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We present detailed analytic calculations of finite-volume energy spectra, mean-field theory, as well as a
systematic low-energy effective field theory for the square lattice quantum dimer model. An emergent approximate
spontaneously broken SO(2) symmetry gives rise to a pseudo-Goldstone boson. Remarkably, this soft phononlike
excitation, which is massless at the Rokhsar-Kivelson (RK) point, exists far beyond this point. The Goldstone
physics is captured by a systematic low-energy effective field theory. We determine its low-energy parameters
by matching the analytic effective field theory with exact diagonalization results. This confirms that the model
exists in the columnar (and not in a plaquette or mixed) phase all the way to the RK point.
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I. INTRODUCTION

Despite the extensive work on high-temperature supercon-
ductivity during the past decades since their discovery [1],
understanding the mechanism of electron or hole pairing still
represents a major unsolved problem in condensed matter
physics. One of the various proposed scenarios is related to
the quantum dimer model that was introduced by Rokhsar and
Kivelson in Ref. [2]. It represents a simple realization of the
resonating valence bond (RVB) state, proposed by Anderson in
his pioneering paper [3], and provides a possible route towards
understanding high-temperature superconductivity. Quantum
dimer models have attracted a lot of attention over the years, as
they are also relevant beyond high-temperature superconduc-
tivity, e.g., in connection with deconfined quantum criticality
or topological order. Unraveling the phase structure of both the
classical and the quantum dimer model has been the subject of
many publications [4–16].

These studies include dimer models on both bipartite and
nonbipartite lattices, which are defined in spatial dimensions
d � 2. Quite surprisingly, even in the case of the simple
square lattice the question of which phases are realized as a
function of the Rokhsar-Kivelson (RK) parameter λ has been
controversial. This may even be more surprising in view of the
fact that Monte Carlo simulations of quantum dimer models
on the square lattice are not affected by the sign problem.
While some authors claimed that a plaquette phase arises
from a columnar phase in a first-order phase transition around
λ ≈ 0.6 [17], other studies found evidence for a mixed phase
for λ � 0, exhibiting features of both the columnar and the
plaquette phase [18].

In a recent study [19], using quantum Monte Carlo applied
to dual height variables as well as exact diagonalization, we
have challenged these various views. In particular, we pointed
out that there is no evidence for a plaquette or mixed phase in
the square lattice quantum dimer model—rather the columnar
phase extends all the way to the RK point at λ = 1. Moreover,
we showed that two external static charges ±2 are confined

by an electric flux string that fractionalizes into eight strands
carrying fractionalized flux 1

4 . Inside these strands, which
represent interfaces separating different columnar orders, we
found plaquette phase. However, the plaquette phase only
exists inside the strands and not in the bulk. Finally, as a
consequence of an approximate emergent SO(2) symmetry, we
found evidence for a soft pseudo-Goldstone boson that exists
in the parameter regime 0 � λ < 1, i.e., even far beyond the
RK point.

In the present article we complement our previous Monte
Carlo and exact diagonalzation results with detailed analytic
calculations of finite-volume energy spectra, mean-field the-
ory, as well as a systematic low-energy effective field theory
for the pseudo-Goldstone boson. Overall, we consolidate our
previous findings that contradict the earlier views on the phase
structure of the square lattice quantum dimer model. We would
like to point out that many of the analytical results of the
present manuscript never appeared in Ref. [19], hence are
new. In particular, one new Monte Carlo result with intriguing
physics is shown in present manuscript as well.

The paper is organized as follows. In section II we define
the quantum dimer model and discuss its symmetries on the
square lattice. We then introduce height variables on the dual
lattice, which have already been introduced in Ref. [19]. Here
we give a more detailed description, showing how to construct
these height variables, to make the current manuscript self-
contained. Notice on the one hand, these allow us to define
order parameters that distinguish the various candidate phases.
On the other hand, the dual height variables are the basic
degrees of freedom on which the Monte Carlo simulations
shown in Ref. [19] operate. We also emphasize the difference
of our height variables and those conventionally used in
the literature, since it forms the very basis of designing
the order parameters used to study the system. This would,
for example, also be useful for studying similar phases in
other lattice Hamiltonians, and is of more general interest
than the dimer model alone. Finally, in Sec. II, a systematic
mean-field analysis of the quantum dimer model is conducted
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FIG. 1. Definition of flux states (left) and typical flux configura-
tion on the square lattice U(1) quantum link model (right).

as well. In Sec. III, we investigate the finite-volume energy
spectrum as a diagnostic of the phase structure. Section IV
is dedicated to the low-energy effective field theory for the
soft pseudo-Goldstone mode and the corresponding rotor
spectrum. Some topics discussed in Secs. III and IV are
reproduced from Ref. [19] for the benefit of the readers. In
Sec. V, we present exact diagonalization results and use them
to estimate some low-energy parameters of the effective field
theory. In Sec. VI, we present new Monte Carlo data for the
confining strings in the columnar phase. Finally, in Sec. VII,
we present our conclusions. An appendix summarizes the
symmetry properties of the relevant order parameters.

II. MODEL AND OBSERVABLES

In this section, we consider the quantum dimer model and
discuss its symmetries on the square lattice. We then define
height variables on the dual lattice, which are the basic degrees
of freedom in our Monte Carlo simulations. They also serve to
construct order parameters that signal which phase is realized.
Finally, we perform a systematic mean-field analysis with the
intention to gain qualitative insight into this question.

A. Model

The Hamiltonian of the quantum dimer model coincides
with the Hamiltonian of the (2 + 1)-d U(1) quantum link model
[20–22]. However, the corresponding Gauss law is realized
differently. The Hamiltonian of both the U(1) quantum link
model and the quantum dimer model takes the form

H = −J
∑
�

[U� + U
†
� − λ(U� + U

†
�)2]. (2.1)

In the above Hamiltonian, the quantity U� = UwxUxyU
†
zyU

†
wz

represents a plaquette operator expressed in terms of quantum
links Uxy that connect the nearest-neighbor sites x and y

on the square lattice. A U(1) quantum link Uxy = S+
xy is a

raising operator of the electric flux Exy = S3
xy , which is built

from a quantum spin 1
2 associated with the link xy. In the

U(1) quantum link model, each link has two possible states
characterized by electric flux ± 1

2 , represented pictorially by
arrows as shown in Fig. 1. A typical flux configuration of the
U(1) quantum link model is depicted in the same figure.

Applying the Hamiltonian of Eq. (2.1) to a plaquette flux
state leads to the results shown in Fig. 2. In summary, the
first contribution to the Hamiltonian (2.1), proportional to the

H1 = H2 =

H1 = H2 =

FIG. 2. The results of applying the Hamiltonian of Eq. (2.1) to
some plaquette flux states. Here, H1 and H2 represent the terms
in Eq. (2.1) proportional to J and Jλ, respectively. When the
Hamiltonian acts on other plaquette configurations (which are not
shown explicitly) the result vanishes.

parameter J , flips a loop of flux that winds around a plaquette.
Flux states that do not correspond to closed flux loops are
referred to as nonflippable plaquettes, which are annihilated by
the Hamiltonian. On the other hand, the second contribution
to the Hamiltonian (2.1), proportional to the RK parameter
λ, counts the plaquettes that are flippable. Notice that the
configurations of the square lattice quantum dimer model are
characterized in terms of variables Dxy ∈ {0,1}, which signal
whether a dimer is present or absent on the link that connects
two neighboring sites x and y. In addition, the electric flux
variables Exy can be expressed through the dimer variables
Dxy as

Exy = (−1)x1+x2
(
Dxy − 1

2

)
. (2.2)

This mapping between a dimer and a flux configuration of the
quantum dimer model is illustrated in Fig. 3.

