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We theoretically study the stability of three-dimensional Dirac semimetals against short-range electron-electron
interaction and quenched time-reversal symmetric disorder (but excluding mass disorder). First, we focus on the
clean interacting and the noninteracting dirty Dirac semimetal separately and show that they support two distinct
quantum critical points. Using renormalization group techniques, we find that while interaction driven quantum
critical points are Gaussian (mean-field) in nature, describing quantum phase transitions into various broken
symmetry phases, the ones controlled by disorder are non-Gaussian, capturing the transition to a metallic phase.
We classify such diffusive quantum critical points based on the transformation of disorder vertices under a
continuous chiral rotation. Our weak coupling renormalization group analysis suggests that two distinct quantum
critical points are stable in an interacting dirty Dirac semimetal (with chiral symmetric randomness), and a
multicritical point (at finite interaction and disorder) results from their interplay. By contrast, the chiral symmetry
breaking disorder driven critical point is unstable against weak interactions. Effects of weak disorder on the
ordering tendencies in Dirac semimetal are analyzed. The clean interacting critical points, however, satisfy the
Harris criterion, and are therefore expected to be unstable against bond disorder. Although the weak coupling
analysis is inadequate to establish the ultimate stability of these fixed points in the strong coupling regime (when
both interaction and disorder are strong), they can still govern crossover behaviors in Dirac semimetals over
a large length scale, when either interaction or randomness is sufficiently weak. Scaling behavior of various
physical quantities (e.g., spectral gap, specific heat, density of states, conductivity) and associated experimental
signatures across various quantum phase transitions are discussed.

DOI: 10.1103/PhysRevB.94.115137

I. INTRODUCTION

Understanding the roles of electron-electron interactions
and disorder in solid state systems are two separate problems
of fundamental importance, and over the past few decades
these questions have extensively been addressed in the context
of Fermi liquids, although a definitive understanding of the
ground state in such systems in the presence of both strong
disorder and strong interaction is still a subject of debate [1–6].
The Fermi liquid remains stable against weak electron-electron
interactions in the renormalization group sense (i.e., the Fermi
liquid phase is an infrared stable fixed point in dimensions two
or higher), except for Kohn-Luttinger superconductivity at
exponentially low temperatures. In general, weak interactions
produce many-body renormalization effects, where various
parameters of the noninteracting system (e.g., Fermi velocity)
and physical observables (e.g., specific heat, compressibility,
susceptibility) are renormalized by electron-electron
interactions [7–9]. On the other hand, strong interactions
could produce quantum phase transitions [10] (often first
order transitions) into symmetry-broken (e.g., ferromagnet
or Wigner crystal) phases. Fermi liquids are also susceptible
to disorder-induced randomness, and in particular sufficiently
weak disorder destabilizes the Fermi liquid fixed point and
gives rise to a stable diffusive metal in three dimensions. The
diffusive metallicity is a manifestation of the Fermi system
developing a finite relaxation time due to disorder scattering,
leading to finite metallic conductivity. As the disorder gets
stronger, such a metallic phase can encounter Anderson
localization that has been a subject of intense research over
the past fifty years [11]. A question arises quite naturally
regarding the fate of various phases in clean interacting and
dirty noninteracting systems, when these two perturbations
are present simultaneously, which remains an open problem.

Using field-theoretic renormalization group (RG) tech-
niques, we here address this question for a disordered and
interacting three-dimensional Dirac semimetal (DSM), with
the chemical potential being pinned exactly at the Dirac
point [12]. The simplicity of the noninteracting spectra,
composed of linearly dispersing completely filled (empty)
valence (conduction) band allows considerable progress, thus
serving as a potential “toy” model for understanding the
interplay of disorder and interaction in a specific situation
(as long as neither is very strong).

In this work, we only consider repulsive local short-
range electron-electron interaction (an extended Hubbard-type
model) and short-range disorder. Thus both interaction and
disorder will be characterized only by a strength in our model,
and no range parameter shows up explicitly. The key issue of
interest in this work is the stability of the DSM to the varying
strength of the interaction in the presence of disorder and vice
versa. In particular, using RG techniques, we will study the
possibility of various broken-symmetry phases (BSPs), which
arise by destabilizing the DSM, as the interaction becomes
stronger, and ask how the interaction-induced quantum phase
transitions (QPTs) may depend on background disorder. In
addition, we also shed light on the effects of interactions (when
weak) on the disorder controlled phenomena in DSM.

Often, two topologically distinct vacua are separated by
a gapless phase. One celebrated example of such a gapless
system is the three-dimensional DSM, describing the quantum
critical point (QCP) between a trivial band insulator and a
strong Z2 topological insulator, such as Bi2Se3, Bi2Te3, and
Bi1−xSbx , each of which can be succinctly described by a
single four-component massive Dirac fermion [13–16]. Such a
QCP is characterized by the dynamic critical exponent (DCE)
z = 1. In weakly correlated systems, the topological phase
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FIG. 1. (a) Phase diagram of clean interacting three-dimensional DSM. Here, g2 and g5 are two short-range four-fermion interactions,
respectively, supporting scalar and pseudoscalar mass for Dirac fermions, when strong. When they acquire comparable strength, an axionic
insulator (linear combination of scalar and pseudoscalar mass) is realized. In Sec. II B, scalar and pseudoscalar masses are denoted by m1 and
m2, and the axionic insulator is thus a linear superposition of m1 and m2. (b) Phase diagram of weakly disordered DSM in the presence of
axial disorder (�A = 0.3 < �∗

A). �∗
A = 0.5 is the critical strength (dimensionless) of axial disorder for DSM-CDM QPT. (c) Phase diagram

of weakly disordered DSM in the presence of potential disorder (�V = 0.3 < �∗
V ). �∗

V = 0.5 is the critical strength (dimensionless) of
potential disorder for DSM-CDM QPT. (d) Phase diagram of interacting DSM in the presence of weak spin-orbit disorder (�SO = 0.1 < �∗

SO).
�∗

SO = 1.5 is the threshold strength (dimensionless) of spin-orbit disorder for DSM-CDM QPT. Here PSM stands for pseudoscalar mass. Even
though, these results strictly hold for weak to intermediate interaction and disorder coupling strength, they may still control a large crossover
regime to the eventual (unknown) strong coupling phase where interaction or/and disorder is/are strong [52].

transition can be tuned by applying pressure or injecting
impurities [17–21]. By contrast recently discovered strongly
correlated topological insulators, such as YbB6 and SmB6

[22–26], are described in terms of three copies of inverted band
massive Dirac fermions [27,28], and by applying pressure
these systems can, in principle, be tuned through a gapless
point [29]. In addition, various narrow gap semiconductors,
such as, Pb1−xSnxTe (hosting four copies of massless Dirac
points at L points of the Brillouin zone), Bi1−xSbx and
Hg1−xCdxTe (both hosting single copy of Dirac point),
become DSM for special values of x [30]. Furthermore,
DSM can also be found as a stable phase in Cd2As3 [31]
and Na3Bi [32] (referred as topological DSM) that support
two copies of gapless Dirac cones. Therefore understanding
the stability of DSMs in the presence of interaction [33–40]
and disorder [33,41–49], and their interplay [33,38] are of
definite fundamental importance, given the great deal of
current experimental and theoretical interest in the subject,
and may as well reveal some interesting interplays of band
topology, electronic correlation, and randomness. Due of the
technical complexity of the analysis (presented in Secs. II–V),
next we will provide a synopsis of our main findings,
emphasizing the various interaction driven broken symmetry

phases and their robustness against quenched disorder. In
Secs. III and IV, we discuss the physics of clean interacting
and dirty noninteracting DSM, respectively. These two
sections provides a necessary background to appreciate the
interplay of interaction and disorder in a three-dimensional
DSM. However, readers familiar with these two problems
may wish to directly go to Sec. V where we address the
competition between interaction and randomness in details.

We begin with a discussion on the effects of interaction
in clean DSM. Some valuable guidelines into the effects
of electronic interactions can be obtained by combining the
notions of scaling and renormalization group analysis.

(1) Notice that the density of states (DOS) in three-
dimensional DSMs vanishes as �(E) ∼ E2 in the close vicinity
of the band (Kramers degenerate) touching points (referred
as Dirac points). Consequently, DSMs are extremely robust
against sufficiently weak electron-electron interactions. In the
language of RG, such stability stems from the fact that weak
electron-electron interactions are irrelevant perturbations near
the noninteracting, infrared stable Gaussian fixed point.

(2) If, on the other hand, repulsive interactions are suf-
ficiently strong, DSM can undergo QPTs and enter into
a plethora of chiral symmetry breaking (CSB) BSPs [see
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Fig. 1(a), for example]. When the net interaction acquires a
strong attractive component, Dirac fermions can also condense
into various superconducting ground states, a situation we
ignore here and focus only on repulsive interaction. At T = 0,
fully gapped phases optimally lower the ground-state energy at
strong interactions. Otherwise, the QPTs in three-dimensional
DSMs are mean-field or Gaussian in nature, since the system
lives at the upper critical dimension (du = 3). The interacting
QCPs are characterized by DCE z = 1 and the correlation
length exponent (CLE) ν = ε−1

1 , where ε1 = d − z = 2 when
d = 3. Therefore a pseudo-Lorentz symmetry gets restored at
the QCPs, but a physical observable in the BSPs, such as the
fermionic mass gap, displays logarithmic correction due to the
violation of hyperscaling [50].

(3) In this work, we address various instabilities in a
interacting DSM, accounting for short-range [local in space
and time (imaginary)] four-fermion interactions by using RG
techniques. The CSB insulating states are (a) parity (P) and
time-reversal (T ) odd insulator (pseudoscalar mass), (b) only
CSB, but P,T symmetric insulator (scalar mass), and (c)
P,T -odd axionic insulator. A representative phase diagram
of clean interacting DSM is shown in Fig. 1(a) [51]. Notice
d = z is the lower critical dimension for DSM-BSP QPT and
our RG study follows the spirit of an ε expansion around d = 1.

(4) The physical nature of the interaction driven BSPs,
however, depends on the microscopic details of the system.
Due to strong spin-orbit coupling in three-dimensional DSM,
the insulating phases can arise from underlying charge-
density-wave (CDW) or spin-density-wave (SDW) orders. For
example, if we subscribe to the standard representation of
Dirac matrices (ones used in high-energy physics) [53], all
insulating phases represent CDW orders. On the other hand,
the representation of Dirac matrices is quite different for
systems like Bi2Se3 [14], and the scalar and pseudoscalar mass
corresponds to CDW and SDW order, respectively, while these
two density-wave orders coexist in the axionic insulating phase
(see Sec. II B for details).

The fact that the three-dimensional DSM is stable against
sufficiently weak electron-electron interaction and undergoes
a QPT at finite coupling strength, is qualitatively similar to its
two-dimensional counterpart, such as single-layer graphene.
However, the QPT in two-dimensional Dirac materials is
nonmean-field in nature [54–56], while that in three dimen-
sions is Gaussian (mean-field). Our results are qualitatively
similar to the ones found for Weyl semimtels, which also
support linearly dispersing quasiparticle dispersion. However,
in Weyl semimetals, Kramers nondegenerate bands give rise
to such conical dispersion and only the axionic insulator can
be realized as a massive or insulating phase [57–60]. Such
contrasting outcomes in Weyl and Dirac semimetals stems
from the fact that in the former system the chiral symmetry
is intimately tied with the translational symmetry, enforcing
g2 = g5 [see Fig. 1(a)], thus forbidding the realization of scalar
and pseudoscalar masses separately.

A proper insight into the stability of ballistic quasiparticle
excitations in a three-dimensional DSM in the presence of
random quenched disorder can also be gained from the scaling
theory. The scaling dimension of disorder coupling (�) is
[�] = 2z − d. Therefore, in three-dimensional DSMs, weak
disorder is also an irrelevant perturbation, since [�] = −1.

TABLE I. Critical exponents (ν and z) and scaling of DOS [�(E)],
specific heat (Cv), optical conductivity [σ (ω)], and dc conductivity
[σ (T )] near CSP and CSB disorder driven DSM-CDM QCPs. Scaling
of physical quantities is quoted for ε2 = 1 or d = 3. The last column
shows that stability of various DSM-CDM QCPs against sufficiently
weak short-range interaction, as one approaches from the DSM side.

Disorder CLE DCE �(E) Cv σ (ω) σ (T ) Stability

CSP ε−1
2 1 + ε2

2 |E| T 2 ω
2
3 T

2
3 stable

CSB ε−1
2 1 + 9

2 ε2 |E|− 5
11 T

6
11 ω

2
11 T

2
11 unstable

However, beyond a critical strength of disorder, DSM can
undergo a disorder driven QPT and becomes a compressible
diffusive metal (CDM). In the CDM phase, the DOS at zero
energy, the quasiparticle lifetime, the mean free path, and the
metallic conductivity [as T → 0 (dc conductivity) or ω → 0
(ac conductivity)] are finite. The nature of such disorder
driven quantum criticality in the noninteracting dirty DSM and
effects of disorder in transport phenomena has been a subject
of intense analytical and numerical investigation in recent
years [33,41–49]. Our main results for noninteracting dirty
DSM are announced below and also summarized in Table I.

(1) We classify various possible QPTs in the presence
of generic but time-reversal symmetric disorder in three-
dimensional DSM. We show that in the presence of chiral
symmetry preserving (CSP) disorder (such as potential and
axial disorder) the DSM-CDM QPT takes place through a
line of QCPs, characterized by ν = ε−1

2 and z = 1 + ε2/2,
where ε2 = d − 2. On the other hand, when DSM hosts only
CSB (such as spin-orbit) disorder, the DSM-CDM QPT is
characterized by the exponents ν = ε−1

2 ad z = 1 + 9ε2/2.
Notice that d = 2 is the lower critical dimension for DSM-
CDM QPT, and our RG analysis can be considered as an
ε expansion around the lower critical dimensions for the
DSM-CDM QPT dl = 2.

(2) Near the DSM-CDM QCP, the average DOS, conductiv-
ity (both dc and optical) can serve as bonafide order parameter.
When the transition is driven by CSP (CSB) disorder, the
DOS vanishes (diverges) as �(E) ∼ |E|(|E|−5/11). Inside the
quantum critical regime the optical conductivity scales as
σ (ω) ∼ ω2/3 or ∼ω2/11, respectively, when DSM is subject
to strong CSP or CSB disorder. Scaling of the dc conductivity
follows that of optical conductivity upon replacing frequency
(ω) by temperature (T ). The specific heat near these two
types of DSM-CDM QCPs scales as Cv ∼ T 2 and T 6/11,
respectively. Otherwise, in DSM and CDM phases the specific
heat scales as Cv ∼ T 3 and T , respectively.

