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One-step approach to ARPES from strongly correlated solids: A Mott-Hubbard system
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An expression is derived for angle-resolved photocurrent from a semi-infinite correlated system. Within the
sudden approximation, the photocurrent is proportional to the spectral function of a one-particle two-time retarded
Green’s function G of an operator that creates an electron in a special quantum state x localized at the surface.
For a system described by a many-body single-band model, we present an analytical expression that relates
the Green’s function G with the Green’s function of an infinite crystal G, x(w) in Wannier representation. The
role of final states and of the crystal surface is analyzed for a model Green’s function of the infinite crystal
with a three-peak spectral function typical of a Mott-Hubbard metal. The momentum dependences of both the
quasiparticle pole position and the spectral weight of the incoherent band manifest themselves in the shape of

the photocurrent energy distribution curve.
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I. INTRODUCTION

Angle-resolved photoemission spectroscopy (ARPES) has
proved to be an indispensable tool to study the electronic
structure of solids [1-4]. It became especially important
with the discovery of high-7, cuprate superconductors, when
enhanced experimental and theoretical effort was put into
studies of strongly correlated electron systems (SCES) [5,6].
Mean-field-based approaches fail to describe the valence band
of SCES, so ARPES is a crucial source of information about
the electronic structure and a verification tool for many-body
theories [7]. However, the interpretation of ARPES in terms
of a one-electron many-body spectral function (SF) may be
sufficient only when the energy dispersion perpendicular to
the surface is of the order of or smaller than the exper-
imental energy resolution. This is the case in the layered
cuprates [2,4] or perovskite-type vanadates [8—11], which have
quasi-two-dimensional valence and conduction bands despite
their cubic lattice. Still, most correlated compounds have a
three-dimensional electronic structure [6], and the photohole
dispersion normal to the surface requires a more thorough
theoretical analysis of the ARPES.

A conclusive interpretation of ARPES experiments depends
on the knowledge of final states of the photoemission process.
In the sudden approximation [12], the final states are time-
reversed low-energy electron diffraction (LEED) states [13],
which decay into the interior of the solid in accord with
the surface sensitivity of ARPES. To be realistic, a proper
calculation of the photocurrent should allow for changes of the
electronic structure near the surface and include the excitation
probabilities. The most elaborate theoretical framework to deal
with ARPES is the one-step theory [13—18]. It describes the
excitation, the transport of the photoelectron to the crystal
surface, and the escape into the vacuum as a single quantum-
mechanical process including all multiple-scattering events.
This approach allows one to perform realistic photocurrent
calculations based on Kohn-Sham eigenfunctions, and it is
implemented in several computer codes [17,19,20].
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The one-step approach was also formulated for nonlocal
potentials [21,22], and in Refs. [23,24] it was combined with
the dynamic mean field theory (DMFT) [25-27] within the
Korringa-Kohn-Rostoker multiple scattering formalism. It was
recently applied to the interpretation of photoemission spectra
of 3d metals [28-30]. Most studies of SCES are, however,
performed within the basis of localized Wannier functions
[31-33], as originally proposed by Anderson [34] and Hubbard
[35]. The Wannier representation is quite natural here, since
the largest Coulomb interaction term—the so-called Hubbard
interaction, which is responsible for electron correlations in
d or f shells of transition metals—is diagonal in this basis
[35]. The theoretical many-body bulk SFs are often directly
compared with ARPES spectra [36-38], thus ignoring the role
of the final states and the effect of the surface. The surface
effects in SCES were considered in Refs. [39-43], and their
influence on ARPES was discussed on a qualitative level. Thus,
the formulation of the one-step approach in the localized basis
is highly desirable as it would enable a quantitative comparison
of many-body calculations results with the state-of-the-art
ARPES data [44].

According to the classification of Ref. [45], the strongly
correlated transition metal compounds may be divided into
two categories depending on the relation between Coulomb
interaction U within the d shell and the charge transfer energy
A between the metal ion and surrounding anions. In the Mott-
Hubbard systems, A > U, the valence band may be described
by a one-band Hubbard-type model [35], while for charge-
transfer systems, A < U, an explicit account of the anion
states is necessary [46].

In this paper, we formulate the one-step approach in
the localized basis (Sec. II), and consider its application to
Mott-Hubbard systems. In Sec. III, starting from the bulk
Green’s function (GF), we derive the GF of the semi-infinite
system. After a short discussion of ARPES of layered systems
in Sec. III A, we find an analytical formula for the photocurrent
from a system with tangible dispersion in the direction normal
to the surface (Sec. IV). In Sec. V, we discuss how the formula
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reflects the role of final states and of the surface and give
some illustration of its application. Technical details of the
derivation are given in the Appendix.

II. ARPES CALCULATION FOR LOCALIZED BASIS

In this section we revisit the one-step theory of photoemis-
sion in order to formulate it in the Wannier representation
for initial states. The localized basis is ideally suited for
the electronic structure of SCES, and at a certain level
of approximation it allows an elegant inclusion of surface
effects.

A. Sudden approximation

We consider a semi-infinite crystal that extends over the
half-space z < zo, with a perfectly flat surface. The solid is
irradiated with light given by the vector potential A(x,t) =
A(x) cos Qt (we choose the gauge in which the scalar potential
is zero). Within the sudden approximation [12], the interaction
between the excited electron and the photohole is neglected.
Then the descriptions of the initial state and of the final
state can be separated from each other. The steady radial
photocurrent j(g,E) of electrons emerging from the solid
along the observation direction defined by the unit vector
g with energies between E and E + dE is then given by
[15,16]

PO B 3 9
,E)=— lim _——
79 o xox \9X  9X

X —> o0

x // *xd>x:G(X.x1,E)O(x1)

x GT(x1,%, E — hQ)0(x2)G*(x2,X,E), (1)

where the vector X = X § points in the direction of the detector,
and G(X,x,E) is the retarded propagator of the outgoing
electron,

G(x,X,0) = (YIPX)o. 2)

Here the operator v(x) annihilates an electron at the point x.
The term “many-body Green’s function” is ambiguous in the
literature. In the following, we will use the anticommutator
two-time retarded GF, which is defined for any two operators
A and B as [47]

(A|BY), = —i /0 ({A@t), B(0)})e''dt, &)

vyhere {A, ﬁ } = AB + BAA,A the timg-dependent operator
A(t) is A(t) =exp(itH)Aexp(—itH), and the angu-
lar brackets denote the thermodynamic average (A) =
Tr[exp (— B A)A] /Trlexp (— ,BI:I )]. The “lesser” function
GT(x1,Xz,) for the initial state is [15,16]

G (x1,X,0) = =2if(E + ®)G"(X1,X2,w), 4)

where ® is the work function, the vacuum level is at £ = 0,
and f(w) = 1/ef® + 1) is the Fermi distribution function.
We consider a nonmagnetic solid and drop the spin index.
Throughout the text the double prime denotes the imaginary
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part of a complex value, e.g., G” =ImG. The operator
O(x) = %[A(x) - P+ P - A(x)] is the electron-light coupling,
with P = —iV being the electron momentum operator and
c the light velocity. The atomic units A =e¢ =m, =1 are
used. In resonant photoemission [48—51] or in the presence
of microscopic fields due to the dielectric screening [52,53],
the operator O is more involved, which complicates the
calculation of matrix elements M(k;,E) in Eq. (22), but the
theory presented below remains fully applicable.

