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L. V. Pourovskii*
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An approach is proposed for evaluating dipolar and multipolar intersite interactions in strongly correlated
materials. This approach is based on the single-site dynamical mean-field theory (DMFT) in conjunction with
the atomic approximation for the local self-energy. Starting from the local-moment paramagnetic state described
by DMFT, we derive intersite interactions by considering the response of the DMFT grand potential to small
fluctuations of atomic configurations on two neighboring sites. The present method is validated by applying it
to one-band and two-band eg Hubbard models on the simple-cubic 3d lattice. It is also applied to study the
spin-orbital order in the parent cubic structure of ternary chromium fluoride KCrF3. We obtain the onset of
a G-type antiferro-orbital order at a significantly lower temperature compared to that in real distorted KCrF3.
In contrast, its layered A-type antiferromagnetic order and Néel temperature are rather well reproduced. The
calculated full Kugel-Khomskii Hamiltonian contains spin-orbital coupling terms inducing a misalignment in
the antiferro-orbital order upon the onset of antiferromagnetism.
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I. INTRODUCTION

Magnetic and orbital-ordering phenomena in strongly
correlated materials have been a hot topic in condensed matter
research for many years. In particular, transition-metal (TM)
oxides and fluorides have attracted a lot of attention due to a
complex interplay of their spin and orbital orderings [1]. More
recently, a lot of research has been focused on the lanthanide
and actinide compounds exhibiting ordering of high-ranking
multipoles, e.g., CeB6 [2,3], actinide dioxides AO2 (A = U,
Np, and Pu) [4], and URu2Si2, where the nature of the
“hidden-order” phase is still hotly debated [5]. Experimental
determination of multipole-ordered structures is a complicated
task, because the conventional neutron diffraction method is
often not applicable in this case [4].

Dipolar and multipolar moments in those materials are
carried by localized shells of correlated d and f electrons.
First-principles description of such strongly correlated com-
pounds is nowadays possible using a combination [6,7] of
density-functional-theory (DFT) band structure techniques
with the dynamical mean-field theory (DMFT) treatment [8]
of correlated electrons. This approach is particularly efficient
in capturing the high-temperature symmetry-unbroken state.
There are no principal limitations for applications of the same
method to symmetry-broken ordered phases. However, the
typical low ordered temperatures and low symmetries of those
phases as well as a vast configuration space of possible ordered
states render direct predictive DFT+DMFT calculations in this
case rather difficult. Moreover, the single-site DMFT method
suffers from the usual mean-field drawbacks overestimating
ordering temperatures, especially, for low-dimensional sys-
tems (see, for example, Refs. [9–14]).

Hence a promising approach for a first-principles descrip-
tion of orbital and multipolar ordering phenomena consists in
using the DFT+DMFT method to evaluate an effective low-
energy Hamiltonian describing intersite interactions between
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localized shells. Such Hamiltonians can then be solved by
a variety of methods developed for Heisenberg and similar
models in order to predict the ordered phase as a function of
external parameters like pressure or temperature.

Several such techniques have been proposed [15–21] for
evaluating low-energy spin Hamiltonians in conjunction with
standard DFT methods. They were subsequently also extended
to calculations, for example, of the magnetic crystalline
anisotropy [22] and Dzyaloshinskii-Moriya interactions [23].
Generally, in those approaches effective exchange interactions
are extracted by considering a first-order response of the
grand potential upon a simultaneous change of magnetic
configurations of two neighboring sites. In particular, in
those approaches that have been to date generalized for
correlated systems (Refs. [24–26]), one computes the variation
of the grand potential of a magnetically ordered state upon
simultaneous small tilting of two neighboring spins.

The technique proposed in this work in order to calcu-
late intersite dipolar and multipolar interactions is similar
in spirit to those methods. However, in contrast to them,
we will calculate the variation of the DFT+DMFT grand
potential of the paramagnetic (symmetry-unbroken) phase
upon simultaneous small change of the atomic configurations
of correlated shells of two neighboring sites. Hence one can
derive intersite interactions directly from the high-temperature
paramagnetic state, which is typically most readily accessible
for DFT+DMFT. The approach is currently formulated using
the atomic (Hubbard-I) [27] approximation for the DMFT
local self-energy. It is fast and, in principle, able to calculate
all terms of the low-energy Hamiltonian, including non-
Ising spin-spin, spin-orbital, and multipolar interactions. The
formulation on the basis of Hubbard-I entails, however, certain
limitations. In particular, the present approach is suitable for
localized systems like TM oxides and local-moment lanthanide
compounds and cannot be applied to metals.

As a first application of this technique to real materials,
we study the spin-orbital ordering in the cubic phase of the
Mott insulator KCrF3. In this compound, the 3d shell of the
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Cr2+ ion is in the high-spin t3
2ge

1
g configuration with the spin

of a single eg electron aligned to that of the half-filled t2g

subshell by the Hund’s rule coupling, similarly to undoped per-
oxide manganese LaMnO3. KCrF3 adopts the cubic peroxide
structure at high temperatures. At TOO ≈ 973 K, it undergoes
a first-order orbital-ordering transition accompanied by a
tetragonal distortion (space group I4/mcm) [28]. Another
structural transition to a low-temperature monoclinic phase
(space group I112/m) due to tilting of the CrF6 octahedra
is observed at T ≈ 250 K [29]. Finally, a transition into an
incommensurate layered antiferromangetic (AFM) phase with
the ordering vector (1/2 ± δ, 1/2 ± δ, 0) in the monoclinic
cell is taken place at TN ≈ 80 K [30]. Below 46 K, the AFM
order becomes a fully commensurate A-type one with δ → 0,
a spin canting is detected below 9.5 K leading to formation of
a small ferromagnetic moment [30].

As in other Jahn-Teller systems, it is important to dis-
entangle the lattice and purely electronic superexchange
contributions into the spin-orbital ordering in KCrF3 to
understand their relative importance. Previously the orbital
ordering in the undistorted cubic structure has been studied
theoretically within DFT+DMFT [31] and DFT+U [32,33]
approaches. In particular, the authors of Ref. [31] derived an
effective DMFT impurity problem for the Cr eg subshell with a
simplified treatment of its interactions with the t2g spin, which
was subsequently solved by a quantum Monte Carlo (QMC)
method. They obtained a substantially underestimated value
TOO ≈ 400 K when only the supexchange contribution was
taken into account.

Here we compute all relevant superexchange interactions
for the cubic phase of KCrF3 and then solve the resulting ef-
fective spin-orbital Hamiltonian within the mean-field approx-
imation obtaining orbital and magnetic ordering temperatures
and the corresponding phases. We find an underestimated value
of TOO in agreement with Ref. [31], in contrast, the calculated
value for TN and the predicted A type of the AFM order
agree with those experimentally observed in KCrF3. We show
that the onset of the AFM phase produces a feedback effect
on the orbital arrangement leading to a loss of the perfect
antiferro-orbital order even in the absence of lattice distortions.

The rest of paper is organized as follows: the method is
derived in Sec. II. It is subsequently tested and its limitations
explored by applying it to one-band and two-band eg Hubbard
model on the simple-cubic lattice in Secs. III and IV,
respectively. Finally, its application to KCrF3 and the obtained
results are presented in Sec. V.

II. METHOD

We start by deriving in Sec. II A the variation of the
Hubbard-I self-energy with respect to a change of the atomic
configuration of correlated shell. The derived expressions
are then used in Sec. II B to calculate the variation of the
DFT+DMFT grand potential upon simultaneous change of
atomic configurations on two neighboring sites and, thus, to
extract the corresponding intersite interactions between those
configurations. Finally, in Sec. II C, we recast the obtained
interactions into a more conventional dipolar and multipolar
form. The full calculational procedure is shortly outlined in
Sec. II D.