Notice that, in the U(1) quantum link model, the physical
state |ψ〉 satisfies

Gx |ψ〉 = 0, (2.3)

where the quantity

Gx =
∑

i

(Ex,x+î − Ex−î,x) (2.4)

commutes with the Hamiltonian and describes an infinitesimal
U(1) gauge transformation. Here, î is the unit vector in the i

direction. Equation (2.3) represents the Gauss law for the U(1)
quantum link model. In the quantum dimer model, using the
connection between the electric flux and the dimer variables,

FIG. 3. Mapping between dimer and flux configurations.
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one has

Gx = (−1)x1+x2
∑

i

(Dx,x+î + Dx−î,x) = (−1)x1+x2 . (2.5)

In other words, the dimer covering constraint implies that
the quantum dimer model is characterized by background
electric charges ±1 that are arranged in a staggered pattern.
Accordingly, physical states in the quantum dimer model
satisfy

Gx |�〉 = (−1)x1+x2 |�〉. (2.6)

B. Symmetries

The quantum dimer model on the square lattice exhibits
various symmetries. We first have a continuous U(1) gauge
symmetry and a global U(1)2 center symmetry. The latter
is associated with “large” gauge transformations [23]. The
model also has various discrete global symmetries. These
include translations by one lattice vector followed by charge
conjugation (CTx and CTy), which are equivalent to ordinary
translations of the dimers Dxy . Note that charge conjugation
changes the sign of all electric flux variables. It is important
to point out that, in contrast to the quantum link model, the
transformations Tx, Ty , and C individually are not symmetries
of the quantum dimer model because they are explicitly
violated by the Gauss law. Furthermore, we have 90◦ rotations
around a plaquette corner (O), 90◦ rotations around a plaquette
center followed by charge conjugation (CO ′), and finally,
reflections on the x and y axes (Rx and Ry). Below we will
construct order parameters that will help us to determine which
phases are realized in the square lattice quantum dimer model.
It is then crucial to know how these different order parameters
transform under the various symmetries (see Sec. II D and
Appendix).

C. Dual height variables

In this section, we introduce height variables that reside
on the dual lattice. This height representation of the quantum
dimer model is essential in our approach. It allows us, on
the one hand, to design cluster and Metropolis algorithms
that operate in the space of these height variables and, on the
other hand, to construct order parameters to unambiguously
distinguish the various phases.

As illustrated in Fig. 4, in the case of the square lattice
quantum dimer model, we define four dual sublattices A,B,C,
and D, which consist of the points

x̃ = (
x1 + 1

2 ,x2 + 1
2

)
. (2.7)

Each of the dual sublattices X carries dual height variables hX

that take the values

h
A,D
x̃ = 0,1, h

B,C
x̃ = ± 1

2 . (2.8)

When defining the height variables on the dual lattice, we
will encounter an additional complication compared to the
U(1) quantum link model, which is due to the fact that the
Gauss law is realized differently in these two models. This
further complication requires the introduction of so-called
Dirac strings, in order to consistently relate the height variables
hX

x̃ with the electric fluxes Ex,y . These Dirac strings are located

C C C

C C C

C C C

B B B

B B B

B B B

D D D

D D D

D D D

A A A

A A A

A A A

FIG. 4. The four dual sublattices A, B, C, and D used in the
construction of the height variables hA,B,C,D .

in a staggered fashion on the vertical links and are denoted by
empty squares on the links (see Fig. 5).

The quantities hA,B,C,D , residing at the sites of a dual
sublattice, are related to the electric flux variables on the links
by

Ex,x+1̂ = [
hX

x̃ − hX′
x̃−2̂

]
mod2 = ± 1

2 ,

Ex,x+2̂ = (−1)x1+x2
[
hX

x̃ − hX′
x̃−1̂

]
mod2 = ± 1

2 ,

X,X′ ∈ {A,B,C,D}. (2.9)

Note that whenever (−1)x1+x2 = −1, it indicates the presence
of a Dirac-string on the relevant vertical link. The correspond-
ing height representation and the flux representation for a
columnar dimer configuration is illustrated in Fig. 5. Beside
the height and flux variables, we have also marked positive
and negative background charges (filled and empty circles) as
well as the Dirac strings (empty squares).

It should be noted that this construction of height variables
is new and fundamentally different from other height variables
definitions that have been introduced in the literature, in
particular, the one described in the review paper of Moessner
and Raman [24]. In addition, there is no obvious connection
between our height variables and that built by Zheng and
Sachdev as well [25]. For instance, in our construction the
height variables take only four values: 0, 1, and ±1/2. On the

C C

C C

B B

B B

D D

D D

A A

A A

+1
2 0 −1

2 1

0 −1
2 1 +1

2

+1
2 0 −1

2 1

0 −1
2 1 +1

2

FIG. 5. The mapping between the dimer configuration and the
corresponding flux and height representation for a columnar quantum
dimer configuration.
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(a)
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3.
columnar mixed staggered

0.0 1.0

2.
columnar plaquette staggered

0.6

1.
columnar staggered

λ

FIG. 6. Established and conjectured phases for the square lattice
quantum dimer model: (a) Columnar, (b) plaquette, (c) staggered
order on the dual sublattices A, B, C, and D. (d) Phase diagram
for the square lattice quantum dimer model as a function of the RK
parameter λ: three different scenarios. This figure is reproduced from
Ref. [19] for the benefit of the readers.

other hand, with the conventional methods they are always
labeled with integers and can take many more values. Our
height variables take much fewer values than the conventional
ones, because they provide an exact representation of the dimer
model Hilbert space.

D. Order parameters and candidate phases

In this section, we review four order parameters in terms
of the height variables that we introduced in [19]. Each of
the four candidate phases—staggered, columnar, plaquette or
mixed—can then be unambiguously identified by the specific
values these order parameters take in the different phases.

Let us first discuss the various phases that have been
established or conjectured for the square lattice quantum
dimer model. Intuitively, in the limit λ → −∞, the system
maximizes the number of flippable plaquettes. On the square
lattice, such a state can be obtained by arranging the dimers
in a columnar pattern as depicted in Fig. 6(a). Note that
we are dealing with fourfold degeneracy: the four columnar
configurations are related by translations or rotations.

On the other hand, in the opposite limit λ → +∞, the
system minimizes the number of flippable plaquettes. On
the square lattice, such a state can be obtained by arranging
the dimers in a staggered pattern, shown in Fig. 6(c). The
four degenerate staggered phases are related by discrete
transformations.

Another candidate phase is the so-called plaquette arrange-
ment of dimers, which is also fourfold degenerate, and is
illustrated in Fig. 6(b). In this phase, pairs of parallel dimers
oriented in both possible directions resonate on the plaquettes
belonging to one of the four sublattices A, B, C, and D.

Finally, on the square lattice, another conjectured phase
is the so-called mixed phase which is eightfold degenerate
and corresponds to a superposition of quantum dimer states,
sharing features of both the columnar and the plaquette phase.

Apart from the established columnar and staggered phases
in the limits λ → −∞ and λ → +∞, respectively, the
question of which phases are realized between these two points
of reference—and what type of associated phase transitions
might exist—has remained controversial. In Ref. [19], we have
challenged the various conflicting scenarios that have been
proposed in earlier studies [17,18] and are depicted in Fig. 6(d).
An important point of reference is the RK point (λ = 1) where
the model is exactly solvable. Away from the RK point, the
situation becomes less clear. Using Green’s function Monte
Carlo simulations, the author of Ref. [17] concludes that on the
square lattice there is a phase transition between the columnar
and plaquette phase around λ ≈ 0.6 [scenario 2 in Fig. 6(d)].
However, this view is not shared by Ref. [18], which favors
a mixed phase for λ � 0 according to their Green’s function
Monte Carlo analysis [scenario 3 in Fig. 6(d)]. Based on our
new order parameters and a novel Monte Carlo technique we
concluded that the system exists in a columnar phase all the
way up to the RK point [scenario 1 in Fig. 6(d)]. In particular,
we found no evidence for plaquette or mixed phases.