Following Ref. [16], we use the asymptotic formula for
GX,x,E),

L exp(i X+/2E)

GX,x,E)
X—o0o 27 X

¢-(x,4.E),  (5)

where ¢. (x,4,E) is the LEED wave function. The inelastic
scattering due to electron-electron interaction in the propa-
gation of the outgoing electron may be taken into account
phenomenologically by introducing an absorbing optical po-
tential into the effective Schrodinger equation for the function
¢~ (x,4,E) [54-56]. Thereby the LEED function becomes a
superposition of evanescent Bloch waves. Substitution of (5)
and (4) into Eq. (1) gives

L)**[zf(E +¢)«/ﬁ}

G.E) = —
J(q,E) (h e

x f / &% d* %00~ (%1, E)O(x)

x G'(x1,%,E — hQ)0(x2)¢* (x2,4,E).  (6)

Note that the initial states are confined inside the solid, so
that the integration over x; and x; in (6) is essentially restricted
to the crystal half-space, x; C S, i.e.,

o0 z0t+Az
/ d3x1~-~5f/ dxdy/ dz---,
XCS —00 —00

which assumes that initial states vanish at a distance Az
from the surface. With this in mind, and using the symmetry
relation

G(x1,x2,0) = G(x2,X1,w), @)

we make an important next step (the details are given in the
Appendix) and rewrite (6) in the form

o f(E 4+ ®)W2E .
E)y=|———— |AG,E — hQ), 8
J(G.E) [ 2nX) G ) (®)
1
A@G,w) = —;Img(é,w +i0), )
G(q.0) = (CIC).o. (10)
where the operator
C'q.E)= f *xy (0¥ (x.4.E) (11)
creates an electron in a state with the wave function
R O)¢p:(x,4,E), xCS,
x(x,4,E) = { i (12)
0, otherwise.
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Equation (9) gives an explicit form of the SF to be calculated
to obtain the photocurrent.

B. Noninteracting electrons

In a mean-field approach, the initial states are described
by an effective one-particle Hamiltonian. In the basis of its
eigenfunctions W¥;(x), it reads

Hue =) Eiala;, (13)

where index i incorporates all quantum numbers that define
a quantum state of the system, E; being its energy. Then the
electron annihilation operator is &(r) =Y ¥;(X)a;, and the
operator conjugate to CT of Eq. (11) is

C@.E)=)_ Ma,
M; = / d’x ¢ (x,§,E)O(x)¥;(x)
xCS

_ f X (%4, EYU(x).

The last integration may be extended over the whole space, as
both functions x and W are confined inside the solid. The GF
of Eq. (10) that defines the photocurrent is

G(§.0) =Y MM (aila}),.

The GFs in the right-hand side are trivially calculated:

S

Gii() = {a;lat), = —L—. 14

j(@) = (aila;) o L, (14)

We see that the SF (9) reduces to the density of states (DOS)
projected on the function x (x,4,E):

AG.o) =) IMiI*8(w — Ey). (15)

Substituting Eq. (15) into Eq. (8), we recover the well-known
expression for the photocurrent in the mean-field one-step
approach [13-19,57,58]. Note that the Hamiltonian (13) de-
scribes a semi-infinite crystal, which makes the calculation of
the eigenvalues E; and eigenfunctions W;(x) highly nontrivial
even in the mean-field approximation.

C. Interacting electrons

For the noninteracting systems, the photoexcitation of an
electron from a single-determinant N-electron eigenstate of
the Hamiltonian (13) creates an (N — 1)-electron eigenstate
of the same Hamiltonian. The electron-electron interaction
complicates the picture of the photoexcitation. On the mean-
field level, the removal of an electron from an N-electron
system changes the mean field, but these changes are negligible
for a macroscopic number of electrons. More important is
the interaction beyond the mean field: the two-particle (four-
fermion operator) terms in the Hamiltonian, which account for
the residual interaction, i.e., are the part of the bare Coulomb
interaction responsible for the correlations in the electron
motion [5]. In contrast to the bare Coulomb interaction,
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the residual interaction is a short-ranged one. It is often
introduced on the model level via Hubbard-like terms, which
are conveniently represented in the localized basis of Wannier
functions [35].

In SCES, the Hubbard terms are comparable with matrix
elements of kinetic energy. This makes it impossible to
present an N-electron eigenstate as a single determinant.
The removal (addition) of an electron from (to) this state
produces an (N — 1)-electron [(N + 1)-electron] state that is
a combination of a large number of eigenstates with different
energies. As a consequence, the GF describing electron
removal and additional spectra does not have the simple pole
form of Eq. (14), but acquires a complex self-energy in the
denominator. As a result, the SF —G;(w + i0)/7 is no longer
a single § function, but it may have humps that come from the
branch cut singularities of the self-energy, and that are called
incoherent bands. These bands coming from the self-energy
of the initial states are observed in ARPES as “satellites” that
appear at binding energies different from the energies of “main
peaks” of the mean-field theory. For a proper interpretation of
the experiment, the many-body GF describing the initial states
should be incorporated into the one-step approach.

Note that the only approximation we have used to derive
Eq. (8) is the sudden approximation, and that Eq. (8) is
fully general and applicable for a wide range of systems
including strongly correlated systems. The role of the final
state ¢Z (x,g, E) (the time reversed LEED state) is clear from
Egs. (11) and (12): it defines the form of the operator C, q,E),
and, thus, the SF (9), which is our ultimate aim. Thus, the
angular and energy dependence of the photocurrent cannot be
understood solely from the structure of the initial states. On
the one hand, this complicates the interpretation of ARPES
experiments, but, on the other hand, it allows us to learn about
final states from the measured spectra [59].

