepwise σ (T) curves for them [see Fig. 2(b)]. From
the temperature distribution of the steps we have restored the
q ′(T) dependence [36,37], which appeared in agreement with
the diffraction experiment [28]. An upwards-directed step in
σ corresponds with a new CDW period entrance, i.e., increase
in q ′, and vice versa [29,34,36,37], as it could be expected for
the p-type conductivity of quasiparticles [38].

For studies of σ (ε) curves we constructed a setup allowing
closely continuous change of the sample length with high
accuracy [39]. Uniaxial stretch is achieved by means of
bending an epoxy-based substrate. The ends of the substrate are
resting on two bearings. The technique has been applied to the
samples with the distance between contacts L ≈ 10–1000 μm

FIG. 1. A sketch of the substrate fixed over bearings (at the
edges). Bending deformation is created by a bar. The bent substrate is
drawn with broken lines. The sample is placed on the bottom (convex)
surface of the substrate.

and thickness, t ≈ 10−3–5 μm. The sample is attached tightly
to the substrate surface (Fig. 1). The bending is provided by
a bar pushing the substrate from the opposite side. The bar
is driven from outside the cryostat by means of a mechanical
motion transducer. A micrometer screw driven with hands or
with an electric motor allows vertical displacement of the bar.
The resulting strain is

ε = 4δyd/L2
sub, (1)

where δy is the displacement of the bar, d the thickness,
and Lsub the length of the substrate. Relation (1) implies the
condition t 	 d; with d = 0.4–0.5 mm it is always fulfilled
with a good reserve. With δy < 0.6 mm and Lsub = 8 mm the
condition δy 	 Lsub is also fulfilled. A thin (200–300 Å) gold
film deposited on the substrate near the sample plays the role
of a strain gauge. The strain-resistance coefficient (“gauge
factor”) of the film was calibrated based on the relation (1).
The gauge could resolve δε well below 10−4. The maximum
values of ε achieved 1%–1.5% and were usually limited by the
substrate cracking.

A sample cross-section area was estimated based on its
room-temperature resistance and resistivity 3 × 10−4 � cm,
but was also controlled with the help of rf interference (Shapiro
steps) [39,40]. For the case of TaS3 the ratio of the CDW
current density at the first step to the irradiation frequency,
jc/f , was taken to be 69 A/(MHz cm2). The control was
especially important for the thinnest samples, whose resistivity
can be larger than of the normal-sized ones [41].

III. RESULTS

Figure 2(a) shows a repeatedly recorded σ (ε) dependence
obtained for a nanosized TaS3 sample. In this experiment
an electric motor was used to provide smooth rotation of
the micrometer screw and, consequently, gradual enough
bar displacement. The dependence has an appearance of a
hysteresis loop and looks very similar to the σ (T) loops for
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FIG. 2. (a) Repeatedly recorded σ (ε) dependences for a TaS3 nanosample with dimensions 23 μm × (2 × 10−3) μm2. The bottom scale
shows the resistance of the strain gauge. The upper scale shows the approximate strain. The solid lines are guides for the eye. (b) Similar
dependences vs T for a nanosample with dimensions 24 μm × (3.6 × 10−3) μm2.

nanosized samples [Fig. 2(b)]. One can distinguish discrete
conducting states corresponding to q ′ = const, which are
approximately shown with broken lines in Fig. 2(a). They
are separated by δσ0 ≈ 7 G�−1. Within these states σ (ε) is
reversible in ε; note that though q ′ is constant, the CDW strain
changes with ε [42]. Some steps can be seen not only at the
edges, but also close to the center of the loops. This means
that the mechanical or electric impacts sometimes perturb the
CDW metastable states.

The transitions between the states are stepwise. Growth of
ε gives rise to upward-directed steps of σ . From this we can
conclude that q ′ grows with ε, in contrast with the assumption
made in Refs. [3–6].

The change of ε by about 0.25% results in ten steps of
σ , i.e., in δq ′/q ′ = 10λ/L = 5.6 × 10−4. From this we find
g = –0.22. This value of g appears about 30 times below
the value suggested earlier [14] and is of the opposite sign.
As an illustration, 1% strain results in a decrease of λ/c
by 0.2%. This only drives the CDW away from fourfold
commensurability. Given this q ′(ε) dependence one cannot
attribute the anomalies in σ (ε) to a lock-in transition, at least,
if fourfold commensurability is implied.