For completeness, we now review the four order parameters
whose construction is based on the dual height representation.
Remember that we have two sets of height variables, the first
one associated with the even sublattices A and D, the second
one related to the odd sublattices B and C (see Fig. 4).

We first define four auxiliary order parameters MA, MB,

MC, and MD as

MX =
∑
x̃∈X

sX
x̃ hX

x̃ , (2.10)

with

sA
x̃ = sC

x̃ = (−1)(̃x1+ 1
2 )/2, if x̃1 + 1

2 even,

sB
x̃ = sD

x̃ = (−1)(̃x1− 1
2 )/2, if x̃1 + 1

2 odd. (2.11)

Remember that the height variables on the various sublattices
take the values

h
A,D
x̃ = 0,1, h

B,C
x̃ = ± 1

2 . (2.12)

We then form the linear combinations:

M11 = MA − MB − MC + MD = M1 cos ϕ1,

M22 = MA + MB − MC − MD = M1 sin ϕ1,

M12 = MA − MB − MC − MD = M2 cos ϕ2,

M21 = −MA + MB − MC − MD = M2 sin ϕ2, (2.13)

which define the order parameters M11, M12, M21, and M22

that are more appropriate to distinguish the phases. The two
angles ϕ1 and ϕ2 define the angle

ϕ = 1

2

(
ϕ1 + ϕ2 + π

4

)
. (2.14)

In the columnar phase this angle amounts to ϕ = 0 mod π
4 ,

while in the plaquette phase it takes the value ϕ = π
8 modπ

4 .
Note that the order parameter values ±(MA,MB,MC,MD),
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FIG. 7. The four candidate phases—columnar, plaquette, mixed,
staggered—can unambiguously be distinguished by their character-
istic order parameter distributions. This figure is reproduced from
Ref. [19] for the benefit of the readers.

and therefore ϕ and ϕ + π , represent the same physical dimer
configuration, because a dimer configuration is invariant under
a shift of the height variables,

hX
x̃ (t)′ = [

hX
x̃ (t) + 1

]
mod2. (2.15)

As illustrated in Fig. 7, each of the four phases—columnar,
plaquette, mixed, staggered—is characterized by its specific
order parameter pattern. While there are four columnar phases
(1,2,3,4) and four plaquette phases (A, B, C, and D), there are
eight realizations of the mixed phase (A1, A2, B2, B3, C3, C4,
D4, D1). The mixed phases share features of both the columnar
and the plaquette phases. For instance, in a hypothetical phase
transition between a columnar and a mixed phase, a peak in
the order parameter distribution of the columnar phase would
split into two individual peaks: the columnar peak 1 would split
into the peaks D1 and A1 referring to the mixed phase, etc. On
the other hand, in a hypothetical phase transition between a
mixed and a plaquette phase, two peaks in the order parameter
distribution of the mixed phase would merge pairwise into one
peak referring to the plaquette phase: the mixed peaks A1 and
A2 would merge into the plaquette peak A, etc. As we will
elaborate in more detail below, in our numerical simulations
no such splitting or merging of peaks is detected.

For completeness, in an appendix, we show how the
four order parameters transform under the symmetries
CT x, CT y, O, CO ′, Rx , and Ry of the square lattice
quantum dimer model and how the different symmetries
CT x, CT y, O, CO ′, Rx, and Ry act on the columnar,
plaquette, and mixed phases, respectively.

It should be pointed out that the specific phases that are
actually realized, depend on both the lattice geometry and
the spatial dimension. While we restrict ourselves to the
(two-dimensional) square lattice, more complicated phases
are indeed possible on other lattices. On nonbipartite lattices,
in two or higher spatial dimensions, a Z2 resonance valence
bond liquid phase is formed [26–28]. This is a phase with Z2

topological order, characterized by fourfold degenerate gapped
ground states in the case of two-dimensional lattices with
periodic boundary conditions. In particular, it has nontrivial
excitations and represents a liquid phase because all dimer
correlations decay exponentially. Another example is the U(1)
resonating valence bond liquid phase that is possible on bipar-

tite lattices and in spatial dimensions three or higher [29–31].
Even more complex phases include, e.g., the

√
12 × √

12
phase, which appears to be realized on the triangular lattice
[28,32].

E. Mean-field theory

Using mean-field theory, in this section, we address the
question which phases in the square lattice quantum dimer
model may be realized in the vicinity of the RK point. Follow-
ing the Ginsburg-Landau-Wilson paradigm, we formulate an
effective action for the system in terms of the order parameters
M11, M12, M21, and M22, defined in Eq. (2.13). The most
general expression up to quartic order that respects all the
symmetries of the underlying quantum dimer model, is given
by

V = μ1O1 + μ2O2 + ν0O1O2 +
5∑

i=1

νi |Oi |2,

O1 = M2
11 + M2

22 + M2
12 + M2

21,

O2 = M11M12 − M11M21 + M22M12 + M22M21,

O3 = M2
11 + M2

22 − M2
12 − M2

21,

O4 = M11M12 + M11M21 − M22M12 + M22M21,

O5 = M11M22 + iM12M21. (2.16)

We have two quadratic and six quartic operators, i.e., a total
of eight parameters μ1,μ2,ν0, . . . ,ν5. Each of the terms in the
effective potential is invariant under the discrete symmetries,
i.e., under O, CO ′, Rx, Ry, CTx , and CTy .

We perform a systematic analysis of the minima of the
potential V in the infinitesimal neighborhood of the staggered
phase which begins at the RK point, and is characterized
by M11 = M12 = M21 = M22 = 0. Since the staggered phase
corresponds to a stable minimum, we first diagonalize the mass
squared matrix M:

μ1O1 + μ2O2

= (M11,M12,M21,M22) M (M11,M12,M21,M22)T (2.17)

near this point. All eigenvalues turn out to be positive if the
two conditions

μ1 + μ2√
2

> 0, μ1 − μ2√
2

> 0, (2.18)

are satisfied. Assuming μ1,μ2 > 0, we obtain two zero
eigenvalues if μ2 = √

2μ1. The corresponding eigenvectors
v1 and v2 define the xy plane of vectors v parametrized by⎛

⎜⎜⎜⎜⎝
x√
2

1
2 (y − x)
1
2 (y + x)

− y√
2

⎞
⎟⎟⎟⎟⎠. (2.19)

This plane corresponds to the flat directions in which the
staggered phase is about to become unstable. Let us therefore
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evaluate the quartic potential along these flat directions. The
calculation shows that the potential can be reduced to the
simple form

V (x,y) =
(

μ1 − μ2√
2

)
(x2 + y2)

+
(
− ν0√

2
+ ν1 + ν2

2
+ ν5

16

)
(x2 + y2)

2

= μ(x2 + y2) + ν(x2 + y2)
2
. (2.20)

The minima of the potential V form a circle of radius r =√
x2 + y2 with r2 = −μ/2ν. Parametrizing the vacuum circle

by an angle φ as x = r cos φ,y = r sin φ, we get⎛
⎜⎜⎜⎝

r√
2

cos φ
r
2 (sin φ − cos φ)
r
2 (sin φ + cos φ)

− r√
2

sin φ

⎞
⎟⎟⎟⎠. (2.21)

We now derive general conditions for the minima of the
full potential V displayed in Eq. (2.16). After a lengthy,
but otherwise trivial calculation, for the columnar phase,
characterized by M22 = 0 and M21 = −M12, the potential at a
columnar minimum amounts to

V (M11,M12,−M12,0) = μ1

2

(
M2

11 + 2M2
12

) + μ2M11M12.

(2.22)

An analogous calculation for the plaquette phase, character-
ized by M12 = M11 and M21 = −M22, shows that the potential
at a plaquette minimum corresponds to

V (M11,M11,−M22,M22)

= μ1
(
M2

11 + M2
22

) + μ2

2

(
M2

11 − M2
22 + 2M11M22

)
.