We assume that the target crystal has two-dimensional (2D)
lattice periodicity. Inside the solid, the time reversed LEED
function may be written as

@*(%,4,E) = MU (xy,2,4,E), (16)

where x; is the radius-vector component parallel to the
surface, X = x| 4 zn, with n being the unity vector normal
to the surface. The surface-parallel momentum component
q; = k + Gy is the sum of the momentum vector in the first
Brillouin zone k; and 2D reciprocal lattice vector Gj. The
function U (x),z,4, E) is periodic in x| and may be written as
a combination of evanescent waves [cf. Eq. (37) of Ref. [16]]:

Ux),2,4,E) =) ¢k, E), 17

ol (x,ky, E) = e*enem0y, (x k), E), (18)

where m is the band index and k ,.(E k) = k., —ik],
(k. k!, > 0) is the complex momentum component in the
direction perpendicular to the surface. The functions u,, have
the periodicity of the 3D crystal, with the Bravais lattice vectors
R =R + lcen, where I < zo/c is an integer and c is the lattice
period in z direction. For both x and x + R inside the solid
it is u,(x + Rk, E) = u,(x,k,E). Inside the crystal, the
function produced by the perturbation O acting on the final
state ¢ in Eq. (12)1is, clearly, also a combination of evanescent
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waves:

X4, E) =Y xm(xK,E),

xm (XK, E) = O(x)e™™ ¢ (x, k), E).

Thus, the function x(x,4,E) is localized at the surface,
which reflects the surface sensitivity of the photoemission
spectroscopy. If one of the waves dominates the sum in
Eq. (17), its localization can be expressed by the “inelastic
mean free path” L ~ 1/2k(E k).

In order to proceed further, we chose a basis of localized
functions suitable for the description of the initial state. For
example, it may be the basis of Wannier functions for a set of
bands within some energy window around w = E — hQ2. We
write the electron annihilation operator for the initial state in
the form

J(r) =) w(r — R —s)a.q,
R,

where ag , annihilates an electron in the state wq(r — R —s)
localized at the lattice site R + s, where s is a basis vector
of the unit cell, and o accumulates s and all the relevant

quantum numbers. For the operator C of Eq. (11) we obtain
(see Appendix)

ca.p) =y Y. [ dz [[ ¢xip. .50

l,s,a

X wa[XH +(z—Ilc)n — S]ClkH la (19)

= FZ Mo (K, E) Z e~ ik nlle= Zo)akH e

m,o

(20)
N ‘
N_l Z M.« (K, E) Z e B, iy, s
m,o r
ey

Mya (ky E) = / Px ok Eywalx — zon — s, (22)

20/c
A, .- Z e*i(ki,mfp)(lcfzo)
I=—00
= {1 — *Ln=Pe)71 (23)
where we have introduced the Fourier transforms
ax la = Ze_lk”R”aR Las (24)
| RH

— —iplc
ag,a = akH p.a — m Z e akH Lo (25)

I=—00

Here N is the number of sites in the plane, N, is the number
of planes in the system, and k = Kk + pn. Operator aq
annihilates an electron in a layer Bloch state

W, a(X — lcn)

> e Muglx) — Ry + (@ —lom —s],  (26)

r Ry
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localized at /th layer, while ax s, annihilates an electron in a
bulk Bloch state:

1
wk,a(r) = \/N_
1
1 kR
= e Cwy(r — R —5s).
VNINL XR:

Equation (19) expresses the conservation of the momentum
parallel to the surface. The expression (21) for C shows that,
generally, all states with different perpendicular momenta p
contribute to the photocurrent for a given k| and E. InRef. [16],
it was pointed out that the factor A, , (23) is sharply peaked
atk', , = pifk7] ,c < 1[cf. Egs. (42)- (47) of Ref. [16]]. In
this particular case, the crystal momentum is conserved also
in the z direction. In Sec. IV we will return to this discussion.

Equations (20) and (21) allow us to write the GF of Eq. (10)

Z e wy, o(r — Icn)
]

in the form
A Ny
g@q,0) = N_ Z Mml:a] M;knv 0
= miy,my, ap,a
ikymy(be—20)—ikY , (lic—20)
X Ze’ Lmy Lomy
Il
X Gy 1y 0y 0,00 (@) (27
Ny
=5 2 MM,
L my,myp, &,
i(p1—p2)zo *
x Z € A Amz P2
pP1,p2
X GkvalvPZ-alval(wL (28)
_ T
Gku,l],lz,ﬂt],olz(w) = ((ak”,h,ol] |akH.lz,(¥2>>w' (29)

The GF of semi-infinite crystal

= ((aku’m’“l ’alu,pz.az»w (30)

depends on the pair of perpendicular momenta because of the
broken translational invariance in the surface-normal direction.

Gku.pl,pz,al,az (w)

III. SEMI-INFINITE MOTT-HUBBARD SYSTEM

Now we consider a system whose valence band spectrum
may be described by an effective one-band Hamiltonian Heg on
aBravais lattice, i.e., we have only one sort of orbitals ¢(r — R)
at the lattice sites R = R} 4 zn. For an infinite crystal, the GF
is diagonal in the k-space

{ax, |alT(z)>w = Ok k, G k(@), (31)

Goaw) = ————— (32)
®— &k — Zko
where k = Kk + pn. Here we do not specify the Hamiltonian
ﬁeff but assume only that the mean-field energy ex and the
self-energy X ., may be calculated for the bulk system with the
full account of many-body effects. The momentum-dependent
SF

Ap(k,w +i0) = —Im Gy x(w 4+ i0)/7 (33)
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is the main characteristic of the electronic structure of SCES.
It contains information both about the quasiparticle energy
dispersion and about the incoherent bands.

A. ARPES from a layered system

Many systems of current interest are built of weakly
coupled layers or chains: high-7, cuprates and Fe-based
superconductors, quasi-one-dimensional magnetic systems,
ruthenites, iridates, etc. If the surface coincides with the two-
dimensional layer or is built of one-dimensional (1D) chains
we can neglect the dispersion in the surface-normal direction.
Then the planes become decoupled, and the GF of Eq. (29)
does not depend on /; and /,. For the Mott-Hubbard system we
can write Gy 1, 1,00, (@) = 81,1, Gp x, (@). Equation (27) then
yields

G(§,) = (Co|CI Y x G, (@),
A@G,w) o« Ap(k,w),

Thus, for systems with a negligible dispersion normal to the
surface, ARPES directly measures the SF of the electron GF.

B. Account of the surface in a 3D system

However, the actual crystals are three-dimensional. Even
in quasi-1D or quasi-2D systems the chains or the layers are
coupled, and the energy of the photohole disperses with k.
This dispersion may be small compared with the dispersion
parallel to the surface, but with the progress in angular and
energy resolution [44] it has become measurable, which calls
for a more thorough theoretical analysis of the surface-normal
degree of freedom, which is proposed below.