A similar conclusion can be made from studies of the σ (ε)
hysteresis loops for macroscopic TaS3 samples. Qualitative
analysis of the loops and the conclusion about the direction of
q ′ change with ε has been made in Ref. [39].

Figure 3 shows a typical σ (ε) dependence for a relatively
large sample. Alike loops were reported earlier, but they were
not discussed [6,43]. Evidently, the hysteresis can be attributed
to q ′ falling behind its equilibrium value with ε change. When
ε increases, σ is below its equilibrium value (Fig. 3), and the
relaxation of the CDW strain must result in an increase of
σ . This was seen experimentally, after applying a pulse of
E > Et. From this one can conclude once again, that q ′ grows
under the sample stretch.

For a quantitative estimate of q ′(ε) we are applying an
analysis of the σ (ε) dependence very similar with that of the

σ (T) hysteresis loop in TaS3 [26]. To take into account the
metastability, we present conductivity as a function of two
variables, ε and q ′. The slope of line 2 corresponds to the
equilibrium change of q ′ with ε. In this case one can distinguish
two terms contributing to σ change:

dσ/dε = ∂σ/∂ε|q ′ + ∂σ/∂q ′|εdq ′/dε. (2)

The first term is directly associated with ε change (at q ′ =
const). The second one is to be attributed to δq ′ induced by
δε. After reversal of straining from decrease to increase (or
vice versa) the slope of the σ (ε) curve reduces several times
(compare the slopes of the straight lines 1 and 2 in Fig. 3). Slope
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FIG. 3. Repeatedly recorded dependence of conductivity for a
TaS3 sample on strain. The bottom scale shows the resistance of the
strain gauge. The upper scale shows the approximate strain. Different
markers correspond to different sweeps. The solid lines are guides for
the eye. The sample length is 250 μm; cross-section area is 0.4 μm2.
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of line 1 corresponds to the condition q ′ = const (no PS); i.e.,
only the first term in (2) contributes to δσ . This minor part
of σ growth with ε could be attributed to TP lowering under
stretch [44] through a reduction of the Peierls gap. The major
part of the equilibrium σ change (60%–80% of it) appears to
be coupled with q ′(ε) dependence. Neglecting ∂σ/∂ε|q ′ one
can write for the slope of line 2

dσ/dε ≈ ∂σ/∂q ′|εdq ′/dε, (3)

or, in normalized units,

(dσ/σ )/dε ≈ (∂σ/σ )/(∂q ′/q ′)|ε(dq ′/q ′)/dε. (3′)

Relation (3′) allows an estimate of (dq ′/q ′)/dε. From
Fig. 2(a) we can find (∂σ/σ )/(∂q ′/q ′)|ε from the height
of the steps, as (δσ0/σ )/(λ/L), which makes about 1200.
One can also roughly estimate this ratio without referring
to the nanosized samples, based on the semiconductor
model [26]. A simple way is to present (∂σ/σ )/(∂q ′/q ′)
as (μ/μ300)(σ300/σ ) [29,34]. Taking (μ/μ300) = 5 [38],
(σ300/σ ) = 120 we obtain a close value, about 600. From
Fig. 3 we find (dσ /σ )/dε ≈ 200. With the given estimates
of (∂σ/σ )/(∂q ′/q ′)|ε, g appears in the range 0.17–0.33, in
agreement with the value obtained for the nanosized sample.

Qualitatively similar σ (ε) hysteresis loops were obtained
in the temperature range 100–140 K. This means that, at least,
the sign of g is the same for all the temperatures in the range.

A more detailed analysis of the σ (ε) curves for TaS3

is presented in Refs. [36,37]. We have also observed σ (ε)
hysteresis for K0.3MoO3 [36]. A similar treatment of the
hysteresis loop gives a q ′(ε) dependence for K0.3MoO3 with
g ≈ −0.4. As we mentioned above, no drop of Young’s mod-
ulus at the CDW depinning was detected for K0.3MoO3 [21].
As an explanation, it had been assumed that, in contrast to
trichalcogenides [22,23], q ′ in K0.3MoO3 is independent of
ε [12,24]. In other words, it had been suggested that for the
case of K0.3MoO3, g = 0.

