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We develop a simple method to study the zero-point and thermally renormalized electron energy εkn(T ) for kn

the conduction band minimum or valence maximum in polar semiconductors. We use the adiabatic approximation,
including an imaginary broadening parameter iδ to suppress noise in the density-functional integrations. The finite
δ also eliminates the polar divergence which is an artifact of the adiabatic approximation. Nonadiabatic Fröhlich
polaron methods then provide analytic expressions for the missing part of the contribution of the problematic
optical phonon mode. We use this to correct the renormalization obtained from the adiabatic approximation. Test
calculations are done for zinc-blende GaN for an 18 × 18 × 18 integration grid. The Fröhlich correction is of
order −0.02 eV for the zero-point energy shift of the conduction band minimum, and +0.03 eV for the valence
band maximum; the correction to renormalization of the 3.28 eV gap is −0.05 eV, a significant fraction of the
total zero point renormalization of −0.15 eV.
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I. INTRODUCTION

Electron quasiparticles in crystals form energy bands εkn.
Computations normally use the Born-Oppenheimer approxi-
mation that atoms are fixed rigidly at crystalline coordinates.
Vibrations around these fixed coordinates (phonon quasiparti-
cles) are the main cause of temperature-dependent shifts of the
electron bands. At temperature T the shift is typically 2–4kBT ,
which can have noticeable effects on electron behavior in
semiconductors. There is also a zero-point shift, caused
by phonon zero-point fluctuations, which is comparable in
size to the thermal shift at room temperature. Cardona and
collaborators [1,2] have given brief reviews of the vibrational
renormalization of semiconductor bands. Since energy band
calculations omit these effects, a correction should be made
when comparing with experiment.

These effects have an analog in electronic energy lev-
els in molecules. When an electron is excited, interatomic
separations and vibrational spectra are altered compared to
the ground state. To compute the correct electron excitation
energy, Born-Oppenheimer energies are not enough. This
topic is usually described as “Franck-Condon effects” [3–6].
Zero-point vibrational contributions to a molecular excited
state energy are different from the zero-point vibrational
contributions to the ground state energy. In the molecule,
one generally thinks of the change in vibrational energies
caused by electronic excitation, whereas in the crystal one
generally thinks of the change in electronic energies caused
by vibrational excitation. These two points of view are united
by what is known [7] as “Brooks’ theorem” [8]: the shift in
an electron energy εkn caused by a unit increase in phonon
occupancy of mode ωqj equals the shift of the phonon energy
�ωqj caused by a unit increase in electron occupancy εkn.

Computation by density functional theory (DFT) of the
temperature dependence of electronic properties of semicon-
ductors and insulators, and also metals, has grown recently
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[9–16]. Fits to experimental data with different models have
also been done [17–19]. For arbitrary bands, the electron-
phonon contribution to the renormalization (Ekn − εkn) of the
electronic bands, to second order in the ion’s displacement, is

Ekn − εkn = 1

N

BZ∑
qjn′

∣∣〈kn|H (1)
j |k + qn′〉∣∣2

×
[

nqj + 1 − fk+qn′

εkn − εk+qn′ − �ωqj + iη

+ nqj + fk+qn′

εkn − εk+qn′ + �ωqj + iη

]

+ 1

N

BZ∑
qj

〈kn|H (2)
jj |kn〉[2nqj + 1]. (1)

Here 〈kn|H (1)
j |k + qn′〉 is the matrix element for scattering

an electron k by a phonon q; it has units of energy and a typical
size of roughly the geometric mean of electron and phonon
energies. The Debye-Waller term 〈kn|H (2)

jj |kn〉 is the second
order interaction energy involving two phonons qj and q′j ′,
but only qj = −q′j ′ enters in lowest order. The Fermi-Dirac
and Bose-Einstein equilibrium occupation factors are denoted
f and n. The infinitesimal parameter iη ensures the real and
imaginary parts are well defined. Only the real part is discussed
here. We omit the smaller thermal expansion contribution in
this work.