In the equation of motion for the GF,

w<<ak1 |a£z»w = ik, T (e + Ekf“’)«akl |alt2>>w’

which straightforwardly follows from Egs. (31) and (32),
we perform in both sides the Fourier transform g1 =
(1/4/N1) )", e ay, inverse to (25), and obtain the equation
of motion for the “interlayer” GF of Eq. (29):

oGy, i, (@) = 8,1, + Z hiy Ky, 0)Gg (), (34)
]

1 . .
by w) = ~= 3 e e+ Th,). (39)
1
p

Equation (34) has the form of an equation of motion for an
effective 1D tight-binding system with an energy-dependent
(and generally non-Hermitian) Hamiltonian

hlly,0) =D hy (kg e, ax, (36)
11,1,

with hopping amplitudes given by Eq. (35).

Now we proceed with a semi-infinite crystal. The surface
may be introduced as a perturbation V that breaks an infinite
crystal into two noninteracting parts. In Refs. [41,60] the
coupling between the two parts is eliminated by means of a
nondiagonal perturbation V;;, = —h;;,. We achieve the same
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result using the diagonal perturbation of the form

V =0y ay an @37

where i enumerates the atomic planes of a slab that divides
the crystal into two semi-infinite parts. The width of the
slab should be equal to or larger than the maximal distance
(I — Ip)c for which the hopping integrals #;;, in Eq. (34)
are nonzero. In the limit ¢y — oo the two half-spaces are
separated by an infinite barrier. Similar approaches are used
for the description of vacancies [61], in the cavity method
of DMFT [25], and for the hard-core constraint for magnon
pairs in acute-angle helimagnets [62,63] (the bound states of
magnons being analogues of the surface states).

Note that the perturbation V leads to a relaxation of the
system, which changes the effective Hamiltonian fz(k”,a)).
These changes are expected to be localized at the surface and,
in principle, can be taken into account in a self-consistent way.
Here we neglect it and consider the simplest case when only
adjacent planes are coupled by fz(k” ,W):

&k = €k, — 2fx, €08 pc, (38)

Yko = Zkjo — 2Tk.0 COS PC, 39)

¢ being the interplane distance. Then we may retain in Eq. (37)
only the term with z; = 0. The assumption (38) is natural for a
narrow-band system, and the local character of the self-energy
(39) is also a commonly accepted approximation [25,26,38].
Note that we do not make any assumptions about the K
dependence of the self-energy, which may be quite strong
[38,64—66]. We then obtain the bulk GF of Eq. (32) in the
form

Gpx(®) = [® — 0k, + 2T, cOs pc] ', (40)

where we have included the dispersion parallel to the surface
&k, into the real part of the self-energy: Ok = €k + Zkj0
and TkH,w = K + Tk,

The equation of motion for the GF of the perturbed system
then reads

kau,ll,lz = 811,12 + (ng + EkH,a))Gk”,ll,lz
— Ty o(Gxy iy +1. + Giyti-1.1)
+ 81,.080GKy 0.1 - 41
We perform the double Fourier transform
1 i Lt
Gkqulqu(a)) = N_ %:e i(prl+ipal'e GkH,l,I’(U))

in both sides of Eq. (41) to obtain for the GF of Eq. (30),

€0
G p1.p, (@) = Gp () (8,71, pt J_NTG°>’ (42)

where we have defined

1 s
GI = Gkn,l.Pz = \/T—J_ Zelthku,p,pz‘ (43)
P
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Now we substitute (42) into the left-hand side of Eq. (43) for
[ = 0 and find

Gy L _Grn@
v NL 1- Sogk”((l))’
| (44)
s (@) = - ; G x(@).
Finally, Eq. (42) gives the GF of the perturbed system:
€0Gpx, (w)
G = Gpx,(@)18 Ok
ku,m,pz(‘”) b,k_(w){ pi.p T NLIT — e0gi ()]
45)
Gy, (@)
G - — 1. 46
ST) bk, (C()){ P1,DP2 NLgk” (Cl)) } ( )

Thus, we have found the GF of the Hamiltonian ﬁl(kH ,w) =
fz(k“,a)) + soaiu’oak“’o. Equation (46) is the desired result: it
gives the GF for the semi-infinite crystal that extends over the
half-space z < zp = —c, which is necessary for the calculation
of ARPES via Egs. (8) and (28).

Note that the approximations given by Egs. (38) and (39)
may be easily relaxed by using a thicker slab in Eq. (37). In this
case, the GF may be found by successively applying this trick
[61-63]: based on Eq. (45) we ﬁnd the GF of the Hamilto-
nian hz(k“ w) = ho(k“ w) + eoakH Ak, With two perturbed
planes and employ it to find the GF for three perturbed
planes, etc.

A similar technique may be used to account for the
surface relaxation of the system. In this case, the charge
self-consistency may require the diagonal terms A ;(k),w)
(35) to be [ dependent [39,40], and also the nondiagonal terms
hy1,(k,w) of the effective Hamiltonian (36) may depend on
both indices / and [/, rather than on their difference. These
deviations from the Hamiltonian (36) obtained from the bulk
values of g + X, are expected to have local character, and,
thus, can be treated by Eqs. (41)-(45). Thereby, the problem is
reduced to the problem of a few impurities in a 1D chain. These
changes will perturb the electronic structure near the surface,
and surface states may emerge. The surface states are localized
near the surface and have 2D character. Their contribution to
the photoemission is similar to the ARPES from 2D systems
described in previous subsection IIT A.

As mentioned above, the surface states that decouple from
the bulk continuum have close analogy to the bound states of
magnons in 1D magnets [62].

IV. ARPES FROM A 3D MOTT-HUBBARD SYSTEM

Having calculated the GF for a correlated semi-infinite
crystal, Eq. (46), we may proceed with the calculation of
the photocurrent, Eq. (8), which is proportional to the SF A
of the Green’s function G, Eq. (28). We consider the case
when one of the waves dominates the sum in Eq. (18), so the
time-reversed LEED function ¢Z (x,4, E) (16) inside the solid
may be approximated by a single evanescent wave:
ilkyx+ko(z

Pr(x,q,E)~ e “ly(x. k), E), 47
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where k| =k, —

G(g,») =(C(@,E)C'(G,E), =

ik!. Then Eq. (28) acquires the form
Mk, E)[*

N .
« N_H Z ez(m Pz)zoAp1 A;ZGquPIqPZ(w)’ (48)
p1,p2
where we define w = E — h€2. Substituting the expression
(46) for the GF of the semi-infinite system into Eq. (48) and
setting there zop = —c (the surface layer), we have

G(G,w) = IMKy, E)*N[11(kj,») — Lk, )], (49)
where

w/c
Likj,0) = — |Ap1* Gy x(@)dp, (50)

—JT/L
Lky,w) = ( )IZI(k Vi (—k), (51

H
1 Jr/c )
(k) = Ime Ape™P Gy i(w)dp. (52)
JcC —n/c

Here G, k() is given by Eq. (40) with k =k + pn, A, =
{1 —exp[i(k, — p) —k!]lc}™ ! The integrand of /; is defined
by the bulk GF of Eq. (32), and I, comes from the surface term
of (46).