This contradiction with our experiment [36] means that
another interpretation for the behavior of elasticity in
K0.3MoO3 [21] needs to be proposed.

IV. DISCUSSION

The central result of this paper is the effect of uniaxial
strain to the CDW wavelength in TaS3. The q ′ increase with a
sample stretch appears unexpected, but does not contradict the
previous results in the sense that there had been no attempts
so far to find the q ′(ε) dependence. Though the techniques
proposed here to reveal the q ′ change are not direct, as
diffraction techniques could be, the result is quite reliable.
The relation between the σ and q ′ jumps is in agreement with
the widely accepted semiconductor model of the low-field
conductivity of a CDW system [26,29]: Entrance of a CDW
period (δq ′ > 0) denotes creation of two extra condensed
electrons on each chain at the expense of the quasiparticles’
charge. Because the low-field conductivity of TaS3 is p

type [38], the growth of positive charge results in growth of σ .
The relation between δσ and δq ′ can be checked also without
involving particular models of conductivity. Once the steps
and hysteresis in σ are attributed to those in q ′, the negative

sign of dσ/dq ′ would be in contradiction with the q ′(T)
dependence [28]. Alternatively, the estimated positive values
of dσ/dq ′ allow recovery of the q ′(T) dependences [26,30,36],
whose quantitative agreement with the diffraction data is
especially obvious for the case of K0.3MoO3 [26,30].

On the basis of our results, we can propose the following
qualitative picture of the CDW transformations with stretch
increase. For ε < εc, q ′ grows slightly. The change of q ′
explains the major part of σ (ε) dependence, as well as its
hysteresis. The q ′ increase goes until a sudden change of the
q-vector at ε = εc. This means that at ε >εc a new CDW state
forms. It shows extremely high coherence both in the sliding
state [36,37,39] and at rest [36,37]. Onset of the new CDW
is also supported by an increase in TP and sharpening of the
Peierls transition, when ε increases above εc [36,37].

Let us consider the possible effects of strain on the
CDW. Stretching a quasi-one-dimensional sample makes it
more 3D: Both the increase of the lattice constant along
the chains and decrease in the transversal directions due
to Poisson contraction reduce the anisotropy of structure.
An obvious consequence of this is the reduction of 1D
fluctuations. The σ (T) dependences above TP for stretched
TaS3 samples confirm this conclusion: The metallic behavior,
i.e., the negative derivative dσ/dT becomes more pronounced
with strain [36,37]. Another consequence of the anisotropy
reduction concerns Fermi surfaces: Their nesting becomes
worse. This effect governs the initial reduction of TP in the
stretched samples [36,37,44]. It is natural to couple the q ′(ε)
for small ε values with nesting as well. Assuming that for a
perfect 1D case q ′ = 0.25, one can attribute the deviation of q ′
from 0.25 with the imperfect nesting. For unstretched samples,
q ′ > 0.25 [28]. Then stretching will result in a further growth
of q ′ deflection from 0.25 with ε increase. Thus, the obtained
q ′(ε) dependence is likely to reflect the nesting modifications
under strain. Also, the q ′ value can be affected by a charge
transfer between the valence and conducting bands due to S
atoms coupling-decoupling under strain [22–24]. However, we
consider this contribution to q ′(ε) to be less probable, taking
into account a similar behavior of q ′(ε) in K0.3MoO3 [36],
where the bonds are ionic and charge transfer is unlikely.

The next question to be discussed is the origin of the
anomalies at εc [3–6,39]. Stretching a TaS3 sample up to
ε ≈ 0.5%–1% results in a two to six times growth of σ , but
then the growth saturates, and at εc the conductivity shows
a drop [3,39,44], which is rather sharp for the high-quality
samples [39]. To explain the anomaly at the critical strain
one can suppose that at ε = εc a different q-vector (mapping
the corrugated Fermi surfaces) becomes more effective in
gapping electrons [36,37,39]. A first-order transition of the
CDW into a different phase was suggested in Ref. [13],
where a feature in the stress-strain dependence, namely, a
drop of Young’s modulus, has been observed at ε = εc. The
authors noted strongly different properties of the new CDW
state forming above εc, which could scarcely be explained
in terms of a lock-in transition [13]. One can suppose that
formation of the new CDW [39] is accompanied with a gain
of electronic energy. This could explain the drop of Young’s
modulus of TaS3 around εc [13]. The nearly steplike reduction
of σ vs ε [39] can indicate an increase of the Peierls gap,
	 [44]. Alternatively, it can be explained with a decrease of
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the electron-hole misbalance, i.e., the difference of hole and
electron concentrations, p-n, in the new CDW.

