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The Mori’s projection method, known as the memory function method, is an important theoretical formalism
to study various transport coefficients. In the present work, we calculate the dynamical thermal conductivity in
the case of metals using the memory function formalism. We introduce thermal memory functions for the first
time and discuss the behavior of thermal conductivity in both the zero frequency limit and in the case of nonzero
frequencies. We compare our results for the zero frequency case with the results obtained by the Bloch-Boltzmann
kinetic approach and find that both approaches agree with each other. Motivated by some recent experimental
advancements, we obtain several new results for the ac or the dynamical thermal conductivity.
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I. INTRODUCTION

There have been significant advancements in the study of
the thermal transport coefficients for complex systems [1–5].
In such systems, the transport coefficients can be understood
via the transport lifetime which captures the role of different
interactions such as electron-impurity, electron-phonon, and
electron-electron interactions. Several methods [6–8] based on
the Kubo formalism and the Bloch-Boltzmann method have
been applied to compute the effects of such interactions on
various transport coefficients such as thermal conductivity.
The commonly used method is the Bloch-Boltzmann transport
method [9]. Within this approach, it is found that the thermal
conductivity κ(T ) is proportional to the temperature T both
in high and low temperature regimes in the case of impurity
interactions. While in the case of electron-phonon interactions,
it varies as T −2 in the low temperature limit (T � �D ,
where �D is the Debye temperature) and saturates to a
constant value in the high temperature limit (T � �D) [9].
These signatures are predicted long ago and are well verified.
However, the notion of frequency dependent (dynamical)
thermal conductivity was not previously known and hence
was not addressed in theoretical discussions.

Recently, the notion of the dynamical thermal conductivity
is introduced by Volz et al. [10]. With this idea, the recent
experiments access frequency in which ω dependence cannot
be ignored. There it is introduced in the context of its useful-
ness for the thermal design of microsystems and nanosystems
which operates at several GHz clock frequency. Cooling of the
Joule heating in such systems is an important issue [10] and it
requires detailed understanding of the frequency dependence
of the thermal conductivity. In Ref. [10], the dynamical thermal
conductivity is introduced in the context of phonon mediated
thermal transport in Si crystals. However, in the case of
metals, and particularly at certain frequency, the electronic
contributions to the thermal conductivity may predominate.
We consider that scenario and present the paper to a careful the-
oretical analysis of the frequency dependent electronic thermal
conductivity of metals in various regimes of interest. In a recent
computer simulation using the molecular dynamics technique,
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it is found that the phononic thermal conductivity reduces
its magnitude at high frequencies [10]. Experimentally, it is
also studied in the context of semiconductor alloys and it is
found that the magnitude of the phononic thermal conductivity
reduces as the frequency increases [11].

Theoretically, the electronic and the phononic dynamical
thermal conductivity is discussed in the recent past by Shastry
[12] and others [13–16] in different contexts such as in open
systems, strongly correlated systems, semiconductor crystals,
etc. In the present work, we explicitly derive the various
expressions for the electronic thermal conductivity in case of
metal with electron-impurity and electron-phonon interaction.

We use the memory function formalism which was in-
troduced by Mori and Zwanzig [17–19]. It is formulated
in several renditions. The commonly used version named
projection operator formalism is the most fascinating regarding
the physical aspects of the systematic approximations. The
main motivation of this approach is the determination of the
time correlation function in quantum or classical many body
systems in a systematic way [20–29].

We calculate for the first time, the dynamical thermal
memory functions for the case of electron-impurity and
electron-phonon interactions. It is directly related to the
dynamical thermal conductivity viz. κ(z,T ) ∼ 1

z+MQQ(z,T ) ,
where MQQ(z,T ) is the thermal memory function and z is
the complex frequency. The details of MQQ(z,T ) will be
discussed in the next section. The results in the zero frequency
limit are consistent with the results predicted using the Bloch-
Boltzmann approach. We also calculate the dynamical thermal
memory functions in different frequency regimes and discuss
the effects of the impurity and the phonon scattering on it.

This paper is organized as follows: We review the basics of
the memory function formalism in Sec. II. Later in Sec. III,
we introduce the model Hamiltonian and then calculate the
thermal memory functions for the case of electron-impurity
and electron-phonon interactions. Then, we discuss its be-
havior in different frequency and temperature regimes. Here
we also calculate the asymptotic behavior of the thermal
conductivity in the presence of these interactions. The results
for the zero frequency case is compared with the results
previously obtained by the Boltzmann approach and we find
good agreement. We make several predictions in frequency
dependence cases in Sec. IV. Finally, in Sec. V, we conclude.
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II. MEMORY FUNCTION FORMALISM

Before embarking into the detailed calculation of the
thermal memory function, let us first briefly review the general
framework of the memory function formalism in this section.

