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An existing conjecture states that the Shannon mutual information contained in the ground-state wave function
of conformally invariant quantum chains, on periodic lattices, has a leading finite-size scaling behavior that,
similarly as the von Neumann entanglement entropy, depends on the value of the central charge of the underlying
conformal field theory describing the physical properties. This conjecture applies whenever the ground-state wave
function is expressed in some special basis (conformal basis). Its formulation comes mainly from numerical
evidences on exactly integrable quantum chains. In this paper, the above conjecture was tested for several
general nonintegrable quantum chains. We introduce new families of self-dual Z(Q) symmetric quantum chains
(Q = 2,3, . . .). These quantum chains contain nearest-neighbor as well next-nearest-neighbor interactions
(coupling constant p). In the cases Q = 2 and Q = 3, they are extensions of the standard quantum Ising
and three-state Potts chains, respectively. For Q = 4 and Q � 5, they are extensions of the Ashkin-Teller and
Z(Q) parafermionic quantum chains. Our studies indicate that these models are interesting on their own. They are
critical, conformally invariant, and share the same universality class in a continuous critical line. Moreover, our
numerical analysis for Q = 2–8 indicate that the Shannon mutual information exhibits the conjectured behavior
irrespective if the conformally invariant quantum chain is exactly integrable or not. For completeness we also
calculated, for these new families of quantum chains, the two existing generalizations of the Shannon mutual
information, which are based on the Rényi entropy and on the Rényi divergence.
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I. INTRODUCTION

The connection between the quantum correlations and
the entanglement properties of quantum many-body systems
provided us, in recent years, a powerful tool to detect [1]
and classify quantum phase transitions (see Ref. [2] and
references therein). Several measures of the entanglement
were proposed along the years, like the von Neumann and
Rényi entanglement entropies [2–4], the concurrence [5], the
fidelity [6], etc. Among these measures the von Neumann and
Rényi entanglement entropies are the most popular since in one
dimension, where most of the critical chains are conformally
invariant, they provide a way to calculate the central charge
of the underlying conformal field theory (CFT), identifying
the universality class of critical behavior. Although interesting
proposals were presented [7–10], it is quite difficult to measure
these quantities in the laboratory, and the central charge of a
critical chain has never been measured experimentally.

An interesting measure that is also efficient in detecting
quantum phase transitions is the Shannon mutual information.
This quantity differently from the previous mentioned mea-
sures is based on the measurements of observables. It measures
the shared information among parts of a quantum system.
Consider a quantum chain with L sites that we split into two
subsystems A and B, formed by consecutive � and L − � sites,
respectively. Suppose the quantum chain is in the quantum
state given by the wave function |�AUB〉 = ∑

n,m cn,m|φn
A〉 ⊗

|φm
B 〉, where {|φn

A〉} and {|φm
B 〉} are the basis spanning the

subsets A and B. The Shannon mutual information of the
subsets A and B is defined as

I (A,B) = Sh(A) + Sh(B) − Sh(AUB), (1)

where Sh(χ ) = −∑
x px ln px is the standard Shannon en-

tropy of the subsystem χ with probability px of being in
the configuration x. The probability of the configurations in

the subsets A and B are given by the marginal probabilities
p|φn

A〉 = ∑
m |cn,m|2 and p|φm

B 〉 = ∑
n |cn,m|2, respectively. It is

important to notice that differently from the von Neumann
entanglement entropy and the von Neumann mutual infor-
mation, which are basis independent, the Shannon entropy
Sh and the Shannon mutual information I (A,B) are basis
dependent quantities. In Ref. [11], it was conjectured that,
for periodic critical quantum chains in their ground state,
the Shannon mutual information shows universal features
provided the ground state is expressed in some special bases,
called conformal basis. A given basis of the Hilbert space of
the quantum chain is related to a certain boundary condition in
the time direction of the underlying (1+1)-Euclidean CFT. In
general, these time-boundary conditions destroy the conformal
invariance in the bulk. The conformal basis are related to
the boundary conditions that do not destroy the conformal
invariance, as happens in the case of Dirichlet and Neumann
boundary conditions. It was conjectured [11] that whenever
the ground-state wave function is expressed in the conformal
basis, the leading finite-size scaling behavior of the Shannon
mutual information for large systems and subsystem sizes is
given by

I (�,L − �) = c

4
ln

[
L

π
sin

(
�π

L

)]
+ γ, (2)

where c is the central charge of the underlying CFT and γ is a
nonuniversal constant. It is interesting to note that this leading
behavior is the same as the Rényi entanglement entropy with
Rényi index n = 2 [12].

The above conjecture was tested analytically and numeri-
cally for a large number of exactly integrable quantum chains
[11,13,14], namely, a set of coupled harmonic oscillators
(Klein Gordon theory), the XXZ quantum chain, the Ashkin-
Teller, the spin-1 Fateev-Zamolodchikov, the Q-state Potts
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models (Q = 2,3,4), and the Z(Q) parafermionic models
(Q = 5–8). Up to now, except for the chain of coupled har-
monic oscillators, this conjecture was only tested numerically.
Moreover, all the tests for this conjecture were done for
exactly integrable models. Since there is no general analytical
results supporting this conjecture it is import to check if the
existing numerical agreement is not just a consequence of the
exact integrability of all the quantum chains tested so far. All
the agreements obtained are reasonable taking into account
the lattice sizes of the considered quantum chains. However,
there exist a controversy in the case of the Ising quantum chain.
A numerical analysis due to Stéphan [15] on this quantum
chain indicates that the prefactor in (2), instead of being
the central charge (c = 0.5 in this case) is a close number
b ≈ 0.4801. In the conclusions of this paper, we present
additional discussions about this point.