An additional reason for the formation of the new CDW can
be rooted in the complicated dependence of the electron energy
gain on the CDW (lattice distortion) amplitude. Decrease of
1D fluctuations in a stretched sample promotes formation
of a higher-amplitude CDW [44]. As it has been noted in
Ref. [45], for large-amplitude CDWs the nesting is not so
crucial: The electrons near k = q/2 would be gapped by the
CDW distortion even if their energy deviates from EF, but
the deviation is less than 	. In this case the electronic energy
gain will spread over the entire Brillouin zone [45]. Formally
this means that while at low 	 the energy gain is proportional
to –	2ln	, for high 	 it becomes proportional to 	 with a
relatively large factor [45]. At ε = εc the minimum of the total
energy, i.e., the sum of the positive elastic and the negative
electronic energies, can be achieved at two different values of
	. Above εc the larger 	 becomes energetically favorable. One
can expect that the switching of q-vector at ε = εc will have
features of a first-order transition. In a narrow ε range around
εc coexistence of the two CDW phases has been reported [39].

Though the scenario proposed gives an idea of the dramatic
changes of the CDW properties at εc, it does not explain the
several-times drop of Et [4,36,39] and the ultrahigh coherence
of the new CDW [36,39]; the low dissipation of the new CDW
is especially pronounced in the four-probe studies [36,37].
Within the weak pinning models [1] the reduction of Et can
be attributed either to a growth of the CDW elastic modulus
(coupled with the 	 increase) or to a reduction in the defects
concentration. Within the semiconductor model the elastic
modulus of the CDW is proportional to dζ/dq ′ [46], where
ζ is the shift of the chemical potential of the electrons. In
the unipolar approximation dζ/dq ′ is proportional to T δσ0/σ ,
which appears approximately the same for the unstrained and
the ultracoherent CDWs at given T [36,37]. Thus, no growth
of CDW elasticity happens at εc, which could explain the
reduction of Et up to five times. Evidently, this means that the
effect of 	 increase is roughly compensated by TP decrease.
Alternatively, the transformation of the CDW properties can
be attributed to a change in the defect structure of the crystal
under the uniaxial stretch [39]. However, the reversibility of the
basic CDW transformation at εc would mean the reversibility
of the defects annihilation production, which does not look
reasonable.

The preferable reason for the formation of the ultracoherent
CDW, as we think, routes in the intrinsic defect structure of the
CDW. The known models attribute pinning and deformations
of a CDW to impurities and/or defects of the pristine lattice.
However, a certain defect structure can exist in a CDW even
in a perfect pure crystal, as it exists in almost any solid, even
if it is perfectly pure. Then the CDW can be more perfect in a
stretched sample than in an unstrained one. The studies of the
room-temperature CDW in NbS3 (phase II) with the help of
high-resolution transmission electron microscopy (TEM) give
evidence for such intrinsic defects, which can even affect the
pristine lattice [37].

The growth of the CDW coherence under stretch can be
a universal phenomenon for different CDW conductors: A
similar tendency, though without features of a phase transition,
was observed for NbS3 (phase II) at room temperature [39].

Presumably in NbS3 the changes of the CDW defect structure
go gradually with ε, while in TaS3, through a steplike
transition [39].