(2.23)

However, it turns out that these two points, along with the six
additional points that correspond to the other columnar and
plaquette phases, all have the same energy on the circle of
minima, Eq. (2.21). Hence, in order to decide which phase—
columnar or plaquette—is in fact favored, we have to perturb
around these minima.

A stability analysis shows that there are indeed unstable
directions, associated with negative eigenvalues of the mass
squared matrix of the second derivatives. In fact, both the
columnar and the plaquette phase can be associated with
negative eigenvalues and the energy of both phases can be
lowered by proceeding into the unstable directions. However,
the relative energies of the phases reached in this way are
very sensitive to the parameters νi that are unknown. The
mean-field analysis hence does not lead to a conclusive answer
of which phase—columnar or plaquette—is preferred near the
RK point. Symmetries alone do not favor one of these two
candidate phases over the other. We are thus dealing with a
truly dynamical question which has to be explored with more
elaborate methods such as Monte Carlo simulations. One may
wonder whether a perturbation calculation in δ at the RK point
will lead to a definite result of which phase(s) is (are) realized
close to the RK point. We believe the mean-field analysis

carried out here is more suitable than a perturbation expansion
to address the stability of phases. Hence such a study based
on a perturbation expansion at the RK point is left for future
investigation.

III. LOW-ENERGY SPECTRUM IN FINITE VOLUME

In this section, we consider the lowest states in the
finite-volume energy spectrum associated with the columnar,
plaquette, and mixed phases, respectively. This will be useful
for identifying the phase structure based on numerical results
obtained by exact diagonalization studies.

A. Low-energy spectrum in the columnar phase

Let us first consider the finite-volume energy spectrum
in the columnar phase. The four columnar phases give rise
to four almost degenerate eigenstates, which can be chosen
as simultaneous eigenstates of the 90◦ rotation O with
eigenvalues +1,−i,+i,−1 as

|+1〉 = 1
2 (|1〉 + |2〉 + |3〉 + |4〉),

|−i〉 = 1
2 (|1〉 + i|2〉 − |3〉 − i|4〉),

|+i〉 = 1
2 (|1〉 − i|2〉 − |3〉 + i|4〉),

|−1〉 = 1
2 (|1〉 − |2〉 + |3〉 − |4〉), (3.1)

with

O |+1〉 = |+1〉, O |−i〉 = −i|−i〉,
O |+i〉 = i|+i〉, O |−1〉 = −|−1〉. (3.2)

Under the other discrete symmetries, these states transform as

CO ′ |+1〉 = |+1〉, CO ′ |−i〉 = −i|+i〉,
CO ′ |+i〉 = i|−i〉, CO ′ |−1〉 = −|−1〉,
CTx |+1〉 = |+1〉, CTx |−i〉 = |+i〉,
CTx |+i〉 = |−i〉, CTx |−1〉 = |−1〉,
CTy |+1〉 = |+1〉, CTy |−i〉 = −|+i〉,
CTy |+i〉 = −|−i〉, CTy |−1〉 = |−1〉. (3.3)

Besides |±1〉, we can also construct linear combinations of
|±i〉, which are eigenstates of CTx and CTy such that

CTx |+1〉 = |+1〉,
CTx

1√
2

(|+i〉 ± |−i〉) = ± 1√
2

(|+i〉 ± |−i〉),

CTx |−1〉 = |−1〉,
CTy |+1〉 = |+1〉,

CTy

1√
2

(|+i〉 ± |−i〉) = ∓ 1√
2

(|+i〉 ± |−i〉),

CTy |−1〉 = |−1〉. (3.4)

This implies that in the columnar phase, in a finite volume
there are four almost degenerate ground states with (CTx,CTy)
quantum numbers (+,+), (+,−), (−,+), (+,+).
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FIG. 8. A pictorial representation of the transition amplitudes
appearing in Eq. (3.5). The numbers 1, 2, 3, and 4 represent the four
columnar phases.

These four states are eigenstates of a reduced transfer matrix

T = exp(−βH ) =

⎛
⎜⎝

A B C B

B A B C

C B A B

B C B A

⎞
⎟⎠. (3.5)

Here, A, B, and C are transition amplitudes connecting the
various phases. The corresponding transfer matrix eigenvalues
are

exp(−βE+1) = A + 2B + C,

exp(−βE±i) = A − C,

exp(−βE−1) = A − 2B + C. (3.6)

Notice only three transition amplitudes appear in Eq. (3.5).
This is because the transitions from |+1〉 to |i〉 and |+1〉
to |−i〉 are of the same type. A pictorial representation for
each transition amplitude is depicted in Fig. 8. Using a
dilute instanton gas approximation, one can derive analytic
expressions for the transfer matrix elements A, B, and C.
There are instantons that represent tunneling events between
the phases 1 or 3 to 2 or 4. These instantons have a Boltzmann
weight δ⊥ exp(−α⊥LxLy). In addition, there are instantons
connecting the phases 1 with 3, as well as 2 with 4. These
have a Boltzmann weight δ‖ exp(−α‖LxLy). The factors δ⊥
and δ‖ describe capillary wave fluctuations of the instantons.
Denoting the free energy in a bulk phase by f , an additional
Boltzmann factor exp(−βf LxLy) arises as well. The explicit
calculation for A,B,C then yields the following expressions
for the exponentially small energy gaps:

E±i − E+1 = 2δ⊥ exp(−α⊥LxLy) + 2δ‖ exp(−α‖LxLy),

E−1 − E+1 = 4δ⊥ exp(−α⊥LxLy). (3.7)

In this calculation, we have assumed that the interfaces that
correspond to a 1-3 (or 2-4) instanton with an interface tension
α‖ are not completely wet by the other phases 2, 4 (or 1, 3). This
assumption implies α‖ < 2α⊥. Antonov’s rule [34] excludes
α‖ > 2α⊥, because interfaces with tension α‖ would then be
unstable against the decay into two interfaces with tension
α⊥. This is the situation of complete wetting. Interfaces with
tension α‖ then simply do not exist and the corresponding
equations turn into

E±i − E+1 = 2δ⊥ exp(−α⊥LxLy),

E−1 − E+1 = 4δ⊥ exp(−α⊥LxLy) = 2(E±i − E+1). (3.8)

Equidistant level spacings are characteristic for complete
wetting. At least for λ → −∞, one indeed expects complete
wetting.

B. Low-energy spectrum in the plaquette phase

We now consider the finite-volume energy spectrum in the
plaquette phase. Similar to the analysis in the columnar phase,
we define the four plaquette eigenstates as

|+1〉′ = 1
2 (|A〉 + |B〉 + |C〉 + |D〉),

|−i〉′ = 1
2 (|A〉 + i|B〉 − |C〉 − i|D〉),

|+i〉′ = 1
2 (|A〉 − i|B〉 − |C〉 + i|D〉),

|−1〉′ = 1
2 (|A〉 − |B〉 + |C〉 − |D〉). (3.9)

Under the discrete symmetries they transform as

O |+1〉′ = |+1〉′, O |−i〉′ = −i|−i〉′,
O |+i〉′ = i|+i〉′, O |−1〉′ = −|−1〉′,

CO ′ |+1〉′ = |+1〉′, CO ′ |−i〉′ = −|+i〉′,
CO ′ |+i〉′ = −|−i〉′, CO ′ |−1〉′ = |−1〉′,
CTx |+1〉′ = |+1〉′, CTx |−i〉′ = −i|+i〉′,
CTx |+i〉′ = i|−i〉′, CTx |−1〉′ = −|−1〉′,
CTy |+1〉′ = |+1〉′, CTy |−i〉′ = i|+i〉′,
CTy |+i〉′ = −i|−i〉′, CTy |−1〉′ = −|−1〉′. (3.10)

Besides | ± 1〉′, we can also construct linear combinations of
| ± i〉′, which are eigenstates of CTx and CTy such that

CTx |+1〉′ = |+1〉′,
CTx

1√
2

(|+i〉′ ± i|−i〉′) = ± 1√
2

(|+i〉′ ± i|−i〉′),

CTx |−1〉′ = −|−1〉′,
CTy |+1〉′ = |+1〉′,

CTy

1√
2

(|+i〉′ ± i|−i〉′) = ∓ 1√
2

(|+i〉′ ± i|−i〉′),

CTy |−1〉′ = −|−1〉′. (3.11)

Like in the columnar phase, in the plaquette phase there are
four almost degenerate ground states. However, in contrast to
the columnar phase, their (CTx,CTy) quantum numbers are
(+,+), (+,−), (−,+), and (−,−). In particular, the quantum
numbers of the third excited state are different in the two cases.
The calculation of the energy spectrum in the plaquette phase
is the same as in the columnar phase and shall not be repeated
here.