A. Local fluctuations within the Hubbard-I approximation

Let us first outline the main features of the Hubbard-I
approximation (HIA) as applied to the DMFT quantum
impurity problem. In this case, the HIA can be derived by
a high-frequency expansion of the DMFT self-consistency
condition (see, e.g., Ref. [34]) to the first order in 1/ω,
leading to the following expression for the noninteracting level
positions of the impurity:

ε = −Iμ +
∑

k

PkH
k
KSP

†
k − �dc (1)

where H k
KS and Pk are the Kohn-Sham (KS) Hamiltonian

and “projector” between the KS and correlated spaces for a
given k point in the Brillouin zone (BZ), respectively, �dc is
the double-counting correction for the self-energy, μ is the
chemical potential, and I is the unit matrix. The DMFT bath
Green’s function G within the HIA takes a very simple form

G−1
0 (iωn) = iωnI − ε, (2)

where ωn = πT (2n − 1) is the fermionic Matsubara fre-
quency. Solving of the impurity problem is then reduced to
the diagonalization of the effective atomic Hamiltonian Hat =∑

ab εabf
†
a fb + HU , where f

†
a (fb) is the creation(annihilation)

operator for the localized orbital labeled by relevant quantum
numbers designated by a(b), HU is the on-site Coulomb
repulsion.

The corresponding atomic Green’s function then reads

Gat
ab(iωn) =

∑
γ γ ′

〈γ |fa|γ ′〉〈γ ′|f †
b |γ 〉

iωn − Eγ ′ + Eγ

(Xγ + Xγ ′ ), (3)

where |γ 〉 and |γ ′〉 are eigenstates of the atomic Hamiltonian
Hat, Eγ and Xγ = e−βEγ

Z
are the corresponding eigenenergies

and Boltzmann weights, respectively, Z is the partition func-
tion, β = 1

T
is the inverse temperature. The atomic self-energy

can then be calculated through the Dyson equation:

�at(iωn) = [G0(iωn)]−1 − [Gat(iωn)]−1. (4)

In cases where the HIA is applicable and for reasonable
temperatures the system is far from the intermediate-valence
regime, hence, charge fluctuations can be safely neglected.
Moreover, in localized systems, the most important fluctu-
ations are expected to occur among quasidegenerate states
belonging to the ground-state (GS) atomic multiplet. For
example, for 4f shells this multiplet is defined by the
occupancy as well as by the spin S, orbital L, and total J

quantum numbers, in TM ions, it is rather defined by the
occupancy, S, and crystal field. In solids the GS multiplet can
be additionally split by smaller energy scales, like the crystal
field in rare-earths and the spin-orbit coupling in TM ions.
Hence, here we consider fluctuations only among the states
belonging to GS multiplet. It is useful for the following to
recast the atomic GF into a slightly more general form:

Gat = Tr[ρ̂Ĝ] + Gat
1 , (5)

where the first term comprises all contributions to Gat

involving the states of the GS multiplet; those states will
be in the following designated by capital Greek letters, for
example, |
〉. The rest is collected in Gat

1 . The density matrix
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ρ̂ (throughout Sec. II we use the hat, X̂, for any matrix X

in the basis of atomic states |
〉) of the GS multiplet in the
symmetry-unbroken (paramagnetic) state is defined within the
HIA by

ρ

′ = δ

′
e−βE


Z
, (6)

where δ

′ is the Kronecker delta, and the corresponding
element of the atomic GF matrix Ĝ in the imaginary time
domain reads G

′

ab (τ ) = −〈
|T [fa(τ )f †
b (0)]|
′〉, where T is

the time-ordering operator, |
〉 and |
′〉 are eigenstates of Hat

belonging to the GS multiplet. By the Fourier transform one
obtains, e.g., for the off-diagonal matrix elements of Ĝ in the
frequency space:

G

′
ab (iωn) =

∑
λ∈Q+1

1 + e−
E
λβ

iωn − 
E
λ

(Fa)
λ(Fb†)λ
′

+
∑

λ∈Q−1

1 + e−
E
′λβ

iωn + 
E
′λ
(Fb†)
λ(Fa)λ
′ , (7)

where (Fa(†))
λ = 〈
|f (†)
a |λ〉, 
E
λ = Eλ − E
 is the energy

difference between the state |
〉 belonging to the GS multiplet
with the occupancy Q and the excited state |λ〉. Similar, but
simpler expressions can be obtained for the diagonal elements
G



ab .
Let us now consider the change of the atomic Green’s

function upon a small fluctuation of the density matrix ρ̂ with
respect to its symmetry-unbroken Hubbard-I form (6). We
define the fluctuation for diagonal elements ρ

 as a diagonal
N × N matrix δρ̂

 with the following elements:

δρ


�� =

(
N − 1

N
δ�
 + 1

N
(δ�
 − 1)

)
ε, (8)

where N is the degeneracy of the ground-state multiplet, ε

is a small parameter. As one may easily see, the fluctuation
(8) conserves the trace of ρ̂ and induces a corresponding
fluctuation of an angular moment of the shell. For example, if in
the symmetry-unbroken state the value of an angular moment
operator Ĵ is zero, Tr[ρ̂Ĵ ] = 0 and 〈
|Ĵ |
〉 = J
 , then the
corresponding fluctuation of the moment is Tr[δρ̂

Ĵ ] = εJ
 .

We also define the off-diagonal fluctuation of δρ̂

′
as an

N × N matrix with a single none-zero element:

δρ

′
��′ = δ
�δ
′�′ε. (9)

Using the definition (5) for the atomic GF one then obtains the
following expression for the variational derivative of Gat over
a fluctuation of the type (8) or (9):

δGat

δρ̂

′ = G
′
 − δ

′
Tr[Ĝ]

N
. (10)

The second term in (5), Gat
1 , does not contribute to the

variational derivative (10), because the weights Xγ of the
states not belonging to the GS multiplet are not affected by
fluctuations of the types (8) and (9). Those fluctuations only
redistribute the weights within the GS multiplet and do not
change Z.

The corresponding variational derivative of the atomic self-
energy (4) reads

δ�at

δρ̂

′ = [Gat]−1

(
G
′
 − δ

′

Tr[Ĝ]

N

)
[Gat]−1. (11)

In the next section, we will make use of (11) to calculate
the response of the DFT+DMFT grand potential upon small
fluctuations of the density matrix (6) on two neighboring sites.

B. Response of the grand potential and effective
intersite interactions

The DFT+DMFT grand potential [7,35,36] reads

�[n(r),Gloc,
�,VKS]

= − 1

β
Tr ln

[
iωn+μ+∇2

2
− VKS − 
�

]
−Tr[Gloc
�]

+
∑

R

[
�imp

[
Gloc

R

] − �dc
[
Gloc

R

]] + �r [n(r)]

≡ 
�[Gloc,
�,VKS] + �r [n(r)], (12)

where n(r) is the electronic density, VKS is the Kohn-Sham one-
electron potential, Gloc is the local GF, 
� is the difference
between the impurity self-energy �imp and the double counting
correction �dc, �imp[Gloc

R ] is the DMFT interaction energy
functional for the site R, �dc[Gloc

R ] is the corresponding
functional for the double-counting correction, and μ is the
chemical potential. The last term �r [n(r)] depends only on the
electronic charge density n(r), while all other terms collected
in 
�[Gloc,
�,VKS] do not have an explicit dependence on
n(r). At the DMFT self-consistency, the local GF of the lattice
problem Gloc should be equal to the impurity GF Gimp. Within
the HIA, however, the full DMFT self-consistency is never
achieved because the hybridization function is neglected in
the impurity problem, Gimp ≡ Gat, but is included into the
local GF of the lattice problem. Hence, within the HIA, one
should always keep the distinction between Gloc and Gimp,
where Gimp and �imp calculated within the HIA in accordance
with (3) and (4), respectively.