The integrals (50) and (52) are calculated using the residue
theorem (see the details in the Appendix)

T
I:/ R(cos ¢, sing)de

-
Resz:z,,, R()(Z)v (53)

m=1

= f Ro(z)dz = 2mi
|z]=1

where R(u,v) is a rational function of u# and v, and
Zms m =1,...,n are poles of rational function Ry(z) =
’R[ (z+ = ),2(Z 1)] that lie inside the circle |z] < 1. We

have two readues for I 1
Lk, w) = Ri(k),w) + Ry(k,w), (54)

which are given by Egs. (A10) and (A11) and one residue for
I>; (A12). The final expression is

§(q,0) = Kk, E)F(k,® — 0k ,0), (55)
where
Kk .E) = —lM(k||,€)|i{v“ :
| _ g—2kc
Fk,e) = ! ,
€ — €k p — B]iwgs(e,TkH’w) (56)
ko = —2TkH,we’k§/C cosk.c,

Bi, =T ,(1— e,

and the function
gs(e.b) = (aolag).
= 1/{e —b*/le = b* /(e —-- )]} (57)
= 1/(e — b’g,(€.b)) (58)
— {e — sgn[Re(e)]V/e2 — 4b2}/2b>  (59)
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is the GF for the states localized at the edge of a semi-infinite
chain described by the tight-binding Hamiltonian [67,68] i =
b 2120 Cll1 aj41.

Equation (57) represents the function F(k,e) in a
continued-fraction form. This ensures the correct analytic
properties of G(§,w) [see Eq. (49)] as a function of com-
plex energy € = @ — 0k, = @ — &k, — Xk,.»- Lhe GF is an
analytic function in the whole complex energy plane with the
exception of the real axis, where it may have poles and branch
cuts [67]. In the upper (lower) half-plane it coincides with
the retarded (advanced) GF. It is easy to see that the function
F(k,w — 0y, ) coincides with the bulk GF of Eq. (40) in
the so-called direct-transitions limit k7 — 0. In this limit it
is €k > —2Ty,.o cosklc and B} | — 0, and finally Eq. (56)
becomes

F(ksw) m Gb,ku+k;n(w)'
A pole of the bulk GF Gk +kn(w) may occur if both Xy, is
real and the energy wy(K) satisfies the equation
a)o(k) = O‘kuvwo — 2Tk“,w0 Ccos k;C (60)

In the vicinity of this energy itis Gy i, +k;n(a)) ~ Zx(wo)/(w —
wp) with the residue Zy(w) = [1 — Xy ,,/dw] . For kle <1
the pole transforms into a resonance of a Lorentzian form

P Zy(w,)(1 +kc)
"k elw — w, + 0T

I % 2Zy(0:)| Tx,.0, K. ¢/ (k!c)? + sin® klc (62)

vy = ZZk(wr)|TkHA,w, sin k;C|C, (63)

(61)

~ L
~ kz Uy,

where the energy of the resonance satisfies the equation
@ — Okj.0, = —2Tk,.0, cOsk.c/ coshk!c, which for a small
decay index klc gives w,(K) ~ wy(k) Equation (63) is the
well-known expression for the resonance width I [59,69,70]
in terms of the the group velocity of the hole quasiparticle
v, = dwo/ 8k;. Formula (62) shows that this expression is valid
only in the middle of the quasiparticle band, where k. > k.
The expression for F, for arbitrary values of k/c is given in
the Appendix, Eq. (A13).

The energy dependence of the final state (47) leads to the
energy dependence of the GF of Eq. (55) via the functions
K(ky,E), k. (ky,E), and k' (k) , E). Now let us assume that the
matrix element slowly varies with energy,

IM(k;, E)* &~ [M(ky, Eo)|*,

and concentrate on the role of the decay of the final states into
the solid. For the analysis of photoemission in the next section
we introduce the normalized GF

50 A g(ésw)

G(@G.w) = — 12 64

(q.w) K(ky,Eo) (64)
_ K(k,E) _
= —K(k”,Eo)F(k’w oku,w), (65)

and its SF that defines the photocurrent, Eq. (8), is

ol AGw)

Alw) = nlmg(q,w) = K, Eo) (66)
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= A1(0) — Ar(w), (67)
2kl ¢ 1

A(w) = (1 — e k0 )<—;Imll>, (68)
ke 1

Arw)=(1—e 2"0‘)(—;111112). (69)

Here A; and A, give the contributions to the photocurrent
from the bulk and the surface terms of the GF of Eq. (46),
respectively. This normalization facilitates the comparison
with the bulk SF Ay (k,w), which is normalized to unity.

V. DISCUSSION

In this section, we study the behavior of the GF (64)
and the relevant SFs (67)—(69), which define the shape of
the photocurrent energy distribution curve (EDC) through the
expression (9). We neglect the w-dependence of the effective
hopping in the normal direction, and in Eq. (40) we set
Ty,.o = T. We assume that T is real and positive, and take
it as the unit of energy. We chose the value of the parallel
momentum K that gives ey, = —2.2T, in order to have the
quasiparticle peaks close to the lower Hubbard band for our
model of the initial state self-energy, see see next subsection.
This choice highlights the quasiparticle band narrowing and
the dispersion of the lower Hubbard band weight in the
surface-normal direction.

A. Initial states

We adopt a simple analytic expression for the self-energy
of the bulk GF [see Eq. (39)]:

Yk = bt (w),

typ(w) = 1/{a) — bf/[w — bg/(a) — bflgb(w))]}

WP = b+ b3 + 51y (02 — b7 — b3)” — 4202
2wb3

(70)

where s;(w) = —sgn[Re(w? — b? — b3)]. By choosing b; > b,
and an appropriate value for b we construct the function
Gpx(w), Eq. (40), with a three-peak structure of the SF
characteristic of a Mott-Hubbard metal [37]. It has a central
coherent peak at w = wy(K) [see Eq. (60)] and two incoherent
bands over the energy intervals (b; — b)? < @? < (by + by)*.
Figure 1 shows the SF (33) for several values of k, and b; =
5T, b, = b = T. Note that the quasiparticle band is narrower
than in the noninteracting case X, , = 0, where its width is
4T . This follows from Eq. (60) because within the Hubbard
gap the self-energy is approximately Re(Xy ,,) ~ —aw, witha
positive coefficient o being weakly dependent on w (see, e.g.,
Fig. 2 ¢ of Ref. [37]). Then Eq. (60) gives a renormalization
of the dispersion wy(k) ~ ex/(1 + ).