As one keeps increasing the strength of disorder the CDM
ultimately undergoes a second QPT at stronger disorder
and becomes an Anderson insulator [41,47]. The Anderson
transition in Dirac system is similar to the one in ordinary
three-dimensional metals, but goes beyond the scope of our
weak coupling RG analysis. The notion of disorder driven
QPT is also germane for Weyl semimetals that has also
received ample attention in recent time [61–67]. Notice that
scalar mass disorder also breaks local chiral symmetry. In
the current work, we do not discuss the effect of strong
mass disorder in a DSM. Nevertheless, we expect that
for sufficiently weak mass disorder, sharp quasiparticle
excitations in DSM remains stable [33].
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Stability of DSM against sufficiently weak interactions and
disorder gives us an opportunity to study their interplay pur-
suing a weak coupling RG approach. However, the interaction
and disorder controlled QCPs in three-dimensional DSM can
only be accessed from two different lower critical dimensions,
respectively, dl = 1 and 2. Therefore the competition between
interaction and disorder cannot be addressed in terms of a
unique ε expansion. To circumvent this challenge, we here
invoke the notion of a double ε expansion, where ε1 = d − 1
and ε2 = d − 2 respectively capture the strength of interaction
and disorder couplings at various fixed points. In this regard
our central achievements are promoted below and also reflect
in Figs. 1(b)–1(d).

(1) Within the framework of a weak coupling RG
calculation, we find that both interaction controlled Gaussian
and CSP disorder controlled non-Gaussian QCPs are
stable against sufficiently weak disorder and interaction,
respectively. In other words, the Gaussian (non-Gaussian)
interacting (disordered) critical point remains stable against
turning on infinitesimal disorder (interaction). In addition,
a multicritical point (MCP) emerges from the competition
between these two perturbations, where three different phases,
namely the DSM, a BSP, and the CDM meet. In contrast,
CSB disorder controlled DSM-CDM QCP becomes unstable
against sufficiently weak interactions.

(2) The stability of disorder controlled QCPs against
sufficiently weak local four-fermion interaction can be
anticipated intuitively. Recall that the DCEs are z = 1 + ε2/2
and 1 + 9ε2/2 at the CSP and CSB disorder driven DSM-CDM
QCPs, respectively, and the bare scaling dimension of short-
range interaction is [g] = z − d. Therefore, near these two
dirty QCPs, [g] = −2 + ε2/2 = −3/2 and −2 + 9ε2/2 = 5/2
for ε2 = 1, respectively. Hence weak short-range interaction is
an irrelevant perturbation near the CSP disorder driven QCP,
but a relevant perturbation when the QPT from DSM to CDM
is driven by the CSB disorder. Same results can be arrived at
from a slightly different view point. Notice that the DOS at
the DSM-CDM QCP driven by CSP (CSB) disorder vanishes
(diverges) as one approaches the Dirac point (E → 0), see
Table I. As a result, electronic interaction gets suppressed
(enhanced) near the CSP (CSB) disorder controlled QCP.

(3) The location of the MCP, together with the interacting
QCP in the clean limit, determines the phase boundary between
DSM and BSP for sufficiently weak disorder. We show that
the axial disorder enhances all ordering tendencies in DSM,
as shown in Fig. 1(b) (by suppressing the DSM regime,
while enhancing the BSP regime in the phase diagram). By
contrast, the potential disorder favors the formation of the
pseudoscalar and scalar mass for Dirac fermions, but tends
to defer the condensation of the axionic insulator and trivial
s-wave superconductor, as shown in Fig. 1(c). Phase diagram
of interacting Dirac fermions in the presence of sufficiently
weak spin-orbit disorder is shown in Fig. 1(d).

(4) Now we present a comparative discussion on the
qualitative structure of the phase diagrams in Figs. 1(a)–1(d).
We note that the phase diagrams in clean interacting DSM, as
well as the ones in the presence of axial and potential disorders,
are symmetric under g2 ↔ g5. This outcome in the clean
interacting system stems from the fact that the scalar mass, the
pseudoscalar mass and the axionic order can be chirally rotated
into each other (continuous chiral rotation by the Hermitian

matrix γ5, see Sec. II). In the presence of axial and/or potential
disorder, the underlying chiral symmetry of DSM remains
unaffected, and the phase diagrams of an interacting, but
weakly disordered DSM (subject to axial/potential disorders),
as shown in Figs. 1(b) and 1(c), continues to enjoy the
symmetric under g2 ↔ g5. By contrast, in the presence of
spin-orbit disorder, the underlying chiral symmetry in a
noninteracting DSM gets broken, and as a result the phase
diagram in Fig. 1(d) lacks the symmetry under g2 ↔ g5.

We emphasize that our theory in the presence of both
disorder and interaction [i.e., the upper right-hand quadrant
indicated by question marks in Fig. 6(b)] is necessarily
approximate and cannot access the most interesting regime of
both strong interaction and disorder (since no RG expansion
is possible in this regime). Our double ε expansion is
specifically designed to study effects of weak interaction
(disorder) on the dirty (interacting) system so that an expansion
is possible around the respective critical dimensionality of
one (two). Since no critical dimensionality exists for strong
interaction and strong disorder (since they are strongly relevant
perturbations), our method is not applicable in such a regime.

It should be noted that the ultimate stability of disorder and
interaction controlled QCPs and MCPs in the strong coupling
limit (when interaction and/or disorder are strong) cannot be
established from a weak coupling RG analysis. Nevertheless,
a few comments can be made on this issue. Notice that the
clean interacting QCP satisfies the Harris criterion ν < 2/d

in three-dimensional DSM [68]. Therefore such a QCP in the
presence of random mass or bond disorder, which is naturally
generated inside a BSP in the disordered environment, should
be unstable toward a new fixed point at finite interaction
and disorder, where ν � 2/3 [69]. Effects of interactions
inside the CDM phase cannot be addressed within the weak
coupling RG analysis, since ballistic Dirac fermion does
not constitute the lowest energy excitations inside the CDM
phase, and one must start with diffusive fermions to build the
RG formalism, which flows immediately to strong-coupling
allowing no simple answer. Nevertheless, our weak coupling
analysis suggests that if disorder or interaction is sufficiently
weak, the interaction and disorder (CSP) controlled QCPs,
respectively, govern at least crossover behavior of various
physical quantities over a large length scale. Thus we
speculate that our obtained quantum phase diagrams shown
in Fig. 1 could remain relevant over a large crossover regime
before eventually giving away to the (unknown) strong
coupling phase for strong interaction/disorder. It is worth
emphasizing that the ultimate fate of strongly interacting
disordered fermions is still an unsolved problem in ordinary
metals as well both in two- and three-dimensional systems.

The rest of the paper is organized as follows. In the
next section, we present the effective low-energy theory for
clean noninteracting three-dimensional DSMs. We derive the
interacting model composed of local four-fermion interactions
and classify various BSPs. Symmetry transformations of
various time-reversal symmetric disorders and the notion of
disorder averaging (replica formalism) are also introduced
in Sec. II. In Sec. III, we analyze various interaction driven
instabilities in a clean DSM, and address the emergent quantum
critical phenomena, the scaling of various physical observables
across the DSM-BSPs QCPs. Sec. IV is devoted to study the
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effect of quenched disorder [both CSP (such as potential and
axial disorders) and CSB (such as spin-orbit disorder)] in a
noninteracting DSM. Here we classify the disorder driven
DSM-CDM QCPs based on the notion of chiral symmetry and
discuss the scaling properties of thermodynamic and transport
quantities. Interplay of interaction and disorder in three-
dimensional DSMs is addressed in Sec. V. Our findings and
future outlooks are summarized in Sec. VI. Some additional
technical details have been relegated to Appendices A–E.

II. DIRAC SEMIMETAL

A. Noninteracting system

The minimal model for a three-dimensional DSM is
represented by the Hamiltonian

HD = v1α1k1 + v2α2k2 + v3α3k3, (1)

where v1,2,3 correspond to the Fermi velocities along x,y,z

directions, respectively, and α1,2,3 are three mutually anti-
commuting four-dimensional Hermitian matrices, satisfying
the Clifford algebra {αj ,αk} = 2δjk for j,k = 1,2,3. The
remaining two mutually anticommuting matrices that together
with αj ’s close the Clifford algebra of five mutually anti-
commuting matrices are β and βγ5, where γ5 = iα1α2α3. For
the rest of the discussion, we omit the velocity anisotropy
and set v1 = v2 = v3 = v. The Dirac Hamiltonian then as-
sumes a rotationally symmetric form HD = vαjkj , where
summation over the repeated indices is assumed. Throughout
this paper � is set to be unity. The spinor basis is chosen
as �� = (c+↑,c+↓,c−↑,c−↓), where c±s represent fermionic
annihilation operators for even (+) and odd (−) parity states
with spin projection s = ↑,↓. Thus a DSM can be realized
from the mixing/hybridization between two orbitals with unit
angular momentum difference.

The imaginary-time (τ ) action associated with HD is

S0 =
∫

d3xdτ �̄(γ0∂τ + vγj∂j )� ≡
∫

d3xdτL0, (2)

where �̄ = �†γ0 is an independent Grassman spinor that
transforms in conjugate representation and γj = iγ0αj with
γ0 ≡ β. The γ matrices satisfy the anticommuting alge-
bra {γμ,γν} = 2δμν for μ,ν = 0,1,2,3,5. The action S0 is
invariant under a continuous global chiral Uc(1) rotation:
� → eiθγ5/2�, �̄ → �̄eiθγ5/2. The action also exhibits invari-
ance under various discrete symmetries: parity (P), charge-
conjugation (C), and the reversal of time (T ). Respectively un-
der these discrete symmetry operations the spinor transforms
according to P�P−1 = γ0�, C�C−1 = −γ2�, T �T −1 =
−γ1γ3� [53].

Such a noninteracting ground state can also be realized
on a cubic lattice. The tight-binding Hamiltonian that leads
to the above Dirac Hamiltonian in the low-energy and long-
wavelength limit is given by [13,14]

Hlat = t1

3∑
j=1

αj sin(kja) + t2 β

3∑
j=1

[1 − cos(kja)], (3)

where a is the lattice spacing. The first term gives rise to
massless Dirac fermionic excitations in the vicinity of eight
high-symmetry points of the Brillouin zone. The second term,

playing the role of a momentum dependent mass, is also
known as the Wilson mass. With the above chosen form of
the mass term, all massless Dirac points, except the one at the
� = (0,0,0) point, are gapped out, and one realizes a single
copy of the four-component massless Dirac fermion at the �

point (the Dirac point of the model). In the vicinity of the �

point, the tight-binding Hamiltonian assumes the form

H�
lat = v

3∑
j=1

αjkj + bβ k2 + O(k3), (4)

where v = t1a and b = t2a
2/2 in the low-energy and long-

wavelength limit. Therefore the momentum dependent mass
(∼b) breaks the continuous chiral Uc(1) symmetry of HD

generated by γ5, while leaving the discrete particle-hole
symmetry unaffected, since {Hlat,βγ5} = 0. The Wilson mass
(∼bk2) does not break any bonafide discrete microscopic
symmetry (P , C, T ) of the system.

The momentum dependent mass is, however, an irrelevant
parameter in the language of RG. Hence there exists an infrared
stable fixed point with b = 0, where the Uc(1) chiral symmetry,
generated by γ5, gets restored and Hlat → HD . In this work,
we will address the stability of such infrared stable DSM
in the presence of interaction and disorder, and for the rest
of the discussion we set b = 0. The chiral symmetric Dirac
Hamiltonian can be embedded in a bigger system, which
possesses a genuine U(1) chiral symmetry at microscopic level,
such as the topological DSM. Our goal is to demonstrate the
role of interaction and disorder in the above four-dimensional
building block. Although we are focusing on single-valley
DSM here, if one completely neglects the intervalley scattering
processes (the exact large-N limit), our results can also be
applicable for multivalley DSMs.

B. Electron-electron interaction and broken symmetry phases

Next we focus on the collection of Dirac fermions in-
teracting via short-ranged interactions. Interaction can be
considered to be short-ranged if it vanishes for finite wave
vector and the least irrelevant interaction term is comprised
of four fermions that is local in space and time (imaginary).
The interacting Lagrangian, compatible with various discrete
symmetries (P,C,T ) and preserves the rotational symmetry
takes the form

Lint = g1(�̄γ0�)2 + g2(�̄�)2 + g3(�̄γ0γj�)2

+ g4(�̄γ0γ5�)2 + g5(�̄iγ5�)2 + g6(�̄iγlγk�)2

+ g7(�̄γ5γj�)2 + g8(�̄iγj�)2. (5)

The total Lagrangian density is Lt = L0 − Lint, and therefore
in this notation gj > 0 represents repulsive interactions. Such a
four-fermion interaction vertex is represented by the Feynman
diagram (i) in Fig. 2. The strength of the four-fermion coupling
constants depends on the short-ranged part of the Coulomb
interaction which relies on various nonuniversal details (e.g.,
lattice structure, atomic orbitals constituting the DSM) of the
system. Instead of delving into the microscopic details of
coupling constants (g1 − g8), we here study the low-energy
properties of the interacting model, defined in Eq. (5), using
the RG method [51,70–73]. In Appendix A, we account for
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FIG. 2. First diagrams in first and second rows represent bare
interaction and disorder vertices, respectively. Second diagram in
central row accounts for the fermionic self-energy correction due to
disorder. Rest of the diagrams in first and second rows, respectively,
give rise to renormalization of interaction and disorder couplings at
one loop level. Diagrams shown in the third row capture the interplay
of interaction and disorder at one-loop level. Here, �a,�b are four-
dimensional matrices. All diagrams give rise to ultraviolet divergent
contributions.

the interplay between long-range and short-range Coulomb
interactions in DSM.

The DOS scales as �(E) ∼ Ed/z−1, where z is the DCE
and d is the dimensionality of the system. Therefore, in
a three-dimensional DSM (d = 3,z = 1), the DOS vanishes
as �(E) ∼ E2. Consequently, any weak short-range electron-
electron interaction (gi’s) is an irrelevant perturbation near the
noninteracting stable Gaussian fixed point, since its scaling
dimension [g] = z − d = −2. Nevertheless, beyond a critical
strength, when interaction can no longer be considered weak,
Dirac fermions can be driven out of the semimetallic phase
through a continuous QPT, leading to various BSP. At zero
temperature, a BSP optimally lowers the free-energy by
opening up a mass gap at the Dirac point. Various possible
order parameters or “masses” that can develop in the strong
coupling (repulsive) phase are the followings.

(1) 〈�†γ0�〉 = m1, which breaks the continuous chiral
Uc(1) symmetry generated by γ5, since {γ0,γ5} = 0, but
preserves all discrete symmetries (P,C,T ). The spectrum

in the order phase is ±
√

v2k2 + m2
1. In Fig. 1(a), such an

insulating phase is denoted by the scalar mass phase.
(2) 〈�†iγ0γ5�〉 = m2 that breaks discrete P , T as well

as the continuous chiral Uc(1) symmetry, but preserves C and
PT symmetries. Such an ordered phase is characterized by a
constant axionic angle θax = sgn(m2)π

2 , and the spectrum of

massive Dirac femrions is given by ±
√

v2k2 + m2
2. In Fig. 1(a),

such an insulating phase is denoted by the pseudoscalar mass
phase.

(3) 〈�†(γ0 cos θ + iγ0γ5 sin θ )�〉 = m1 cos θ + m2 sin θ ,
which also lacks the discrete P , T and the continuous chiral
Uc(1) symmetries. In the ordered phase, the quasiparticle

spectrum assumes the form ±
√

v2k2 + m2
1 + m2

2. In the con-
tinuum description, θ is a continuous variable and the ordered
phase is accompanied by a massless Goldstone mode. Such
an insulator represents an axionic phase of matter (proposed
long ago in the context of high-energy physics [74–76], and
more recently in the context of magnetic topological insulators
[77,78]), and the Goldstone mode is dubbed as axion. The
axionic angle in this phase is a dynamic variable, and given by
θax = tan−1 (m2/m1). In Fig. 1(a), such an insulating phase is
denoted by the axion phase.