In this paper, we are going to check the universality
feature of the conjecture (2) by considering critical chains
belonging to several universality classes of critical behavior but
being not exactly integrable. The ground-state eigenfunction
can only be calculated numerically for quantum chains of
relatively small lattice sizes. It will be then interesting to
consider nonintegrable quantum chains whose critical points
are exactly known. For this sake, we introduce in this paper
a set of generalized self-dual nonintegrable quantum chains
whose exact critical points are given by their self-dual points.
Moreover, each of these quantum chains seems to share the
same symmetries and long-distance physics of an exactly
integrable conformally invariant chain whose central charge
c is exactly known. The validity of the conjecture (2) will
imply that the Shannon mutual information of these models
share the same asymptotic behavior.

We should also mention some additional studies of the
Shannon and Rényi entropies and mutual information in
quantum systems [16,17], and also in two-dimensional spin
systems [18]. The paper is organized as follows. In the next
section, we introduce the several new quantum chains and
show their self-dual properties. In Sec. III, we present our
results for the models in the universality class of the Ising
model and three-state Potts model. In Sec. IV, the results for
the models in the universality class of the Z(Q)-parafermionic
models, with Q = 4, 5, 6, 7, and 8 are presented. We
also consider in this section a numerical analysis for a
generalization of the Z(Q) clock models with Q = 5, 6, 7 and
8. In Sec. V, we calculate for these new quantum chains the
two existing extensions of the Shannon mutual information:
the Rényi mutual information and the less known generalized
mutual information [14,19]. Finally, in Sec. VI, we present our
conclusions.

II. THE Z( Q) GENERALIZED SELF-SUAL
QUANTUM CHAINS

We introduce initially a special generalization of the
nearest-neighbor Ising quantum chain that also contains next-
nearest-neighbor interactions. The Hamiltonian is given by

H (2)(λ,p) = −
∑

i

[
σ z

i σ z
i+1 + λσx

i − p
(
σ z

i σ z
i+2 + λσx

i σ x
i+1

)]
,

(3)

where σ z
i and σx

i are spin- 1
2 Pauli matrices attached to the

lattice sites (i = 1,2, . . .), and λ and p are the coupling
constants. At p = 0, the Hamiltonian (3) reduces to the
standard nearest-neighbor quantum Ising chain, which is
exactly integrable and critical at λ = 1.

In order to show that H (2)(λ,p) is self-dual, for any value
of p, let us define the new operators

ρ
(e)
2i = σ z

i σ z
i+1 and ρ

(o)
2i−1 = σx

i , i = 1,2, . . . , (4)

that obey the following commuting and anticommuting
relations:(

ρ
(e)
i

)2 = (
ρ

(o)
i

)2 = 1,
[
ρ

(o)
i ,ρ

(o)
j

] = [
ρ

(e)
i ,ρ

(e)
j

] = 0,[
ρ

(o)
i ,ρ

(e)
j

] = 0, unless |i − j | = 1,{
ρ

(e)
i ,ρ

(o)
j

} = 0, if |i − j | = 1. (5)

In terms of these new operators, the Hamiltonian (3) is given
by

H (2)(λ,p)

= −
∑

i

[
ρ

(e)
2i + λρ

(o)
2i−1 + p

(
ρ

(e)
2i ρ

(e)
2i+2 + λρ

(o)
2i−1ρ

(o)
2i+1

)]
. (6)

We now make a transformation by defining the new
operators:

ρ̃
(e)
2i = ρ

(o)
2i+1, ρ̃

(o)
2i−1 = ρ

(e)
2i . (7)

It is simple to see that these new operators obey the same
commutation relations as the old ones, given in (5). In terms
of these new operators, the Hamiltonian (3) is now given by

H (2)(λ,p) = −λ
∑

i

[
ρ̃

(e)
2i + 1

λ
ρ̃

(o)
2i−1

+p

(
ρ̃

(e)
2i ρ̃

(e)
2i+2 + 1

λ
ρ̃

(o)
2i−1ρ̃

(o)
2i+1

)]
. (8)

Consequently, apart from a boundary term1 [20] that could be
neglected as the lattice size increases, the model is self-dual:

H (2)(λ,p) = λH (2)

(
1

λ
,p

)
. (9)

Implying that the low-lying eigenlevels in the eigenspectrum
of both sides of (9) become identical as the lattice size
increases. Since we have no reason to expect more than a
single Z(2) critical point for a fixed value of p, this model
should be critical at λ = 1 and, at least for p � pc (with pc

finite), the model should share the same universality class
as the standard quantum Ising chain H (2)(1,0). Actually, for
p → ∞, the model is Z(2) ⊗ Z(2) symmetric due to the
commutations of H (2)(λ,p → ∞) with the nonlocal Z(2)
operators P (e) = ∏

i σ
x
2i and P (o) = ∏

i σ
x
2i−1, and therefore

is not in the Ising universality class.

1This transformation for finite lattices will produce constraints
among the operators {ρ(o)

i ,ρ
(e)
i } and the exact relation for finite chains

only relate sectors of the associated Hilbert space.
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Similarly as we did for the Ising quantum chain, we
now introduce the self-dual generalized next-nearest-neighbor
Z(Q) models (Q = 2,3, . . .). They describe the dynamics of
the Q × Q matrices {Si}, {Ri}, attached on the lattice sites
i = 1,2, . . ., and obey the algebraic relations

S
Q
i = R

Q
i = 1, [Si,Sj ] = [Ri,Rj ] = 0,

[Si,Rj ] = 0 if i �= j and SiRi = e
i 2π

Q RiSi . (10)

The Hamiltonian we introduce is given by

H (Q)(λ,{α}) = −
∑

i

[
Q∑

n=1

αn

(
Sn

i S
Q−n
i+1 + λRn

i

)

+p

Q∑
n=1

αn

(
Sn

i S
Q−n
i+2 + λRn

i R
n
i+1

)]
, (11)

where λ and {αn} (n = 1, . . . ,Q) are coupling constants. We
chose real coupling constants and αn = αQ−n to ensure the
hermiticity of the Hamiltonian. This Hamiltonian reduces to
(3) for Q = 2.