C. Low-energy spectrum in the mixed phase

Finally we discuss the lowest states in the finite-volume
energy spectrum of the mixed phase. Here we have a total of
eight states that become degenerate in the infinite volume limit,
with exponentially small gaps at finite volume. Let us construct
the states as eigenstates of an explicitly broken and thus only
approximate Z(8) symmetry. Defining z = exp(2πi/8), we
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obtain

|+1〉′′ = 1√
8

(|A1〉 + |A2〉 + |B2〉 + |B3〉 + |C3〉 + |C4〉 + |D4〉 + |D1〉),

|z〉′′ = 1√
8

(|A1〉 + z|A2〉 + i|B2〉 + z3|B3〉 − |C3〉 + z5|C4〉 − i|D4〉 + z7|D1〉),

|+i〉′′ = 1√
8

(|A1〉 + i|A2〉 − |B2〉 − i|B3〉 + |C3〉 + i|C4〉 − |D4〉 − i|D1〉),

|z3〉′′ = 1√
8

(|A1〉 + z3|A2〉 − i|B2〉 + z|B3〉 − |C3〉 + z7|C4〉 + i|D4〉 + z5|D1〉),

|−1〉′′ = 1√
8

(|A1〉 − |A2〉 + |B2〉 − |B3〉 + |C3〉 − |C4〉 + |D4〉 − |D1〉),

|z5〉′′ = 1√
8

(|A1〉 + z5|A2〉 + i|B2〉 + z7|B3〉 − |C3〉 + z|C4〉 − i|D4〉 + z3|D1〉),

|−i〉′′ = 1√
8

(|A1〉 − i|A2〉 − |B2〉 + i|B3〉 + |C3〉 − i|C4〉 − |D4〉 + i|D1〉),

|z7〉′′ = 1√
8

(|A1〉 + z7|A2〉 − i|B2〉 + z5|B3〉 − |C3〉 + z3|C4〉 + i|D4〉 + z|D1〉).

(3.12)

This gives rise to the following transformation rules:

O |+1〉′′ = |+1〉′′, O |z〉′′ = −i|z〉′′, O |+i〉′′ = −|+i〉′′, O |z3〉′′ = i|z3〉′′,
O |−1〉′′ = |−1〉′′, O |z5〉′′ = −i|z5〉′′, O |−i〉′′ = −|−i〉′′, O |z7〉′′ = i|z7〉′′,

CO ′ |+1〉′′ = |+1〉′′, CO ′ |z〉′′ = z5|z7〉′′, CO ′ |+i〉′′ = i|−i〉′′, CO ′ |z3〉′′ = z7|z5〉′′,
CO ′ |−1〉′′ = −|−1〉′′, CO ′ |z5〉′′ = z|z3〉′′, CO ′ |−i〉′′ = −i|+i〉′′, CO ′ |z7〉′′ = z3|z〉′′,
CTx |+1〉′′ = |+1〉′′, CTx |z〉′′ = z7|z7〉′′, CTx |+i〉′′ = −i|−i〉′′, CTx |z3〉′′ = z5|z5〉′′,
CTx |−1〉′′ = −|−1〉′′, CTx |z5〉′′ = z3|z3〉′′, CTx |−i〉′′ = i|+i〉′′, CTx |z7〉′′ = z|z〉′′,
CTy |+1〉′′ = |+1〉′′, CTy |z〉′′ = z3|z7〉′′, CTy |+i〉′′ = −i|−i〉′′, CTy |z3〉′′ = z|z5〉′′,
CTy |−1〉′′ = −|−1〉′′, CTy |z5〉′′ = z7|z3〉′′, CTy |−i〉′′ = i|+i〉′′, CTy |z7〉′′ = z5|z〉′′. (3.13)

By construction, the eight states are eigenstates of the
approximate continuous U(1) symmetry U restricted to Z(8),

U |+1〉′′ = |+1〉′′, U |z〉′′ = z|z〉′′,
U |+i〉′′ = i|+i〉′′, U |z3〉′′ = z3|z3〉′′,
U |−1〉′′ = −|−1〉′′, U |z5〉′′ = z5|z5〉′′,
U |−i〉′′ = −i|−i〉′′, U |z7〉′′ = z7|z7〉′′. (3.14)

The symmetries CTx, CTy, and CO ′ have |+1〉′′ and |−1〉′′
unmixed, and they mix |+i〉′′ with |−i〉′′, |z〉′′ with |z7〉′′ =
|z∗〉′′, and |z3〉′′ with |z5〉′′ = |z3∗〉′′. The energy spectrum will
thus contain two nondegenerate states, as well as three pairs
of twofold degenerate states. We do not explicitly work out
the energy spectrum, but point out that in a mixed phase eight
finite-volume states become degenerate in the infinite volume
limit, while for the columnar or plaquette phase only four states
become degenerate.

IV. LOW-ENERGY EFFECTIVE THEORY

In Ref. [19], we found strong numerical evidence for an
emergent soft pseudo-Goldstone mode at and below the RK

point. In this section, we discuss the theoretical concepts
underlying our numerical analysis that we present in the next
section. These include the effective field description of the
pseudo-Goldstone boson mode and the energy spectrum in
a finite volume. It should be pointed out that the content
of Sec. IV A overlaps with relevant material discussed in
Ref. [19]. For completeness and for the benefit of the readers,
these discussions are included in Sec. IV A of the current
manuscript.

A. Goldstone boson fields, symmetries, Lagrangian

The basic degree of freedom in the effective theory—the
soft pseudo-Goldstone mode—is parametrized by the angle
ϕ = 1

2 (ϕ1 + ϕ2 + π
4 ). Note that the angles ϕ1 and ϕ2 have been

defined in Eq. (2.13). Under the various symmetries, the angle
ϕ transforms as

CTx ϕ = π − ϕ, CTy ϕ = π

2
− ϕ,

Oϕ = π

4
+ ϕ, CO ′

ϕ = −π

4
− ϕ. (4.1)
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The leading Euclidean effective Lagrangian takes the form

L = ρ

2

(
1

c2
∂tϕ∂tϕ + ∂iϕ∂iϕ

)
+ κ(∂i∂iϕ)2 + δ cos2(4ϕ),

(4.2)
which is identical with the effective Lagrangian of the (2 + 1)-
dimensional RP (1) model. Note that the angles ϕ and ϕ + π

are indistinguishable, such that the physical Hilbert space only
contains states that are invariant under this shift.