The physical nature of various insulating phases depends
on the microscopic details. In the standard representation of
Dirac matrices γj = τ3 ⊗ σj for j = 1,2,3, γ0 = τ2 ⊗ σ0, and
γ5 = τ1 ⊗ σ0 [53], where τ and σ are two sets of Pauli matrices
operating on parity and spin indices, respectively. Therefore
two masses for the Dirac fermion, represented by γ0 = τ2 ⊗ σ0

and iγ0γ5 = τ3 ⊗ σ0 correspond to CDW ordering. On the
other hand, in Dirac systems like Bi2Se3, the representation of
the γ matrices is the following: γ1 = τ2 ⊗ σ2, γ2 = τ2 ⊗ σ1,
γ3 = τ1 ⊗ σ0, γ0 = τ3 ⊗ σ0, γ5 = τ2 ⊗ σ3 [14]. Therefore, in
this representation, the scalar mass (γ0 = τ3 ⊗ σ0) represents
a CDW, while the pseudoscalar mass (iγ0γ5 = τ1 ⊗ σ3) cor-
responds to a SDW. The CDW and SDW orders coexist in
the axionic insulating phase. Although the precise nature of
the various interaction-driven BSPs can only be ascertained
through microscopic calculations, all three BSPs in Fig. 1
represent some density-wave ordering, with spectral gaps
opening up at the Dirac point.

In the continuum limit, θax in the axionic insulating phase
is a continuous variable, and thus the ordered phase can
support line vortices, which accommodate one-dimensional
gapless modes along its core. The one-dimensional modes
carry nondissipative current, which in turn is radially supplied
from the bulk, according to the Callan-Harvey mechanism
[79].

Also, if the net electron-electron interaction acquires a
strong attractive component, fermions can pair into various
superconducting ground states. There are two candidates
for fully gaped time-reversal symmetric superconducting
ground states available for three-dimensional Dirac fermions
to condense into (i) regular (topologically trivial) s-wave and
(ii) parity-odd topological superconductors [80–82]. It is also
conceivable to realize an axionic superconductor with p + is

symmetry when the strengths of the pairing interactions in
these two channels are comparable [83]. However, we do not
address superconducting instabilities of DSM in this work, and
restrict ourselves with repulsive interaction.

C. Disorder

In this work, we also wish to address the stability of DSMs
in the presence of quenched disorder. We here consider only
the time-reversal symmetric disorder. All together, there are
four such candidates and the corresponding imaginary time
(Euclidean) action is SD = ∫

d3xdτ Ld , where

Ld = �̄γ0[V0(x) + M(x)γ0 + VA(x)γ5 + V0j (x)γj ]�. (6)

The physical meaning of various disorder vertices is represen-
tation dependent. In the chosen basis, V0(x) and M(x) represent
random charge and mass scatterers, respectively. Strengths of
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TABLE II. First column represents various time-reversal symmet-
ric disorder bilinears. Second, third, and forth columns show their
transformation properties under various discrete symmetries. +,−
correspond to even and odd. Transformation of disorder vertices under
continuous chiral symmetry is shown in the fifth column. Double
angular brackets in the right most column stand for disorder average
with respect to Gaussian white noise distribution with zero mean [33].

Bilinear P C T Uc Disorder average

�̄γ0� + − + � 〈〈V0(x)V0(x′)〉〉 = �V δ3(x − x′)
�̄γ0γ5� − + + � 〈〈VA(x)VA(x′)〉〉 = �Aδ3(x − x′)
�̄γ0γ� − − + × 〈〈V0i(x)V0j (x′)〉〉 = �SOδij δ

3(x − x′)

random axial chemical potential and spin-orbit disorders are
given by VA and V0j , respectively. However, in this work, we
do not consider the mass disorder. Transformation properties
of the disorder bilinears are summarized in Table II.

After performing the disorder average (assuming Gaussian
white noise distributions with zero mean) for all disorder
couplings, we obtain the replicated action

S̄D =
∫

d3xdτ �̄α[γ0∂0 + vγj∂j ]�α − 1

2

∫
d3xdτdτ ′

× [�V (�̄αγ0�α)x(�̄βγ0�β)x ′ + �A(�̄αγ0γ5�α)x

× (�̄βγ0γ5�β)x ′ + �SO(�̄αγ0γj�α)x(�̄βγ0γj�β)x ′ ],

(7)

where α,β are the replica indices, x ≡ (x,τ ) and x ′ ≡ (x,τ ′).
The disorder vertex in the replicated theory is represented by
the Feyman diagram (vi) in Fig. 2.

Potential and axial disorders share an interesting symmetry.
Both of them locally shift the chemical potential for left and
right chiral fermions, while maintaining the overall charge-
neutrality of the system. Potential disorder equally shifts the
local chemical potential for left and right chiral fermions, while
such shifts are of opposite sign for fermions with opposite
chirality in the presence of axial disorder. Therefore, in
the absence of any CSB perturbations, when left and right
chiral worlds are decoupled, these two disorders are expected
to behave identically, as we demonstrate explicitly in Sec. IV.

The scaling dimension of any disorder couplings (�) is
[�] = 2z − d, and hence with z = 1,d = 3, [�] = −1. There-
fore weak quenched disorder is an irrelevant perturbation in
three-dimensional DSMs. However, at stronger disorder DSM
can undergo a QPT and enter into a CDM phase, where the
DOS at zero energy becomes finite [33,41,43–47]. Therefore
three-dimensional DSMs offer a unique opportunity to study
the interplay of interaction and disorder within the framework
of an weak coupling RG analysis, at least when they are not
too strong.

III. CLEAN INTERACTING SYSTEM

Let us first analyze the clean interacting system. As shown
in Eq. (5), the interacting model, comprised of short-ranged
electron-electron interactions in the three-dimensional DSM,
is described by eight coupling constants. However, not all of
them are linearly independent. There exists a mathematical

constraint, known as the Fierz indentity [56] that restricts the
number of linearly independent couplings to four and allows
us to rewrite the remaining four-fermion terms as linear com-
binations of the independent ones (see Appendix B). For con-
venience, we choose g1, g2, g4, and g5 as independent coupling
constants. The interacting Lagrangian density then becomes

Lint = g1(�̄γ0�)2 + g2(�̄�)2

+ g4(�̄γ0γ5�)2 + g5(�̄iγ5�)2. (8)

Rest of the four quartic couplings, namely, g3, g6, g7, g8,
can be expressed as linear combinations of g1, g2, g4 and
g5, as shown in Eq. (B4) of Appendix B. Notice that upon
setting g1 = g4 = 0 and g2 = g5 we recover the celebrated
Nambu-Jona-Lasinio model for the dynamic chiral symmetry
breaking in particle physics [84]. However, to close the
RG flow equations, we need to account for two additional
coupling constants g1 and g4. These two coupling constants,
as we will show in a moment, only shift the locations of
various QCPs, without altering the universality class of the
transition or the nature of the BSPs at strong couplings.

Next we coarse-grain the interacting theory and compute
the effective action to the quadratic order in terms of the four
coupling constants (g1,2,4,5). The relevant Feynman diagrams
are shown in Figs. 2(ii)–2(v). During this procedure, when we
generate contact terms that are proportional to g3,6,7,8, they are
rewritten in terms of the original couplings by using Eq. (A4).
Therefore the interacting theory [see Eq. (8)] remains closed
under the RG procedure to any order in perturbation theory.
We integrating out the fast Fourier modes with −∞ < ω < ∞
and �e−l < |�k| < � and rescale τ → τezl , x → xel , and
� → �e−dl/2 for casting the effective action into the original
form. After defining the dimensionless couplings according
to 2gj�

ε1Sd/[(2π )dv] → gj , where Sd is the surface area of
d-dimensional unit sphere, we arrive at the following RG flow
equations:

dg1

dl
= −ε1g1 − 1

3 (g1g2 + g1g5 + 2g2g5),

dg2

dl
= −ε1g2 + g2

2 − 2
3 (g1g2 − g2g5 + g1g5) + g4(g2 − g5),

dg4

dl
= −ε1g4 + 1

3 (g1g2 + g1g5 − 4g2g5),

dg5

dl
= −ε1g5 + g2

5 − 2
3 (g1g5 − g2g5 + g1g2) + g4(g5 − g2),

(9)

where ε1 = d − z. Any infinitesimally weak quartic coupling
is an irrelevant perturbation above d = z, and the above
coarse graining process should be understood as the ε

expansion about the lower critical dimension (dl = z = 1).
It is worth pointing out that the above set of flow equations
display a symmetry under g2 ↔ g5, reflecting the underlying
continuous chiral symmetry of massless Dirac fermions.

A. Gross-Neveu model with g5 or g2

Before analyzing the above set of coupled flow equations,
we focus on a simpler model by setting g1 = g2 = g4 = 0. The
interacting model with only one coupling constant g5 conforms

115137-7



BITAN ROY AND SANKAR DAS SARMA PHYSICAL REVIEW B 94, 115137 (2016)

to the Gross-Neveu model [85]. The RG flow equation for g5

is then given by

dg5

dl
= −ε1 g5 + g2

5, (10)

which exhibits a QCP at g5 = g∗
5 = ε1 = d − z, describing

a continuous phase transition between the DSM and a P ,
T symmetry breaking insulator. Inside the insulating phase
the order parameter 〈�̄iγ5�〉 = m2 �= 0. The CLE for this
transition is ν = (d − z)−1. For d = du = z + 2, ν acquires
the mean-field value 1/2, which demonstrates that du = 3 is
the upper critical dimension for such a transition in DSM.
Due to the upper critical dimensionality, the hyperscaling
is violated through logarithmic corrections, which can be
easily demonstrated by solving the corresponding gap equation
[see Eq. (11) below]. The CLE ν = 1/2 is not an artifact
of one loop calculation. From an ε-expansion analysis of
an appropriate order parameter field theory, known as the
Gross-Neveu-Yukawa formalism, around the upper critical
dimension du = 3, it can be shown that ν = 1/2 is an exact
result (see Appendix C) [86,87].

The logarithmic correction to the mass gap can be obtained
from the self-consistent gap equation [88].

1

g5
=

∫
d3�k

(2π )3

1√
v2k2 + m2

2

, (11)

In terms of a dimensionless quantity δ, defined as

δ = 4π2v3

�2

(
1

gc
5

− 1

g5

)
(12)

that measures the deviation from the critical point, the universal
scaling of the dimensionless mass gap m̃ = m2/(v�) is
determined from the gap equation

δ = 1 −
√

1 + m̃2 + m̃2 ln

(
1 + √

1 + m̃2

m̃

)
. (13)

The last term in the right-hand side captures the logarithmic
correction to the scaling of the mass. The above gap equation
supports nontrivial solution of m̃ only for δ > 0 or g5 > gc

5.
In a similar spirit, we can set all the four-fermion inter-

actions to zero except g2. The flow equation of this model is
given by Eq. (10) after taking g5 → g2. The QCP of this model
is the placed at g2 = g∗

2 = ε1, which describes a continuous
transition out of DSM into a chiral Uc(1) symmetry breaking
fully gapped phase where 〈�̄�〉 = m1 �= 0. However, all the
discrete symmetries (C,P,T ) are preserved in the ordered
phase. BSPs with finite m1 and m2 are, respectively, our scalar
and pseudoscalar gapped insulating phases of Fig. 1(a).

B. Generic interacting model

We now proceed with the analysis of coupled flow equations
in Eq. (9). Besides the fully stable noninteracting Gaussian
fixed point at (g1,g2,g4,g5) = (0,0,0,0), the above set of
flow equations support four QCPs, describing continuous
transitions from DSM to various BSPs:

C2: (g1,g2,g4,g5) = (0.185, − 0.455,0.405,0.645)ε1 dic-
tates the transition to a P , T symmetry breaking massive

phase (pseudoscalar mass), since g5 is the strongest coupling
at this QCP.

C3: (g1,g2,g4,g5) = (0.185,0.645,0.405, − 0.455)ε1 de-
scribes the QPT into a CSB insulator (scalar mass). Note, the
locations of two critical points C2 and C3 display a symmetry
under g2 ↔ g5, stemming from the underlying continuous
chiral symmetry of massless Dirac fermions.

C1: (g1,g2,g4,g5) = (−0.125,0.5, − 0.375,0.5)ε1 corre-
sponds to the transition into an insulating phase where
〈�̄iγ5�〉,〈�̄�〉 �= 0, since g2 = g5 at this QCP [89]. The
ordered phase breaks P , T and chiral Uc(1) symmetry, and
represents an axionic insulator. The order parameter in the
axionic phase reads as 〈�̄(cos θ + iγ5 sin θ )�〉.

C4: (g1,g2,g4,g5) = (−2, − 1,0, − 1)ε1 is associated with
the transition of massless Dirac fermions into the fully gapped
s-wave superconductor, which can only be accessed when all
the interactions are strongly attractive.

The CLE at all QCPs is ν = ε−1
1 . The identification of

an ordered phase in the vicinity of a particular QCP is
substantiated from the computation of anomalous dimensions
as well as the RG flow of susceptibilities of various fermion
bilinears. The fermionic bilinear with the largest anomalous
dimension develops a finite expectation value at a given QCP.
Anomalous dimensions of various order parameters in the
vicinity of each QCP and the flow of susceptibility are shown
in Appendix D.

Previously obtained QCPs at (g1,g2,g4,g5) = (0,ε1,0,0)
and (0,0,0,ε1) appear as bicritical points in the four-
dimensional coupling constant space. A bicritical point
is characterized by two stable and two unstable di-
rections. There exist two additional bicritical points
at (g1,g2,g4,g5) = (−2.685,−2.52,1.84,−0.165)ε1 and
(−2.685,−0.165,1.84,−2.52)ε1. All bicritical points are sym-
metric under g2 ↔ g5 and they separate the basins of attraction
of four QCPs.

C. Summary

To summarize this section, we argue that the interacting
model for three-dimensional Dirac fermions is constituted
by four linearly independent local quartic interactions. Per-
forming a weak coupling RG analysis, we show that strong
enough interactions drive the DSM through continuous phase
transitions into various BSPs, where the fermionic excitation
spectrum is fully gapped or “massive.” A representative phase
diagram of interacting DSM in the g2-g5 plane is shown in
Fig. 1(a). Such a QPT is mean-field in nature, and various
physical observables acquires logarithmic corrections, since
the system lives at the upper critical dimension (du = 3) and
the hyperscaling hypothesis is violated. The critical exponents
near such QCP are ν = 1/2 and z = 1. Therefore a pseudo-
Lorentz symmetry emerges at each QCP [90]. These exponents
govern the scaling behavior of various physical quantities.
For example, the Fermi velocity scales as v(δ) ∼ v0 δν(z−1),
where δ measures the deviation from the QCP and v0 is
the bare Fermi velocity. Therefore, with z = 1, the Fermi
velocity remains noncritical across the QPT. The residue of
the quasiparticle pole remains finite in the entire semimetallic
side of the transition but vanishes smoothly at the QCP, beyond
which gapless fermions cease to exist as sharp quasiparticle
excitations, and a well defined energy gap opens up at the Dirac
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point, making the system an insulator. The critical temperature
for DSM-BSP transition scales as Tc ∼ δνz.