We now consider the Z(Q) operators:

ρ
(e)
2i = SiS

Q−1
i+1 and ρ

(o)
2i−1 = Ri, i = 1,2, . . . , (12)

that obey the following algebraic relations:(
ρ

(e)
i

)Q = (
ρ

(o)
i

)Q = 1,
[
ρ

(e)
i ,ρ

(e)
j

] = [
ρ

(o)
i ,ρ

(o)
j

] = 0,[
ρ

(e)
i ,ρ

(o)
j

] = 0 unless |i − j | = 1,

ρ
(e)
i ρ

(o)
i±1 = e

∓i 2π
Q ρ

(o)
i±1ρ

(e)
i . (13)

In terms of these operators, we have

H (Q)(λ,{α}) = −
∑

i

{
Q−1∑
n=1

αn

[(
ρ

(e)
2i

)n + λ
(
ρ

(o)
2i−1

)n]

+p

Q−1∑
n=1

αn

[(
ρ

(e)
2i ρ

(e)
2i+2

)n + λ
(
ρ

(o)
2i−1ρ

(o)
2i+1

)n]}
.

(14)

We now perform the same canonical transformation ρ → ρ̃,
given by (7). It is simple to verify that the transformation
is canonical since the commutation’s relations of the new
operators are the same as the old ones. The Hamiltonian is
now given by

H (Q)(λ,{α}) = −λ

{
Q−1∑
n=1

αn

[(
ρ̃

(e)
2i

)n + 1

λ

(
ρ̃

(o)
2i−1

)n]

+p

Q−1∑
n=1

αn

[(
ρ̃

(e)
2i ρ̃

(e)
2i+2

)n + 1

λ

(
ρ̃

(o)
2i−1ρ̃

(o)
2i+1

)n]}
.

(15)

Comparing (14) and (15), we obtain, apart from a boundary
term [18],

H (Q)(λ,{α}) = λH (Q)

(
1

λ
,{α}

)
. (16)

The particular choice αn = 1
sin( πn

Q
) , n = 1,2, . . . ,Q − 1 gives

us an interesting family of quantum chains that we are going
to study in the next sections. At their self-dual point (λ = 1),
these Hamiltonians are given by

H (Q)(p) = −
∑

i

{
Q−1∑
n=1

1

sin( πn
Q

)

[
Sn

i S
Q−n
i+1 + Rn

i

+p
(
Sn

i S
Q−n
i+2 + Rn

i R
n
i+1

)]}
. (17)

These Hamiltonians at p = 0 are critical, conformal invariant,
and exactly integrable. They correspond for Q = 2,3 to the
two-state and three-state Potts models, for Q = 4, it is the
Ashkin-Teller model with a special value of its anisotropy, and
for Q > 4, they correspond to the Z(Q) parafermionic models
[21]. For p �= 0, the models lose their exact integrability but we
do expect that, at least for small values of the parameter p, they
stay critical and in the same universality class of the related
p = 0 exactly integrable quantum chain. For large values of
p, this may not be true since, as happened in the Ising case,
for p → ∞, the symmetry increases from a single Z(Q) to a
Z(Q) × Z(Q).

III. RESULTS FOR THE EXTENDED ISING AND
THREE-STATE POTTS QUANTUM CHAINS

We present in this section our numerical results for the
generalized self-dual Ising and three-state Potts quantum
chains whose Hamiltonians H (Q)(p) are given by (17) with
the values Q = 2 and Q = 3, respectively. At p = 0, these
models are exactly integrable and conformally invariant, being
ruled by a CFT with central charge c = 1/2 and c = 4/5,
respectively. Our aim is to compute the Shannon mutual
information for the values of the parameter (p �= 0) where
the models are still critical but not exactly integrable. Since
we are testing a conjecture we should initially confirm the
expectation that the models, for small values of the parameter
p are still critical and in the same universality class as the
p = 0 exactly integrable quantum chain.

A first test of the critical universality for the quantum chains
can be done by comparing their central charge c calculated
directly from the finite-size behavior of the ground-state
energy and low-lying energy gaps. The ground-state energy
E0(L) of a conformally invariant quantum chain with periodic
boundary should have the asymptotic behavior [22]:

E0

L
= e∞ − vs

πc

6L2
+ o(L−2), (18)

where e∞ is the energy per site in the bulk limit and vs is
the sound velocity. The sound velocity can be extracted from
the leading finite-size behavior of the first energy gap related
to a given primary operator of the underlying CFT [23]. For
example, the lowest energies E1(p) in the eigensector with
Z(Q) charge q = 1 and momentum P = 0, 2π

L
, 4π

L
, . . . are

associated to the Z(Q)-magnetic operators of these models.
We have then the estimate vs(L) for the sound velocity [24]

vs(L) = L[E1( 2π
L

) − E1(0)]

2π
+ o(L−1),
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0 0.02 0.04 0.06 0.08
1/L

0.5

0.55

0.6

c es
t(L

)

p=0        c=0.500
p=0.5     c=0.500
p=1        c=0.499
p=1.5     c=0.498

FIG. 1. The estimate cest(L) given by (19) as a function of 1/L for
the extended self-dual Ising model given by the Hamiltonian (3), and
for the values of the parameter p = 0, 0.5, 1, and 1.5. The estimated
values cest(L → ∞) = c, shown in the figure, were obtained from a
quadratic fit by considering the lattice sizes 20 � L � 30.

that together with (18) give us an estimate for the central charge
of the quantum chain:

cest(L) = −
E0(L)

L
− E0(L−1)

L−1
1
L2 − 1

(L−1)2

12

L
(
E1

(
2π
L

) − E1(0)
) + o(L−1).