While ρ is the spin stiffness, the quantity c is the limiting
velocity of the pseudo-Goldstone boson. The term proportional
to the low-energy effective constant δ explicitly breaks the
emergent SO(2) symmetry to the discrete subgroup Z(8).
Accordingly, we are dealing with a light pseudo-Goldstone
mode with mass

Mc = 4
√

2|δ|/ρ. (4.3)

At the RK point (λ = 1), all flux configurations cost zero
energy in their ground state. This implies that the individual
effective couplings δ and ρ (but not the ratio ρ/c2) are zero.
Note that the condition ρ = 0 at the RK point is an analytic
result which does not require any fine-tuning. In this case, the
quartic kinetic term proportional to κ becomes the dominant
contribution. Remarkably, ∂i∂iϕ = 0 for all configurations of
static external charges in their ground state, such that this term
indeed does not contribute any ground state energy. This is not
true for the term

∑
i=1,2 ∂i∂iϕ∂i∂iϕ. Hence, such a term cannot

arise at the RK point, but it can arise away from it. Also all
terms in the potential energy vanish at the RK point.

B. Rotor spectrum

Let us first consider the spectrum of vacuum states in a
periodic volume L1 × L2 at δ = 0. At zero temperature, to
lowest order, we may assume ϕ(x,t) = ϕ(t), i.e., the low-
energy dynamics reduces to the one of the spatial zero-mode,
which represents a single quantum mechanical degree of
freedom. The action then reduces to

S[ϕ] =
∫

dt

[
ρL1L2

2c2
∂tϕ∂tϕ + δL1L2 cos2(4ϕ)

]
, (4.4)

and the corresponding quantum mechanical Hamilton operator
is given by

Heff = − c2

2ρL1L2
∂2
ϕ + δL1L2 cos2(4ϕ) . (4.5)

At δ = 0, this describes a free “particle” on a circle. The
corresponding energy eigenstates and eigenvalues are

ψm(ϕ) = 1√
2π

exp(imϕ) , Em = m2c2

2ρL1L2
. (4.6)

Since ϕ and ϕ + π are physically equivalent, m is restricted to
even integers.

Let us consider the effects of small δ in perturbation theory.
The ground state with m = 0 is nondegenerate and has a
constant wave function

ψ0(ϕ) = 1√
2π

. (4.7)

Its energy shift is

E
(1)
0 = δL1L2〈ψ0| cos2(4ϕ)|ψ0〉 = δL1L2

2
. (4.8)

The excited states with m = ±2,±4, . . . are twofold degener-
ate. Their energy shifts result from

Vm,m = V−m,−m = δL1L2

2
,

Vm,−m = V−m,m = δL1L2

16π

[
sin(2(m − 4)ϕ)

m − 4
+ 2 sin(2mϕ)

m

+ sin(2(m + 4)ϕ)

m + 4

]2π

0

. (4.9)

The case m = ±4 thus needs to be considered separately. Since

lim
m→±4

Vm,−m = δL1L2

4
, (4.10)

the corresponding energy shift takes the form

E
(1)
4± = δL1L2

2
± δL1L2

4
, (4.11)

and the previously degenerate energy levels split,

E±4 − E0 = 8c2

ρL1L2
± δL1L2

4
. (4.12)

This formula is only valid in the regime

δL1L2 � c2

ρL1L2
. (4.13)

For m = ±2,±6,±8, . . . , there is no such effect and we simply
have

E±m − E0 = m2c2

2ρL1L2
. (4.14)

We now turn to second-order perturbation theory in δ. Note
that the leading-order correction to the higher excited states
m = ±2,±4, . . . only arises at order δ2. To avoid degenerate
perturbation theory, we separately consider even and odd wave
functions. We begin with the even wave functions

ψe
m(ϕ) = 1√

π
cos(mϕ), Em = m2c2

2ρL1L2
, ψe

0 (ϕ) = 1√
2π

.

(4.15)

With the matrix elements, m,n > 0,

〈m|V (ϕ)|n〉 = δL1L2

π

∫ 2π

0
dϕ cos(mϕ) cos2(4ϕ) cos(nϕ) ,

(4.16)

we obtain

E
even,(2)
0 =−

∑
n�=0

|〈0|V (ϕ)|n〉|2
En − E0

=−|〈0|V (ϕ)|8〉|2
E8 − E0

= −δ2ρL3
1L

3
2

256c2
,
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E
even,(2)
2 =−

∑
n�=2

|〈2|V (ϕ)|n〉|2
En − E2

=−|〈2|V (ϕ)|6〉|2
E6 − E2

− |〈2|V (ϕ)|10〉|2
E10 − E2

= −δ2ρL3
1L

3
2

192c2
,

E
even,(2)
4 =−

∑
n�=4

|〈4|V (ϕ)|n〉|2
En − E4

= −|〈4|V (ϕ)|12〉|2
E12 − E4

= −δ2ρL3
1L

3
2

1024c2
. (4.17)

Analogously, for the odd wave functions (m,n > 0),

ψo
m(ϕ) = 1√

π
sin(mϕ) , Em = m2c2

2ρL1L2
, (4.18)

and with

〈m|V (ϕ)|n〉 = δL1L2

π

∫ 2π

0
dϕ sin(mϕ) cos2(4ϕ) sin(nϕ) ,

(4.19)

second-order perturbation theory leads to

E
odd,(2)
2 =−

∑
n�=2

|〈2|V (ϕ)|n〉|2
En − E2

=−|〈2|V (ϕ)|6〉|2
E6 − E2

− |〈2|V (ϕ)|10〉|2
E10 − E2

= −δ2ρL3
1L

3
2

192c2
,

E
odd,(2)
4 =−

∑
n�=4

|〈4|V (ϕ)|n〉|2
En − E4

= −|〈4|V (ϕ)|12〉|2
E12 − E4

= −δ2ρL3
1L

3
2

1024c2
. (4.20)

We now proceed with a nonperturbative treatment of δ and
consider the nonperturbative Schrödinger equation that takes
the form of a Hill equation:

−1

2
δ2
ϕψ(ϕ) + V0 cos2(4ϕ)ψ(ϕ) = εψ(ϕ) ,

V0 = δρL2
1L

2
2

c2
, ε = ρL1L2

c2
E . (4.21)

Since ϕ and ϕ + π are to be identified, we introduce a
new angle as ϕ′ = 4ϕ, with ϕ′ having period 4π . The
above equation is then converted into the following Mathieu
equation:

− δ2
ϕ′ψ(ϕ′) + V0

16
cos(2ϕ′)ψ(ϕ′) =

(
ε

8
− V0

16

)
ψ(ϕ′) .

(4.22)

The corresponding solutions are even and odd Mathieu
functions

ψ2m(ϕ′) = 1√
π

cem(ϕ′) , ψ2m+1(ϕ′) = 1√
π

sem(ϕ′) ,

(4.23)

with eigenvalue λ0 given to lowest order by

λ0 = ε0

8
− V0

16
= −1

2

(
V0

32

)2

+ O
(
V 4

0

)
. (4.24)

Accordingly, the ground-state energy reads

E0 = δL1L2

2
− δ2ρL3

1L
3
2

256c2
+ O(δ4) , (4.25)

in agreement with the leading perturbative results. In the
nonperturbative regime, for the excited states, we obtain

Em = c2

ρL1L2
εm = δL1L2

2
+ 8c2

ρL1L2
λm

(
δρL2

1L
2
2

16c2

)
. (4.26)

The energy splittings in the rotor spectrum are thus given by
the eigenvalues

λm = λm

(
δρL2

1L
2
2

16c2

)
(4.27)

of the Mathieu equation

Em − E0 = 8c2

ρL1L2

[
λm

(
δρL2

1L
2
2

16c2

)
− λ0

(
δρL2

1L
2
2

16c2

)]
.