Let us now introduce the basis of Kohn-Sham eigen-
states {�kν}, where ν labels Kohn-Sham bands. The corre-
sponding real-space (Wannier) basis functions are defined
by �Rν(r − R) = V

(2π)3

∫
BZ dke−ikR�kν(r), where V is the

unit cell volume.1 We also introduce a real-space basis of
(localized) Wannier orbitals representing correlated states,
{wRa}, where a labels orbitals at the correlated shell R, as well
as corresponding projectors between the KS and correlated
subspaces, P RR′

aν = 〈wRa|�R′ν〉. Using the real-space bases
{�Rν} and {wRa} and within the HIA, one may rewrite 
�

1The Wannier transformation is gauge-invariant with respect to a
unitary transformation of {�kν}. For the present derivation, it is not
important, hence, we assume that the corresponding unitary matrix is
equal to unity.
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as follows:


�[Gloc,
�,VKS] = − 1

β
Tr ln[Mn] −

∑
R

Tr
[
Gloc

R �at
R

]

+
∑

R

Tr
[
Gloc

R �dc
R

]

+
∑

R

[
�at[Gloc

R

] − �dc[Gloc
R

]]
, (13)

where elements of the real-space matrix Mn read

MRR′
n = (iωn + μ)I − H RR′

KS

−
∑
R′′

P
†
RR′′

(
�at

R′′R′′ (iωn) − �dc
R′′R′′

)
PR′′R′ , (14)

H RR′
KS and �at

RR(iωn) are matrices in the band and correlated
orbitals’ spaces, respectively, the matrix elements of the former
are given by [H RR′

KS ]
νν ′ = 〈�Rν | − ∇2

2 + V̂KS|�R′ν ′ 〉.
We will now calculated the response of the grand potential

(12) upon simultaneous fluctuations of atomic configurations
of correlated shells on two different atomic sites, i.e., we
evaluate δ2�

δρ̂
1
2 (R)δρ̂
3
4 (R′) . First, in the usual “force theorem”
spirit [19,37,38], one may neglect, to the first order in
δρ̂
1
2 (R)δρ̂
3
4 (R′), the contribution due to the renormaliza-
tion of the charge density, i.e., the contribution from �r [n(r)].
One may also notice that all terms in (13), apart from the first
one, are site-diagonal and will not contribute to a variational
derivative over configurations of two different sites. Hence the
only nonzero contribution due to simultaneous fluctuations
on two different sites R and R′ is due to the first term in
(13). Mn dependence on the correlated shell configuration
stems from that of the atomic self-energy �at. The double-
counting correction �dc for a paramagnetic phase depends
only on the total shell occupancy, which is not affected by the
density-matrix variations (8) and (9). Performing the derivative

δ2[− 1
β

Tr ln[Mn]]

δρ̂
1
2 (R)δρ̂
3
4 (R′) and making use of the “folding” property of

projector matrices,
∑

R1R2
PRR1 [M−1

n ]R1R2
[PR2R′ ]† = GRR′ ,

one obtains

δ2�

δρ̂
1
2 (R)δρ̂
3
4 (R′)
≡ 〈M1M3|V RR′ |M2M4〉

= 1

β
Tr

[
GRR′

δ�at
R′

δρ̂
3
4
GR′R

δ�at
R

δρ̂
1
2

]
, (15)

where the derivative δ�at
R

δρ̂
1
2
over an on-site fluctuation is given

by Eq. (11), Ml is the relevant set of quantum numbers labeling
the state 
l and the “intersite” GF GRR′ can be calculated as
a Fourier transform of the DMFT lattice GF in the reciprocal
space:

GRR′ (iωn) = V

(2π )3

∫
BZ

dke−ik(R′−R)Pk

× [
iωn + μ − H k

KS − P
†
k
�Pk

]−1
P

†
k . (16)

In Eq. (15), we identify δ2�

δρ̂
1
2 (R)δρ̂
3
4 (R′) with the cor-
responding intersite interaction of an effective low-energy

Hamiltonian of the system:

Ĥeff =
∑
R,


E
ρ̂R


 +

∑
RR′
1234

〈13|V RR′ |24〉ρ̂R
12ρ̂

R′
34 , (17)

where ρ̂R


1

= |
R〉〈
R
1 | is the corresponding projection (Hub-

bard) operator between the atomic states 
 and 
1 belonging
to the ground-state multiplet of the site R, E
 is the one-site
(crystal-field) term, 〈13|V RR′ |24〉 is the intersite interaction
between the corresponding Hubbard operators on the sites R
and R′ (here the label 
 is suppressed and the short-hand
notation 1 ≡ M1 is used).

The identification of the corresponding intersite interaction
in Ĥeff with (15) can be justified using, e.g., the approach
of Refs. [36,39,40]. Using this approach, one may write
a (Legendre-transformed) grand potential corresponding to
(17) for a set of preassigned on-site occupancy matri-
ces {ρR} as �LT [ρ] = �0[ρ] + ∑

RR′
1234

〈13|V RR′ |24〉ρ̂R
12ρ̂

R′
34 +

�corr = �MF + �corr, where �MF and �corr is the mean-
field and beyond-mean-field contributions, respectively, �0[ρ]
is the one-site term. Setting the density matrices ρ̂R to
their mean-field values in the symmetry-unbroken state and
computing the variational derivative of �MF over δρ̂R

12δρ̂
R′
34

one obtains 〈13|V RR′ |24〉. Hence, one identifies the derivative
(15) of the dynamical mean-field grand potential (12) as
the corresponding intersite interaction in (17). Of course,
the usefulness of those interactions depends on whether the
effective Hamiltonian (17) indeed describes the low-energy
physics of (12). This should be the case for strongly-correlated
local-moment systems, e.g., for rare-earth intermetallics above
their Kondo temperature or for Mott insulators.

C. Multipolar formalism

The intersite interactions between atomic states |
〉 calcu-
lated in accordance with (15) can be used directly, e.g., in
an effective Hamiltonian of the type (17). This Hamiltonian
is written in terms of low-energy interactions between the
on-site Hubbard operators defined above describing transitions
between atomic states belonging to the ground-state multiplet.

However, the standard dipolar and multipolar tensor op-
erators are, in fact, linear combinations of those Hubbard
operators with coefficients written in terms of of the cor-
responding Wigner 3j symbols [4,41]. Hence, instead of
working directly with the Hubbard-operator form (17), one
may recast this Hamiltonian to describe interactions between
dipole and multipole (quadrupole, octopole, etc.) operators
acting on neighboring sites. The low-energy Hamiltonian in
this form is more standard (one may recall, for example,
the spin Heisenberg and spin-orbit Kugel-Khomskii Hamil-
tonians) and also more compact when additional symmetries
are present. Moreover, it is written in terms of operators
which expectation values, i.e., dipole and multipole moments,
are directly measured experimentally. In this section, we
derive a transformation relating intersite interactions in the
density-matrix (17) and more conventional dipolar-multipolar
Hamiltonians.

We start by briefly summarizing properties of tensor
operators. The spherical tensor operators in the basis of
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angular-momentum eigenstates |JM〉 are standardly defined
as follows [4,41]:

T̂KQ(J ) =
∑
MM ′

T MM ′
KQ (J )|JM〉〈JM ′|

=
∑
MM ′

T MM ′
KQ (J )ρ̂MM ′ , (18)

where K and Q label the multipole rank and component,
respectively, 2J + 1 states |JM〉 belong to the ground-
state multiplet specified by the angular-momentum quantum
number J , M = −J, . . . ,J , ρ̂MM ′ ≡ |JM〉〈JM ′| is the Hub-
bard operator acting within the ground-state multiplet, the
coefficients T MM ′

KQ (J ) read

T MM ′
KQ (J ) = (−1)J−M (2K + 1)1/2

(
J J K

M ′ −M Q

)
. (19)

The set of (2J + 1)2 operators T̂KQ(J ) with K = 0,1, . . . ,2J ,
(i.e., monopole, dipole, etc. operators) and Q = −K, . . . ,K is
complete in the subspace spanned by the |JM〉 states and any
operator acting in this subspace can be represented as a linear
superposition of T̂KQ(J ). Other properties of those operators
are discussed, e.g., in Refs. [4,41]. In particular, one may notice
that the tensor operators (18) cannot represent observables as
they are not self-adjoint [41], T̂ †

KQ = (−1)−1T̂K−Q, for Q 
= 0.