One physical obstacle to observe such critical phenomena
is how to tune the ratio of interaction to bandwidth that can
drive the system from the DSM phase to various insulating
phases. When the system is placed in a strong magnetic field
the conical dispersion quenches into a set of Landau levels at
energy ±√

2nB + v2k2
z . In particular, the zeroth Landau level

(n = 0) is composed of two one-dimensional chiral modes
with energies ±vkz. Hence weak enough electron-electron
interaction can drive the system into an insulating phase and
develop a spectral gap (m) at the Dirac point due to the
effective-dimensional reduction of the system within the zeroth
Landau level [91,92]. If the interaction strength is not too far
from the semimetal-insulator QCP, the scaling of the mass gap
assumes the form [93]

m

v�
=

(
a

lB

)z

G(lBδν), (14)

where lB is the magnetic length and � is the ultraviolet cutoff
for Dirac dispersion, and δ measures the deviation from zero
field QCP. Right at the semimetal-insulator quantum critical
point the gap scales as [92]

m ≈ v
√

B

[
G(0) + c ln

(
B0

B

)]
, (15)

where G(0) and c are universal numbers and B0 ∼ �2. The
logarithmic correction in the scaling of mass gap arises since
the system lives at the upper critical dimension du = 3.

So far, we have considered only the short-range compo-
nents of the Coulomb interaction, and address the emergent
quantum critical phenomena in three-dimensional DSMs. The
long-range Coulomb interaction is a marginally irrelevant
perturbation in DSMs, and in its presence the fine structure
constant of the medium decreases monotonically, but the Fermi
velocity increases logarithmically [33–35,39]. As shown in
Appendix A that long-range tail of the Coulomb interaction
enhances the ordering tendency (insulation) in DSM, without
altering the quantum critical behavior and the nature of
BSPs, captured by the model composed of only short-range
interactions, and a representative phase diagram is shown
in Fig. 3. Comparing Figs. 1(a) and 3, we find that the
presence of long-range Coulomb interaction shifts the phase
boundaries between the DSM and various BSPs toward weaker
couplings. Thus by tuning the strength of the dielectric constant
of the medium (since strength of bare Coulomb interaction
is inversely proportional to the dielectric constant of the
medium), one can drive DSM through QPTs and place it into
various BSPs.

IV. NONINTERACTING DIRTY SYSTEM

Next, we focus on a noninteracting dirty DSM in the pres-
ence of various types of time-reversal-symmetric disorder. We
take into account (a) CSP disorder, such as the regular potential
disorder (�V ) and axial disorder (�A), and (b) CSB disorder,
such as random spin-orbit coupling (�SO) (but we do not
consider mass disorder, which also breaks chiral symmetry).
A similar question was previously addressed in the context of
the QPT between three-dimensional topological and normal

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0

g2

g 5

Scalar

Pseudo scalar Axion

DSM

mass

massΑ0 1

FIG. 3. Phase diagram of clean interacting DSM in g2-g5 plane,
in the presence of long-range Coulomb interaction. The strength
of Coulomb interaction is set by the fine structure constant α =
e2/(4πεv), where e is electronic charge, and ε is the dielectric
constant of the medium. Here, the bare value of the fine structure
constant is α0 = 1, see Appendix A.

insulators, belonging to class AII [33]. Some of our results
reconcile with the ones reported in Ref. [33], after setting the
band gap and b (the momentum dependent chiral symmetry
breaking Wilson mass) to zero. However, a classification
(based on the chiral symmetry) of the disorder driven QPT in
DSM is presently unavailable and constitutes the central theme
of this section. In addition, this exercise provides a pedagogical
introduction to the following section (see Sec. V), where we
analyze the interplay of interaction and disorder.

A. Chiral symmetric disorder

First we focus on CSP disorder. The bare scaling dimension
of disorder coupling [�V ] = [�A] = 2z − d = −ε2, where
z = 1 (for clean DSM) and ε2 = −1 (setting d = 3), dictates
that DSM describes an infrared stable fixed point for suffi-
ciently weak randomness. To capture a possible QPT beyond
a threshold of disorder strength, we perform a perturbative RG
calculation. The relevant Feynman diagrams to one loop order
are shown in Figs. 2(vii)–2(x). The RG flow equations for the
Fermi velocity and the disorder couplings are

dv

dl
= v(z − 1 − �V − �A),

d�V

dl
= −ε2�V + 2�2

V + 2�A�V , (16)

d�A

dl
= −ε2�A + 2�V �A + 2�2

A,

after integrating out the fast Fourier modes within the shell
�e−l < |�k| < �. We here define the dimensionless disor-
der couplings as �V �ε2Sd/[(2π )dv2] → �V and �A�ε2Sd/

[(2π )dv2] → �A. Keeping the Fermi velocity invariant under
RG (dv/dl = 0), we obtain a scale dependent DCE:

z(l) = 1 + �V (l) + �05(l). (17)

If the system hosts only potential disorder, there exists
a disorder controlled QCP (CV) at �V = �∗

V = ε2
2 , which

describes a continuous QPT out of the DSM to a CDM.
Within the one-loop RG calculation, the DCE and the CLE
at this QCP (CV) are z = 1 + ε2

2 and ν = ε−1
2 , respectively
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FIG. 4. (a) RG flow and (b) phase diagram of disordered DSM in
�V -�A plane. The axes are measured in units of ε2. The red lines in
figures (a) and (b) describe a line of QCPs and the phase boundary
between DSM and CDM, respectively [33].

[33,44,45]. Such a critical point can be seen in Fig. 4(a) on the
�V axis. If, on the other hand, DSM hosts only axial disorder
(�V = 0), a similar QPT takes place at �A = �∗

A = ε2
2 (CA)

[see �A axis of Fig. 4(a)]. The critical exponents near this
QCP (CA) are also z = 1 + ε2

2 , and ν = ε−1
2 [33,45].

In the presence of both potential and axial disorder, there
exists a line of QCPs in the �V − �A plane, determined by
�∗

V + �∗
A = ε2

2 that also defines the phase boundary between
clean the DSM and the CDM. The DCE along the entire
line of critical points is z = 1 + (�∗

V + �∗
A) = 1 + ε2

2 and the
CLE ν = ε−1

2 . The RG flow and the corresponding phase
diagram of dirty DSM in the �V − �A plane are shown
in Fig. 4(b) [33].

The critical exponents (ν and z) along the entire line of
critical points in the �V − �A plane are identical. This intrigu-
ing outcome can be understood in the following way. Notice
that the Clifford algebra (commuting or anticommuting)
between the non-Hermitian elliptic Dirac Kernel KD = γμ∂μ

and the two matrices appearing at the CSP disorder vertices,
namely γ0 and γ0γ5, are opposite to each other, but (γ0)2 = 1
and (γ0γ5)2 = −1. In addition, no new disorder coupling
gets generated through the loop corrections to any order in
perturbation theory [45,94]. Consequently, the diagramatic
contributions from Figs. 2(vii)–2(x) are identical for �a = γ0

and γ0γ5, yielding a set of identical critical exponents along
the entire line of QCPs. Such a result remains valid to all orders
in the perturbation theory and a recent numerical analysis
strongly supports this observation for two extreme limits, when
DSM-CDM transition is tuned by (a) potential disorder, and
�A = 0, and (b) axial disorder, and �V = 0 [47].

The above result can also be explained from a somewhat
different perspective. In the absence of any CSB perturbation,
the massless Dirac Hamiltonian can be decomposed into two
isolated worlds of left and right chiral fermions. In each of
these two disjoint sectors, �A and �V appear as regular
potential disorder, but the former one carries a relative sign
between them. Consequently, in the absence of any CSB
perturbation, the set of critical exponents is identical along
the entire line of QCPs in the �V -�A plane.

Even though the critical exponents are identical at each
point on the line of QCPs in the �V -�A plane, the anomalous
dimension of a CSB fermionic bilinears changes continuously
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FIG. 5. (a) RG flow and (b) phase diagram of disordered DSM
in �A-�SO plane. Notice that the phase boundary between DSM and
CDM is determined by the irrelevant direction at the QCP [33]. Here
the axes are in units of ε2.

along the line of QCPs. For the purpose of demonstration, we
here compute anomalous dimensions of the scalar mass (m1)
and the P,T -odd pseudoscalar mass (m2), given by

Am1 = (�A − �V )
�ε2Sd

(2π )dv2
= Am2 . (18)

Therefore Am1/Am2 varies continuously from −1 (on the �V

axis) to +1 (on the �A axis) (in units of �ε2Sd/[(2π )dv2])
along the line of QCPs.

B. Chiral symmetry breaking disorder

Next we seek to understand the effect of CSB disorders on
DSM. Since we restrict ourselves to time-reversal symmetric
disorder, the only candidate that breaks the chiral symmetry
is spin-orbit disorder (�SO) (recall we here do not consider
the mass disorder that also breaks chiral symmetry). The flow
equations of various coupling constants to one-loop order are
given by

dv

dl
= v(z − 1 − �A − 3�SO),

d�SO

dl
= −ε2�SO − 2

3
�2

SO + 2�SO�A, (19)

d�A

dl
= −ε2�A + 2�2

A − 6�A�SO + 4�2
SO.

It is worth pointing out that the RG calculation is not closed
with �SO. Through loop corrections [(from diagrams (ix) and
(x) in Fig. 2] the spin-orbit disorder generates axial disorder
(notice that a term proportional to �2

SO appears in d�A/dl).
Hence, to close the RG equations, we need to account for
two disorder couplings �A and �SO. Otherwise, keeping the
Fermi velocity fixed under RG (dv/dl = 0), we obtain a scale
dependent DCE

z(l) = 1 + �05(l) + 3�SO(l). (20)

The above set of flow equations supports three fixed
points as shown in Fig. 5(a) (left). (i) (�A,�SO) = (0,0)
describing the stable DSM, (ii) a fully unstable fixed point at
(�A,�SO) = ( ε2

2 ,0), and (iii) a QCP at (�A,�SO) = ( 9
10 , 6

5 )ε2.
We note that the QCP residing on the chiral symmetric axis
(�SO = 0), becomes unstable in the presence of infinitesimal
CSB disorder. A new critical point emerges from the compe-
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tition between two types of disorder, characterized by DCE
z = 1 + 9

2ε2 and CLE ν = ε−1
2 . The phase diagram of dirty

DSM in the presence of CSB disorder is shown in Fig. 5(b).
The phase diagram in Fig. 5(b) suggests an interesting

possibility in the dirty noninteracting DSM subject to axial
and spin-orbit disorder. When the strength of the axial disorder
is such that �∗

A(= ε2
2 ) < �A < 1.75ε2, and one tunes the

spin-orbit disorder, there is a very interesting re-entrant QPT
with CDM-DSM-CDM phases showing up with increasing
�SO at fixed �A. Across the CDM-DSM and DSM-CDM
phase transitions, the average DOS diverges with a unique
power law dependence �(E) ∼ |E|−5/11, as both of them are
controlled by the QCP, located at (�A,�SO) = ( 9

10 , 6
5 )ε2, and

the phase boundary between DSM and CDM in the entire plane
is determined by the irrelevant direction at the QCP.

C. Scaling of physical observable

Ballistic quasiparticles survive the onslaught of sufficiently
weak but generic disorder (chiral symmetry preserving and
breaking) in DSM. However, beyond a critical strength of
disorder, DSM undergoes a continuous QPT and enters into
a diffusive metallic phase. Subject to random impurities
(time-reversal-symmetric) DSM can support two types QCPs,
belonging to different universality classes (defined in terms
of critical exponents z and ν): (i) in the presence of CSP
disorder (�V and �A), the QCPs and the line of QCPs are
characterized by the exponents z = 1 + ε2

2 and ν = ε−1
2 and

(ii) at the CSB disorder (such as �SO) driven DSM-CDM QPT
the exponents are z = 1 + 9

2ε2 and ν = ε−1
2 . These exponents

control the scaling of various physical observables across the
disorder driven DSM-CDM QPT.

In the metallic phase, the average DOS at zero energy
becomes finite, which, therefore, serves the purpose of an
order-parameter across the DSM-CDM QPT. The average
density of states follows the scaling ansatz [43]

�(E) = δν(d−z) F (|E|δ−νz), (21)

for energies much smaller than the bandwidth (E � v�).
Here, F is an unknown, but universal scaling function. In
the DSM phase �(E) ∼ |E|2, whereas in the quantum critical
regime �(E) ∼ |E|d/z−1. In the metallic phase, �(0) becomes
finite. Therefore, near the CSP, disorder driven QCP �(E)
vanishes according to |E|, while in the close vicinity of CSB,
disorder driven QCP �(E) diverges as |E|−5/11 (setting ε2 = 1
for three-dimensional DSM).

In addition, the quasiparticle lifetime, the mean-free path,
and the metallic conductivity at T = 0 are respectively finite
and zero in metallic and semimetallic phases. Hence, at least in
principle, these quantities may as well be considered as order
parameters across the disorder driven QPT. As the dirty QCP is
approached from the DSM side the residue of the quasiparticle
pole vanishes smoothly, beyond which Dirac fermions cease
to exist as sharp quasiparticles.

In the vicinity of DSM-CDM QCP, the specific heat (Cv)
assumes the scaling form

Cv = T d/zv−3H

(
T

δνz

)
, (22)

when the temperature is much smaller than the bandwidth
(T � v�), where H is an unknown, but universal scaling

function. In the Dirac semimetallic phase (x � 1), H (x) ∼
xd(z−1)/z, and we recover T 3 dependence of the specific heat. In
the quantum critical regime H (x) is a universal function (inde-
pendent of δ) and Cv ∼ T d/z. On the other hand, in the metallic
phase H (x) ∼ x1−d/z, yielding Cv ∼ T . Within the one-loop
calculation, Cv ∼ T 2 (setting ε2 = 1) within the critical regime
of CSP disorder driven QCPs. Distinct power law behaviors
and crossover between them have recently been established in
a numerical work, which has further been exploited to estimate
the extent of the quantum critical regime at finite temperatures
[47]. On the other hand, Cv ∼ T 6/11 (setting ε2 = 1) in the
proximity of CSB disorder driven DSM-CDM QCP, which,
however, remains to be observed in numerics.

The (frequency dependent) optical conductivity at T = 0
in a dirty DSM follows the universal scaling form [95]

σ (ω) = δν(d−2) F(ωδ−νz), (23)

where F is an unknown but universal scaling function. Inside
the DSM phase, the optical conductivity scales as σ (ω) ∼ ω,
when the frequency is much smaller than the bandwidth
(ω � v�). In the quantum critical regime, σ (ω) ∼ ω(d−2)/z.
Finally, in the metallic phase, the optical conductivity at zero
frequency becomes finite, i.e., σ (ω → 0) = finite. Therefore,
in the vicinity of chiral symmetry preserving and breaking
disorder driven QCP, σ (ω) ∼ ω2/3 and ω2/11 (setting ε2 = 1),
respectively. The dc conductivity (zero frequency) also pos-
sesses a similar scaling behavior when T � v� (upon taking
ω → T in the scaling form of optical conductivity) [96].
Therefore distinct power law behavior of DOS (measured
through compressibility), specific heat, conductivity (both ac
and dc) in the critical regime can serve as diagnostic tools to
determine the nature of the disorder scatterer (CSP or CSB)
driving the DSM-CDM QPTs in various Dirac materials.