Consider two operators A and B corresponding to two
different physical observables. Their correlation function is
defined as [30–32]

χAB(t) = 〈A(t); B(0)〉, (1)

where 〈· · · 〉 denotes the thermal average and t is the time
variable. The Laplace transform of the correlation function in
the complex frequency domain can be expressed as

χAB(z) = 〈〈A; B〉〉z = −i

∫ ∞

0
eizt 〈[A(t),B]〉dt. (2)

Here [·,·] represents the commutator between two operators,
z is the complex frequency variable, and the outer angular
bracket 〈· · · 〉 in 〈〈A; B〉〉z refers to the Laplace transform.

In frequency space, the equation of motion of this correla-
tion function can be cast in the following form:

z〈〈A; B〉〉z = 〈[A,B]〉 + 〈〈[A,H ]; B〉〉z. (3)

Here H represents the total Hamiltonian of the system. In
the present work, we are interested in calculating the thermal
current-thermal current correlation function. Thus we replace
both the general operators A and B by the thermal current
operator JQ and Eq. (3) takes the form,

z〈〈JQ; JQ〉〉z = 〈[JQ,JQ]〉 + 〈〈[JQ,H ]; JQ〉〉z. (4)

Here the first term in the right-hand side contains equal
time commutator [JQ,JQ] which identically vanishes. Thus,
z〈〈JQ|JQ〉〉z = 〈〈[JQ,H ]; JQ〉〉z. Again applying equation of
motion on 〈〈[JQ,H ]; JQ〉〉z, one obtains

z〈〈JQ; JQ〉〉z = 〈〈[JQ,H ]; [JQ,H ]〉〉z=0−〈〈[JQ,H ]; [JQ,H ]〉〉z
z

.

(5)

Finally, the correlation function can be expressed as

χQQ(z,T ) = 〈〈[JQ,H ]; [JQ,H ]〉〉z=0−〈〈[JQ,H ]; [JQ,H ]〉〉z
z2

.

(6)

Following the Refs. [33,34], the correlation function χQQ(z,T )
and the memory function MQQ(z) are related as

MQQ(z,T ) = z
χQQ(z,T )

χ0
QQ(T ) − χQQ(z,T )

, (7)

where χ0
QQ(T ) is the static thermal current-thermal current

correlation function. This above expression is identical to that
in the case of electrical transport.

On considering the assumption that χQQ(z,T )/χ0
QQ(T ) is

smaller than one, the above expression with the leading order
term can be expressed as

MQQ(z,T ) ≈ z
χQQ(z,T )

χ0
QQ(T )

. (8)

The validity of this approximation is discussed in detail in
Refs. [35,36] for the electrical transport and the same should
follow to the case of thermal transport.

Using Eqs. (6) and (8), the thermal memory function can
be written as

MQQ(z,T ) = 〈〈[JQ,H ]; [JQ,H ]〉〉z=0−〈〈[JQ,H ]; [JQ,H ]〉〉z
zχ0

QQ(T )
.

(9)

This is an expression for the complex thermal memory function
in terms of the thermal force-thermal force correlation. Further
the thermal conductivity can be written in terms of the thermal
memory function as follows,

κ(z,T ) = i
1

T

χ0
QQ(T )

z + MQQ(z,T )
. (10)

This is a general expression for the thermal conductivity in a
memory function formalism (proof is given in Appendix A).
Here MQQ(z,T ) is the thermal memory function which pro-
vides the information about the effects of various interactions
such as electron-impurity and electron-phonon interactions
on the thermal conductivity κ(z,T ). The specific cases are
discussed in detail in the next section.

III. THERMAL CONDUCTIVITY

A. Model Hamiltonian

In this work, we consider a system in which electrons
interact with impurities and phonons. The total Hamiltonian
of such a system takes the form,

H = H0 + Himp + Hep + Hph. (11)

Here the first term in the right-hand side of the above equation
corresponds to the unperturbed part which is expressed as

H0 =
∑
kσ

εkc
†
kσ ckσ , (12)

where εk is the energy dispersion for free electrons, and ckσ

and c
†
kσ are annihilation and creation operators having crystal

momentum k and spin σ . The second term is the perturbed
Hamiltonian for the electron-impurity interactions which is
described as

Himp = N−1
∑

i

∑
kk′σ

〈k|Ui |k′〉c†kσ ck′σ . (13)

Here N represents the number of lattice cells, Ui refers for
impurity interaction strength, and sum over i index refers to
the number of impurity sites. Here the unit cell volume is taken
as unity. The third term of Eq. (11) describes the interacting
Hamiltonian for electron-phonon interactions which is defined
as

Hep =
∑
kk′σ

[D(k − k′)c†kσ ck′σ bk−k′ + H.c.]. (14)

Here bq(b†q) is the phonon annihilation(creation) operator
having momentum q. The electron-phonon matrix element
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D(q) can be considered in the following form [9]:

D(q) = 1√
2miNωq

qC(q), (15)

where mi is the ion mass, and ωq is the phonon dispersion.
C(q) is a slowly varying function of the phonon momentum
which in the case of metal is considered as 1/ρF , where ρF is
the density of the states (DOS) at the Fermi surface [9]. The
last term of the Hamiltonian represents free phonons and is
given by

Hph =
∑

q

ωq

(
b†qbq + 1

2

)
. (16)

With this Hamiltonian, we proceed to the calculation of the
thermal memory functions.