The formulas used by Allen, Heine, and Cardona [20,21]
intentionally drop the phonon energy ±�ωqj from the denomi-
nators in comparison with the electron energy difference εkn −
εk+qn′ . This is an adiabatic approximation. The justification
is that, in semiconductors, typical energy denominators are
much larger than �ωqj . However, it was pointed out by Poncé
et al. [11] that for polar materials, it is necessary to keep
the ±�ωLO for longitudinal optic (LO) modes to avoid an
unphysical divergence in the intraband (n′ = n) term at band
extrema, caused by the adiabatic treatment of the long-range
Fröhlich-type electron-phonon interaction.
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A converged nonadiabatic evaluation of Eq. (1), summed
on a fine enough mesh to accurately get the Fröhlich part of
the renormalization, requires a very fine and very expensive
mesh. Our aim in this paper is to explore a simplified method
that works adequately on a coarser mesh. We test our method
by computations for zinc-blende (cubic) GaN, abbreviated c-
GaN. Our corrections use the effective mass approximation
εk = �

2k2/2m∗ for band edges near k = 0. This works well
for the conduction band where m∗ is small, ≈0.16me. The top
of the valence band is triply degenerate (because we ignore the
spin-orbit interaction) and involves higher effective masses,
which work a bit less well.

One reason for choosing gallium nitride is its useful prop-
erties, including a high thermal conductivity [22], and a high
melting point that allows it to operate at high temperatures. Its
wide and direct band gap make it efficient for lasers [23],
and for high-power and high-frequency electronic devices
[24–26]. It is used in white LEDs. Alloying with InN and AlN
allows engineering of optical and electrical properties [30]. For
simplicity we study c-GaN rather than the more stable wurtzite
(hexagonal) GaN, or h-GaN. Although h-GaN has been more
thoroughly studied, c-GaN has several advantages: it has better
n and p doping properties [27,28], higher saturated electron
drift mobilities [29,30], and it is convenient to work in the
510 nm region.

II. “ADIABATIC PLUS iδ” APPROXIMATION
CORRECTED USING EFFECTIVE-MASS THEORY

For convenience we assume (correctly for c-GaN) that band
extrema are at k = 0. The Fröhlich part of the integral in Eq. (1)
involves

∫
d3q and a factor 1/q2 from the long-range polar

electron-phonon matrix element. If the ±�ωLO is omitted, then
in the small-q Fröhlich region, denominators in Eq. (1) behave
as q2. The integral then involves

∫
dq/q2 which diverges at

q = 0. When ±�ωLO is kept, the divergence is removed from
the first denominator in Eq. (1), and the singularity in the
second denominator is integrable. When k is not chosen to be
0, there are (integrable) singular denominators εkn − εk+qn′ ±
�ωqj → 0 on extended surfaces in q space. All these cases
create problems if integrated numerically by summing points
on a simple mesh. Regardless of how dense the q mesh is,
singular integrals of this type do not converge (as already noted
in [21]) except with a carefully tempered mesh, designed to
give the correct principal-value treatment in three dimensions.
A useful procedure is to change the iη in the denominator to a
finite imaginary energy iδ. Convergence in this parameter was
studied by Poncé et al. [11]. Since the true result around this
type of singularity integrates to a small contribution when done
correctly, it is safe to add a finite imaginary energy consistent
with the mesh size. Unlike Poncé et al., we do not need δ to
be particularly small or less than �ωLO. Specifically, δ should
not be smaller than the typical energy jump �sε = εk+q+�q −
εk+q associated with the mesh size �q when εk+q lies near the
singularity surface. The singular part of the integrand 1/�sε is
then replaced by �sε/(�sε

2 + δ2). The subscript “s” indicates
“singularity.” Errors associated with the random location of
mesh points relative to the singularity surface are then reduced
from N

1/2
s /�sε to N

1/2
s �sε/δ

2, where Ns is the number of
mesh points neighboring the singularity surface. When the

singularity is at k = 0, Ns ≈ 1, but for an extended singularity,
the value of Ns is likely to be of order N