It should be noted that as one keeps increasing the strength
of disorder in DSM, the CDM phase ultimately undergoes
a second QPT, becoming an Anderson insulator [41,47].
However, the weak coupling approach from the DSM side
obviously cannot capture the CDM-insulator transition. The
critical exponents for the Anderson transition are also quite
different from those of the DSM-CDM transition, for example,
z = d = 3 for Anderson transition in three dimensions [96]. In
addition, across the Anderson transition the average DOS does
not display any critical behavior, rather the typical DOS serves
the purpose of an order parameter [11,47]. The Anderson
localization transition in Dirac materials has recently been
addressed in a numerical work [47] but is obviously outside of
scope for present work.

V. INTERPLAY OF INTERACTION AND DISORDER

The full problem of the nature of the interacting DSM in the
presence of disorder is, of course, a formidable challenge for
which we can only provide partial resolution. The vanishing
DSM DOS in the clean noninteracting limit enables certain
simplifications allowing some progress, which we now are
ready to discuss in this section. So far, we have established that
in clean DSMs, when the strength of short-range interactions
exceeds a threshold, the system can find itself in various
BSPs. The continuous QPTs to the BSPs take place through
QCPs, which are mean-field or Gaussian in nature, and are
characterized by the exponents ν = ε−1

1 and z = 1, and various
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FIG. 6. (a) RG flow and (b) phase diagram in g2/5-�A plane.
When the transition is driven by interaction g2 or g5 the order
parameters in the strong coupling phases are 〈�̄�〉 or 〈�̄iγ5�〉,
respectively. The dotted line represents a crossover boundary, right of
which interaction and disorder immediately flow to a strongly coupled
phase, the nature of which is unknown to us (hence, the question marks
in the right-hand corner of the phase diagram). Figures are generated
upon substituting ε1 = 2 and ε2 = 1.

physical quantities (e.g., the mass gap in the ordered phase)
exhibit logarithmic violation of scaling, since the system lives
at the upper critical dimension (du = 3).

The noninteracting DSM remains stable against weak but
generic quenched disorder, since weak disorder is an irrelevant
perturbation. However, strong enough disorder can drive DSM
through a QPT into the CDM phase. In the presence of only
CSP disorder (potential and axial), critical exponents at the
disorder controlled itinerant QCPs or the line of QCPs are
ν = ε−1

2 and z = 1 + ε2
2 to the leading-order in ε expansion.

Although it has been argued recently that z = 3/2 is exact in
this problem [47]. By contrast, a CSB disorder (spin-orbit),
drives the DSM into a CDM phase through a QCP that is
characterized by the exponents ν = ε−1

2 and z = 1 + 9
2ε2. The

CLEs near two distinct dirty QCPs being equal is likely to
be an artifact of the one-loop calculation, but expected to be
different in general.

With the weak-coupling RG analyses in place for the clean
interacting and the noninteracting dirty DSM separately, we
are now in a position to investigate their interplay, treating both
interaction and disorder on an equal footing. To understand
the interplay of interaction and disorder in three-dimensional
DSMs, we perform RG calculations to the quadratic order in
both interaction and disorder couplings. The relevant Feynman
diagrams are shown in Fig. 2(xi)–2(xv) [in addition to the
diagrams (ii)–(v) and (vii)–(x) in Fig. 2].

We here address the competition between interaction and
disorder within the framework of a double ε expansion, a
detailed analysis of which is presented in Appendix E. In
addition, we show explicit computation of all diagrams from
Fig. 2 for a simpler model with one interaction and one
disorder couplings, namely g5 and �A. The resulting flow
and phase diagrams are discussed in Sec. V A 1, see also
Fig. 6. The prescription laid out in Appendix E can easily be
taken over to arrive at the coupled flow equations for generic
interaction and disorder, as shown in Eqs. (24) and (25). It
should be noted that the double ε expansion, we implement
here is different than the one introduced in Refs. [97–99], in
the context of disordered bosonic systems. In Refs. [97–99],
one of the εs captures the deviation from the upper critical
dimensions d = 4 where four-boson interaction coupling is
merginal, while the second ε (namely ετ ) is introduced in
the imaginary time co-ordinate. Thus during this procedure
of double ε expansion the quenchness of random impurities
is sacrificed in order to capture the ultraviolet divergences.
By contrast, the double ε-expansion scheme we introduce
here leaves the disorder vertices infinitely correlated in time
(quench disorder) and the ultraviolet divergences of various
diagrams [(xi)–(xv) in Fig. 2] are captured by performing
the shell integral about appropriate merginal dimensions
[namely about dc = 1(2) to capture interaction (disorder)
driven corrections to disorder (interaction) vertex], as shown
in Appendix E. Given that in clean interaction and dirty
noninteracting systems, ε expansions about one and two spatial
dimensions gives quantitatively correct results, we believe
that when these two perturbations are present simultaneously,
the double ε expansion possibly yields qualitatively correct
picture, at least when they are not too strong. Our theory thus
provides the stability of the disordered phase (i.e., along the
ordinate in Fig. 6) in the presence of weak interaction as well
as the stability of the interacting phase (i.e., along the abscissa
of Fig. 6) in the presence of weak disorder, but unable to assess
the actual nature of the strong coupling phases [denoted by the
question marks in the upper right hand quadrant of Fig. 6(b)].

A. Chiral symmetric disorder and interaction

We first consider the competition between electron-electron
interactions and CSP disorder. Thus we start by taking into
account only potential and axial disorders. Interestingly, the
flow equations for the CSP disorder do not receive any
perturbative correction from the short-range interactions at the
one loop level. The RG flow equations for various couplings
are given by

dv

dl
= v(z − 1 − �V − �A),

d�V

dl
= �V (−ε2 + 2�V + 2�A),

d�A

dl
= �A(−ε2 + 2�V + 2�A),

dg1

dl
= −ε1 g1 − 1

3
(g1g2 + g1g5 + 2g2g5) + g1(�V + �A) − 4

3
�V (g2 + g5),

dg2

dl
= −ε1 g2 + g2

2 − 2

3
(g1g2 − g2g5 + g1g5) + g4(g2 − g5) + g2(�A − 5

3
�V ) − 8

3
g5�V ,

dg4

dl
= −ε1 g4 + 1

3
(g1g2 + g1g5 − 4g2g5) + g4(�V + �A) + 4

3
(g2 + g5)�V ,

dg5

dl
= −ε1 g5 + g2

5 − 2

3
(g1g5 − g2g5 + g1g2) + g4(g5 − g2) + g5(�A − 5

3
�V ) − 8

3
g2�V . (24)
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Analysis of these coupled flow equations is an involved task.
Also, in the presence of potential disorder we cannot find
any subset of coupling constants, which remains closed under
coarse graining. Therefore we are compelled to analyze the
full set of coupled flow equations for five coupling constants
(g1,g2,g4,g5,�V ). However, one can gain valuable insight by
considering a simpler model.

1. Simple model with g5 and axial disorder (�A)

Let us first consider a model with only two coupling
constants g5 and �A, which remains closed under the RG
procedure, and no additional coupling gets generated through
the loop corrections. The flow equations of v, �A, and g5 can
be readily obtained from Eq. (24) by setting g1 = g2 = g4 =
�V = 0. The corresponding flow diagram in the (g5,�A) plane
is shown in Fig. 6(a). The coupled flow equations support four
fixed points: (i) a fully stable fixed point at (g5,�A) = (0,0)
representing a robust clean, noninteracting DSM; (ii) an
interacting Gaussian QCP at (g5,�A) = (ε1,0) that governs
that transition out of DSM into a P and T symmetry breaking
insulator [pseudoscalar mass, characterized by a constant
axion angle θax = sgn(m2)π

2 ] when the coupling constant g5

is strong enough; (iii) a noninteracting dirty itinerant QCP
at (g5,�A) = (0, ε2

2 ), which, on the other hand, describes a
disorder-controlled QPT toward the formation of a CDM; and
(iv) a fully unstable MCP at (g5,�A) = (ε1 − ε2

2 , ε2
2 ), resulting

from the interplay of disorder and interaction. At the MCP,
three distinct phases, namely, the DSM, the CDM and a
P , T -odd insulator, meet. Since �A does not receive any
correction from interaction (g5), the phase boundaries between
the disorder controlled CDM phase, and the interaction driven
BSP and the DSM, are parallel to the g5 axis [see Fig. 6(b)].
Such an outcome is possibly an artifact of one-loop calculation,
but the topology of the phase diagram shown in Fig. 6 should
remain valid qualitatively.

We realize that similar RG flow equations and phase
diagrams can be obtained if we replace the interaction coupling
g5 by g2 (due to the underlying chiral symmetry of DSM).
When g2 > g∗

2 = ε1, the DSM becomes susceptible toward the
formation of a BSP that lacks only a continuous chiral Uc(1)
symmetry, but preserves C,P and T symmetries (scalar mass).
The discussion below addresses both possibilities (either g5 or
g2 nonzero).

In the presence of sufficiently weak disorder (�A <

�∗
A = ε2

2 ), the boundary between the DSM and the BSP (a
P , T -odd insulator) shifts toward weaker interactions as one
enhances the strength of the axial disorder. Such a behavior
can be appreciated by comparing the strength of interactions
at the MCP (gM

5 = ε1 − ε2
2 ) and at the clean interacting QCP

(g∗
5 = ε1). Since gM

5 < g∗
5 (for ε2 > 0), sufficiently weak

axial disorder, somewhat surprisingly, enhances the ordering
tendency in the DSM. This is one of the main results of our
analysis in interacting and dirty DSM, which can be justified
in the following way. From Eq. (18), we note that anomalous
dimensions for Dirac mass operators (both scalar and pseu-
doscalar, and thus axionic) is increased by axial disorder. As
a result, axial disorder boosts the formation of all mass orders
in DSMs, as we show in the next subsection. However, we
fail to provide such intuitive justification on the role of regular

potential and spin-orbit disorder on ordering tendencies in
DSM, as the RG flow equations gets terribly coupled.

By contrast, when �A > ε2/2, but g5 � gM
5 , the DSM

gives away to the CDM phase, and sufficiently weak in-
teraction is irrelevant in the extreme close vicinity of the
diffusive QCP, located at (g5,�A) = (0,ε2/2). Hence our
weak coupling RG analysis suggests that both interaction and
disorder controlled QCPs are stable against sufficiently weak
disorder and interaction, respectively, as one approaches the
QCPs from the DSM side of the transitions. This stability is
also an important finding of our theory.

However, inside the broken symmetry phase, even suf-
ficiently weak disorder can generate random mass or bond
disorder for the order parameter field. Even though such mass
disorder is absent in the bare theory, it can be generated in
the ordered phase, since the correlation length ξ ∼ �−1(g5 −
g∗

5 )−ν provides the infrared cutoff for the flow of disorder
coupling. Notice that at the clean QCP ν = 1/2 < 2

3 (an exact
result), and the Harris criterion is satisfied [68]. Therefore
the interacting QCP is unstable against the coupling of the
order parameter field with the mass or bond disorder, toward
a new disorder and interaction controlled QCP with ν � 2/3
[68,69]. Extracting the influence of the mass disorder at the
clean interacting QCP is beyond the scope of the present
weak coupling RG analysis about the lower critical dimension
(dl = z = 1), and remains a future problem of interest.

Furthermore, in the metallic phase the average DOS near
the Dirac point increases, which can enhance the effect of
interactions. The flow diagram in Fig. 6(a) suggests that even
sufficiently weak interaction ultimately grows under RG when
�A > ε2/2, and eventually the system runs to an unknown
strong disorder and interaction controlled phase, which is
inaccessible by perturbative RG appraoch. Nevertheless, in a
sufficiently clean or weakly interacting system, two QCPs we
find from the weak coupling RG calculation, can still describe
the crossover behavior of various physical quantities over a
sufficiently large crossover length scale.

2. Generic interaction and axial disorder (�A)

Having developed some intuition about the possible quan-
tum phases and their stability, by keeping just one each of
interaction and disorder terms in the RG analysis, we now
discuss the generic situation in the presence of axial disorder.
We have already emphasized the subtlety and shortcomings of
the weak coupling RG calculation when the system enters into
a strong coupling phase. Without delving into the fate of our
analysis in the strong coupling limit (which definitely goes well
beyond the scope of the double-ε expansion scheme), one can
still arrive at some limited, but valuable conclusions regarding
the instability of Dirac quasiparticles (driven by either inter-
action or disorder) and guess the qualitative structure of the
phase diagram of interacting DSM in a random environment,
as discussed below.

We now take into account all short-range interactions
(g1,g2,g4,g5) and the axial disorder. The coupled flow equa-
tions all together support five QCPs. Four of them correspond
to the ones in the clean interacting system, summarized
in Sec. III, describing continuous QPTs to various BSPs.
The remaining one is solely controlled by axial disorder in
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TABLE III. The first column shows the symbols for various QCPs in either clean interacting (C1, C2, C3, C4) or dirty noninteracting (CA)
DSM. Second column displays locations of various QCPs in the presence of only axial disorder. The first four QCPs correspond to the ones
in clean interacting system, describing transitions to various BSPs, and the fifth one represents disorder-driven DSM-CDM QPT. The third
column shows the locations of various MCPs associated with each interacting QCP. Coupling constants at various fixed points are quoted in
the following order (g1,g2,g4,g5,�A).

QCP Critical points with disorder Multicritical points (with two unstable directions) with axial disorder

C1 (−0.125ε1,0.5ε1, − 0.375ε1,0.5ε1,0) (−0.345ε1 + 0.5ε2,0.625ε1 − 0.5ε2, − 0.53ε1 + 0.5ε2,0.625ε1 − 0.5ε2,0.5ε2)
C3 (0.185ε1,0.645ε1,0.405ε1, − 0.455ε1,0) (0.39ε1 − 0.5ε2,0.735ε1 − 0.5ε2,0.555ε1 − 0.5ε2, − 0.59ε1 + 0.5ε2,0.5ε2)
C2 (0.185ε1, − 0.455ε1,0.405ε1,0.645ε1,0) (0.39ε1 − 0.5ε2, − 0.59ε1 + 0.5ε2,0.555ε1 − 0.5ε2,0.735ε1 − 0.5ε2,0.5ε2)
C4 (−2ε1, − ε1,0, − ε1,0) (−1.75ε1 + 0.5ε2, − ε1 + 0.5ε2,0, − ε1 + 0.5ε2,0.5ε2)
CA (0,0,0,0,0.5ε2) —

a noninteracting DSM, capturing DSM-CDM QPT. These
critical points are tabulated in the second column of Table III.