(4.28)

As a consistency check we also consider the eigenvalue λ1 that
corresponds to the odd Mathieu function se1(ϕ′),

λ1 = ε1

8
− V0

16

= 1 − V0

32
− 1

8

(
V0

32

)2

+ 1

64

(
V0

32

)3

+ O
(
V 4

0

)
. (4.29)

Accordingly, the energy E1 is given by

E1 = 8c2

ρL1L2
+ δL1L2

4
− δ2ρL3

1L
3
2

1024c2
+ δ3ρ2L5

1L
5
2

262144c4
+ O(δ4) ,

(4.30)

such that

E1 − E0 = 8c2

ρL1L2
− δL1L2

4
+ 3δ2ρL3

1L
3
2

1024c2

+ δ3ρ2L5
1L

5
2

262144c4
+ O(δ4) . (4.31)

This is consistent with the leading-order perturbative calcula-
tion when one identifies the state corresponding to se1(ϕ′)
with the state m = −4. Note that the results of second-
order perturbation theory in δ are also consistent with the
expansion of the Mathieu function eigenvalues. The theoretical
results derived in this section will be compared with exact
diagonalization and Monte Carlo simulation results in Secs. V
and VI, respectively.

V. EXACT DIAGONALIZATION RESULTS

In this section, we discuss exact diagonalization results
for L1 × L2 lattices with L1,L2 ∈ {4,6,8}, which allow us to
determine some low-energy parameters of the effective field
theory discussed in the previous section. Part of the spectrum
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FIG. 9. Energy spectrum on an 82 lattice as a function of the RK
coupling λ. This figure is reproduced from Ref. [19] for the reader’s
benefit.

analysis has already appeared in Ref. [19]. The inclusion of
these results is for the benefit of the readers.

Using exact diagonalization we were able to calculate the
low-lying energy spectrum on lattices up to 8 × 8. Figure 9
shows the energy gaps on the largest lattice. For λ < 1,
the ground state is nondegenerate and transforms trivially
under the symmetry operations, i.e., it has quantum numbers
(CTx,CTy) = (+,+). The first two excited states with energy
gap E1 = E2 are degenerate and have quantum numbers
(+,−) and (−,+), while the next excited state with energy
gap E3 has again quantum numbers (+,+). As Fig. 10
shows for λ = −1, the energy gaps of these three excited
states decrease exponentially with the volume L1L2, i.e.,
E1,2,E3 ∼ exp(−αL1L2) for −0.2 � λ � 0.8. The fact that
the gap between the finite-volume ground state and the three
first excited states is exponentially small indicates that four
phases coexist at zero temperature. The (CTx,CTy) quantum
numbers (+,+), (+,−), (−,+), (+,+) indicate that we are in
a columnar and not in a plaquette phase.

If the columnar phase were replaced by the plaquette phase
for larger values of λ, one would expect a level crossing of the
excited (+,+) state with the lowest (−,−) state. Interestingly,
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FIG. 10. Logarithmic energy gaps as a function of the volume at
λ = −1.

no such level crossing arises in our exact diagonalization
study. Notably, the next excited state with energy gap E4, does
not decrease exponentially with the volume. It has quantum
numbers (−,−) and almost degenerates with the (+,+) state
with energy E3 for −0.2 � λ � 0.8. Furthermore, the next two
states with energy E5 = E6 are exactly degenerate and again
have quantum numbers (+,−) and (−,+). The next states,
with energies E7 and E8 are once more almost degenerate and
transform as (+,+) and (−,−). The energy ratios of these
states are given by E1,2 : E3,4 : E5,6 : E7,8 ≈ 1 : 4 : 9 : 16,
which is indicated by the dashed lines in Fig. 9. This hints
at an approximate rotor spectrum. Indeed, in Ref. [19], we
presented numerical evidence for an emergent approximate
spontaneously broken SO(2) symmetry with an associated
pseudo-Goldstone boson. Since the Goldstone boson has a
small mass, it does not qualify as a dual photon and the theory
remains confining before one reaches the RK point. While the
exact diagonalization study alone is not sufficient to come to
this conclusion, it is fully consistent with it. We would like to
point out that our Fig. 9 compares favorably with Fig. 2 (left)
of Ref. [18] for the lower gaps. However, other observables
considered in our ED analysis are different from that studied
in Ref. [18]. For example, while we extract the low-energy
constant δ and ρ/c2 (which will be shown in detail shortly), in
Ref. [18], the order parameters are calculated.

Using the analytic results of the effective theory obtained
in the previous section, we now estimate some low-energy
parameters by comparison with the exact diagonalization
results for the rotor spectrum. Figure 11 shows the results for
the symmetry breaking parameter δ (top) and the combination
c2

ρ
(bottom). These results have been obtained from a global

fit using data from 6 × 6 and 8 × 8 lattices for different values
of λ. Note that c2

ρ
is positive for all values of λ, while δ � 0

approaches zero near the RK point. Remarkably, the fit works
rather well up to values of λ ≈ 0.6. Even though the errors are
increasing near the RK point, the results are still consistent
with positive values of δ, thus indicating the absence of a
phase transition before the RK point. This suggests that the
columnar phase extends all the way up to λ = 1. However,
the precision reachable with the moderate volumes accessible
to exact diagonalization is not sufficient to definitively settle
this issue. In Ref. [19], we have provided numerical evidence
based on Monte Carlo data obtained on much larger systems,
which implies that δ remains positive until one reaches the
RK point, thus excluding a transition into the plaquette phase.
Our result is not inconsistent with that of Ref. [18] because
Ref. [18] is inconclusive regarding the existence of a phase
transition as well.

One may wonder whether a mixed phase [18], sharing
features of both the columnar and the plaquette phase, would
give rise to a similar finite-volume spectrum. As we have
pointed out in the previous section, in the mixed phase eight
vacuum states, separated by exponentially small energy gaps,
are almost degenerate in a finite volume. This is qualitatively
different from the rotor spectrum observed in our exact
diagonalization studies. First of all, the energy of the rotor
states decreases inversely proportional to and not exponentially
with the volume. In addition, on the moderate volumes
accessible to exact diagonalization, the observed spectrum
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FIG. 11. Results for the parameter δ (top) and the combination c2

ρ

(bottom) of the effective theory from a fit to the exact diagonalization
data for different λ for the lattice sizes 6 × 6 and 8 × 8. The error bar
that appears in the figures for each value of λ is the uncertainty of the
calculated quantity from the fit.

contains at least nine rotor states, while the mixed phase
would be characterized by eight low-energy states separated
from the rest of the spectrum by a gap. Although based
on our numerical results, the debated plaquette or mixed
phases are not stabilized in the present QDM, these phases
may be realized in generalized QDMs more relevant for true

1 +1
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2 1

+1
2 1 +1

2 0 +1
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2 0

−1
2 1 +1

2 0 −1
2

FIG. 12. The presence of two external static charges violates the
dimer covering constraint. This figure is reproduced from [19] for the
benefit of the readers.

quantum spin models [33]. We leave the investigation of these
generalized QDMs for future potential studies.

Finally, Fig. 9 shows two sets of states with energies E′
1

and E′
2. These states have the quantum numbers (CTx,CTy) =

(+,+), and represent strings of nonzero electric flux

Ei = 1

Li

∑
x

Ex,x+î , (5.1)

wrapping around the periodic spatial volume. There are
four states with energy E′

1 with electric fluxes (E1,E2) =

FIG. 13. (Top to bottom) Energy density −J 〈U� + U
†
�〉 on a

120 × 120 lattice in the presence of two charges ±2, separated by 49
lattice spacings for βJ = 64 and λ = −5,−2,−1.

115120-12



FINITE-VOLUME ENERGY SPECTRUM, FRACTIONALIZED . . . PHYSICAL REVIEW B 94, 115120 (2016)

(±1,0),(0,±1), while there are two states with energy E′
2 with

electric fluxes (±2,0),(0,±2). The energy gaps of these states
vanish at the RK point λ = 1. This implies that at this point,
flux strings cost zero energy thus signaling deconfinement and
the spontaneous breakdown of the U(1)2 center symmetry.