The incoherent bands originate from the self-energy branch
cuts, where its imaginary part is a negative definite function,
see the dashed line in Fig. 1. Its position does not depend
on k, because we have chosen the coefficients by and b, to
be k. independent. Nevertheless, its intensity is pronouncedly
momentum dependent. This dependence has the same origin
as the quasiparticle band narrowing. It comes from the spectral
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FIG. 1. The spectral density of the bulk Green’s function (40)
Ap(k,w +in) = —ImG, k(o + in)/m (33) for e = —2.2T, kc =
0,0.37,0.57,0.77, 7 (from bottom to the top), and the imaginary part
of its self-energy ImEkH‘er,-,,/rrb2 (70); by = 5T, b, = b =T. Here
and below a small imaginary constant in, n = 0.001 is added to the
energy argument in order to visualize the coherent §-function peaks
in the spectral densities. Dark red dotted line shows the quasiparticle
dispersion k; = arccos [(ox, » — ®)/2T].

weight redistribution, which is the consequence of the coupling
between the quasiparticle and the incoherent bands. To show
this, we note that the SF obeys the sum rule

o0
/ wApyK,w + i0)dw = &.

[e.¢]

At a fixed momentum Kk, the spectral density has one coherent
peak situated at wy(k) between two incoherent bands

Ap(k,0 +10) = Zg(wp)d(w — wp) + Ainc(K, ),
Ainc(K,®) = Amp(K,®) + Aunp(K, ),
where Anp(K,w) and Aypp(K,) are the lower and the upper
Hubbard band SFs, respectively, that yield the humps at the

energies Wiy unb ~ Eb1. Then, for the incoherent bands we
obtain

o0
/ wAinc(w)dw ~ winp Winp(K) + @uny Wanp(k) - (71)

o]

~ wo(K)(1 +a — Zy). (72)

PDOS A, (T
1l
J T

Energy, /T

FIG. 2. The density of states A; (73) projected on a Bloch sum of
Wannier functions located in the layer z = Ic, Eq. (26). &k, = —2.2T.
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The spectral weights Wyp(k) and Wy(K) obviously
depend on k. In Eq. (71), we approximated the integrals
ffooo wAi(w)dw by w;Wi(k), where “i” is “lhb” or “uhb”. The
momentum dependence of the incoherent band weight was
recently observed in ARPES experiments and in the DMFT
calculations for vanadates Sr,Ca;_, VO3 [8,9].

It is instructive to calculate the DOS projected on the 2D
Bloch sum of Wannier functions, Eq. (26), in the layer z = Ic:

1
A = ——Im G 11(w),
T

_ f
Gy = <<aku~l|aku,l>>w (73)
1 .
_ N_ ez(Pl*Pz)chk”’pl’m(w)’
1
P1,P2

where Gy, p,p,(®) is the GF of the semi-infinite system given
by Eq. (46). The integrals over p; and p, are calculated using
Eq. (53), and the result looks very simple:

GkH,l,l = 8k (w){1 — [Tgs(w — o-k"’w’T)]2|l|}7

where g;(w)is given by Eq. (59). The function g, (w), Egs. (44)
and (A9), is the bulk value of the layer function G, ;,! — oo.
Figure 2 shows the result for layers at different depths. We see
that the projected DOS has rather peculiar dependence on !/
(cf. Sec. 4 and Fig. 1 of Ref. [68]), and its convergence to the
bulk shape is slow. Strong oscillations of the DOS near the
surface were also documented in ab initio calculations; see,
e.g., Fig. 4(d) in Ref. [71].

B. Final states

In order to take into account the inelastic scattering of
electrons in the LEED experiment, Slater [54] proposed to add
an imaginary term to the potential energy. The Schrodinger
equation then reads

[-3V? + V&) - iVi]p.(x) = Eg.(x), (74)

where V(x) is the periodic potential inside the solid. The
optical potential V; may be considered an approximation for
the imaginary part of the electron self-energy.

Following Ref. [72], we start from the solution of the
unperturbed problem

[1V? + V@) ]pok.x) = e(K)po(k,X)
in Wannier representation
1

vo(k,x) =
VNINL R

and search the solution of the perturbed problem (74) in the
form

e"kaf(x —R)

0. () =Y WRws(x—R).
R
Then the modulating function W(R) is the solution of the
equation
[€(—iV) —iVi|¥V(x) = EV(X). (75)

Here é(—iV) is a differential operator obtained from the
function e(k) by the substitution k — —iV. Thus, Eq. (75)
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is a Schrodinger equation for W(x), in which the perturbation
—i'Vj is the potential energy, while the kinetic energy operator
is derived from the band structure €(k) of the unperturbed
problem.

Substituting W(x) = exp (fkx) with complex k =k; —
(k. + ik])n (in LEED, k points into the crystal), we obtain

e[k — (k, +ik])n] = E +iV;, (76)

which allows us to find the components of the complex k vector
from the analytical continuation of the function €(k) into the
complex energy plane.

C. Final state energy far from the gap

When the energies of photoelectrons E are far from the
gaps in the unoccupied spectrum €(k), we may write

ek — (k. + ik!yn] ~ e(ko) + €.(8 + ik!),

k() = k” — k()n,
de(k
€, =— € > 0,
ok, |y,
§ = ké — ko.

Equation (76) then gives k, with a constant imaginary part and
a real part that linearly depends on energy:

K = ko + E — elko) (77
‘ el(ko) '
Vi
K = . (78)
© el(ko)

Figures 3 and 4 show typical EDCs in this regime in
comparison with the bulk SF. The coherent peaks, which
are § functions in our approximation for the initial states,
transform into Lorentzians, whose width according to Eq. (63)
is proportional to k and to the quasiparticle group velocity
perpendicular to the surface [69,70]. The broadening is
invisible for the incoherent part, but the dependence of the real
part of the wave vector k. on energy (77) leads to deviations
of the EDC shape from the SF as a result of the dispersion of
the intensity of the incoherent part with &_.

D. Final states near the Bragg gap

Now we consider the case when the energy of photo-
electrons is close to a gap in the spectrum €(k), i.e., k =
k; + (% + )n is near a Brillouin zone boundary, Gn being a
reciprocal lattice vector. Then €(k) can be approximated as

€(k) ~ Eg + /W2 + (€])282,

where Eg and W are the center and the half-width of the gap,
and € is some positive value, which plays the role of a “bare
group velocity” in the absence of coupling between waves with
k and k 4+ Gn. Equation (76) now gives

G
kKl = — +3, (79)
)
VR(AE) + (AE — V2 — W?2)

8 =sgn(AE) -
GZ
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FIG. 3. The spectral density A(w + in) (67) compared with the
spectral density Ay(K,w + in) (33) of the bulk Green’s function (40)
shown in Fig. 1 for (a) V; = 0.1T and (b) V; = T. The parameters
are €(ko) = hQ —2.86T, e, = —2.2T€, = 10T /c, koc = 0.367.
The contributions coming from the bulk [A;(w + in), Eq. (68)], and
the surface [Ax(w + in), Eq. (69)] terms of the Green’s function (46)
are also shown. The thin blue line in the upper panel shows the
spectral density behavior near the (-functional) coherent peak of the
bulk Green’s function Lorentzian (61).