In addition, we also find four MCPs (with two unstable
directions), summarized in the third column of Table III. These
MCPs play the same role as the one at (g5,�A) = (ε1 − ε2

2 , ε2
2 )

in the (g5,�A) plane, as shown in Fig. 6, and together with
the QCPs determine the phase boundaries between DSM and
various BSPs, as discussed in the previous subsection. The
relative strength of interactions at a given QCP (say g∗

i )
and the corresponding MCP (say gM

i ) determines the role
of sufficiently weak disorder on the ordering tendencies in
DSM. Notice that �A = ε2/2 at all MCPs, and the sign of
all interaction couplings at a given critical point and the
corresponding MCP is same (upon setting ε1 = 2 and ε2 = 1).
From Table III, we find that gM

i < g∗
i for each QCP. Therefore

axial disorder enhances the propensity of interaction driven
BSPs in three-dimensional DSMs, and a representative phase
diagram in the g2-g5 plane is shown in Fig. 1(b) for �A = 0.3.

3. Generic interaction and potential disorder (�V )

Next, we attempt to understand the role of potential
disorder in three-dimensional interacting DSMs. The RG flow
equations for v,�V and gj ’s (for j = 1,2,4,5) can be obtained
from Eq. (24), upon neglecting the contribution from β�A

and
setting �A = 0 in the rest of the flow equations.

Once again, we obtain five QCPs, which are summarized
in the second column of Table IV. Four critical points

correspond to the ones in clean interacting system. The
dirty (noninteracting) QCP is located at �V = ε2

2 and gj = 0
for j = 1,2,4,5. In addition, we find four MCPs (with two
unstable directions). The third column of Table IV displays the
location of the MCPs associated with each interacting QCPs.
Comparing the strength of interactions at various QCP and at
the corresponding MCP (for ε1 = 2,ε2 = 1), we conclude that
potential disorder also enhances the ordering tendency toward
the insulating states through the formation of pseudoscalar
(QCP C2) and scalar (QCP C3) masses, where 〈�̄iγ5�〉 �= 0
and 〈�̄�〉 �= 0, respectively.

On the other hand, potential disorder appears to oppose the
formation of an axionic insulator (takes place through QCP
C1), since g∗

i > gM
i for i = 1,2,4,5 near C1. A representative

phase diagram of interacting Dirac femrions in the g2-g5 plane
is shown in Fig. 1(c) for �V = 0.3. In addition, potential
disorder also suppresses the pairing instability in the s-wave
channel (through QCP C4) of massless Dirac fermions.

B. Chiral symmetry breaking disorder and interaction

Finally, we address the interplay between electron-electron
interaction and CSB disorder (spin-orbit). As shown in
Sec. IV B, the RG analysis does not close only with spin-orbit
disorder as it generates axial disorder through loop corrections.
Thus we need to account for both spin-orbit and axial disorder,
even if the bare model contain no axial impurity. The RG flow
equations for various coupling constants to one-loop order are

dv

dl
= v(z − 1 − �A − 3�SO),

d�A

dl
= −ε2�A + 2�2

A − 6�A�SO + 4�2
SO,

d�SO

dl
= −ε2�SO − 2

3
�2

SO + 2�SO�A + �SO

3
(−g1 + g2 + g4 − g5),

dg1

dl
= −ε1g1 − 1

3
(g1g2 + g1g5 + 2g2g5) + g1(3�SO + �A) − 4

3
(−3g2 + 2g5 + 2g4)�SO,

dg2

dl
= −ε1g2 + g2

2 − 2

3
(g1g2 − g2g5 + g1g5) + g4(g2 − g5) + g2�A + 4

3

(
3g1 + 9

4
g2 + 2g4 + 2g5

)
�SO,

dg4

dl
= −ε1g4 + 1

3
(g1g2 + g1g5 − 4g2g5) + g4(�A − 9�SO) + 4

3
(2g4 − 4g5)�SO,

dg5

dl
= −ε1g5 + g2

5 − 2

3
(g1g5 − g2g5 + g1g2) + g4(g5 − g2) + g5�A − 4

3

(
4g4 + 19

4
g5

)
�SO. (25)
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TABLE IV. Same as Table III, but in the presence of only potential disorder. Coupling constants at various fixed points are quoted in the
following order (g1,g2,g4,g5,�V ).

QCP Critical points with disorder Multi-critical points (with two unstable directions) with potential disorder

C1 (−0.125ε1,0.5ε1, − 0.375ε1,0.5ε1,0) (−0.415ε1 − 0.5ε2,0.465ε1 + 0.5ε2, − 0.445ε1 − 0.5ε2,0.465ε1 + 0.5ε2,0.5ε2)
C3 (0.185ε1,0.645ε1,0.405ε1, − 0.455ε1,0) (0.385ε1 − 0.5ε2,0.705ε1 − 0.5ε2,0.595ε1 − 0.5ε2, − 0.645ε1 + 0.5ε2,0.5ε2)
C2 (0.185ε1, − 0.455ε1,0.405ε1,0.645ε1,0) (0.385ε1 − 0.5ε2, − 0.645ε1 + 0.5ε2,0.595ε1 − 0.5ε2,0.705ε1 − 0.5ε2,0.5ε2)
C4 (−2ε1, − ε1,0, − ε1,0) (−2.675ε1 − 0.5ε2, − 0.84ε1 − 0.5ε2,0.005ε1 − 0.5ε2, − 0.84ε1 − 0.5ε2,0.5ε2)
CV (0,0,0,0,0.5ε2) —

The above set of flow equations supports only four QCPs,
which were previously found in the clean interacting systems,
namely C1, C2, C3, and C4 (see Sec. III). However, the CSB
disorder driven dirty QCP at (�A,�SO) = (9/10,6/5)ε2 (in
the noninteracting system) becomes a MCP with two unstable
directions in the presence of electronic interactions. This result
can be substantiated from the following observation. The DCE
at the dirty QCP is z = 1 + 9ε2/2. Therefore the scaling
dimension of short-ranged interaction at this QCP is [g] =
z − d = −2 + 9ε2/2 = 5/2 (upon setting ε2 = 1 for three-
dimensional DSM). Hence sufficiently weak short-ranged
interaction is a relevant perturbation at the dirty QCP driven
by the CSB disorder. Enhancement of electronic interaction
near the CSB disorder driven QCP can also be understood
from the fact that near this QCP DOS diverges according to
�(E) ∼ |E|−5/11. Consequently, such a QCP becomes unstable
against infinitesimal interactions, and turns into a MCP with
two unstable directions.

A representative phase diagram of interacting DSM for
sufficiently weak spin-orbit disorder in the (g2,g5) plane is
shown in Fig. 1(d). Notice that due to the lack of continuous
chiral symmetry in the presence of spin-orbit disorder, the
phase diagram in Fig. 1(d) lacks the symmetry g2 ↔ g5. By
contrast, the phase diagrams in the clean interacting DSM
[see Fig. 1(a)], and also the ones in the presence of axial [see
Fig. 1(b)] or potential [see Fig. 1(c)] disorders are symmetric
under g2 ↔ g5. Such symmetry stems from the underlying
chiral symmetry of massless Dirac femrions, which remains
preserved even when the DSM is subject to CSP disorder, but
gets broken in the presence of CSB disorder. Otherwise, weak
spin-orbit disorder, although reduces the pairing tendency of
Dirac fermions in the pseudoscalar and axionic mass channels,
but substantially increases the phase available for scalar mass
generation, as shown in Fig. 1(d).

VI. DISCUSSION AND CONCLUSION

To summarize, in this work we have addressed the effects
of (i) short-range repulsive electron-electron interaction, (ii)
random quenched disorder (time-reversal symmetric), and
(iii) the interplay between interaction and disorder, in the
three-dimensional DSM. In clean system, we show that
when finite-range interactions are sufficiently strong, DSM
becomes unstable toward the formation of various BSPs,
among which (a) a regular insulator that only lacks the
continuous chiral Uc(1) symmetry, (b) microscopic parity and
time-reversal symmetry breaking insulator, and (c) an axionic
insulator (also P,T odd) [see Fig. 1(a)]. When the ordered

phase lacks microscopic P and T symmetries, it supports a
magnetoelectric effect captured by the axionic term [100]:

Sem = − e2

32π2

∫
d4εμνρλθax FμνFρλ, (26)

where the axion angle θax is a constant/dynamic variable
in pseudoscalar/axionic insulating phase, and Fμν is the
electromagnetic field strength tensor. The QPTs into the BSPs
are mean-field in nature and the QCPs are characterized by
the exponents ν = 1/2 and z = 1, which we capture here
performing an ε expansion about the lower critical dimension
dl = 1. At the QCPs a pseudo-Lorentz symmetry gets restored,
since z = 1, and the Fermi velocity remains noncritical across
the DSM-BSP QPT. The long-range tail of the Coulomb
interaction is shown to enhance the ordering tendencies for
weaker interaction. Thus, by tuning the effective dielectric
constant in Dirac materials, so as to increase the long-range
Coulomb interaction, one can drive the system through DSM-
BSP QPTs, see Figs. 1(a) and 3.

The noninteracting dirty DSM is shown to be stable
against sufficiently weak, but generic (time-reversal sym-
metric) randomness. Nonetheless, with increasing disorder
strength beyond a threshold, the DSM can undergo a QPT and
enter into the CDM phase. We here focused on two different
types of disorder (a) CSP and (b) CSB. The DSM-CDM QPT
driven by CSP disorder is characterized by the exponents ν = 1
and z = 3/2 (to one loop order). On the other hand, when the
DSM-CDM QCP is tuned by CSB disorder, the exponents take
the values ν = 1 and z = 11/2 (to one loop order). Here, we
extract these exponents by performing an ε expansion around
the lower critical dimension for DSM-CDM QPT, which is
dl = 2. Scaling of various physical quantities at DSM-CDM
QCPs are shown in Table I.

We also study the interplay of interaction and disorder
in DSM. In the presence of both interaction and disorder it
is not possible to find a unique lower critical dimension of
the theory about which one can perform an ε expansion. To
circumvent this technical barrier, we implement a double ε

expansion to address this challenging question. The fact that
DSM remains stable against weak interaction and disorder,
which one can reconcile from the double-ε expansion, gives
us some confidence that our results are at least qualitatively
correct, in the weak-coupling regime. Direct numerical work
will, however, be necessary in the future to check the
quantitative validity of the double ε-expansion technique.
We find that in the presence of chiral symmetric disorder,
both clean interacting and dirty diffusive QCPs are stable, as
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one approaches them from the DSM side of the transitions.
Our analysis suggests that weak axial disorder enhances the
propensity of any ordering in DSM [see Fig. 1(b)], while
potential disorder is beneficiary to the formation of regular
and P , T breaking insulator only. By contrast, the presence
of potential disorder supresses the condensation of massless
Dirac fermions into an axionic insulator [see Fig. 1(c)]. The
presence of CSB spin-orbit disorder ruins the symmetry of
interacting DSM under chiral rotation. The spin-orbit disorder,
however, increases the propensity of scalar mass generation
substantially, see Fig. 1(d).

Nevertheless, the ultimate fate of these outcomes in the
strong coupling limit remains unknown at this stage. We
realize that the clean interacting QCPs satisfy the Harris
criterion [68,69]. Hence it is natural to anticipate that mass
disorder (giving rise to random Tc) is a relevant perturbation at
these QCPs. Therefore the ultimate long-wavelength behavior
of any BSP even in sufficiently weakly disordered DSM
will be governed by a new QCP where both disorder and
interaction are finite and ν � 2/d [68,69]. If the randomness
is sufficiently weak, the clean interacting QCPs can dictate
crossover behavior over a sufficiently large scale. Although the
weak coupling analysis suggests that CSP disorder controlled
QCP between DSM and CDM is stable against sufficiently
weak interaction, the importance of interaction inside the
diffusive metallic phase is also beyond the scope of our analysis
(we mention as an aside that the corresponding problem of
the fate of a three-dimensional metallic Fermi liquid in the
presence of strong disorder and interaction is still an open
question even after 40 years of intensive research). In contrast,
we find that CSB breaking disorder driven DSM-CDM QCP
becomes unstable against infinitesimally weak interactions.
Our work deals with the stability of interacting, but dirty
DSMs, and shed light on the influence of sufficiently weak
disorder on the instability of DSM toward the formation of
various BSPs, see Figs. 1(b)–1(d).

Even though we focus on single copy of four-component
massless Dirac fermions with a genuine chiral symmetry,
our analysis can be generalized for a wide variety of sys-
tems, supporting linearly dispersing quasiparticle excitations
around few isolated points in the Brillouin zone, such as
the topological DSM, which has recently been realized in
Cd2As3 [31] and Na3Bi [32], and Weyl semimetals, discovered
in inversion asymmetric TaAs [101–103], NbAs [104], TaP
[105], and time-reversal symmetry breaking YbMnBi2 [106],
Sr1−yMnSb2 [107]. The topological DSM accommodates
two copies of four-component massless Dirac femrions that
possesses a genuine chiral symmetry. Two Dirac points in
these materials are protected by time-reversal, inversion and
four-fold rotational symmetry in the tetragonal environment
[108,109]. Weyl semimetals enjoy a bonafide chiral symmetry,
as it is tied with the translational symmetry in the continuum
limit [92]. In the former system there are additional intervalley
scattering processes due to the presence of multiple nodes,
while in Weyl semimetals the lack of time-reversal and/or
inversion symmetries, makes the system susceptible to generic
disorder (time-reversal-symmetry breaking disorder, for ex-
ample). Therefore, to properly address the role of electronic
interaction and/or disorder in such systems, one needs to
account for several additional coupling constants that although

turns the problem into a rich harbor of a plethora of phases,
associated phase transitions and quantum critical phenomena,
the analysis gets rapidly lengthy in the absence of symmetries
(in Weyl semimetal) or with increasing number of nodes (in
topological DSM). However, the qualitative structure of the
phase diagram and the stability of various critical points and
phases should remain unchanged from the results presented in
the current work. For example, (a) the semimetallic phase (in
topological DSM and Weyl semimetals) should remain stable
against sufficiently weak, but generic interaction and disorder,
(b) interaction driven QPTs are mean-field in nature [57,59],
and (c) disorder can drive these system through non-Gaussian
itinerant QCP and place them into a diffusive metallic phase
[61–67].

Before concluding, we remark on several open (and
potentially important) questions in the context of interacting
dirty DSM, which are, however, beyond the scope of present
perturbative analysis. In particular, we want to qualitatively
discuss below three topics of possible relevance: the strong-
coupling situation, disorder-induced rare regions, and the
experimental observability of the quantum phases and QPTs
discussed in our work.

Throughout this paper we have emphasized that our weak-
coupling RG analysis can only ascertain the stability of
interaction-driven BSPs against various types of randomness
to certain extend, but cannot demonstrate the ultimate ground
state in Dirac systems when both interaction and disorder
flow to strong coupling. The stability of the BSPs to weak
enough disorder stems from the fact that the ordered phases
are fully gapped, providing some immunity to disorder. We
also believe that the results obtained from weak-coupling
analysis, should at least describe crossover behavior, due to
the stable nature of the various fixed points. At the end,
however, the nature of strongly interacting disordered phase in
Dirac materials still remains an open question. We know that
without any interaction, disorder, by itself, drives DSM into a
CDM phase at intermediate coupling, and ultimately into an
Anderson insulator at stronger disorder [47]. We can then ask
the following question: what would happen if one turns on
interaction in the strongly disordered phase? Motivated by the
corresponding problem in ordinary three-dimensional metals
(Fermi liquid), we can speculate that the ultimate fate of the
strongly disordered and strongly interacting three-dimensional
Dirac systems would be an “axionic glass” phase, where the
interaction-driven P,T symmetry breaking order will possess
only short-range correlations, with the whole system being
Anderson localized globally. Such an axionic glass, where
the gap is likely to display random spatial fluctuation due to
the Anderson localization, would not possess any long-range
ordering, but depending on the relative strength between
disorder and interaction, it might exhibit considerable short-
range order [110]. At this stage, we can only speculate that the
unknown strong-coupling phase deep in the upper right hand
corner of the quantum phase diagram in Fig. 6(b) is some type
of Dirac glass. Much more work is necessary to definitively
establish the existence of such an glassy phase (axionic or
more generally, Dirac) in a strong-coupling situation.