VI. MONTE CARLO RESULTS

Green’s function Monte Carlo simulations have been
applied earlier to the square lattice quantum dimer model
[16–18], with lattice sizes L2 up to L = 48. In our previous
study [19] we have used a more efficient Monte Carlo algo-
rithm that enabled us to reach volumes up to L2 = 144 × 144
and temperatures down to T = J/500. Our algorithm is based
on the height variable representation of the quantum dimer
model. More details about the algorithm have been presented
in Ref. [19].

Some Monte Carlo data, in particular those which provide
convincing numerical evidence that the columnar phase is
realized in the square lattice quantum dimer model all the
way to the RK point, are already shown in Ref. [19]. Here we
present new results and we give a more detailed explanation
of the results obtained earlier.

By putting two external static charges ±2 (relative to the
staggered charge background) into the system, one violates
the dimer covering constraint. As depicted in Fig. 12, this
leads to two defects, associated with three dimers that overlap
at the same lattice point. The two static charges, separated
by an odd number of lattice spacings, are connected by an
electric flux string and are thus confined. In addition, the flux
string fractionalizes into eight individual strands—displaying
the four plaquette phases—which each carry electric flux
1
4 , thus adding up to the total flux 2. The energy density

−J 〈U� + U
†
�〉 for λ = −5,−2,−1 is shown in Fig. 13:

one notices that, as one moves from large negative values
of λ towards λ ≈ 0, the individual strands emerge around
λ ≈ −2. Furthermore, inside the different strands plaquette
order is present. These regions of plaquette order are interfaces
separating the various columnar phases. In fact, Fig. 14 implies
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FIG. 14. The appearance of plaquette order, which results from
the interface between different columnar phases, in the eight strands.
The result is obtained on a 120 × 120 lattice with βJ = 64 and
λ = −0.5.

FIG. 15. Energy density −J 〈U� + U
†
�〉 on a 120 × 120 lattice

in the presence of two charges ±2, separated by 43 lattice spacings
for βJ = 64 and λ = −0.5.

that as one moves from bottom to top, each of the four possible
columnar phases is visited once. The same is true for the four
degenerate plaquette orders.

In the presence of two external charges ±2 separated
along the x-axis, both translation and rotation invariance are
explicitly broken, while the reflection on the x-axis remains
an exact symmetry. As a result, one of the columnar phases,
with the columns oriented in the y direction, is energetically
favored. Interestingly, Fig. 15 shows that for λ = −0.5, an
asymmetric distribution of the eight strands is observed,
thus indicating the spontaneous breakdown of the reflection
symmetry. Strictly speaking, in an infinite volume spontaneous
breaking of the reflection symmetry only arises when the
distance between the charges also approaches infinity. At finite
distances, the two asymmetric flux patterns, which are related
to one another by reflection, coexist with each other through

FIG. 16. Energy density −J 〈U� + U
†
�〉 on a 120 × 120 lattice

in the presence of two charges ±2, separated by 53 lattice spacings
for βJ = 64 and λ = −0.5.
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quantum tunneling. As the charges are separated further
and further, still assuming an infinite volume, tunneling is
exponentially suppressed. When we consider a finite volume,
the asymmetry in the flux distribution disappears when the
distance between the charges becomes compatible with the
lattice size (Fig. 16). Squeezing the flux distribution into a
small volume leads to a restoration of the spontaneously broken
reflection symmetry due to finite-size effects. This scenario
also arises for other negative values of λ.

VII. CONCLUSIONS

We have investigated the finite-volume energy spectrum
of the square lattice quantum dimer model using both exact
diagonalization and quantum Monte Carlo. By comparison
with analytic predictions we have consolidated our previous
evidence that the columnar phase extends all the way to the RK
point, without any intervening plaquette or mixed phases. In
addition, we have studied a soft pseudo-Goldstone mode that
becomes massless at the RK point but still dominates a large
region in parameter space away from it. This mode is described
by a systematic low-energy effective field theory whose
parameters we have extracted by comparison of numerical data
with analytic predictions of the effective theory. It will be an
interesting topic for future studies to investigate the possible
role of the soft mode for the preformation of pairs in the
pseudogap regime of high-temperature superconductors. This
could be done in the context of hole-doped quantum dimer
models [15,35–41].

We have also studied the internal structure of the strings
connecting external charges embedded in the confining colum-
nar phase. For topological reasons, the string fractionalizes
into strands, each carrying electric flux 1

4 . The flux strands
play the role of interfaces separating the four realizations of
the columnar phase. As we noted earlier [19], the interior
of the flux strands shows plaquette order, despite the fact that
the plaquette phase is not stable in the bulk. The interfaces
that separate two columnar phases 1 and 3 or 2 and 4, with
the columns oriented in the same direction, show the universal
phenomenon of complete wetting. This manifests itself by the
appearance of a third columnar phase at the interface, with
its columns oriented in an orthogonal direction. Hence a 1-3
interface splits into two 1-2-3 or 1-4-3 interfaces. Remarkably,
reflections on the lattice axis connecting charges ±2 are
spontaneously broken, which gives rise to asymmetric electric
flux profiles.

As we have seen, the simple square lattice quantum dimer
model has a rich confining dynamics, characterized by strings
with an intriguing anatomy. Understanding these dynamics
required the interplay between numerical simulations and
analytic effective field theory calculations. It will be interesting
and promising to apply this strategy to quantum dimer models
with other lattice geometries [42,43].

ACKNOWLEDGMENTS

D.B. acknowledges interesting discussions with A. Läuchli.
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APPENDIX: SYMMETRIES AND CANDIDATE PHASES

It is important to know how the four order parameters
transform under the symmetries CTx,CTy,O,CO ′,Rx , and Ry

of the square lattice quantum dimer model. This is illustrated
in Table I.

In Tables II–IV, we show how the different symmetries
CTx, CTy, O, CO ′, Rx, and Ry act on the columnar,
plaquette, and mixed phases, respectively.

TABLE I. Transformation properties of the order parameters Mij

under the symmetries S = CT x, CT y, O, CO ′, Rx, and Ry . The
order parameter Mij [SC] evaluated in the transformed configuration
SC as a function of the order parameters Mij [C] evaluated in the
original configuration C.

S CT x CT y O CO ′ Rx Ry

M11[SC] −M11[C] −M22[C] M21[C] −M21[C] −M22[C] −M11[C]

M12[SC] M21[C] −M12[C] −M11[C] −M22[C] −M12[C] M21[C]

M21[SC] M12[C] M21[C] −M22[C] −M11[C] M21[C] M12[C]

M22[SC] M22[C] −M11[C] −M12[C] −M12[C] −M11[C] M22[C]

TABLE II. Transformation properties of the four columnar phases
1, 2, 3, 4 under the symmetries S = CT x , CT y , O, CO ′, Rx , and Ry .

S CT x CT y O CO ′ Rx Ry

S1 1 3 2 4 3 1
S2 4 2 3 3 2 4
S3 3 1 4 2 1 3
S4 2 4 1 1 4 2

TABLE III. Transformation properties of the four plaquette
phases A, B, C, D under the symmetries S = CT x , CT y , O, CO ′,
Rx , and Ry .

S CT x CT y O CO ′ Rx Ry

S
A D B B C B D

S
B C A C B A C

SC B D D A D B
S
D A C A D C A

TABLE IV. Transformation properties of the eight mixed phases
A1, A2, B2, B3, C3, C4, D4, D1 under the symmetries S = CT x ,
CT y , O, CO ′, Rx , and Ry .

S CT x CT y O CO ′ Rx Ry

SA1 D1 B3 B2 C4 B3 D1
SA2 D4 B2 B3 C3 B2 D4
SB2 C4 A2 C3 B3 A2 C4
SB3 C3 A1 C4 B2 A1 C3
SC3 B3 D1 D4 A2 D1 B3
SC4 B2 D4 D1 A1 D4 B2
SD4 A2 C4 A1 D1 C4 A2
SD1 A1 C3 A2 D4 C3 A1
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