(19)

In Figs. 1 and 2, we illustrate our results for the estimate cest(L)
in the extended self-dual Ising and three-state Potts models,
respectively. We consider the models with the parameter p =
0, 0.5, 1, and 1.5, and lattice sizes up to Lmax = 30 for the
Ising case and Lmax = 19 for the three-state Potts case. We
also show in the figures the estimated results cest(L → ∞)
for the central charge c. They were obtained by considering a
simple quadratic fit of cest(L) for 30 � L � 20 in the Ising case
and 19 � L � 11 in the three-state Potts case. The numerical
results in these figures indicate that for the parameters p � 1.5,
the extended models stay in the same universality class of the
related p = 0 exactly integrable model, i.e., c = 1/2 ad c =
8/10 for the Ising and three-state Potts models, respectively.

A second test can be done by calculating the von Neumann
entanglement entropy SvN (�,L) of subsystems with sizes � and
(L − �) in the quantum chains. Its finite-size scaling behavior,
for a periodic chain, is giving by [25–27]

SvN (�,L − �) = c

3
ln

[
L

π
sin

(
�π

L

)]
+ k, (20)

where k is a constant. In order to calculate SvN (�,L), from a
given ground-state wave function, we should fully diagonalize
the reduced density matrix of the subsystems (dimension
Q� × Q�). This brings an extra numerical limitation since we
can only handle the complete diagonalization of matrices with

0 0.05 0.1 0.15
1/L

0.8

0.9

1

1.1

1.2

c es
t(L

)

p=0     c=0.802
p=0.5  c=0.804
p=1     c=0.806
p=1.5 c=0.815

FIG. 2. The estimate cest(L) given by (19), as a function of 1/L,
for the extended three-state Potts quantum chain by the Hamiltonian
(17) and for the values of the parameter p = 0, 0.5, 1, and
1.5. The estimated values cest(L → ∞) = c, shown in the figure,
were obtained from a quadratic fit by considering the lattice sizes
14 � L � 19.

dimensions smaller than ∼6000. We are then restricted for the
Q = 2 (Q = 3) model with sublattices sizes � � 12 (� � 7).

In Fig. 3 (Fig. 4), we show, for several values of p, SvN (�,L)
as a function of sin( L

π
sin( π

L
))/3 for the Q = 2 (Q = 3)

0.1 0.2 0.3 0.4 0.5 0.6
ln[Lsin(πl/L)/π]/3

0.5

0.6

0.7

0.8

S
vN

(l,
L

- 
l)

 p=0,  c=0.50
p=0.5, c=0.50
p=1, c=0.51
p=1.5, c=0.51

Ising

FIG. 3. The von Neumann entropy for the extended self-dual
Ising model (3) with L = 24 sites and the parameter values p =
0, 0.5, 1, and 1.5. The estimated values for the central charge are
shown. They were obtained from a linear fit [see (20)], considering
the sublattice sizes � = 5–12.
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0 0.1 0.2 0.3 0.4 0.5
ln[Lsin(πl/L)/π]/3

0.7

0.8

0.9

1

1.1

1.2

S
vN

(l,
L

- 
l)

p=0,  c=0.802
p=0.5, c=0.807
p=1,  c=0.820
c=1.5, c=0.836

Q=3 Potts 

FIG. 4. The von Neumann entropy for the extended three-state
Potts model (17) with L = 14 sites and the values of the parameter
p = 0, 0.5, 1, and 1.5. The estimated values for the central charge are
shown. They were obtained from a linear fit [see (19)], considering
the sublattice sizes � = 4–7.

extended quantum chains with L = 24 (L = 14) sites. We also
show in these figures the estimated values of the central charge
obtained from a linear fit. These results clearly indicate that
these quantum chains are indeed critical, and share the same
universality class of critical behavior as the exactly integrable
quantum chain p = 0, whose central charge is c = 0.5.

Once we have convinced ourselves about the universal be-
havior of these nonintegrable quantum chains for 0 � p � 1.5,
we can now test the universal behavior (2) claimed for the
Shannon mutual information I (�,L − �) of periodic quantum
chains in their ground states.

The Shannon mutual information depends on the particular
basis we chose to express the ground-state wave function. The
previous results [11,13], based on exactly integrable quantum
chains, indicate that two good basis, where the universal
behavior are shown, are the basis where either the “kinetic
interactions” or the “static interactions” are diagonal. In the
set of models, we are testing these basis are the ones where
the operators {Si} or {Ri} are diagonal.

In Figs. 5 and 6, the Shannon mutual information is shown
for the extended Ising chain (3) with L = 30 sites and for
values of the parameter p = 0, 0.5, 1, and 1.5. The results
of Fig. 5 (Fig. 6) are obtained from the ground-state wave
function given in the {σ z} basis ({σx} basis). We clearly see
in these figures a linear behavior indicating ln[L sin(π�/L)]
as the finite-size scaling function. The estimated values of the
central charge c = 0.48–0.50, are also close to the expected
value c = 1/2. These estimates were obtained from a linear fit
by considering all the sublattice sizes.

In Figs. 7 and 8, we show the Shannon mutual information
for the extended Z(3) models with the values of the parameter
p = 0, 0.5, 1, and 1.5. In Fig. 7 (Fig. 8), the quantum chain has
L = 18 (L = 19) sites and is in the basis where the matrices

0 0.1 0.2 0.3 0.4 0.5
ln[Lsin(πl/L)/π]/4

0.35

0.4

0.45

0.5

0.55

0.6

I(
l,L

-l)

p=0,     c=0.48
p=0.5,  c=0.48
p=1,     c=0.48
p=1.5,  c=0.48

Ising  σz
-basis

FIG. 5. The Shannon mutual information I (�,L − �), as a
function of ln[L sin(π�/L)/π ]/4, for the extended self-dual Ising
quantum chain (3), with the values of the parameter p = 0, 0.5, 1,
and 1.5. The results are obtained for the ground-state wave function
of the L = 30 sites quantum chain expressed in the basis where {σ z

i }
are diagonal. The estimated results, based on the conjecture (2) are
also shown. They were obtained from a linear fit by considering all
the sublattices sizes.