VR(AE) — (AE — V2 — W?)

6/

K = (80)

AE=E - Eg,

R(AE)=/(AE — V2 — W22 + 4V2(AE)?.

Figure 5(a) shows that both real and imaginary parts of k,
become energy dependent. The dependences (79) and (80)
are smoothed by the optical potential V;. Figure 5(b) shows
that for small values of V; the EDC from the incoherent band
may substantially deviate from the SF. This may be important
for the interpretation of the low-energy ARPES, where the
inelastic scattering is relatively weak.

E. Small inelastic mean free path

It is instructive to consider the limit k;’c — —00, in which
case the final state is strongly localized near the surface. Let
us consider the bulk contribution /; to the GF; see Eq. (49). In
this limit, the only nonvanishing part is R, [see Eqs. (54) and
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FIG. 4. The spectral density A(w + in) (67) for different photon
energies h2. The lowest curve corresponds to koc =0, and the
topmost one to koc = w. The energy step between the curves is
hAQ = 0.89T and V; = T. The notation is the same as in the previous
figures.

(A11)], which yields
So

1= )
\/(a) — Ok.0)* —4T?

1

where
So = sgn[Re(w — ox0)]. (81)

For the coherent band, the self-energy is real. Then the SF
A1, which is proportional to the imaginary part of I; [see
Eq. (68)] is nonzero for (w — okw)2 —4T? < 0. Near the
points @ — ok, = &2T, the bulk contribution A; to the SF
has horn-like singularities typical of the 1D density of states
(cf. the lowest curve in Fig. 2). These “horns” are canceled by
the same singularities in the surface term [see Eq. (51)]:

Sul® = 00 = SuyJ(© — 0k )2 — 4T

4T2\/(a) — O4.0)? — AT?

L=

Substituting both expressions into (49), we obtain
G(q,w) o< (I — I)

© = Ok = Sun/ (@ = O, ) — 4T

= 72 . (82
Itis clear that the imaginary part of this expression as a function
of w has the semi-elliptical form of the local DOS at the
edge site of a semi-infinite chain (cf. the topmost curve in
Fig. 2). Equation (82) follows from the general formula (55)
in the limit e%:¢ — 0. Figure 3(b) demonstrates that a similar
cancellation happens also for finite k. Thus, the account of
surface terms in the initial state GF of Eq. (46) is crucial for
the coherent contribution but less important for the incoherent
band.

VI. CONCLUDING REMARKS

In strongly correlated systems, the conventional under-
standing of the solid as a Fermi-liquid of quasiparticles breaks
down in the sense that a considerable part of the spectral

PHYSICAL REVIEW B 94, 115119 (2016)

weight transfers from the quasiparticle peak to the incoherent
band. This occurs because the removal of an electron from an
N-electron state creates a superposition of (N — 1)-electron
eigenstates with a spread of energies. Thus, the electronic
structure of strongly correlated system is described by a
momentum-dependent spectral function Ay(k,w) (33) rather
than a quasiparticle energy ex. The incoherent bands in the
spectral function of the ground state come from the correlated
motion of electrons expressed as the imaginary part of the self-
energy. In ARPES, these bands are observed as structureless
humps apart from pronounced quasiparticle peaks.

ARPES data provide the information about both initial and
final states of the photoemission process. Both kinds of states
characterize the solid under study, and they are solutions of
the Schrodinger equation with the same Hamiltonian. Using
the sudden approximation, we have shown how the spectra
depend on physical properties of the initial and final states.
First, we recast the well-known mean-field theory expression
for the photocurrent in the one-step approach as a formula
for a DOS function projected onto a surface-localized electron
state x, Eq. (12). The wave function yx (r) decays into the solid
owing to the spatial decay of the time-reversed LEED function,
and, at the same time, it rapidly vanishes in the vacuum owing
to the confinement of the initial states. Then the many-body
calculation of the ARPES intensity in the one-step approach
reduces to the calculation of a spectral function of the two-time
retarded GF for an operator that creates an electron in the
state x.

Further, we make use of the Wannier representation and
obtain the GF for a semi-infinite system out of the GF of an
infinite system. This approach is especially advantageous for
strongly correlated systems. For the simplest case of a one-
band Mott-Hubbard system and neglecting the modification
of the crystal potential at the surface we have obtained an
analytical result. Combined with modern numerical methods,
our approach is fully applicable to realistic models of surfaces.

Furthermore, for the present model we have obtained an
analytical expression for the photocurrent assuming that the
inelastic scattering in the final state can be described by a
mean free path. Here we approximated the LEED function
inside the solid by a single evanescent wave. This is not a
serious limitation, which may be easily lifted within the present
formalism. Expressions (9) and (55) explicitly relate the energy
distribution of the photocurrent to the bulk electronic structure.

The analysis of the expressions reveal the following features
of the photocurrent: (i) As in the mean-field theory [59,69,70],
the quasiparticle pole of the bulk Green’s functions gives
rise to a resonance, whose width is proportional to the
imaginary part of the wave vector k! and to the group
velocity of the hole perpendicular to the surface. (ii) For the
incoherent band, even if its energy range is k independent, as
is the case in most DMFT theories, its spectral weight turns
out momentum-dependent [8,9]. Apart form the obvious k|
dependence of the intensity, this manifests itself in the photon
energy dependence of the EDC. This reflects in the first place
the k dependence of the initial-state spectral function Ay (K, w),
Eq. (33), but it may also involve more complicated matrix
element effects. This happens already in the simplest case
when the final-state decay rate k' is constant over the whole
EDC energy range. However, when the energy passes through
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FIG. 5. (a) k. (79) - thin lines, and k” (80) - thick lines, for various values of “optic potential” V;; Eg = h§2 — 5T, e = —2.2T, W = 0.5T,
€. = 10T /c. The spectral density A(w + in) compared with the spectral density of the bulk Green’s function (40) shown in Fig. 1 for
(b) V; =0.1T and (c) V; = T. The energy E; = h<2 is used for the normalization in Egs. (67)—(69).

a gap in the final-state spectrum, where k' rapidly changes tum chemistry calculations [79,80], etc. In addition, a more
with energy, EDC becomes dramatically distorted with respect accurate treatment of final-state effects can be implemented
to the underlying spectral function Aj,.(k,w). Furthermore, [58,59,73]. Owing to the simplicity of the Wannier representa-
interesting interference effects are expected when the LEED tion, the present formalism can be straightforwardly extended
function has several evanescent components with different to two-photon and pump-probe photoemission [81,82].
decay rates [73].