As we mentioned in the beginning, the q ′(ε) dependence is
supposed to be the key for understanding the Young’s modulus
drop on the CDW depinning and of the metastable length
states of TaS3. We first consider the L(T) hysteresis [14]. It
was found that in the overcooled state the TaS3 samples are
shorter than in the overheated one. Therefore, the hysteresis in
L(T) looks somewhat unusual: The length seems to “outrun”
its equilibrium value, Leq. This is not surprising in itself: The
length change results from superposition of regular thermal
expansion and the effect of CDW strain on top of it. In
Ref. [14] the deviation of L from Leq, δL, was attributed to
the impact of longitudinal CDW strain, i.e., to a metastable
value of q ′. Within this model δL/L ≈ –g(Yc/YL)(δq ′/q ′),
where δq ′ is the deviation of q ′ from equilibrium; Yc/YL is
the ratio of the Young’s moduli of the CDW and the lattice
(Eq. (3) from Ref. [14]). With heating q ′ increases [28], so, in
view of the q ′(T) hysteresis, for the overheated state δq ′ must
be negative. For g > 0 the positive value of δL is obtained, in
agreement with the experiment. The negative sign of g breaks
this agreement: With g < 0 it looks as if L under CDW strain
readjusts itself so that the CDW longitudinal strain grows [47],
in an apparent contradiction with Le Chatelier’s principle [48].
From this one can conclude that the simple explanation of
length hysteresis does not work.

The most reasonable way to overcome this contradiction
is to go beyond the 1D model of CDW-lattice interaction. In
Ref. [28] the b∗ component of the q-vector was found to be
temperature dependent, as well as the c∗ component. One can
suppose that metastability in sample dimensions is driven by
the CDW-lattice interaction in the directions normal to the
chains. Then the length change is to be calculated with the
help of the Poisson coefficient. It is known that transverse
CDW strains exceed the longitudinal ones (see, e.g., [49]).
For K0.3MoO3 it has been found that CDW formation at TP

has the largest effect on the dimensions in the [102] direction,
perpendicular to the chains’ direction [50]. It is also clear
that the enormous voltage-induced torsional strain observed in
TaS3 [19] cannot be reduced to longitudinal CDW strains.

Unlike the metastable length states, metastable states
in conductivity can be described in terms of longitudinal
CDW strains. This point of view is justified, e.g., by the
distribution of δσ along the sample after application of
electric field [51], which appears consistent with the idea
of q ′ increase near one contact and decrease near the other
one. The semiconductor model describing correlation of p-n
and δq ′ [26,29,34] also looks consistent: The correspondence
of the steps of conductivity with the production/annihilation
of a CDW period [29,30,34], the reasonable values of mo-
bility found from the conductivity steps [30,31,36,37], and
the recovered q ′(T) dependences [26,30,36,37] confirm the
correlation between δq ′ and δσ . If this is the case, one can
expect violation of scaling between metastabilities in length
and in conductivity. This expectation is confirmed by Ref. [15],
in which metastable length states induced by electric field were
reported. A correlation between the L(E) and σ (E) hysteresis
loops was observed. However, in contrast with Ref. [14],
larger L corresponded to higher σ . It was also noticed [15]
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that the scaling between L and σ was rough; particularly,
substantial length changes below Et were not accompanied
by any changes in σ .

Once the transversal components of the CDW strain
dominate metastability in length, they should also be taken
into account in the treatment of the elastic anomalies in
Young’s modulus. Particularly, in the model [27] the coefficient
g should be considered as a tensor. One more relevant
complication can be connected with the possible coexistence
of commensurate and incommensurate CDWs [52].

In summary, we have observed steps of conductivity
measured as a function of strain, ε, for nanosized TaS3 samples.
The steps are associated with “quantization” of the CDW wave
vector. The “quantization” has been employed for detection of
fine rearrangement of the CDW structure. In particular, it is
found that sample expansion results in a growth of q/c∗, which
means moving of q away from the fourfold commensurability,
q = 0.25c∗. The parameter g characterizing q/c∗ variation
with ε [27] is found to be about −0.2. This value is of the
opposite sign and about 30 times smaller in absolute value
than was suggested earlier. A similar value of g follows
from the analysis of the q(ε) hysteresis loops in macroscopic

TaS3 samples. This result necessitates an alternative treatment
for strained-induced anomalies and other mechanical effects
found for TaS3.

The result appears peculiar not only to TaS3. For example,
the analysis of the σ (ε) hysteresis loop in K0.3MoO3 [36,37]
also grants an unexpected q(ε) dependence [21–23]. Evidently,
to solve the contradictions with the previous concepts, one
should take into account the transverse components of the
CDW and lattice strains.
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