However, the self-adjoint linear combinations of T̂KQ can be
formed similarly to the real spherical harmonics:

ÔKQ(J ) =
∑
MM ′

OMM ′
KQ (J )ρ̂MM ′ , (20)

where

OMM ′
KQ (J ) = 1√

2

[
(−1)QT MM ′

KQ (J ) + T MM ′
K−Q(J )

]
,

(21)
OMM ′

KQ (J ) = i√
2

[
T MM ′

K−Q(J ) − (−1)QT MM ′
KQ (J )

]
,

for Q > 0 and Q < 0, respectively. For example, for the
dipole, K = 1, the components Q equal to −1, 0, and 1
transform under rotations as Cartesian y, z, and x, respectively,
similarly to the corresponding real spherical harmonics.

One may introduce intersite interaction between the
tensor operators (20) acting at sites R and R′ as∑

KK ′
QQ′

V
QQ′
KK ′ (RR′)ÔKQ(R)ÔK ′Q′(R′), where the tensor oper-

ators of the rank K(K ′) and for the component Q(Q′) are
defined for the ground-state multiplet J of the corresponding
atomic shell R(R′), respectively. The label J in ÔKQ(R) is
suppressed here to simplify the notation. It is easy to show
that

∑
KK ′
QQ′

V
QQ′
KK ′ (RR′)OM1M2

KQ O
M3M4
K ′Q′ is equal to the intersite

interaction 〈M1M3|V RR′ |M2M4〉 defined in (15) and (17).
By making use of the orthogonality relations of the 3j

symbols, one may also show that
∑

MM ′ O
MM ′
KQ (J )OM ′M

K ′Q′ (J ) =
δKK ′δQQ′ . Then by multiplying the intersite interactions (15)
by O

M2M1
KQ (J ) and O

M4M3
KQ (J ) and summing over the quantum

numbers M , one obtains∑
M1M2
M3M4

〈M1M3|V RR′ |M2M4〉OM2M1
KQ (J )OM4M3

K ′Q′ (J )=V
QQ′
KK ′ (RR′).

(22)

Using (22), one may transform the intersite interactions from
the atomic-level, Eq. (15), to mutipolar form.2

In many cases, intersite interactions and corresponding
ordering temperatures come out to be much smaller than the
crystal field (CF) splitting within the ground-state multiplet
J . In this case, one may restrict oneself to determining
intersite interactions between the states belonging to the
lowest CF level. For example, one may represent the state
of an eg TM ion by a product of the ordinary spin s and
pseudospin τ quantum numbers, with the opposite directions
of the pseudo-spin corresponding to the 3z2 − r2 and x2 − y2

orbitals, respectively. This representation is widely used for
TM oxides [1]. In this case one may introduce another type of
tensor operators, the double tensor, which is a direct product
of two spherical tensors for J = 1/2 and can be written using
(21) as follows:

Ô
μν
�� =

∑
ττ ′

∑
ss ′

Oττ ′
�μ(1/2)Oss ′

�ν(1/2)|τs〉〈τ ′s ′|

=
∑
ττ ′

∑
ss ′

O
μν
��(τs; τ ′s ′)ρ̂τ s;τ ′s ′ , (23)

where we again use the corresponding Hubbard operator
ρ̂τ s;τ ′s ′ ≡ |τs〉〈τ ′s ′|. The subscripts �� and superscripts μν

in Ô
μν
�� are the ranks and components, respectively, of the

single tensors forming the direct product. Then, for example,
in the “double” spin-orbital space Ô

0p

01 = ŝp and Ô
p0
10 = τ̂p will

designate the spin and orbital dipole tensors, respectively, with
p = x, y, or z. Analogously, spin-orbital combined tensors can
be also introduced for the case of KCrF3 or other compounds
with the high-spin t3

2ge
1
g shell, the only difference is that the

J = 2 tensor Ô�ν(2) is used in this case to describe the spin.
Similarly to (22) the corresponding interactions read∑

1234

〈13|V RR′ |24〉Oμν
��(2; 1)Oμ′ν ′

�′�′(4; 3) = V
μν;μ′ν ′
��;�′�′ (RR′),

(24)

where the short-hand notation 1 ≡ {τ1s1} is used. Finally,
instead of using the tensors as defined in Eqs. (20) and (23),
one may wish to write the interactions in terms of more
conventional spin operators for the dipole case and the unit
matrix for the monopole one, respectively, by renormalizing
the intersite interactions as follows:

J
μν;μ′ν ′
��;�′�′(RR′) = V

μν;μ′ν ′
��;�′�′ (RR′)c(�)c(�)c(�′)c(�′), (25)

2One may notice that off-diagonal interactions
〈M1M3|V RR′ |M2M4〉 with M1 
= M2 and/or M3 
= M4 may
carry an arbitrary complex phase, which will then be passed to
V

QQ′
KK ′ (RR′). To avoid this, we require that |
〉 ≡ |JM〉 states used

in (7) and (18) satisfy the usual phase convention with the matrix
element of the ladder operator 〈JM|J+|JM − 1〉 being a real
positive number.
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where the factor c(�) is equal to 1√
2

and
√

2 for � equal to 0
and 1, respectively [41].

We will label those interaction by τ and s for the
dipole orbital and spin moments, respectively, as well as
by q for the dipole-dipole (“quadrupole”) spin-orbital one.
For example, Ĵ01;01(RR′) ≡ Ĵss(RR′) is the spin-spin dipole-
dipole interaction, Ĵ10;10(RR′) ≡ Ĵττ (RR′) is the orbital-
orbital dipole-dipole one, Ĵ10;11(RR′) ≡ Ĵτq(RR′) is the
orbital-(spin-orbital) dipole-quadrupole one and so on. Finally,
for the case of one atom per unit cell, we may always make use
of the translational invariance, hence, RR′ can be substituted
with 
R = R′ − R.

D. Outline of calculation procedure

Let us summarize the sequence of steps for calculating
intersite interactions using the method described above. First,
one carries out full self-consistent DFT+DMFT calculations
using the Hubbard-I approximation as the impurity solver.
Second, one computes the atomic Green’s function matrix
elements (7) and the variation derivative of the atomic self-
energy (11) as well as the intersite DMFT Green’s function
in the real space (16). Finally, the intersite interactions are
computed in accordance with (15) and then transformed, if
desired, into a suitable multipolar form using (22) or (24).
The method is implemented numerically using the TRIQS

library [42].