In this work, we have considered rather simple models of
both initial and final states. The present formalism opens a
way to study ARPES for more realistic models of strongly NATO (Belgium), Grant No. SfP-984735 is acknowledged
correlated electron systems, such as LDA 4+ DMFT [26,36], with gratitude. This work was supported by the Spanish
the LDA 4 Gutzwiller method [74-76], the LDA-based Ministry of Economy and Competitiveness MINECO (Project
many-band Hubbard model [77,78], embedded-cluster quan- No. FIS2013-48286-C2-1-P).
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Let us consider the double integral in Eq. (6),
1= [[ @xdsle; +i60101G1 00l - i)
-/ N al6 0161 20u64 + 6101610261 +i(6] 011202 — 91011020, (A1)
where we use the simplified notations ¢; = ¢- (x;,4,E), 0, = O(X,'), G2 = G(X1,X2,E — hR2). The term in the last row, i.e.,

the imaginary part of the integral, vanishes because of the GF symmetry property (7) and the restriction of the integration ranges
by the region inside the solid. The obtained expression we compare with

Im12 = Im(// d3X1d3X2(p10AlG1,20Az(p;)

= // < d*x1d*xa[—g| OIG/LQ 029 + wilélG/{,z 0295 + ¢ OAlG,{,z 020, + <P§/0AlG/1,2 0205
X1,2C

= / f d*x1d’%(9] 01G , 0205 + 9] 01GY ,0,05) = I,
X1 2CS

where we have again exploited the property (7) and the restriction of the integration range by the volume inside the solid due to
confinement of the initial state. We thus obtain

I =ImG(E — k), (A2)

where

(@) = << / Pxio-(x1,3, E)O(x ¥ (x1)

/ d3xZ1ﬁT<xZ)0<xZ>¢:<Xz,4,E)>> = (CICT,,

w

with C, given by Eq. (11), v = E — hQ.
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Now we can use the expression (16) for ¢ (x;,4, E) to write

é = Z /f dZXH /dzeiik”x”U(XH,Z,@,E)OA(X)U)Q[X” — R|| + (Z — lC)Il — S]aR”’l,a

RH,I,(X

=Y // d’x /dze*"k”("WR”)U(xu,z,é,E)O(X)wa[Xu +(z — le)n —s]ag, 1.4

Ry.la
=EQLKNVM%@@Béwmmﬁﬂ—km—ﬂX}%m@Mw (A3)
La Ry

and obtain Eq. (19).
Substituting the Eq. (17) into (19), we rewrite it in the form

¢ =, /N Z /dz // dsze—i[k\\"\\‘*‘kim(Z—ZU)]um(x,k”,E)O(X)wa[x|| +(z—Ilc)n — slax,.1.a>»

m,l,a

which gives Egs. (20) and (21)
For the one-band model considered in Sec. III and the final sate given by Eq. (47) we have

A _ [N i
C = N_lM(k\ME);epZUApaku,p,Ot'

For the GF of Eq. (28) we have

el (P1=p2)20 API A;z Gb,kl(w)Gb.kz(w) s (A4)

1
§.w) = MK, E 2N ] — ALI2G N RN
G(G,w) = IMKk,E)|°N, { N, ¥| p17Gp k(@) N2 g @)

pP1.p2
wherek; = k| + p;in, G, x(w) is given by Eq. (40). The usual substitution (1/N ) Zp - — (1/2mc) f:/r;L ---dp gives Eq. (49).
The integrals 7; (50) and 1,,(52) are calculated using the substitution

dz

z=eP, dz=icedp, dp=—i—; (AS)
cZ
then
i dz 1
Il(kuvw)=—2—f " ]

7 Jig=1 (1= 22)(@ = 2) @ — 0k + Tipo(z + ;)
] d

:_Lﬁ < ‘ , (A6)

27 Jig=1 (U — z2)(z@ = 2p) Tipo(z — 25)(2 — 2-5)

— ,—ikl—k!c —
where zx = 775 0k = £k + Tk 0

@ = Okj.0 F Sw\/(a) - Gkuvw)z - 4Tk2u«w
2T .0

g5 = — ; (A7)

and function S, is given by Eq. (81). Noting that |zx|,|zs| < 1, we find two poles lying inside the circle |z| < 1: z; = zf and
7o = zgs. This gives Eq. (54), with

1 ZZ
Rl = 2 * *
1 - Izkl Tk”,a)(Zk — Z—S)(Zk — ZS)
. 1 1
- _ 2 * 1)’
=zl o - Okj.0 + Tkuvw(zk + Z)
1
R, = . s .
(1 — zkzs)(zs — 27) Tipw(zs — 2-5)
Similarly, we have
i dz z 1 zs

Lik)=—— = .
216 27 Jiz=1 (1 — z2) Tz — 250z — 2—s) (1 — zkzs) T .0(2s — 2-5)
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Then
1 1 T, w(zs — 2—5) z :
L= (k)i (—k)) = H " |: S ] ,
8k, (w) (I —zkzs) (I —z5zs) [ Tk0(zs — 2-5)
1
I=Ri+R)— I, = (A8)

T =z gfzs — D(z—s — 21)

Above, we have taken into account that

S
8Kk (w) = Te o(zs — ) = = S (A9)
kjo(Zs = 2-s \/(w — ok — 47,
Substituting z; and z4 g into the above expressions, we obtain the formulas for various contributions to (49):
Ri(kj,w) ={(1 — efzk!”)[a) — 0kj0 + 2Tk 0 cos(k;c + ik;'c)]}fl, (A10)
SoTiy.we
Ra(kj,0) = - . (AL
[2Tku,w coshklc + (0 — 0y,.») cOskc + i S, sin kéc\/(a) — 0kj.0)* — 4Tk2”’w]\/(a) — 0k.0)* — 4Tk2H,w
28,1y,
12(k|| ,CL)) = 2 "o 2 2% ¢ (A12)
[(w — oKy + Sw\/(a) — Oky.0)? — 4TkH’w)(a) — Ok + 2Tk, we K¢ cos klc) — 21 (1 —e™ kel
1
X .
J@—ogw? 412,
On the other hand, we note that
w90
s = _Tk”,wgs(w - O‘ku,w’ Tk”,w), i_§ =——F7—— — I8,
Tk”,w
then the denominator of the second fraction of the right-hand side of (A8) is
. 5 ® — Okj0 + 2Tku,we_kg" coskc — Tl(z‘"w(l — e K g (w — Oky.00 Ty 0)
Zp2sz-s — lzl"zs —z-s + 2 = ,
Ty
and G is given by Eq. (55).
The behavior near the resonance frequency w, is described by the expression
Z(w,)eke
F.(kj,0) = — (A13)
(w — w,)coshklc +ill
[ = 22(0))| Ty, | tanh k¢, sinh? k7 + sin? kc. (Al4)
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