2/3
mesh. Therefore, the

value of δ should be greater than �sε or N
1/6
mesh�sε, depending

on whether the singularity is at a point or on an extended area
in k space. At a minimum or maximum (local or absolute)
of εkn, there is a singular point which requires a nonadiabatic
treatment in polar materials. When εkn is not at an absolute
band maximum or minimum, the extended singularity surface
can be safely approximated by replacing ±ωqj by iδ. The
reason is, if the surface is redefined by �ε = 0 instead of
�ε ± ωqj = 0, it causes only a small shift of the surface in k
space. This should do little to change the small remainder after
principal-parts cancellation of the singularity. The replacement
of ±ωqj by iδ is what we call the “adiabatic + iδ” method.

When the state of interest kn is a (local or absolute) band
extremum (taken here to be k = 0), replacement of ±�ωLO

by a finite iδ does not correctly treat the Fröhlich intraband
renormalization effect. This is especially true in the first
denominator of Eq. (1). This “emission term” with nqj + 1 in
the numerator, integrates only over one side of the singularity,
and thus has no principal-parts cancellation. The long-range
polar interaction, when treated correctly (nonadiabatically),
makes an additional renormalization. Our aim is to use a
mesh fine enough to capture all the less singular contributions,
but coarse enough for rapid computation (for example 20 ×
20 × 20). Then to include the Fröhlich effect, we want to
focus on a small q “central region” and treat it by an analytic
integration using effective mass theory. For this purpose we
need a central region large enough that outside it, ±�ωLO can
be safely replaced by iδ, but small enough that inside, the
energy εk,n can be replaced by ε0n + �

2k2/2m∗. The mesh
should be fine enough that the adiabatic plus iδ calculation
(by mesh summation) is reasonably converged in the central
region, and therefore adequately approximated by an analytic
effective-mass integration of the adiabatic plus iδ intraband
central region sum. If these conditions can be satisfied, then
we can subtract the analytic effective-mass version of the
adiabatic plus iδ and add the analytic effective-mass version
of the Fröhlich renormalization to get a good computation of
the full nonadiabatic theory.

For the direct k = 0 gaps of c-GaN (the case we study
in detail), the relevant energy jump is �sε = (�2/2m∗)(�q)2,
where �q is the size of the q grid. The value of m∗ for the
conduction band is 0.16me, and �ωLO is 0.089 eV. A desirable
value of δ is 0.1 eV, which requires �q = 0.065 Å to make
�sε < δ. However, we find that an 18 × 18 × 18 mesh is
sufficient. This corresponds to �q = 0.155 Å. The reason why
this works is because the grid and the singular point are both
centered at k = 0. The integrand is then sampled at symmetric
points, an appropriate “tempered mesh” that converges with far
less noise to the correct principal value integral. A confirmation
that this works comes from the plots of Poncé et al. [11]. See
for example the middle graph of Fig. 6(a) in [11], which shows
very good convergence for a 20 × 20 × 20 grid.

III. CORRECTION FORMULAS

The full theory is contained in the perturbative expressions
worked out by Vogl [31]. The singular part corresponds to the
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Fröhlich polaron [32]. In [33,34] a Vogl expression is studied
from an ab initio perspective, and is shown to coincide for
small q with DFPT calculations. All agree that the polaron is
the dominant contribution in the small q region, and needs to
be treated carefully.

A polaron describes the coupled system of an electron and
phonons. Most often, only zero temperature is considered, but
the concept works also at T > 0. The most famous case is
the Fröhlich, or “large” polaron, present in ionic crystals and
polar semiconductors [32]. Fröhlich theory is designed for
the bottom of the conduction band where an effective mass
approximation εk = �

2k2/2m∗ is accurate, and for intraband
(n = n′) coupling only to the polar LO mode, where ωLO has
negligible q dependence. It can also be used for the valence
band, which will be discussed later. In the conduction band
case, the matrix element |M|2 is 4πα(�ωLO)2(aLO/
0q