III. ONE-BAND HUBBARD MODEL

In this section, we benchmark the approach presented in
Sec. II by applying it to a simple example of the one-band
particle-hole symmetric Hubbard model on the 3d simple
cubic lattice. The Hamiltonian of this model reads

Ĥ1b =
∑
kσ

εkf
†
kσ fkσ + U

∑
i

(
n̂i↑ − 1

2

)(
n̂i↓ − 1

2

)
(26)

where k belongs to the first Brillouin zone of the simple
cubic lattice, n̂iσ = f

†
iσ fiσ is the number operator for the site

i and spin σ . For the simple cubic lattice with the nearest-
neighbor hopping t , the band energy εk = −2t(cos kx +
cos ky + cos kz), where kα are in units of the inverse lattice
spacing 1/a. Applying the Hubbard-I approximation in the
framework of DMFT to Ĥ1b as described in Sec. II A and
under the condition of T � U , one obtains Gat(iωn) =
( 1/2
iωn+U/2 + 1/2

iωn−U/2 ) and �at(iωn) = U 2

4iωn
for the atomic GF

(3) and self-energy (4), respectively. Then one may easily
obtain intersite interactions of the effective low-energy model
at t � U analytically by computing the intersite GF using
the Fourier transform (16) and the variational derivatives of
the atomic self-energy using Eqs. (7) and (11), respectively,
and then inserting the result in (15). For example, by
inserting the nearest-neighbor intersite GF Gσσ ′

RR′∈NN (iωn) =
− δσσ ′ t

(iωn− U2
4iωn

)
2 and the “off-diagonal” derivative of the atomic

5 10 15 20 25
U/t

-0.6

-0.4

-0.2

0

0.2

J n
/t

J1
J2*10

J3*10

-4t2/U

FIG. 1. Calculated intersite interactions Jn for the first three
coordinational shells. The values of J2 and J3 are multiplied by 10.
The dash-dotted line is the −4t2/U asymptote.

self-energy ( δ�at

δρ̂↓↑ is the same expression transposed)

δ�at

δρ̂↑↓ (iωn) =
(

iωn − U 2

4iωn

)2

×
(

0 U
ω2

n+U 2/4

0 0

)
(27)

into (15) and carrying out the summation over Matsubara
frequencies and spins, one obtains 2t2

U
for the nearest-neighbor

spin-off-diagonal matrix element 〈↑↓|V (d)|↓↑〉 (where the
lattice vector d = R′ − R connects nearest neighbors). This
is indeed the correct value for this matrix element of the
low-energy model for Ĥ1b at t � U , which is well known
to be the spin-1/2 Heisenberg model

ĤH = −
∑
ij

Jnŝi ŝj , (28)

where the interaction is isotropic and depends only on the
distance |Ri − Rj |, i.e., on the coordination shell n. In the
lowest order in t/U , only the nearest-neighbor antiferromag-
netic interaction J1 = − 4t2

U
survives in ĤH .

We have calculated numerically all matrix elements of
(28) for several first coordination shells as a function of U/t

using (15) and then applied the transformation (22) to obtain
the corresponding intersite interactions between the dipole
tensor operators for spin 1/2. As expected, those interactions
come out to be isotropic and direction-independent, V xx

11 (d) =
V

yy

11 (d) = V zz
11 (d) = Vn. Finally, the tensor interactions Vn are

renormalized, Jn = 2Vn (cf. eq. 25), for the standard angular-
momentum-operator form (28) of the Heisenberg Hamiltonian
ĤH . The resulting Jn are plotted in Fig. 1 as a function of
U/t . One sees that J1 deviates stronger from the −4t2/U

asymptote with increasing t and, simultaneously, the second
and third coordination sphere interactions increase though they
still remain quite insignificant compared to J1.

The calculated interactions Jn have been used to evaluate
the value of Néel temperature TN for the model (26) within the
mean-field approximation. The obtained values are compared
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U/t
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0.25
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1.25

T
N

/t

Mean-field from calculated interactions

DMFT-QMC 3d simple cubic
a

DMFT-QMC semi-elliptic DOS
b

DMFT-QMC d= ∞ cubic lattice
c

6t
2
/U mean-field asymptotics

FIG. 2. Calculated values for the mean-field Néel temperature TN

compared with those obtained within QMC from (a) Ref. [10], (b)
Ref. [43], and (c) Ref. [44] as well as with the large-U asymptote
TN = 6t2

U
.

in Fig. 2 to TN calculated within single-site DMFT using
numerically exact quantum Monte Carlo (QMC) techniques
[10,43,44]. The agreement with these numerically exact TN

is good for U > 10t . We note that within the dynamical
mean-field theory, Heisenberg Jn not only define the transition
temperature TN but also directly impact the spectral properties
of the Néel phase. In fact, Jn determine the spin-polaron peak
structure within the Hubbard bands [45,46], which can be
in some cases detected in real Mott insulators [46]. Hence
one may suggest that the present approach can be possibly
used to provide parameters for t − J -like models aimed at
investigating those phenomena.

For U < 10t , the present approach deviates significantly
from the exact mean-field values, though less strongly than the
simplest large-U asymptote. The value of U ≈ 10t at which
the maximum of exact mean-field TN is reached is very close
to the critical value of U for the metal-insulator transition in
the paramagnetic phase [47]. Hence one concludes that the
present approach is reliable in the Mott-insulating regime.

IV. eg-ORBITAL HUBBARD MODEL

Here we apply the method of Sec. II to a more complex
model system, a two-band Hubbard model on the 3d simple
cubic lattice, given by

Ĥ2b =
∑
〈ij〉
abσ

tab
ij f

†
iaσ fjbσ + Ĥint, (29)

where 〈ij 〉 runs over nearest-neighbor bonds, a and b label
orbitals, tab

ij is the corresponding element of the hopping

matrix, and Ĥint is the on-site interaction term. We assume the
orbitals to belong to the eg representation of the cubic group
for l = 2, a ≡ 3z2 − r2, and b ≡ x2 − y2, and employ the
corresponding relations between the nearest-neighbor hopping
integrals tab

ij , in which case the Fourier-transformed hopping

matrix reads

t(k)

=
(

− 1
2 (cos kx+ cos ky)−2 cos kz

√
3

2 (cos kx− cos ky)
√

3
2 (cos kx− cos ky) − 3

2 (cos kx+ cos ky)

)
t

(30)

where t is the hopping between two 3z2 − r2 orbitals for 〈ij 〉
along the ẑ axis. By diagonalizing (30) one obtains eg band
dispersions with the total bandwidth W = 6t .

The interaction term Hint invariant over the cubic group
symmetries reads (see, e.g., Refs. [48,49])

Ĥint = U
∑

i,α=a,b

n̂iα↑n̂iα↓ + (U − 2JH )
∑
i,a 
=b

n̂ia↑n̂ib↓

+ (U − 3JH )
∑
iσ

n̂iaσ n̂ibσ

+ JH

∑
i,a 
=b

(f †
ia↑f

†
ia↓fib↓fib↑−f

†
ia↑fia↓f

†
ib↓fib↑), (31)

where U and JH are the Coulomb and Hund’s rule interactions,
respectively.

We study the case of one-quarter filling, Q = 1, for which
the model (29) is relevant for a number of transition-metal
compounds, for example, potassium copper fluorite KCuF3

[1,48,50] and rare-earth nickelates RNiO3 [51–53]. Essentially
the same model was studied within DMFT in various param-
eter regimes to understand the behavior of nickelate-based
heterostructures [54–56]. The magnitude of superexchange an-
tiferromagnetic coupling is believed to be a crucial parameter
controlling the physics of those heterostructures [54,57].