Second, it has recently been argued that the noninteracting
DSM can actually develop exponentially small DOS even at
infinitesimal disorder arising from resonances associated with
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the disorder-induced rare region phenomena (the so-called
Griffiths physics) [67,111]. Such rare region effects (if generic)
invalidate the basic scaling argument in the noninteracting
dirty system that disorder is irrelevant in three-dimensional
Dirac and Weyl semimetals, and therefore raising question
about the quantum criticality associated with the formation
of CDM phase at finite disorder discussed in Sec. IV and
Refs.[33,41–47,61–66]. If such rare regions with finite DOS
are indeed present, then the noninteracting DSM-CDM critical
point becomes “hidden” or “avoided.” Since rare region effects
are nonperturbative, and thus inaccessible by perturbative RG
analysis, we can only comment on very recent numerical work,
which shows their effect to be quantitatively miniscule [111].
Thus the quantum critical physics of the noninteracting dirty
system should continue to be operationally effective except
at the lowest (largest) energy (length) scale. Although the
existence of the rare regions in the noninetracting dirty DSM
is a matter of considerable fundamental interest, the question
of interest to the current work is whether rare region physics
affects our RG considerations for the interacting DSM. It is
well-known that repulsive interaction should strongly suppress
rare region effects, and we believe that our conclusions for the
interacting DSM remain unaffected by any exponentially weak
rare region effects.

Finally, we comment on a practical question regarding the
observability of the various predicted BSPs and CDM phase
in experiments. Identifying these phases can be a challenging
task in actual experiments. First, if the gap is small in a BSP,
which might the situation in a weakly correlated material, it
may become difficult to detect it in an experiment at finite
temperature. Second, accessing a QCP (interaction or disorder
driven) in Dirac materials requires the chemical potential to be
fine-tuned at the Dirac point, so that the clean noninteracting
system is indeed a true semimetal, which can be quite challeng-
ing to achieve in an experiment. In addition, even if the nominal
“average” chemical potential is tuned to the Dirac point
by producing overall charge neutrality, random fluctuations
in the local dopant density may produce electron and hole
“puddles,” where the chemical potential randomly fluctuates
spatially compared with energy of the Dirac point. This effect
is well-established in a prototypical two-dimensional Dirac
system, graphene [112–114], where these puddles dominate
experiments around the Dirac point. However, every QCP is
associated with a quantum critical regime, which extends over
finite energy, temperature, and frequency [10]. It is quite often
the situation that a QCP gets masked by some other phases
at the lowest energy scale. Nonetheless, the existence of QCP
manifests through critical scaling of various physical quantities
(thermodynamic and transport), inside the quantum critical
fan. In addition, in strongly interacting Dirac semimetals,
the renormalized chemical potential can get pinned close
to the Dirac point (for example, if the DSM arises from
hybridization between d and f electrons). Hence, even if rare
regions or puddles may set natural infrared cutoffs for the
critical regime associated with the disorder-driven DSM-CDM
QCP in an ideal noninteracting system, their effects should
be substantially suppressed near interacting QCP toward the
formation of BSPs. Therefore our proposed critical scaling
behavior of specific heat, DOS, conductivity (both optical and
dc) should manifest the existence of underlying QCPs, even

if their existence at the lowest-energy scale gets masked by
various effects.
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APPENDIX A: LONG-RANGE COULOMB INTERACTION

In this appendix, we address the role of long-range tail
of the Coulomb interaction, as well as its interplay with the
short-range (local) interactions in three-dimensional DSM.
The imaginary time action in the presence of both long-range
and short-range components of Coulomb interaction reads as

S =
∫

d3xdτ {�̄[γ0(∂τ + igφ) +vγj∂j ]� + 1

2
(∂jφ)2 − Lint},

(A1)

where g = √
4πvα and α = e2/(4πεv) is the fine structure

constant and ε is the dielectric constant of the medium. Short-
range parts of the Coulomb interaction is captured by Lint,
defined in Eq. (8). To obtain the low-energy behavior of the
model in Eq. (A1), we perform a RG calculation to one loop
order and compute the flow of various coupling constant to the
quadratic order. The pertinent Feynman diagrams are shown
in Fig. 7 [in addition to (ii)–(v) in Fig. 2].

The RG flow equations of various coupling constants are
given by

dv

dl
= 2α

3π
v,

dα

dl
= −4α2

3π
,

dg1

dl
= −ε1g1 − 1

3
(g1g2 + g1g5 + 2g2g5)

− 4α

3π
g1 + 2α

3π
(g2 + g5),

dg2

dl
= −ε1g2 + g2

2 − 2

3
(g1g2 − g2g5 + g1g5)

+ g4(g2 − g5) + 4α

3π
(g2 + g5),

dg4

dl
= −ε1g4 + 1

3
(g1g2 + g1g5 − 4g2g5) − 2α

3π
(g2 + g5),

dg5

dl
= −ε1g5 + g2

5 − 2

3
(g1g5 − g2g5 + g1g2)

+ g4(g5 − g2) + 4α

3π
(g2 + g5). (A2)

Notice that even in the presence of long-range Coulomb
interaction, the flow equations continue to enjoy the symmetry
under g2 ↔ g5. Such symmetry stems from the underlying
chiral symmetry of low-energy Dirac Hamiltonian, which re-
mains unaffected upon incorporating long-range instantaneous
density-density interaction.

If we only focus on the long-range tail of the Coulomb
interaction and neglect its short-range pieces, we find that
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FIG. 7. One-loop diagrams capturing the competition between
long-range and short-range components of the Coulomb interaction.
The solid and spiral lines represent fermion and gauge field, respec-
tively. All diagrams produce logarithmically divergent contributions.

as the system approaches the deep infrared regime, the fine
structure constant decreases monotonically. However, the
Fermi velocity increases logarithmically [33–35,39,115]. This
situation is depicted in Fig. 8.

In the presence of short-range pieces of the Coulomb inter-
action, we find the there are all together four QCPs, reported
in Sec. III. Therefore the long-range tail of the Coulomb
interaction does not change the quantum critical behavior in
three dimensional DSMs. However, due to corrections to the
flow equations of short-range Coulomb interactions, arising
from its long-range tail, the phase boundary between DSM
and various BSPs changes, but in a nonuniversal fashion, and
a representative phase diagram in g2-g5 plane is shown in
Fig. 3. Comparing the phase boundaries in Figs. 1(a) and 3,
we find that long-range Coulomb interaction enhances the
propensity of various ordering (insulation) in DSMs. This
outcome stems from the fact that long-range Coulomb inter-
action increases the anomalous dimension of all Dirac mass
operators.

APPENDIX B: FIERZ IDENTITY

We devote this appendix to demonstrate how one can reduce
the number of linearly independent couplings using, so called
the Fierz identity [56]. Let us define an eight-component vector
as

X� = [(�̄γ0�)2,(�̄�)2,(�̄γ0γj�)2,(�̄γ0γ5�)2,

(�̄iγ5�)2,(�̄γlγk�)2,(�̄γ5γj�)2,(�̄iγj�)2]. (B1)

The Fierz transformation allows one to write each quartic term
as linear combination of the remaining, which follows from
the following relation:

[�̄(x)M�(x)][�̄(y)N�(y)]

= − 1

16
Tr[M�aN�b][�̄(x)�a�(y)][�̄(y)�b�(x)], (B2)

and for contact interactions, as considered in Eq. (5), x = y.
The minus sign in the right-hand side of the above equation
comes from the Grasmann nature of the fermionic fields, �̄

and �. The space of four-dimensional matrices is spanned by
the basis �a , a = 1,2, . . . ,16. The set of eight equations of
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FIG. 8. RG flows for the fine structure constant (α) and the Fermi
velocity (v) due to the long-range Coulomb interaction. Here, we
set α0 = 1.0 and v0 = 0.25, where the quantities with subscript “0”
correspond to their bare values. � represents the running infrared
cutoff, and �0 the ultraviolet cutoff. Thus, as we approach the infrared
side of the theory, � decreases monotonically.

constraint can be written compactly as FX = 0, where

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 1 1 1 1 1 1 1
1 5 −1 −1 −1 1 1 −1
3 −3 3 −3 3 1 −1 1
1 −1 −1 5 −1 −1 1 1
1 −1 1 −1 5 −1 1 −1
3 3 1 −3 −3 3 −1 1
3 3 −1 3 3 −1 3 −1
3 −3 1 3 −3 1 −1 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B3)

The rank of the above matrix (F ) is four. Hence out of eight
contact interaction terms in Eq. (5) only 8 − 4 = 4 are linearly
independent. For convenience, we chose g1, g2, g4, and g5 as
independent couplings. Then the rest of the quartic terms can
be expressed as linear combinations of these four independent
couplings according to

g3 = −g1 + g2 + g4 − 2g5, g6 = −g1 − 2g2 + g4 + g5,

g7 = −2g1 − g2 − g4 − g5, g8 = −g1 + g2 − 2g4 + g5.

(B4)

APPENDIX C: ORDER PARAMETER THEORY:
GROSS-NEVEU-YUKAWA FORMALISM IN d = 3

In this appendix, we display the order parameter description
of the QPT, out of DSM into the P , T odd insulator
(pseudoscalar mass). The corresponding imaginary action
reads as

S =
∫

ddx Ltotal, (C1)

where Ltotal = LF + LB + LB−F . Various components of
Ltotal are given by

LF = �̄γμ∂μ�,

LB−F = g � �̄iγ5�, (C2)

LB = 1

2
(∂μ�)2 + 1

2
m2 �2 + λ

4!
�4.
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FIG. 9. Diagrams contributing to the renormalization of λ, g, and
m2 [see Eq. (C1)] to the leading order in ε. The dotted and solid lines
represent boson and fermion, respectively.

The above formalism is also known as the Gross-Neveu-
Yukawa theory [86,87]. We now perform an ε expansion
around the upper critical dimension (space-imaginary time)
du = 4, where ε = 4 − d. The diagrams that give rise to
corrections to various coupling constants appearing in the
theory to the leading order in ε are shown in Fig. 9.

The RG flow equations (infrared) are given by

βg2 = εg2 − (2N + 3)g4,

βλ = ελ − 3λ2

2
− 4Nλg2 + 24Ng4, (C3)

after taking g2Nd → g2 and λNd → λ, where Nd =
Sd/(2π )d , Sd is the surface area of d-dimensional unit sphere,
and N is the number of 4-component Dirac fermions (thus
N = 1 in our problem). These two coupled flow equations
support only a trivial solution (g2

∗,λ∗) = (0,0) in d = 4
(ε = 0).

On the other hand, the flow equation of mass (m) of the order
parameter field that tunes the transition out of the symmetric
DSM phase to a P , T odd insulator, is

βm2 = m2

(
1 + 2Ng2 + λ

2

)
, (C4)

from which we determine the CLE (ν)

ν−1 = 2 −
(

2Ng2
∗ + λ∗

2

)
= 2. (C5)

Therefore the CLE is ν = 1
2 at the Gaussian QCP.

APPENDIX D: SUSCEPTIBILITY
OF ORDER PARAMETERS

In this appendix, we compute the anomalous dimensions
and RG flow equations of various order parameters (in
particle-hole and particle-particle channels). Analysis of flows
of various fermion bilinears allows us to pin the nature of
BSPs across various QCPs unambiguously. To proceed with
the calculation, we consider all the symmetry allowed order
parameters and define an action Ss = − ∫

d3xdτLs , where the
Lagrangian density for the source terms is

LS = �1�̄γ0� + �2�̄� + �3�̄γ0γj� + �4�̄γ0γ5�

+�5�̄iγ5� + �6�̄γjγk� + �7�̄γ5γj�

FIG. 10. Order parameter vertex is represented by the matrix Oj .
Bare order parameter vertex in the particle-hole and particle-particle
channels is shown in diagrams (a) and (d), respectively. Renormal-
ization of bare vertex by four-fermion interactions (�̄�a�)2 arises
from diagrams (b) and (c) (particle-hole channel), and (e) (pairing
channels). Disorder induced renormalization of fermion bilinears in
particle-hole [(f) and (g)] and particle-particle [(h)] channels.

+�8�̄iγj� + �S�
†iγ0γ5γ2�

∗ + �op�†iγ0γ2�
∗

+�V,1�
†γ3�

∗ + �V,2�
†iγ0γ5�

∗ + �V,3�
†γ1�

∗

+�V,0�
†iγ0γ1γ3�

∗. (D1)

RG flow equations for various order parameters (�j s) due to
the four-fermions interactions (see Fig. 10) and disorders are
given by

β̄�1 = �V + �A + 3�SO,

β̄�2 = −g1 + 3g2 + g4 + g5

2
− �V + �A + 3�SO,

β̄�3 = −g1 + g2 + g4 − g5

6
+ �V − �A − �SO

3
,

β̄�4 = �V + �A − 3�SO,

β̄�5 = 1

2
(−g1 + g2 + g4 + 3g5) − �V + �A + 3�SO,

β̄�6 = 1

6
(g1 + g2 − g4 − g5) + �V

3
− �A

3
+ �SO

3
,

β̄�7 = −1

3
(g1 + g2 + g4 + g5) − �V

3
− �A

3
+ �SO

3
,

β̄�8 = −1

3
(g1 − g2 + g4 − g5) − �V

3
− �A

3
− �SO

3
,

β̄�S
= −1

2
(g1 + g2 + g4 + g5) − �V + �A − 3�SO,

β̄�op
= −1

2
(g1 − g2 + g4 − g5) + �V − �A − 3�SO

β̄�V,j
= 1

3
(−g1 + g2 + g4 − g5) + �V

3
+ �A

3
+ �SO

3
,

β̄�V,0 = �V + �A − 3�SO, (D2)
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TABLE V. Physical meaning and anomalous dimensions of
various fermion bilinears at different QCPs (C1, C2, C3, and C4,
see also Sec. III). Numbers are in units of ε1/2.