2). It is
the factor q−2 which comes from long range polarization. The
distance aLO = √

�/2m∗ωLO is of order 10 Å, larger than the
zero-point root mean square vibrational displacement uLO =√

�/2MredωLO by the large factor
√

Mred/m∗, where Mred is
the appropriate ionic reduced mass. The Fröhlich coupling
constant is α = Vc/�ωLO, where Vc is a Coulomb interaction
strength Vc = e2/(8πε̃0ε

∗aLO). The ε̃0 is the permittivity of
free space, and the ε∗ is defined in terms of the low and high
frequency dielectric constants as 1/ε∗ = 1/ε∞ − 1/ε0. Since
we are interested in the renormalization of the band gap, we
focus on the band extrema at k = 0. For a nondegenerate band
(e.g., the conduction band), the Fröhlich contribution to the
renormalization at temperature T is (see [35] for the T = 0
result)

[Ekc − εkc]Fr,k=0 = − α�ωLO

2π2aLO

∫ qF

0

4πq2dq

q2

×
[
nB(T ) + 1

q2 + a−2
LO

+ nB(T )

q2 − a−2
LO

]

= −α�ωLO

{
tan−1(qF aLO)

π/2
[nB(T ) + 1]

+ 1

π
ln

∣∣∣∣qF − a−1
LO

qF + a−1
LO

∣∣∣∣[nB(T )]

}
, (2)

where ωLO is the longitudinal optical frequency, and nB(T ) =
1/[exp(�ωLO/kT ) − 1] is the Bose-Einstein distribution. The
radius of integration is qF . This and other radii in reciprocal
space used in this work, together with their approximate
values, are included in Table I. In most polaron studies, the
approximation qF → ∞ is used. One might instead use the
radius qD of the Debye sphere whose volume is the BZ

volume. However, the integrand becomes inaccurate if qF is
larger than the radius qm where the effective mass treatment
works well. The first term of Eq. (2) corresponds to phonon
emission. It is included in Fröhlich’s treatment at T = 0. The
second term is only present at nonzero temperature and it
corresponds to phonon absorption. At T = 0, extending the
sum over the Brillouin zone to infinity, the famous result [35]
is Ek=0,c − εk=0,c = −α�ωLO.

In the adiabatic approximation, the term in brackets in
Eq. (2) is replaced by (2nB + 1)/(q2 − i2m∗δ/�

2), and then
the real part is taken:

[Ekc − εkc]Ad,k=0

= − α�ωLO

2π2aLO
Re

∫ qF

0

4πq2dq

q2

[
2nB (T ) + 1

q2 − i2m∗δ/�2

]

= −α�ωLO

aLO
Re

1

πz
ln

(
−qF − z

qF + z

)
[2nB(T ) + 1], (3)

where z =
√

2m∗δ/�2exp(iπ/4). Subtracting this term from
the ab initio calculation and adding the correct Fröhlich
contribution (2), with an appropriate radius of integration qc,
we obtain in principle our desired correction.

In the adiabatic approximation, the denominator (for k = 0
and q → 0) is iδ, i.e., pure imaginary. Because the energy
renormalization is given by the real part, the central mesh-
cell contribution is 0 in the adiabatic approximation. This
misrepresents a converged adiabatic calculation [like Eq. (3)].
We should not subtract the part of Eq. (3) that represents the
missing contribution from the central grid cell.

To determine the optimal integration radius qc to use for the
correction, we calculate the difference between the Fröhlich-
polaron contribution Eq. (2) and the adiabatic approximation
Eq. (3) (replacing ωLO with i0.1 eV) for different radii qF

of integration. We denote qc the radius for which the curves
differ by less than 1 meV for all temperatures, and we refer
to it as the convergence radius. The adiabatic expression is a
good approximation to the Fröhlich polaron for radii greater
than qc. The analysis can be separated in two cases:

(i) qmesh < qc. This is the case in our calculation, for both the
conduction and valence band. It is discussed in the Appendix.