{Si} ({Ri}) are diagonal, respectively. The linear fit obtained by
using all the sublattice sizes predicts the value for the central
charge c ≈ 0.77–0.79. These values are close to the predicted
value c = 8/10, indicating the validity of the conjecture (2)
even for nonintegrable quantum chains. It is interesting to

0 0.1 0.2 0.3 0.4 0.5
ln[Lsin(πl/L)/π]/4

0.5

0.55

0.6

0.65

0.7

0.75

I(
l,L

-l)

p=0,   c=0.48
p=0.5, c=0.49
p=1,    c=0.49
p=1.5, c=0.50

Ising   σx
-basis 

FIG. 6. Same as in Fig. 5 but with the ground-state wave function
expressed in the basis where {σ x

i } are diagonal.
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0 0.1 0.2 0.3 0.4
ln[Lsin(πl/L)/π]/4

0.6

0.7

0.8

I(
l,L

-l)

p=0,     c=0.77
p=0.5,  c=0.78
p=1,     c=0.80
p=1.5,  c=0.82

Z(3) model S-basis

Conjectured  c=8/10=0.8

FIG. 7. The Shannon mutual information I (�,L − �), as a func-
tion of ln[L sin(π�/L)/π ]/4, for the extended Q = 3 self-dual Potts
quantum chain (17), with the values of the parameter p = 0, 0.5, 1,
and 1.5. The results are obtained for the ground-state wave function
of the L = 18 sites quantum chain, expressed in the basis where {Sz

i }
are diagonal. The estimated results, based on the conjecture (2) are
also shown. They were obtained from a linear fit by considering all
the sublattice sizes.

notice that differently from the calculation of SvN (�,L), it
is not necessary to fully diagonalize reduced matrices and
we could calculate I (�,L − �) for larger lattice sizes, namely,

0 0.1 0.2 0.3 0.4
ln[Lsin(πl/L)/π]/4

0.7

0.8

0.9

1

1.1

I(
l,L

-l)

p=0,     c=0.78
p=0.5,  c=0.79
p=1,     c=0.80
p=1.5,  c=0.81

Conjectured c=8/10=0.8

Z(3) model R-basis

FIG. 8. Same as Fig. 7 but for lattice size L = 19 and the results
are obtained from the ground-state wave function expressed in the
{Ri} basis.

L = 30 and 19 for the extended Ising and three-state Potts
chains, respectively.

IV. RESULTS FOR THE EXTENDED
Z(Q)-PARAFERMIONIC QUANTUM CHAINS

We consider in this section the numerical tests of the con-
jecture (2) for the extended nonintegrable Z(Q)-parafermionic
models (17). The cases where the parameter p = 0 reduces to
the known exactly integrable Z(Q)-parafermionic quantum
chains [21], which are critical and conformally invariant with
conformal central charges:

c = 2(Q − 1)

Q + 2
, Q = 2,3, . . . . (21)

The cases Q = 2 and 3 are the Ising and three-state Potts
models considered in the last section. The quantum chain
with Q = 4 corresponds to a particular anisotropy of the
c = 1 critical line of the quantum Ashkin-Teller chain. The
cases Q > 4 are the Z(Q)-parafermionic quantum chains
with central charge c > 1. Actually, these last models are
multicritical points and are expected to be endpoints [21, 28] of
critical lines belonging to massless phases with central charge
c = 1 and belonging to the Berezinskii-Kosterlitz-Thouless
universality class [28,29].

The Shannon mutual information for the extended Q = 4
quantum chain with the values of p = 0, 0.5, 1, and 1.5 is
shown in Fig. 9. The calculations were done by expressing the
ground-state wave function either in the S basis (L = 14) or
in the R basis (L = 13). The linear fit, using all the sublattice
sizes, gives the estimated values of the central charge shown in
the figure c ≈ 0.97–1.03, which within the numerical accuracy
corroborates the conjecture (2).

Let us now consider the extended models with Q > 4.
Since the p = 0 models are multicritical it is not clear if the
nonintegrable quantum chains, although critical, will stay in
the same universality class as the integrable model p = 0.
Surprisingly, this seems to be the case. In Figs. 10, 11, 12,
and 13, we show for some values of p the Shannon mutual
information for the quantum chains with Q = 5, 6, 7, and 8,
respectively. The calculation were done for the ground-state
wave function expressed in the basis where either {Si} or
{Ri} are diagonal. The lattice sizes used are given in the
figure captions. The estimated values for the central charge
are give in the figure and were obtained from a linear
fit, where all the sublattice sizes are considered. They are
close to the predicted values: c = 8/7 = 1.14285 . . . (Q = 5),
c = 5/4 = 1.25 (Q = 6), c = 4/3 = 1.333 . . . (Q = 7), and
c = 7/5 = 1.4 (Q = 8). Taking into account the lattice sizes
we could calculate, these results indicate that the models are
still in the same universality class of the multicritical point
(p = 0), at least for the values of parameters 0 < p � 1.
These results test the universal character of the conjecture (2),
corroborating its validity for nonintegrable critical quantum
chains.