Source Order parameter C1 C2 C3 C4

�1 chemical potential 0 0 0 0
�2 scalar mass 1.75 −0.51 1.69 −2
�3 spin-orbit coupling 0.25 0.13 0.13 0
�4 axial chemical potential 0 0 0 0
�5 pseudoscalar mass 1.75 1.69 −0.51 −2
�6 magnetization 0.083 −0.44 0.29 −0.67
�7 axial magnetization −0.33 −0.52 −0.52 2.67
�8 current 1 −0.27 −0.27 0

�S s-wave pairing −0.5 −0.77 −0.77 4
�op odd-parity pairing 1.5 −0.41 0.41 0
�V,j vector (nodal) pairing −1.67 −0.59 0.88 1.33
�V,0 time-like vector pairing 0 0 0 0

where

β̄X = d ln �X

dl
− 1. (D3)

When we substitute the values for the coupling constants at
various QCPs, the quantities in the right-hand side of each
equation yield to the anomalous dimension of the associated
fermion bilinear. The anomalous dimension of each fermion
bilinear near various interacting QCPs and their physical
meanings are quoted in Table V. To determine the nature of
BSPs, we simultaneously run the flow equations of quartic
coupling constants (g1,2,4,5), disorder (only for dirty DSM) and
fermionic susceptibilities. The leading divergent channel as the
coupling constants accede threshold values (critical couplings)
determines the actual BSP. The resulting phase diagrams are
shown in Fig. 1.

APPENDIX E: DETAILS OF ε AND DOUBLE ε EXPANSION

In the main part of the paper, we have presented the RG
calculation in clean interacting (dirty noninteracting) system
based on an ε expansion, performed about one (two) spatial
dimensions in Sec. III (IV). In the presence of both electronic
interaction and disorder we carried the RG calculation by
invoking the notion of a double ε expansion, see Sec V.
Here we present some essential details of the diagramatic
calculation. We layout all the key steps for evaluating different
classes of diagram in the presence of generic interaction and
disorder. Furthermore, we display an explicit evaluation of
each and every diagram shown in Fig. 2 for a particular set
of interaction and disorder couplings, namely, g5, which when
strong gives rise to pseudoscalar mass in clean system and �A

(axial disorder), which when strong supports a diffusive metal
in a dirty noninteracting system. In order to keep the discussion
on technical details coherent, we discuss three cases separately
(i) the ε1 expansion around d = 1 for clean interacting model,
(ii) the ε2 expansion around d = 2 for dirty noninteracting
system, and (iii) the double ε expansion in the presence of
both interaction and disorder. The fermion Greens function as
a function of Matsubara frequency reads as

G(iω,k) = − iωγ0 + iγj vkj

ω2 + v2k2
, (E1)

where summation over repeated spatial indices (j = 1,2,3) is
assumed.

First we discuss the clean interacting model. We here
schematically denote the coupling constant as ga when the
interaction vertex is accompanied by a 4×4 matrix �a . For
different interaction channel (accompanied by distinct 4×4
matrices) one can read off appropriate coupling constant from
Eq. (8). The contribution from diagram (ii) in Fig. 2 goes as

(2,ii) = −2 g2
a (�̄�a�)2 Tr

∫ ′ ddk
(2π )d

∫ ∞

−∞

dω

2π
[�aG(iω,k)�aG(iω,k)] = 4g2

5(�̄iγ5�)2
∫ ′ ddk

(2π )d
1

vk

= g2
5 (�̄iγ5�)2

[
8Sd

v(2π )d

] ∫ �

�e−l

kd−2dk = (
2g2

5

)
(�̄iγ5�)2

[
2Sd�

ε1

v(2π )d

]
l + O(l2), (E2)

for �a = iγ5, where d = 1 + ε1 and Tr is taken over four component γ matrices. Throughout this Appendix all femrionic
fields are slow variables, obtained after integrating over the fast Wilsonian shell. Contribution from diagram (iii) in Fig. 2 is
given by

(2,iii) = 4gagb(�̄�a�)�̄
∫ ′ ddk

(2π )d

∫ ∞

−∞

dω

2π
[�bG(iω,k)�aG(iω,k)�b]� = −g2

5(�̄iγ5�)2

[
2Sd�

ε1

v(2π )d

]
l + O(l2), (E3)

for �a = �b = iγ5. Contributions from diagrams (iv) and (v) go as

(2,iv) + (2,v) = 4gagb

∫ ′ ddk
(2π )d

∫ ∞

−∞

dω

2π

(
�̄�aG(iω,k)�b�

)
�̄[�bG(iω,k)�a + �aG(−iω, − k)�b]�

= −4

3
g2

5(1 − 1)
(
�̄γj�

)2
∫ ′ ddk

(2π )d

∫ ∞

−∞

dω

2π

v2k2

(ω2 + v2k2)2

− 4g2
5(1 − 1)

(
�̄γ0�

)2
∫ ′ ddk

(2π )d

∫ ∞

−∞

dω

2π

ω2

(ω2 + v2k2)2

=
[
−1

3
(1 − 1)

]
g2

5(�̄γj�)2

[
2Sd�

ε1

v(2π )d

]
l + (1 − 1)g2

5

(
�̄γ0�

)2
[

2Sd�
ε1

v(2π )d

]
l + O(l2), (E4)
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for �a = �b = iγ5. Due to a special property of the Greens function, namely, G(−iω, − k) = −G(iω,k), contributions from
diagrams (iv) and (v) mutually cancel each other whenever �a = �b. Thus after evaluating the diagrams (ii) and (iii) in Fig. 2, we
arrive at the flow equation for g5 displayed in Eq. (10) in terms of dimensionless coupling constant, defined as g5[ 2Sd�ε1

v(2π)d ] → g5.
Thus following the above prescription, contributions from these four Feynman diagrams [(ii)–(v) in Fig. 2] can be evaluated in
the presence of generic four-fermion interaction [with various combinations of 4 × 4 matrices �a and �b as shown in Eq. (8)],
which ultimately leads to the flow equations announced in Eq. (9). Notice that diagrams (iv) and (v) can potentially generate
new four-fermion interaction [such as g3,6,7,8 from Eq. (5)] that are not contained in Lint, shown in Eq. (8). Whenever such new
four-fermion interactions are generated we rewrite them in term of g1,2,4,5 by using the Fierz constraints, shown in Eq. (B4).

Next, we display the details of diagramatic calculation in a dirty noninteracting system. For notational convenience, we denote
the disorder coupling as �a when the disorder vertex is accompanied by a 4 × 4 matrix �a . Then we present the calculation
explicitly for the axial disorder, for which �a = γ0γ5 and �a = �A. For various other choices of �a and corresponding coupling
constants readers should see Eq. (7).

The correction to the fermionic self-energy arising from diagram (vii) in Fig. 2 is given by

(2,vii) = �a�̄α

(∫ ′ ddk
(2π )d

�aG(iω,k)�a

)
�α = �A (�̄iωγ0�)

Sd

(2π )d

∫ �

�e−l

kd−3dk

= �A (�̄αiωγ0�α)
Sd�

ε2

(2π )d
l + O(l2) → �A (�̄αiωγ0�α) l + O(l2), (E5)

for d = 2 + ε2 and �a = γ0γ5, after introducing dimensionless disorder coupling, defined as �A[ Sd�ε2

v2(2π)d ] → �A. From the

self-energy correction, we find the field renormalization coefficient, defined as � → Z
−1/2
� �, to be Z� = edl[1 − �A]. The

renormalization coefficient for Fermi velocity (v), defined as v → Z−1
v v, is given by Zv = e(z−1)l[1 − �A]. From Zv , we obtain

the flow equation of v announced in Eq. (16) (for �V = 0). Here, α is the replica index.
Contribution from diagram (viii) in Fig. 2 goes as

(2,viii) = 4�a�b (�̄α�a�α)�̄β

(∫ ′ ddk
(2π )d

[�bG(0,k)�aG(0,k)�b]

)
�β

= (
2�2

A

)
(�̄αγ0γ5�α)(�̄βγ0γ5�β)

∫ ′ ddk
(2π )d

1

v2k2
= (

2�2
A

)
(�̄αγ0γ5�α)(�̄βγ0γ5�β)

[
Sd

v2(2π )d

] ∫ �

�e−l

kd−3dk

= (
2�2

A

)
(�̄αγ0γ5�α)(�̄βγ0γ5�β)

[
Sd�

ε2

v2(2π )d

]
l + O(l2), (E6)

where d = 2 + ε2 and for �a = �b = γ0γ5. Together the contribution from diagrams (ix) and (x) reads as

(2,ix) + (2,x) = 4�a�b

∫ ′ ddk
(2π )d

(�̄α�aG(0,k)�b�α) �̄β[�bG(0,k)�a + �aG(0, − k)�b]�b

= 4�2
A(1 − 1)(�̄αγj�α)(�̄βγj�β)

∫ ′ ddk
(2π )d

1

v2k2
= 4�2

A(1 − 1)(�̄αγj�α)(�̄βγj�β)

[
Sd�

ε2

v2(2π )2

]
l + O(l2).

(E7)

when �a = �b = γ0γ5. Thus due to the special property of Greens function (odd function of frequency and momentum)
contribution of these two diagrams mutually cancel each other. However, for generic disorder (for example, spin-orbit disorder),
these two diagrams do not cancel each other and their net contribution can be evaluated from the first line of the above expression.
Hence, from Eq. (E6), we immediately arrive at the flow equation of disorder coupling �A, as shown in the last equation of
Eq. (16) in terms of dimensionless coupling (after setting �V = 0).

Finally, we expose the details of the diagramatic calculation in the presence of both electronic interaction and disorder. When
these two perturbations are simultaneously present, one needs to account for additional Feynman diagrams, namely, (xi)–(xv) in
Fig. 2. Calculations in the presence of generic interaction and disorder can be carried out following the prescription, highlighted
below, as we have given the expression for each such mixed diagrams for arbitrary interaction and disorder vertices. For further
illustration, we here also present evaluation of these diagrams in the presence of interaction in the g5 channel and axial disorder
(�A).

Notice that diagram (xi) in Fig. 2 renormalizes disorder vertex. Correction to disorder vertex �a (associated with matrix �a)
due to electronic interaction gb (accompanied by matrix �b), arising from the diagram (xi), is given by

(2,xi) = gb�a(�̄α�a�α)�̄β

[∫ ′ ddk
(2π )d

∫ ∞

−∞

dω

2π
[�bG(iω,k)�aG(iω,k)�b]

]
�β

= g5�A(�̄aγ0γ5�a)(�̄bγ0γ5�b)
Sd

v(2π )d
(1 − 1)

∫ �

�e−l

kd−2dk

= (g5�A)(�̄aγ0γ5�a)(�̄bγ0γ5�b)
Sd�

ε1

v(2π )d
(1 − 1) l + O(l2), (E8)
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for d = 1 + ε1, �a = γ0γ5, and �b = iγ5. Although the explicit contribution of such diagram is trivial, this exercise sets the stage
to carry out the perturbative analysis to capture the interplay of generic interaction and disorder.

On the other hand, contribution for diagram (xii) that renoramlizes interaction coupling constant ga goes as

(2,xii) = 2ga�b(�̄α�a�α)�̄β

∫ ′ ddk
(2π )d

[�bG(0,k)�aG(0,k)�b]�β = (2g5�A) (�̄αiγ5�α)2 Sd

(2π )d

∫ �

�e−l

kd−3dk

= (2g5�A) (�̄αiγ5�α)2

[
Sd�

ε2

(2π )d

]
l + O(l2) (E9)

for d = 2 + ε2, �a = iγ5, and γb = γ0γ5. Diagrams (xiii) and (xiv) also renormalize the interaction vertex to the one-loop order.
The contribution from these two diagrams together reads as

(2,xiii) + (2,xiv) = 4ga�b

∫ ′ ddk
(2π )d

(�̄α�bG(0,k)�a�α) �̄α[�bG(0,k)�a + �aG(0, − k)�b]�α

= 4

3
g5�A(�̄αγ0γj�α)2(1 − 1)

Sd

v2(2π )d

∫ �

�e−l

kd−3dk = 4

3
g5�A(�̄αγ0γj�α)2(1 − 1)

[
Sd�

ε2

v2(2π )d

]
l + O(l2),

(E10)

for d = 2 + ε2, and �a = iγ5, �b = γ0γ5. Although contribution from these two diagrams vanishes for �a = iγ5 and �b = γ0γ5,
in general yields renormalization to four fermion interaction. Note that the set of these two diagrams can in principle generate
new four fermion terms proportional to gj with j = 3,6,7,8. When such four-fermion terms are generated, we rewrite them in
terms of gk where k = 1,2,4,5 by using the Fierz constraints from Eq. (B4), so that the interacting Lagrangian Lint from Eq. (8)
remains closed under the renormalization group procedure. The last Feynman diagram (xv) from Fig. 2 also renormalizes the
interaction vertex and its contribution reads as

(2,xv) = −4gb�a(�̄�a�b�)2 Tr
∫ ′ ddk

(2π )d
[�aG(0,k)�bG(0,k)]

= ∓4gb�a(�̄�a�b�)2 Tr(�a�b)

[
Sd

v2(2π )2

] ∫ �

�e−l

kd−3dk

= ∓4gb�a(�̄�a�b�)2 Tr(�a�b)

[
Sd�

ε2

v2(2π )2

]
l + O(l2), (E11)

where the ∓ sign depends on weather �b anticommute or commutes with G(0,k). Notice that due to Tr this diagram can
contributes only when �a = �b. Hence, in our calculation, such a diagram contributes only when we seek to understand the
interplay of potential disorder �V and interaction in the channel g1. In a model for dirty interacting DSM, defined in terms of
two coupling constants g5 and �A, upon collecting the contributions from all these diagrams, we arrive at the flow equations

dg5

dl
= −ε1g5 + g2

5

[
2Sd�

ε1

v(2π )d

]
+ g5(2�A − �A)

[
Sd�

ε2

v2(2π )d

]
,

d�A

dl
= −ε2�A + 2�2

A

[
Sd�

ε2

v2(2π )d

]
+ ag5�A

[
2Sd�

ε1

v(2π )d

]
,

dv

dl
= v

(
z − 1 − �A

[
Sd�

ε2

v2(2π )d

])
. (E12)

For these choices of the coupling constants a = 0. Multiplying the first equation by [ 2Sd�ε1

v(2π)d ] and the second one by [ Sd�ε2

v2(2π)d ], and
introducing the dimensionless coupling constants defined above, we arrive at the following flow equations:

dg5

dl
= −ε1g5 + g2

5 + g5�A,
d�A

dl
= −ε2�A + 2�2

A + a�Ag5,
dv

dl
= v(z − 1 − �A), (E13)

which can readily be obtained from Eq. (24) upon setting g1 = g2 = g4 = 0 and �V = 0. The model for interacting dirty DSM
with only these two couplings constants has been discussed in details in Sec. V A 1.

Hence, to evaluate the mixed diagrams [(xi)–(xv) in Fig. 2], one first need to identify the coupling constant (in the interaction
or disorder channel) that gets renormalized from a given diagram. When disorder (interaction) coupling gets renormalized by
interaction (disorder), the shell integration needs to be evaluated about one (two) spatial dimension(s). This is the key feature of
double ε expansion to address the interplay of interaction and disorder in a three-dimensional DSM. We emphasize again that
this technique fails completely for the strongly interacting regime where both interaction and disorder and strong as indicated in
the upper right-hand quadrant of Fig. 6(b) with question marks.

We here sketched all the crucial steps for evaluating each and every diagram shown in Fig. 2 in terms of arbitrary 4×4 matrices
�a and �b (or the interaction and disorder coupling constants). The announced steps can now be readily taken over to compute the
perturbative corrections in the presence of generic interaction and disorder. The results are quoted in Eq. (9) for clean interacting
model, in Eqs. (16) and (19) for dirty noninteracting system, and Eqs. (24) and (25) in the presence of interaction and disorder.
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