(ii) qmesh � qc. We will illustrate this case with our c-
GaN calculation, although the expression in the Appendix is
required for a more precise result. Since the adiabatic DFT
calculation has no contribution from the central cell, it does
not have to be subtracted. Therefore, the correction is just
given by (2) with qF = qmesh, which is a good enough radius
of integration since qmesh � qc. Case (i) is similarly simple,
but the correction involves an extra term.

TABLE I. Definitions and approximate values of the different radii in momentum space used in this work. The convergence radius qc

determines the region in which the correction has to be applied. Note the similarity between qc and q∗
m both for the valence and conduction

bands. However, qc = 6.3qmesh at T = 1000 K because of the absorption term in the valence band. See the discussion in the Appendix.

Symbol Definition Approximate choices

qF Upper limit of Fröhlich integral Eq. (2) 4π

3 q3
F = 
BZ

qc Convergence radius beyond which �εFr ≈ �εAd Conduction 1.2qmesh Valence 2.5qmesh (T = 0)
qm Wave vector limit for effective mass approximation Conduction 1.2qmesh Valence 2.5qmesh

qmesh
4π

3 q3
mesh = 
BZ

N
N = 18 × 18 × 18
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FIG. 1. Difference between the Fröhlich contribution and the
corresponding adiabatic approximation with iδ = i0.1 eV for the
conduction band, for different radii qF of integration.

As long as the effective mass approximation is accurate,
both Eqs. (2) and (3), and thus qc, will be accurate. If
there are worries about the applicability of the effective mass
approximation, then one could use the small q, intraband, LO
phonon part of Eq. (1) with ωLO → iδ to subtract the adiabatic
contribution, without using the effective mass approximation.
However, this is not necessary for the accuracy of a few meV
we are interested in.

We first study how the correction changes with the integra-
tion radius. Then we calculate the temperature dependence of
the minimum of the conduction band, including the polaron
correction. Finally, we study the valence band. We use ABINIT
[36,37] to carry out the ab initio calculations.

IV. RESULTS AND DISCUSSION

We use Troullier-Martins pseudopotentials for both gallium
and nitrogen, in the Perdew-Wang [38] parametrization of local
density approximation (LDA), generated using the fhi98PP
code [39]. The Ga-3d electrons are included as valence
electrons. We use a 6 × 6 × 6 Monkhorst-Pack (MP) [40]
centered k-point grid in our calculations, and a high energy
cutoff of 1700 eV in order to converge the total energy
to less than 0.018 meV per atom (h-GaN converges well
with 1400 eV). The resulting lattice constant is a = 4.499 Å.
Experimental values are 4.507 [41] and 4.52 Å [42]. The
phonons and electron-phonon interaction matrix elements use
DFPT in the rigid-ion approximation, as specified by ABINIT,
to speed up calculations. It has been shown reliable for simple
crystals [13]. We use an 18 × 18 × 18 MP q-point grid, and
the adiabatic + iδ approximation, with δ = 0.1 eV.

FIG. 2. Temperature dependence of the conduction band: Direct
adiabatic calculation (including interband parts in Eq. (1) in a
18 × 18 × 18 MP grid with δ = 0.1 eV (dotted), corrected calculation
(full), and the pure Fröhlich term at finite temperature (dashed).

A. Conduction band

The conduction band is very isotropic, with an effective
mass m∗ = 0.16me. The differences between the Fröhlich
contribution and the adiabatic approximation are shown in
Fig. 1. Going beyond a radius of integration of qF = 0.068
2π/a, the curves differ by less than 1 meV for all temperatures.
Therefore, qc = 0.068 2π/a. To obtain an accurate result, the
analytic integration in (2) should be restricted to a small radius
qc close to q = 0, because the effective mass approximation
is only valid close to q = 0. From Table I we see that for the
conduction band qm = qc, so the method is indeed accurate.