We first carried out DMFT calculations employing the HIA
with JH set either to 0 or to 0.5W and U being in the range
from 5W to 15W . The lower limit of U is chosen to be above
the critical value Uc = aW + 3J (where the prefactor a lies in
the range from 1.5 to 2.5 depending on the lattice type under
consideration) for the Mott transition in the two-band Hubbard
model at quarter filing [53,58,59]. Then the superexchange
intersite interactions at the first coordination shell between four
one-electron states |3z2 − r2, ↑〉, |3z2 − r2, ↓〉, |x2 − y2,↑〉,
and |x2−y2,↓〉 were computed in accordance with (15).
Finally, we employed Eqs. (24) and (25) to recast them into
the standard Kugel-Khomskii [1] form of interacting spin-
1/2 operators ŝ and τ̂ representing spin and orbital degrees
of freedom, respectively (τ = 1/2 and τ = −1/2 designate
occupied x2 − y2 and 3z2 − r2, respectively). The resulting
effective Hamiltonian for the [001] bond, 〈ij 〉||ẑ, reads

Ĥ
[001]
eff =Jss

∑
α

ŝiαŝjα + Jττ τ̂izτ̂jz + Jqq

∑
α

(ŝiα τ̂iz)(ŝjατ̂jz)

+ Jsq

∑
α

[ŝiα(ŝjατ̂jz) + (ŝiατ̂iz)ŝjα], (32)

where Jss , Jττ , Jsq , and Jqq are the spin-spin, orbital-orbital,
spin-(spin-orbital), and (spin-orbital)-(spin-orbital) interac-
tions defined in Sec. II C, respectively, α runs over x, y, and
z. As expected, the calculated effective Hamiltonians for the
[100] and [010] bonds are related by the cubic symmetry
to Ĥ

[001]
eff and can be obtained from it by the corresponding
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FIG. 3. Calculated superexchange intersite interactions for the eg

Hubbard model with (a) the Hund’s rule coupling JH = 0 and (b)
JH = 0.5W . The black dashed lines are the values obtained from
analytical formulas (33).

rotation in the τ̂ space, i. e., by substituting τ̂z in (32) with
− 1

2 τ̂z +
√

3
2 τ̂x and − 1

2 τ̂z −
√

3
2 τ̂x , respectively.

The calculated values of Jss , Jττ , Jsq , and Jqq versus U are
displayed in Fig. 3 together with the corresponding values of
those superexchange interactions obtained from the analytical
expressions derived in Refs. [48,50]:

Jss = J (1 − η); Jττ = J (1 + 2η);

Jsq = −J (2 − η); Jqq = 4J, (33)

where J = t2

Ũ
, η = 2JH

Ũ
with Ũ = U − JH being the average

Coulomb repulsion between eg electrons with opposite spins.
One may note a perfect agreement between the calculated and
analytical values in Fig. 3(a) for the case JH = 0, for which
Eq. (33) reduce to Jss = Jττ = −Jsq/2 = Jqq/4 = t2

U
. In the

case of JH = 0.5W [Fig. 3(b)], there are small discrepancies
between the present approach and the analytical formulas (33)
at low values of U . This is apparently due to the fact that the
formulas (33) were derived [48] by the first-order expansion
in η and become less accurate with increasing JH/U .

V. SPIN AND ORBITAL ORDERING IN KCrF3

In this section, we calculate ab initio superexchange
interactions for the cubic phase of KCrF3 and then employ the
resulting effective Hamiltonian to compute ordered phases and
transition temperatures within the mean-field approximation.
First, we carried out DFT+DMFT calculations of KCrF3

using the linearized augmented plane-wave (LAPW) band
structure method as implemented in the WIEN2K [60] code
in conjunction with the DMFT and HIA implementations

FIG. 4. The total and projected spectral functions of KCrF3

calculated by the DFT+DMFT method within the Hubbard-I ap-
proximation using U = 3.75 eV.

provided by the TRIQS library [42,61]. The Wannier orbitals
representing correlated Cr 3d states were constructed using
the projective approach of Ref. [62] from the Kohn-Sham
(KS) states in the window [−2.7 : 2.7] eV around the Fermi
level, this window encloses both eg and t2g-like KS bands. The
self-consistency over the charge density in the DFT+DMFT
calculations was implemented as described in Ref. [63], the
spin-orbit coupling was neglected.

The rotationally invariant local Coulomb repulsion between
all five Cr 3d orbitals was parametrized by the Slater
integrals F0 = U = 3.75 eV, as well as F2 = 6.44 eV and
F4 = 0.625F6 = 4.025 eV corresponding to the Hund’s rule
coupling JH = 0.75 eV. Those values of F0 = U = 3.75 and
JH = 0.75 eV were computed for KCrF3 in Ref. [31] using a
constrained-LDA technique. We also performed calculations
with U = 5 eV for the sake of comparison. We employed the
fully-localized-limit form for the double counting correction
term calculated with the nominal Cr 3d shell occupancy of 4,
this choice was shown to be appropriate for the HIA [34].

KCrF3 was calculated in its high-temperature cubic perox-
ide structure with the experimental [28] lattice parameter of
4.23 Å. We employed the atomic sphere radii of 2.5, 2.0, and
1.78 a.u. for K, Cr, and F, respectively. The Brillouin zone
(BZ) integration was carried out using 4000 k-points in the
full BZ, test calculations showed that increasing further the
density of the k-mesh had a negligible effect on the values of
superexchange interactions.

Our DFT+DMFT calculations within HIA predict KCrF3

to be a Mott insulator. Its spectral function features a Mott-
Hubbard gap of about 2 eV, with the gap edges formed by
eg-like bands, see Fig. 4. The high-spin t3

2ge
1
g configuration

with the total spin S = 2 is predicted to be the ground-state
multiplet of the Cr 3d shell, as expected. Due to the orbital
degeneracy of 3z2 − r2 and x2 − y2 the total degeneracy of
the ground-state multiplet is 2(2S + 1) = 10.

Effective intersite interactions (15) between those ten states
belonging to the ground-state multiplet were then calculated
in accordance with the approach of Secs. II A and II B. Then
we again made use of Eqs. (24) and (25) to recast them into
the Kugel-Khomskii form.

The calculated interactions between second nearest neigh-
bors and beyond are at least two orders of magnitude smaller
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TABLE I. Calculated Cr-Cr nearest-neighbor interactions along
the [001] direction, in meV.

U (eV) Jss Jττ J xy
ττ Jsq Jqq J xy

qq

3.75 0.94 37.3 1.71 −1.77 7.12 0.28
5 0.96 24.7 1.20 −1.43 4.93 0.21

then those between the nearest neighbors and were neglected.
The calculated superexchange Hamiltonian between two
nearest neighbors i and j along the [001] direction has the
following form:

Ĥ
[001]
eff = Jss

∑
α

ŝiαŝjα + J xy
ττ

∑
β

τ̂iβ τ̂jβ + Jττ τ̂izτ̂jz

+ Jsq

∑
α

[ŝiα(ŝjατ̂jz) + (ŝiατ̂iz)ŝjα]

+ J xy
qq

∑
αβ

(ŝiατ̂iβ)(ŝjατ̂jβ)

+ Jqq

∑
α

(ŝiατ̂iz)(ŝjατ̂jz), (34)

where α and β run over x, y, z and x, y, respectively.
The spin operators ŝiα act in the S = 2 space of the total
spin of the site i, the τ = 1/2 and τ = −1/2 quantum
numbers designate the t3

2g[x2 − y2] and t3
2g[3z2 − r2] shell

configurations, respectively. The meaning of Jss , Jττ , Jsq , and
Jqq is the same as in Eq. (32) of Sec. IV. Comparing (34) to
(32) one notices the appearance of new J

xy
ττ and J

xy
qq terms.

Because there is no interorbital hopping within the eg subshell
along the z axis those terms should be related to virtual hopping
of t2g electrons [hence, they are absent from the pure eg model,
Eq. (32)].3

In Table I, we list the values of the intersite interactions
calculated with U = 3.75 and 5 eV. One sees that the orbital-
orbital Jττ and (spin-orbital)-(spin-orbital) Jqq interactions
are the most significant ones, even if one takes into account
the different lengths of τ = 1/2 and S = 2 spins. These
interactions exhibit a strong reduction upon increasing U and
decreasing JH /U , cf. (33). The (spin-orbital)-(spin) term Jsq

is also significant. J
xy
ττ and J

xy
qq are more than one order of

magnitude smaller than Jττ and Jqq , respectively.
We have then solved the calculated nearest-neighbor su-

perexchange Hamiltonian defined by Eq. (34) (the nearest-
neighbor interactions along the [100] and [010] directions are
obtained from (34) using rotations in the τ space as described in
Sec. IV) within the mean-field approximation using MCPHASE

package [64] obtaining the total and free energies as well as
stable ordered phases as a function of temperature.