Before closing this section let us do an additional test for the
conjecture (2). For Q � 5, the Z(Q) family of clock quantum
chains (which is related to the time-continuum limit of the
2D classical clock models [30]) is known to have, besides a
disordered and ordered phases, an intermediate massless phase
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p=0,     c=0.97
p=0.5,  c=0.97
p=1,     c=1.00
p=1.5,  c=1.03
p=0,     c=1.00
p=0.5,  c=0.99
p=1,     c=1.00
p=1.5,  c=1.02

R-basis

S-basis

Z(4) model

Conjectured c=1

FIG. 9. The Shannon mutual information I (�,L − �), as a func-
tion of ln[L sin(π�/L)/π ]/4 for the extended Q = 4 self-dual
quantum chain (17), with the values of the parameters p = 0, 0.5, 1,
and 1.5. The results were obtained for the lattice size L = 15 and
14, when the ground-state wave function spanned in the basis where
{Si} and {Ri} are diagonal, respectively. The estimated values shown
in the figure were obtained from a linear fit by considering all the
sublattice sizes.

belonging to the Berezinskii-Kosterlitz Thouless universality
and are expected to be ruled by a CFT with central charge
c = 1 [28,29]. These models, although not exactly integrable,
are self-dual. Their self-dual points belong to the intermediate
c = 1 CFT. Exploring the general results of Sec. II, similarly as
we did for the Z(Q)-parafermionic models, we can extend the
standard clock models by choosing in (11) αn = δn,1 + δn,Q−1

for (n = 1, . . . ,Q − 1). At its self-dual point, the extended
clock models are given by

Hclock(p) = −
∑

i

[SiS
+
i+1 + S+

i Si+1 + Ri + R+
i

+p(SiS
+
i+2 + S+

i Si+2 + RiRi+1 + R+
i R+

i+1)],

(22)

where, as before, Si and Ri are the Z(Q) matrices with
algebraic relations given by (10). At p = 0, these Hamiltonians
reduce to the standard Z(Q) clock quantum chains. Our nu-
merical results indicate that for arbitrary values of 0 � p � 1
the models share the same c = 1 CFT. In Fig. 14, we show
our tests for the Shannon mutual information I (�,L − �) for
the Z(Q) clock model with Q = 5, 6, 7, and 8. We only
present the results in the case where the ground-state wave
function is expressed in the {Ri} basis. In this figure, for
each value of Q, the data are for the values of the parameter
p = 0, 0.5, and 1. We clearly see the linear dependence with

0 0.1 0.2 0.3
ln(Lsin(πl/L)/π)/4

0.8

1

1.2

1.4

1.6

I(
l,L

-l)

p=0,    c=1.13
p=0.5, c=1.14
p=1,    c=1.14
p=0,    c=1.12
p=0.5, c=1.13
p=1,   c=1.17

R-basis

S-basis

Z(5) model
Conjectured c=8/7=1.142...

FIG. 10. The Shannon mutual information I (�,L − �), as a
function of ln[L sin(π�/L)/π ]/4 for the extended Q = 5 self-dual
quantum chains (17), with the values of the parameters p = 0, 0.5,
and 1. The results were obtained for the lattice sizes L = 12 and 13,
when the ground-state wave function are in the basis where {Si} and
{Ri} are diagonal, respectively. The estimated values shown in the
figure were obtained from a linear fit by considering all the sublattice
sizes.

ln[L sin(π�/L)]/4. The linear fit, by considering all the values
of p, and sublattice sizes for a given Z(Q) model, give us
estimates of the central charge in the range c = 1.03–1.04, that

0 0.05 0.1 0.15 0.2 0.25 0.3
ln(Lsin(πl/L)/π)/4

1

1.2

1.4

1.6

1.8

I(
l,L

-l)

p=0,    c=1.25
p=0.5, c=1.25
p=1,    c=1.24
p=0,    c=1.25
p=0.5, c=1.26
p=1,    c=1.32

R-basis

S-basis 

Z(6) model

Conjectured c=5/4=1.25

FIG. 11. Same as Fig. 10 for the extended Z(6) sef dual quantum
chain (17). The lattice sizes are L = 12 and 13 for the basis where
{Si} and {Ri} are diagonal, respectively.
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p=1,     c=1.31
p=0,     c=1.35
p=0.5,  c=1.37
p=1,     c=1.44

R-basis 

S-basis

Z(7) model

Conjectured c=4/3=1.333...

FIG. 12. Same as Fig. 10 for the extended Z(7) self-dual quantum
chain (17). The lattice sizes are L = 11 and 12 for the basis where
{Si} and {Ri} are diagonal, respectively.

are close to the expected value c = 1, indicating the validity
of the conjecture (2).

V. GENERALIZED MUTUAL INFORMATIONS

A crucial step in deriving most of the analytical results (e.g.,
Refs. [27,31]) for the von Neumann entanglement entropy
come from two facts. The Shannon entropy is obtained
from the n → 1 limit of the n-Rényi entanglement entropy,
and at this limit the replica trick, used for the conformal

0 0.05 0.1 0.15 0.2 0.25
ln(Lsin(πl/L)/π)/4
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1.2

1.4

1.6

1.8
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l,L
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p=0,    c=1.42
p=0.5, c=1.40
p=1,    c=1.37
p=0,    c=1.44
p=0.5, c=1.47
p=1,    c=1.55

R-basis

S-basis

Z(8) model

Conjectured c=7/5=1.4

FIG. 13. Same as Fig. 10 for the extended Q = 8 self-dual
quantum chain (17). The lattice sizes are L = 10 and 11 for the
basis where {Si} and {Ri} are diagonal, respectively.
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1.7
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-l)

 Q=5

Q=6

Q=7
Q=8

Z(Q) clock models

Conjectured c=1

FIG. 14. The Shannon mutual information for the extended Z(Q)
clock models defined in (22), for the values of Q = 5, 6, 7, and 8,
and lattice sizes L = 13, 12, 11, and 10, respectively. For each Z(Q)
model, the results are for the values of the parameter p = 0, 0.5, and
1. The calculations were done for the ground state spanned in the
{Ri} basis. The lines are the linear fit considering all the points for a
given Z(Q) model.

transformations, is regular. There exist two generalizations
of the Shannon mutual information considered in the early
sections. These extensions are based either on the Rényi
entropy or on the Rényi divergence [19]. Previous numerical
calculations on exactly integrable quantum chains [13,14]
show numerical evidence that these quantities, when computed
on the ground-state wave functions of critical chains expressed
in a special basis (conformal basis), exhibit some universal
features. It is then interesting to compute these generalized
mutual information for the extended Z(Q) models introduced
in this paper and test the universal behavior for those critical
nonintegrable quantum chains.