Using the method of case (ii), the corrections at T = 0 K
and T = 1000 K are −19 and −22 meV, respectively. For
the more precise method (i) described in the Appendix, since
actually qmesh < qc, the corrections are −17 meV at T = 0 K
and −17 meV at T = 1000 K. Figure 2 shows the adiabatic
calculation of E�c − ε�c done with ABINIT, the corrected
result, and the total Fröhlich contribution at finite temperature
(taking as qF the radius of the BZ).

B. Valence band

For the valence band, the correction is more complicated
because of two factors: bands are degenerate and they are not
isotropic. Since we are not considering spin-orbit coupling, the
top of the valence band is triply degenerate. The k · p method
fixes the valence band energy dispersion to be the eigenvalues
of [43]

D =

⎡
⎢⎣

Ak2
z + B

(
k2
y + k2

z

)
Ckxky Ckxkz

Ckxky Ak2
y + B

(
k2
x + k2

z

)
Ckykz

Ckxkz Ckykz Ak2
z + B

(
k2
x + k2

y

)
⎤
⎥⎦. (4)

Comparing with the ab initio calculation, we obtain A = −3.14�
2/me, B = −0.61�

2/me, and C = −3.49�
2/me. These

correspond, for example, to effective masses m∗ = 0.16me and 0.82me in the (100) direction.
Renormalization does not lift the triple degeneracy of the top of the valence band. For degenerate and isotropic bands, Trebin

and Rössler [44] use the k · p method to generalize Fröhlich’s result (giving analytic expressions). Following their procedure, we
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write the band renormalization in the general case, without requiring band isotropy:

[Ekv − εkv]Fr,k=0 = e2

4πε̃0N
0

2π�ωLO

ε∗

q<qF∑
q

3∑
s=1

1

q2
|〈ns(q)|n〉|2Re

[
nB(T ) + 1

ε�v − εqns
+ �ωLO

+ nB(T )

ε�v − εqns
− �ωLO + i�

]
, (5)

where ns indicates the degenerate bands and |ns(q)〉 are the
eigenstates of Eq. (4) at k = q. The initial state |n〉 can be
any of the k = 0 degenerate eigenstates; all give the same
answer. We include a small i� = i0.001 eV only in the second
denominator to allow a good numerical evaluation of the
principal part. Now, ε� − εq > 0 and the factors nB + 1 − f

and nB + f have become nB and nB + 1 instead of nB + 1
and nB , respectively (because fv = 1). As a result, we get an
extra minus sign with respect to the conduction band; the band
renormalization is now positive.

The adiabatic ab initio calculation gives a band renormal-
ization of 62 meV at T = 0 K and 185 meV at T = 1000 K.
The valence band falls in case (i) (qmesh < qc) and the method
is described in the Appendix. The correction is 28 and 11 meV
at T = 0 K and T = 1000 K, respectively. Figure 3 shows the
results for the valence band analogous to Fig. 2.

Therefore, we see that the Fröhlich correction provides
approximately a constant shift of the renormalization by
−20 meV for all temperatures in the conduction band. For
the valence band, it is +28 meV at T = 0 and it decreases to
11 meV at T = 1000 K. The Fröhlich correction is about 30%
of the total ZPR of both the conduction and valence band. At
1000 K, the corrections are between 6% and 9% of the total
renormalization.

V. CONCLUSIONS

Our procedure allows a calculation of the whole electronic
renormalization of a polar material, using the adiabatic
approximation with an iδ, and an affordable mesh. The iδ cures
the divergence of the adiabatic approximation at the extrema of
polar materials, but does not correctly include Fröhlich polaron
corrections. Then we add the Fröhlich polaron contribution
in the central mesh cell, omitted in the DFT adiabatic
calculation due to the pure imaginary denominator iδ. Finally,

FIG. 3. Temperature dependence of the valence band: Direct
adiabatic calculation with an 18 × 18 × 18 MP grid with δ = 0.1 eV
(dotted) and the corrected calculation (full).