The calculated temperature dependence of the specific
heat [see Fig. 5(a)] features two clear phase transitions at
temperatures of 340 and 102 K. The high-temperature one
is an orbital-ordering transition, the obtained antiferro-orbital

3In fact, there is no symmetry reason for the interactions of τ̂ix τ̂jx

and τ̂iy τ̂jy to be equal, however, we found them to be almost
coinciding.

FIG. 5. (a) Specific heat (per formula unit) as a function of
temperature obtained by solving the Hamiltionian (34) with the values
of superexchange interactions calculated at U = 3.75 eV. (b) The
G-type antiferro-orbital order obtained below TOO = 340 K (plotted
by XCRYSDEN [65], the real-space representation of the orbitals
is generated with the help of the WPLOT [66] program). (c) The
A-type antiferromagnetic phase, stable below TN = 102 K, obtained
with the interactions calculated with U = 3.75 eV. (d) The C-type
antiferromagnetic phase obtained using the interactions calculated
with U = 5 eV.

structure is displayed in Fig. 5(b). The occupied eg states on
two inequivalent sites [which are the nearest neighbors in the
simple-cubic Cr sublattice, see Fig. 5(b)] in this structure can
be written as

|θ〉 = cos θ |3z2 − r2〉 + sin θ |x2 − y2〉, (35)

|θ1〉 = − sin θ1|3z2 − r2〉 + cos θ1|x2 − y2〉, (36)
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with θ = θ1, hence, the obtained structure corresponds to a
G-type antiferro-orbital order with the empty eg orbital on the
site one being occupied on the site two.4 The actual value of the
angle θ is not defined by the Hamiltonian (34) in the absence of
the spin ordering, experimentally it is fixed by the tetragonal
lattice distortion and equal to 30◦ [28]. In fact, neglecting
the lattice distortion leads to a strongly underestimated value
of the temperature TOO for the orbital ordering compared to
experimental 973 K. The same result was obtained by Autieri
et al. [31] using direct DMFT+QMC calculations and was
shown to be due to the on-site crystal field splitting, the
renormalization of hopping integrals due to the tetragonal (and
subsequent monoclinic) distortion had an insignificant effect
on TOO.

The low-temperature transition at TN = 102 K is due to
ordering of Cr spins into the AFM A-type structure shown
in Fig. 5(c). This structure consists of an antiferromagnetic
stacking of ferromagnetically ordered xz layers, with each Cr
site having four in-plain neighbors with the same spin and
two out-of-plain ones with the opposite spin. This, in fact, is
the collinear spin structure observed experimentally in KCrF3.
The obtained Néel temperature is in good agreement with
experimental value of 80 K [30], if one takes into account
the usual mean-field overestimation of ordering temperatures.
Hence one sees that once the orbital order sets in the
superexchange is able to account for the value of TN and
observed collinear magnetic structure even without including
lattice distortions.5

We have also performed the same mean-field calculations
with the effective interactions computed with U = 5.0 eV, ob-
taining the same orbitally ordered structure at somewhat lower
temperature of 225 K. The obtained low-temperature spin
structure is, however, different, it is of the C type and consists
of an anitferromagnetic stacking of ferromagnetically ordered
[101] plains. Hence each site has two nearest-neighbors with
the same spin and four with the opposite one, see Fig. 5(d).

In order to clarify the origin of this change of magnetic
order with increasing U , one may carry out a simple estimate
of the energy of the A-type and C-type AFM spin structures.
First, keeping in (34) only the most important Jss and Jqq

contributions and summing over all nearest neighbors, one
obtains for the mean-field spin-ordering energy (per formula
unit, f.u.) of the A-type structure

E
A-type
SO

S2
= Jss+Jqq

(
〈τ̂iz〉〈τ̂jz〉−

√
3

2
(〈τ̂iz〉〈τ̂jx〉+〈τ̂ix〉〈τ̂jz〉)

)
,

(37)

4The notation used in Eqs. (35) and (36) follows that used in
Ref. [28]. Another representation of the G-type antiferro-orbital order
is more standard in the case of LaMnO3 (see, for example, Ref. [68])
and obtained by substituting θ in (35) and θ1 in (36) with θ/2 and
−θ1/2, respectively

5A possibility for slight noncollinearity as the one present in KCrF3

between 46 and 80 K was not considered in the mean-field solution
of the effective Hamiltonian. Also our simulations neglect the spin-
orbit coupling and, hence, are not able to reproduce the spin canting
observed below 9 K.

where S2 is the overall spin factor, which for the case of
high-spin Cr2+ can be rather well approximated by the square
of its classical length, S2 = 4 at the full saturation, i and j

label two sublattices of the G-type antiferro-orbital structure.
The energy of the C-type structure E

C-type
SO is given by the same

expression with the minus sign.
The energies of the ferromagnetic (FM) and G-type AFM

(all nearest neighbors having the opposite spin) phases are

±3S2

(
Jss + Jqq

2
(〈τ̂iz〉〈τ̂jz〉 + 〈τ̂ix〉〈τ̂jx〉)

)
, (38)

where the plus/minus sign is for the FM/AFM case, respec-
tively. One may notice that 〈τ̂iz〉〈τ̂jz〉 + 〈τ̂ix〉〈τ̂jx〉 is always
equal to −1/4 for the fully saturated G-type antiferro-orbital
order and does not dependent on the angle θ in Eqs. (35) and
(36). Hence, the total energy of the FM and G-type AFM order
is also independent of θ .

Assuming a fully saturated G-type antiferro-orbital or-
der, i.e., 〈τ̂ix〉 = ±

√
1/4 − 〈τ̂iz〉2, 〈τ̂jx〉 = −〈τ̂ix〉 and 〈τ̂jz〉 =

−〈τ̂iz〉, and minimizing (37), one obtains E
A-type
SO = 4Jss −

3Jqq/2 with the orbital state fixed at 〈τ̂iz〉 = √
3/4 and 〈τ̂ix〉 =

−1/4, defined by θ = 15◦ in (35). For the C-type structure,
one has E

C-type
SO = −4Jss − Jqq/2 and the orbital state locked

at 〈τ̂iz〉 = 1/4 and 〈τ̂ix〉 = √
3/4, corresponding to θ = 30◦

(which is, in fact, the experimental orbital state in tetragonal
KCrF3). The energies of the FM and G-type AFM orders
do not dependent on θ as explained above and are equal to
±3(4Jss − Jqq/2), respectively. Hence one sees that the spin
order is defined by the ratio of Jqq/Jss , which increases with
decreasing U (increasing JH /U ), see Table I. For U = 5 and
3.75 eV, one obtains for the energy difference E

A-type
SO − E

C-type
SO

the values of 2.75 and 0.4 meV per f.u., respectively. Hence
at the realistic value of U = 3.75 eV those two structures
are almost degenerate, though E

C-type
SO is still the most stable.

The G-type AFM and FM structures are always higher in
energy, in particular, for U = 3.75 eV their energies are 6.7
and 7.9 meV per f.u. above E

C-type
SO .