In order to define the generalized mutual information let
us split, as before, the quantum chain C with L sites in the
subsystems A and B formed by � and (L − �) consecutive
sites, respectively. We now consider the quantum chain in
the normalized ground state, with wave function |�C〉 =∑

{IA,IB} aIA,IB |IA〉 ⊗ |IB〉, where |IA〉 = |i1,i2, . . . ,i�〉 and
|IB〉 = |i�+1, . . . ,iL〉 are the local basis for the subsystems
A and B. The Rényi entropy for the entire system χ = C and
the subsystems χ = A or χ = B is given by

Shn(χ ) = 1

1 − n

∑
{Iχ }

ln P n
Iχ

, χ = A,B,C, (23)

where for the entire system PIC = |aIA,IB |2 and for the subsys-
tems A and B, PIA = ∑

IB
|aIA,IB |2 and PIB = ∑

IA
|aIA,IB |2,

respectively. The Rényi mutual information is the shared
information among the subsystems measured in terms of the
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Rényi entropy (23), i.e.,

In(�,L − �) = Shn(�) + Shn(L − �) − Shn(L), (24)

where instead of denoting the subsystem, we denote their
lattice sizes. At the limiting case n → 1, the Rényi entropy
and the Rényi mutual information reduces to the Shannon
entropy and the Shannon mutual information, respectively.

Previous calculations of In(�,L − �) for the ground-state
wave functions of several exactly integrable chains show the
same finite-size scaling function for arbitrary values of n:

In(�,L − �) = cn ln

(
L

π
sin

(
�π

L

))
+ k, (25)

where k is a o(1) constant. As happens with the Shannon
mutual information I (�,L − �), this behavior is not general,
it happens only when the ground-state wave function is ex-
pressed on the special basis (conformal basis). The coefficients
cn besides their n dependence also depend on the conformal
basis considered. Under certain plausible assumptions, the
large-n behavior of cn is known analytically [32]. However,
in the general case, the limiting case n → 1 is singular,
preventing a general analytical calculation of the Shannon
mutual information I1(�,L − �) = I (�,L − �).

Our numerical analysis for the extended self-dual Z(Q)
models introduced in Sec. II indicates the same universal
finite-size scaling behavior shown in (25). This confirmation
was done for the values of the parameter p that we believe
the model share the universality class of critical behavior
of the corresponding exactly integrable model (p = 0). For
brevity, we only show the results for the self-dual extended
Ising models (3). In Figs. 15 and 16, the results are for the
quantum chain with L = 30 sites and the ground-state wave
function spanned in the conformal bases where {σ z

i } or {σx
i } are

diagonal. In theses figures we show the coefficient cn obtained
from the linear fit of (25), by using all the sublattice sizes. We
can see that in both basis, apart from some small deviations,
most probably due to the finite-size effects, the overall behavior
of In(�,L − �) is the same for different values of p, indicating
the universal behavior of the models. It is clear from this figure
that the singular behavior as n → 1, already known [13] for
the exactly integrable model (p = 0), also happens for the
extended Ising quantum chains with p �= 0.

Another interesting generalization of the Shannon mutual
information, instead of being based in the Rényi entropy is
based in the Rényi divergence [19]. Differently from the Rényi
mutual information this generalized mutual information is
always a positive function and is a more appropriate measure,
from the point of view of information theory, of the shared
information among subsystems. Using the notations in (23),
this generalized mutual information is defined by

Ĩn(�,L − �) = 1

n − 1
ln

⎛
⎝ ∑

{IA,IB}

P n
IA,IB

P n−1
IA

P n−1
IB

⎞
⎠. (26)

Like In(�,L − �) this quantity, in the limiting case n → 1,
gives the Shannon mutual information. This quantity was
measured for several exactly integrable quantum chains [14].
It shows the same universal finite-size scaling function given
in (25) for n � 2 (we denote the linear coefficient as c̃n).

0 2 4 6 8
n

0

0.5

1

1.5

c n
   

an
d

   
c n

p=0 
p=0.5
p=1
p=1.5

c n~

 cn

~

Ising σz
-basis

FIG. 15. The generalized mutual information for the ground-state
wave function of the extended Ising chain (3), with L = 30 sites.
The coefficients cn and c̃n are obtained from the linear fit of (25)
of the Rényi mutual information In(�,L − �) (23) and (24) and
from the generalized mutual information Ĩn(�,L − �), given by (26),
respectively. The ground sates of the quantum chains are expressed
in the {σ z} basis and the values of the parameter p = 0, 0.5, 1,
and 1.5.

We measured this quantity for the extended Z(Q) models
introduced in Sec. II. The results for the extended Ising
quantum chain are shown in Figs. 15 and 16 for the ground-
state wave function expressed in the {σ z} and {σx} bases,
respectively. Again, for 0 < n < 2, we clearly see in both basis
the independence of the curves with the parameter p of the

0 1 2 3 4 5 6
n
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0.5
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1.5

c n
 a

n
d

 c
n
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p=0.5
p=1
p=1.5
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FIG. 16. Same as Fig. 15, but with the ground-state wave function
spanned in the {σ x} basis.
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nonintegrable quantum chain. Actually, the agreement of this
behavior for several values of p is even better as compared with
the case of the Rényi mutual information, this indicates that
the finite-size scaling corrections in Ĩn(�,L − �) are smaller
than the ones in In(�,L − �). It is also clearly shown that the
limiting case n → 1 is regular for all values of p, differently
from the case of the Rényi mutual information. This imply that
Ĩn(�,L − �), as compared with In(�,L − �) is a more suitable
quantity for an analytical approach towards the proof of the
conjecture (2).