we add the difference between the Fröhlich and adiabatic
expressions if qc > qmesh. This method is then a combination
of the adiabatic and nonadiabatic approximations. We avoid
using a very dense q grid by treating the Fröhlich polaron
analytically. By this method, we calculated for c-GaN the
electron-phonon temperature dependence of the minimum of
the conduction band and the maximum of the valence band. At
high temperatures, the method is approximate for the valence
band. The correction is a significant fraction of the total
electron-phonon renormalization, although it decreases as the
temperature increases.
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APPENDIX

1. Method, case (i)

Here we describe the method for case (i), where qmesh <

qc. The difference between the Fröhlich contribution and the
adiabatic expression is small beyond a radius qc. Because of
the iδ there is no adiabatic contribution from the central cell (in
c-GaN, a truncated octahedron), which can be approximated by
a sphere of radius qmesh. Instead of subtracting the adiabatic
contribution from 0 to qc, we have to subtract it from qmesh

to qc. Therefore we need to determine what is the adiabatic
contribution in this region.

a. Conduction band

The correction is given by

�(Ekc − εkvc)k=0 = −α�ωLO

{
tan−1(qcaLO)

π/2
[nB(T ) + 1]

+ 1

π
ln

∣∣∣∣qc − a−1
LO

qc + a−1
LO

∣∣∣∣[nB(T )]

}

+ α�ωLO

aLO
Re

1

πz
ln

(
qc − z

qc + z

qmesh + z

qmesh − z

)
× [2nB(T ) + 1]. (A1)

Note that this is just the difference between Eqs. (2),
evaluated between 0 and qc, and (3), evaluated between qmesh
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and qc. The plot of the adiabatic calculation with δ = 0.1 eV
and the correction is included in Fig. 2 in the main text.

The effective mass varies between 0.157me and 0.175me

when taking different radii up to 0.067 2π/a. The difference
of the Fröhlich contribution for these two effective masses in
the correction is only 0.6 meV or less for all temperatures.
So the change of the effective mass with k causes negligible
errors in our method.

b. Valence band

The expression we use for the correction is

�(Ekv − εkv)k=0 = + e2

4πε̃0
0

2π�ωLO

ε∗ (IFr − IAd),

where

IFr = 
0

(2π )3

3∑
s=1

∫ qc

0

d3q

q2
|〈ns(q)|n〉|2Re

×
[

nB(T ) + 1

ε�v − εqns
+ �ωLO

+ nB(T )

ε�v − εqns
− �ωLO + i�

]
,

IAd = 
0

(2π )3

3∑
s=1

∫ qc

qmesh

d3q

q2
|〈ns(q)|n〉|2Re

[
2nB(T ) + 1

ε�v − εqns
+ iδ

]
.

(A2)

Here IFr corresponds to Eq. (5) and IAd is the corresponding
adiabatic equation [these expressions are analogous to Eq. (2)
and (3) for the conduction band]. As a reminder, we use δ =
0.1 eV, the value that was used in the DFT calculation, and
� = 0.001 eV to calculate the principal value adequately. The
values of εqns

and ns(q) come from diagonalizing the matrix in
Eq. (4), so Eq. (5) can be readily calculated, albeit not having
an analytic expression as for the conduction band.

We study the convergence radius qc in the same way as we
did for the conduction band. At T = 0 we obtain qc = 2.5qmesh

(for larger radii, the correction changes by less than 1 meV).
At T = 1000 K, however, we observe a difference of 6 meV
between the correction at q = 2.5qmesh and the convergence
radius qc = 6.3qmesh. What occurs is that the absorption term
in the Fröhlich integral changes more with the radius of
integration than the emission term in IFr, and IAd. While the
absorption term does not contribute at T = 0 because it is
suppressed by nB(T ), it does at higher temperatures.

From Fig. 4 we see that the effective mass approximation
is accurate up to around qm∗ = 2.5qmesh = 0.13 2π/a for the
heavier masses, the same value we found for qc. For the lighter
mass, the effective mass approximation breaks down for a
smaller q, but the convergence radius is much smaller (as for
the conduction band). Varying the effective mass of the light
hole, we can see that the error introduced is less than 1 meV
(assuming a contribution of one third for each band; see the
following paragraph). Therefore, our method is accurate for the
valence band for temperatures below 500 K, and less accurate
for higher temperatures.