Further analysis shows that the A-type structure is stabilized
at U = 3.75 eV due to the Jsq term, which upon the
onset of antiferromagnitism acts as a canting field in the
orbital space. For the C-type structure, it takes the form
|Jqs |S2[〈τ̂iz〉 + 〈τ̂jz〉 + √

3(〈τ̂ix〉 + 〈τ̂jx〉)] and one may show
that under the corresponding G-type antiferro-orbital order
given by θ = 30◦, it is not active as long as JqqS

2 + 8JsqS
2 +

2Jττ > 0. The system stays in the same antiferro-orbital state
with θ = 30◦, for which the contribution of the Jsq term to
the energy is zero. For the A-type structure, it takes the same
form with the minus sign, but now under the different orbital
state given by 〈τ̂iz〉 = √

3/4 and 〈τ̂ix〉 = −1/4 (θ = 15◦),
it does play a role leading to a loss of the perfect G-type
antiferro-orbital order. Namely, upon the onset of the A-type
spin order the angles θ and θ1 defining the corresponding
orbital states (35) and (36) on two sublattices start deviating
from each other, the corresponding loss in the orbital ordering
energy is compensated by the “orbital field” due to Jsq .
The corresponding difference 
θ = θ1 − θ [extracted from
mean-field solution of the full effective Hamiltonian, Eq. (34)]
grows with decreasing temperature due to increasing spin
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FIG. 6. The spin magnetic moment and orbital misalignment
angle 
θ as a function of temperature in the A-type structure obtained
for U = 3.75 eV.

moment, as shown in Fig. 6. This orbital misalignment
stops increasing once the magnetic moment fully saturates
below approximately 30 K. The total gain in energy due to
this misalignment of about −1.4 meV/(f.u.) is rather small
compared to the total energy of the spin-orbital ordering of
−22.9 meV/(f.u.), but it is sufficient to stabilize the A-type
antiferromagnetic order.

Previously the interplay of orbital ordering and the A-type
AFM structure has been intensively studied in the case of the
Mn peroxide LaMnO3, where Jahn-Teller lattice distortions
were proposed to be at the origin of this AFM structure,
see, for example, Refs. [23,67,68]. The dependence of the
relative stability of different magnetic phases of LaMnO3

on JH /U was previously demonstrated in a model study of
Ref. [69]. KCrF3 features some similarities to this system,
though in LaMnO3 the orbital order is of the C-type instead of
the G-type. Direct ab initio DFT+U calculations [32,33] for
cubic KCrF3 predicted a ferro-orbital order to be stabilized in
conjunction with the A-type AFM, in disagreement with our
results and experiment. Apparently, this is due to an incorrect
relative scale of spin- and orbital-ordering energies in DFT+U

within the local spin-density approximation, where the orbital
order is seen to be induced by the underline AFM state [32].
As one sees from Table I, the interorbital superexchange
is the strongest interaction, hence the AFM state emerges
well below TOO from an almost completely saturated G-type
antiferro-orbital order, in agreement with experiment. In our
description, the angle θ , which defines the orbital state (35),
is fixed by the lowest-energy AFM order, in real KCrF3 it is
rather fixed by the distorted lattice. The tetragonal distortion
favors the C-type AFM in accordance with our calculations,
however, experimentally the magnetic order emerges in the
lower-temperature monoclinic structure, in which the orbital
state is possibly more favorable to the A-type magnetic order.
It is interesting to observe that even in the absence of any
lattice distortions the feedback effect described above leads to
a canted orbital order in conjunction with the A-type AFM.
Experimentally, one may also expect to observe an additional
small titling/distortion of the CrF6 octahedra upon the onset

of antiferromagnitism, though our calculations predict a rather
small energy scale associated with this process, of the order of
1 meV.

VI. SUMMARY

We have presented a method for computing intersite
exchange interactions in correlated materials in the framework
of the DFT+DMFT in conjunction with the Hubbard-I
approximation to the DMFT self-energy. The expressions for
intersite interactions are derived by considering the first-order
change in the DFT+DMFT grand potential to simultaneous
small fluctuations on two atomic sites with respect to their
symmetry-unbroken paramagnetic configuration. The result-
ing expression (15) combines the variational derivatives of
the Hubbard-I self-energy (11) over a given fluctuation in
the on-site density matrix with the DMFT intersite Green’s
functions (16). The method is benchmarked by applying it to
the well-known cases of one-band and two-band eg Hubbard
models on the simple-cubic 3d lattice.

The presented technique has been already employed to
compute spin-spin superexchange interactions in cubic and
quasi-two-dimensional tetragonal TM oxides [14]. Here we
have applied it to a more complex case of spin-orbital
ordering in KCrF3 in its parent undistorted peroxide structure.
We obtained an effective Hamiltonian (34) featuring strong
antiferro-orbital nearest-neighbor interactions and a complex
anisotropic coupling between orbital and spin moments. By
solving it within the mean-field approximation we found the
onset of a G-type orbital order at a significantly lower tempera-
ture as compared to experiment. In contrast, the appearance of
experimentally-observed A-type antiferromagnetic structure is
predicted at TN = 102 K in good agreement with experiment.
The onset of A-type antiferromagnetism is explained by purely
superexchange mechanism as arising due to an interplay of
the spin-spin and (spin-orbit)-(spin-orbit) intersite couplings
in conjunction with a canting of the G-type antiferro-orbital
order. Further applications of this technique to the tetragonal
and monoclinic structures of KCrF3 should help to clarify
whether this mechanism for the stabilization of the A-type
magnetic structure is qualitatively affected by the lattice
distortions.

The present method is promising for applications to a wide
range of strongly-correlated materials, like spin-orbital order
in TM oxides and florides as well as multipolar ordering due
to localized f shells in rare-earth and actinide materials. It
would be interesting to consider its generalizations beyond the
Hubbard-I approximation to widen its range of applicability to
materials located close to the Mott point like, e.g., rare-earth
nickelates. One might also try to extend the present formalism
in order to incorporate contributions to spin-orbital ordering
from Jahn-Teller-type distortions.

ACKNOWLEDGMENTS

The author is grateful to A. Georges for his invaluable
help in the beginning of this work. J. Mravlje and O. Peil are
acknowledged for useful discussions. The author acknowl-
edges the financial support of the Ministry of Education
and Science of the Russian Federation in the framework

115117-11



L. V. POUROVSKII PHYSICAL REVIEW B 94, 115117 (2016)

of Increase Competitiveness Program of NUST MISiS (No.
K3-2015-038) as well as computational resources provided

by the National Supercomputer Centre in Linköping (NSC) at
Swedish National Infrastructure for Computing (SNIC).

[1] K. I. Kugel’ and D. I. Khomskii, Sov. Phys. Usp. 25, 231
(1982).

[2] R. Shiina, H. Shiba, and P. Thalmeier, J. Phys. Soc. Jpn. 66,
1741 (1997).

[3] Y. Kuramoto, H. Kusunose, and A. Kiss, J. Phys. Soc. Jpn. 78,
072001 (2009).

[4] P. Santini, S. Carretta, G. Amoretti, R. Caciuffo, N. Magnani,
and G. H. Lander, Rev. Mod. Phys. 81, 807 (2009).

[5] J. A. Mydosh and P. M. Oppeneer, Rev. Mod. Phys. 83, 1301
(2011).

[6] V. I. Anisimov, A. I. Poteryaev, M. A. Korotin, A. O. Anokhin,
and G. Kotliar, J. Phys.: Condens. Matter 9, 7359 (1997).

[7] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O.
Parcollet, and C. A. Marianetti, Rev. Mod. Phys. 78, 865 (2006).

[8] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.
Mod. Phys. 68, 13 (1996).

[9] G. Rohringer, A. Toschi, A. Katanin, and K. Held, Phys. Rev.
Lett. 107, 256402 (2011).

[10] D. Hirschmeier, H. Hafermann, E. Gull, A. I. Lichtenstein, and
A. E. Antipov, Phys. Rev. B 92, 144409 (2015).

[11] T. A. Maier, M. Jarrell, T. C. Schulthess, P. R. C. Kent, and
J. B. White, Phys. Rev. Lett. 95, 237001 (2005).
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