VI. CONCLUSIONS

In this paper, we made an extensive test of the conjecture (2)
for the Shannon mutual information I (�,L − �) of conformally
invariant quantum critical chains at their ground states. In
general, the Shannon mutual information depends on the
particular basis where the wave function is spanned. According
to the conjecture (2), the finite-size scaling function of
I (�,L − �) give us an interesting tool for calculating the central
charge c, if the ground state is spanned in the conformal basis.
These basis corresponds, in the underlying Euclidean CFT, to
the boundary condition in the time direction that do no destroy
the conformal invariance of the CFT.

This paper provides us with the first extensive numerical
check of the universal character of (2). The previous tests of
(2) were done only for exactly integrable quantum chains, and
since there is no analytical proof of (2) it is important to verify
if its validity is not connected to the exact integrability of the
critical quantum chains tested previously.

In order to produce tests for nonintegrable models, we
introduced new families of self-dual quantum chains with non-
local Z(Q) symmetries. Due to their self-duality, their critical
points are exactly known. All these nonintegrable quantum
chains contains next-nearest-neighbor coupling constants p.
Our numerical analysis concentrated in two special families
of models. The first family is the generalization of the Z(Q)
parafermionic models (Q = 2–8), and the second one is the
generalization of the Z(Q) clock models (Q = 5–8). The first
family at p = 0 reduces to the exactly integrable parafermionic
quantum chains with central charge c = 1

2 , 4
10 ,1, 8

7 , 5
4 , 4

3 , 7
5 , for

Q = 2–8, respectively. The second family reduces at p = 0
to nonintegrable quantum chains in the Beresinzkii-Kosterlitz
Thouless universality, whose underlying CFT is expected
to have a central charge c = 1 for Q � 5. Exploring the
consequences of conformal invariance, our numerical studies
of the low-lying energies of these quantum chains, at finite
lattice sizes, indicate that at least for a finite range of the
couplings 0 � p � pc the models share the same universal
critical behavior, and consequently are ruled by the same CFT.

The last observation makes these introduced quantum
chains even more interesting, since as we change continuously
the parameter p they give a critical line with a fixed value of
the central charge. In particular, the extended parafermionic
quantum chains for Q � 5 give us critical lines ruled by
an underlying Z(Q) parafermionic CFT with c > 1. The
extensive calculations of the Shannon mutual information
I (�,L − �) of the ground-state wave functions of all these
quantum chains indicate the validity of the conjecture (2)

for general critical and conformally invariant quantum chains,
irrespective of being exactly integrable or not.

It is important to mention that Stéphan [15] presented a
contradictory prediction for the critical Ising quantum chain.
In Ref. [15], by exploring the free-fermionic nature of the
model, I (�,L − �) was calculated numerically up to lattice
sizes L = 36, and the results indicate that the pre-factor in
(2) instead of being the central charge c = 0.5, is the close,
but distinct number c = 0.4801629(2). This would imply
that the conjecture (2) is not valid and the prefactor is a
universal unknown number whose value is close to the central
charge, at least for the Ising case. All the numerical results
we have obtained so far for several quantum chains do not
have enough precision to discard the possibility that for all
the critical chains the prefactor in the conjecture (2) could
not be the central charge c, but a number close to it. The
single exact analytical calculation we have is for the set of
coupled harmonic oscillators that gives in this case the central
charge value c = 1 [11]. The result in Ref. [15] was obtained
by assuming that the finite-size corrections of I (�,L − �) are
given by the power series

∑5
p=0 αp/�p, being the fitting quite

stable indicating no presence of logarithmic corrections, like
ln �
�

terms.
As is well known in order to have a controlled prediction

of quantities in the bulk limit, based on finite-size lattice
estimators we should know the functional dependence of the
finite-size corrections with the lattice size. Unfortunately, this
is not the case for I (�,L − �). This is an essential point.
I (�,L − �) is calculated by combining the probabilities p{x}
of the configuration {x} in the subsystem of size �. The prob-
abilities for special configurations of the Ising quantum chain
can be calculated for quite large lattices L ∼ 1000. The results
for ε({x}) = − ln p{x}, also called the formation probabilities,
show that for special commensurable configurations {x}, like
the emptiness formation probability and generalizations (see
Appendix of Ref. [17]), indicate that correction terms ln �

�
are

always present. If as a result of the combinations of the several
probabilities in I (�,L − �) these logarithmic corrections are
canceled then the prediction of Stéphan [15] is correct and the
conjecture has to be modified. On the other hand, if still these
corrections are present in I (�,L − �), then we should consider
lattice sizes or order L ∼ 1000 to discard or to confirm the
conjecture (2). This is indeed a quite interesting point to
be settled in the future. It is a challenge either to derive
analytically I (�,L − �) or at least to derive the behavior of
the finite-size corrections.

There exist two extensions of the Shannon mutual informa-
tion, namely The Rényi mutual information In(�,L − �) and
the generalized mutual information Ĩn(�,L − �), based on the
Rényi divergence. These quantities were calculated previously
for several exactly integrable quantum chains in their ground
state. As the Shannon mutual information they also show some
universal features whenever the ground-state wave function is
spanned in a conformal basis. We calculate the generalizations
In(�,L − �) and Ĩn(�,L − �) for the nonintegrable models
introduced in this paper. Our results indicate that the universal
features previously observed [13,14] does not depend if the
quantum chain is exactly integrable or not. It is important
to mention that, as happens for the exactly integrable cases
[14], Ĩn(�,L − �) in general does not have a divergence as
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n → 1, differently from the generalization In(�,L − �). Since
this divergence destroys the analytical continuation n → 1,
the quantity Ĩ (�,L − �) seems to be more appropriate for an
analytical derivation for the conjecture (2) for the Shannon
mutual information Ĩ1(�,L − �) = I (�,L − �).
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[30] J. V. José, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson,

Phys. Rev. B 16, 1217 (1977).
[31] F. C. Alcaraz, M. I. Berganza, and G. Sierra, Phys. Rev. Lett.

106, 201601 (2011); M. I. Berganza, F. C. Alcaraz, and G. Sierra,
J. Stat. Mech. (2012) P01016.
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