In the isotropic case, it is shown in [44] how the renormal-
ization is an average of the light and heavy holes at k = 0.
We can average the effective mass of each band over a sphere
using Eq. (4). We obtain m∗

1,av = 0.14me, m∗
2,av = 0.94me and

FIG. 4. Plot of the heavy and light holes in the (100) direction
(full lines) with their corresponding effective mass fit (dashed lines).
The dots indicate the sampling points in the ab initio calculation.

m∗
3,av = 1.72me. Assuming each band is isotropic, we can

calculate the renormalization by using the standard Fröhlich
result Eq. (2) for each band and then averaging over the
bands. Integrating from 0 to qF , with 0 < qF < 6.3qmesh, the
renormalization differs from Eq. (5) by less than 1 meV at
T = 0. At T = 1000 K they differ by 5 meV or less, depending
on the value of qF . Therefore, at T = 0 the renormalization can
be just calculated by averaging over the Fröhlich contribution
of the average effective masses. At higher temperatures, using
averaged isotropic masses is less accurate.

2. Piezopolaron

In a piezoelectric material, a strain induces a macroscopic
electric field. If the strain is produced by a long-wavelength
acoustic phonon, the coupled system of an electron and the
acoustic phonon is known as the piezopolaron [45]. It turns
out that, like the Fröhlich polaron effect, the piezopolaron
also causes a divergent intraband term at band extrema in the
adiabatic approximation. Adding an artificial iδ removes the
divergence, but does not correctly include the true nonadiabatic
behavior, namely, part of the acoustic contribution to zero-
point renormalization, and a new low T contribution scaling
as T 2 with a positive coefficient (increasing the gap at low
T ). This topic is covered in a separate paper in preparation
[46]. There we show that both the zero point contribution
and the high T contribution are quite small, and the T 2 term
only plays a dominant role at very low T . Therefore there is
no need to add an analytic correction for piezo effects to the
result obtained from adiabatic + iδ approximation. To clarify
a little, the formula for band renormalization from intraband
acoustic phonon processes, at a band extremum, is

[Ekv − εkv]acoustic,k=0

= 1

N

∑
qj

|〈q|V1(qj )|0〉|2

×
[

1 + nqj

−�2q2/2m∗ − �vjq
+ nqj

−�2q2/2m∗ + �vjq

]
,

(A3)
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where vj is the velocity of sound. This keeps the small q part
of the theory only. The piezoelectric matrix element is

〈q|V1(qj )|0〉 = − e

4πε̃0

q · em · (qδR)

q2ε∞
, (A4)

where δR is the acoustic vibration or acoustic phonon
amplitude and em is the electromechanical or piezoelectric
tensor (see [47] for a derivation). The acoustic phonon
displacement factor δR is

√
�/Mtotvjq. Therefore the squared

matrix element |〈q|V1(qs)|0〉|2 behaves as 1/q. The adia-
batic approximation replaces the factor [ ] by the approx-
imation −[(1 + 2nqj )/(�2q2/2m∗)]. Therefore, at low T ,

the sum over q becomes, at small q, − ∫
dqq2(1/q)[(1 +

2kBT /�vjq)/(�2q2/2m∗)]. This is valid for when the acoustic
phonon energy �vjq is smaller than kBT . The zero-point part
diverges logarithmically, and the thermal part as 1/q. The cor-
rect nonadiabatic version of this is

∫
dqq2(1/q)[−1/�vjq +

(2kBT /�vjq)(�2q2/2m∗)/(�vjq)2]. Both zero-point and ther-
mal parts converge as

∫
dq. It turns out that the differ-

ence between the true nonadiabatic contribution and the
artificially converged adiabatic part (adding +iδ in the
denominator) is small, except for a small (but interesting)
nonadiabatic T 2 term at very low T which has little effect at
higher T .
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