B. Thermal memory functions

To compute the thermal memory functions, we need to
define the heat current [37] which is the energy current where
energy is measured with respect to the electronic chemical
potential μ. In an operator form, it can be written as

JQ = 1

m

∑
k

k.n̂(εk − μ)c†kck, (17)

where n̂ is the unit vector parallel to the direction of heat
current and m is the electron mass.

Using this definition, let us focus on the calculation of
the thermal memory function and hence thermal conductivity.
In general, the MQQ(z,T ) is a complex valued function of
frequency having both real and imaginary parts. Its imaginary
part describes the scattering rate due to the presence of different
interactions such as electron-impurity and electron-phonon
interactions. On the other hand, the real part describes mass
enhancement.

1. Electron-impurity interaction

In the presence of only electron-impurity interactions, the
thermal memory function defined in Eq. (9) is computed by
considering the total Hamiltonian H = H0 + Himp.

To compute it, we first evaluate the commutator of JQ and
H . Since JQ commutes with the free part of the Hamiltonian
H0, then [JQ,H ] = [JQ,Himp]. Thus using Eqs. (13) and (17),
the commutator becomes

[JQ,H ] = 1

mN

∑
i

∑
kk′σ

〈k|Ui |k′〉,

(k(εk − μ) − k′(εk′ − μ)).n̂c
†
kσ ck′σ . (18)

Using the above expression, the Laplace transform and the
thermal average of the inner product 〈〈[JQ,H ]; [JQ,H ]〉〉z
becomes

= 1

m2N2

∑
ij

∑
kk′σ

∑
pp′τ

〈k|Ui |k′〉〈p|Uj |p′〉

× (k(εk − μ) − k′(εk′ − μ)).n̂,

(p(εp − μ) − p′(εp′ − μ)).n̂,

〈〈c†kσ ck′σ ; c†pτ cp′τ 〉〉z. (19)

By considering the case of dilute impurity, i.e., i = j and
performing the ensemble average using Eq. (2) followed by
integration over time, Eq. (19) takes the following form:

= 2Nimp

m2N2

∑
kk′

|〈k|U |k′〉|2[(k(εk − μ) − k′(εk′ − μ)).n̂]2

× fk − fk′

z + εk − εk′
. (20)

Here Nimp represents the impurity concentration, the factor 2
is due to the electronic spin degeneracy and fk = 1

eβ(εk−μ)+1
is

the Fermi distribution function, and β is the inverse of the
temperature.

Substituting the above equation in Eq. (9) and on per-
forming the analytic continuation z → ω + iη, η → 0+, the
imaginary part of the thermal memory function becomes

M ′′
QQ(ω,T ) = 2π

N2

Nimp

χ0
QQ(T )m2

∑
kk′

|〈k|U |k′〉|2

× [(k(εk − μ) − k′(εk′ − μ)).n̂]2

× fk − fk′

ω
δ(ω + εk − εk′). (21)

To reduce the equation further, it is convenient to assume that
the system has cubic symmetry. Then on averaging over all
directions, we obtain

[(k(εk − μ) − k′(εk′ − μ)).n̂]2

= 1
3 |k(εk − μ) − k′(εk′ − μ)|2. (22)

Using the above equation along with the assumption that U

is independent of momentum, Eq. (21) can be written in the
integral form,

M ′′
QQ(ω,T ) = U 2Nimp

3(2π )5m2χ0
QQ(T )

∫
dεk

vk
k2 sin θdθdφ,

∫
dεk′

vk′
k′2 sin θ ′dθ ′dφ′,

|k(εk − μ) − k′(εk′ − μ)|2,
fk − fk′

ω
δ(ω + εk − εk′). (23)

For our convenience, we drop the subscript k from all εk in
further calculations and solve one of the energy integrals using
the property of delta function. In a typical metal, the Fermi
energy is very large (of the order of 104K). On the other hand
the experiments are usually performed at temperature of the
order of 102K. Thus, electrons from a small region of width
kBT (in the present case kB = 1) around the Fermi surface
participate in the scattering events. Hence, we assume that the
magnitudes of k and k′ are equal to kF , the Fermi wave vector.
Thus, the imaginary part of the thermal memory function takes
the following form:

M ′′
QQ(ω,T ) = NimpU

2k4
F

6π3χ0
QQ(T )

∫
dε((ε − μ)2 + (ε − μ + ω)2)

× f (ε − μ) − f (ε − μ + ω)

ω
. (24)
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Substituting ε−μ

T
= η and ω

T
= x, the above expression can be

written in simpler form as

M ′′
QQ(ω,T ) = NimpU

2k4
F T 2

6π3χ0
QQ(T )

∫ ∞

0
dη

η2 + (η + x)2

x
,

[
1

eη + 1
− 1

eη+x + 1

]
. (25)

This is the final expression for the imaginary part of the thermal
memory function due to the impurity interactions. Here we
assume that the electronic kinetic energy is higher than the
temperature T . Further in various frequency and temperature
limits, its behavior can be discussed as follows:

Case I. In the dc limit, i.e., ω → 0.
In this limit, Eq. (25) reduces to

M ′′
QQ(T ) = Nimp

3π3

U 2k4
F T 2

χ0
QQ(T )

∫ ∞

0
dηη2 eη

(eη + 1)2
. (26)

This concludes that the temperature dependent imaginary part
of the thermal memory function, also known as thermal scat-
tering rate, 1/τth varies with temperature as T 2/χ0

QQ(T ), since
the static correlation function χ0

QQ(T ) is directly proportional
to the square of temperature (proof is given in Appendix B).
Thus, 1/τth in the zero frequency limit is independent of the
temperature. This result agrees with the Bloch-Boltzmann
result. On the other hand, due to the symmetry relations of the
thermal memory function [33], its real part becomes identically
zero in the dc limit. On substituting this in the expression for
the thermal conductivity [Eq. (10)], we find that the real part
of the thermal conductivity depends on the temperature as

Re[κ(T )] = 1

T

χ0
QQ(T )

M ′′
QQ(T )

. (27)

Using Eqs. (26) and (B2) (mentioned in Appendix B), the
above equation for the thermal conductivity reduces to

Re[κ(T )] = 1

72

πk2
F

NimpU 2m2
T ,

i.e., Re[κ(T )] ∝ T . (28)

This result is in accord with the result predicted earlier using
Boltzmann’s equation approach [Eq. (C10) in Appendix C 1].

Case II. In the finite frequency limit.
In the high frequency limit, i.e., ω � T , the imaginary part

of the thermal memory function becomes

M ′′
QQ(ω,T ) ≈ NimpU

2k4
F T 2

6π3χ0
QQ(T )

∫ ∞

0
dηx

[
1

eη + 1
− 1

eη+x + 1

]

≈ NimpU
2k4

F T 2

6π3χ0
QQ(T )

∫ ∞

0
dη

1

eη + 1

ω

T
. (29)

This yields that the thermal memory function or the ther-
mal scattering rate approximately varies linearly with the
frequency and inversely with the temperature. While in the
opposite case ω � T , the leading order term in Eq. (29)
becomes

M ′′
QQ(T ) ≈ NimpU

2k4
F T 2

6π3χ0
QQ(T )

∫ ∞

0
dη

η2

eη + 1

(
2 − ω

T

)
. (30)

These results are summarized in Table I.

TABLE I. The thermal scattering rate due to the electron-impurity
interaction in different frequency and temperature domains.

ω = 0 ω �= 0

1/τth ∼ T 0 ω � T ω � T

1/τth ∼ ω

T
1/τth ∼ (2 − ω

T
)

2. Electron-phonon interaction

Now consider that the system has only electron-phonon
interaction. Then, the thermal memory function can be
calculated in a similar fashion as is done in the case of the
impurity interaction. Here the total Hamiltonian is considered
as H = H0 + Hep + Hph. The thermal current commutes with
the free electron and the free phonon parts of the Hamiltonian.
Thus, we are left with the commutator of the thermal current
JQ and the interaction term Hep which is expressed as

[JQ,Hep] = 1

m

∑
kk′σ

(k(εk − μ) − k′(εk′ − μ)).n̂,

(D(k − k′)c†kσ ck′σ bk−k′ − H.c.). (31)

Using the above commutation relation, 〈〈[JQ,Hep];
[JQ,Hep]〉〉z can be cast in the following form:

= 1

m2

∑
kk′σ

∑
pp′τ

(k(εk − μ) − k′(εk′ − μ)).n̂,

(p(εp − μ) − p′(εp′ − μ)).n̂,

(D(k − k′)D∗(p − p′)〈〈c†kσ ck′σ bk−k′ ; c†p′τ cpτ b
†
p−p′ 〉〉z

−D∗(k − k′)D(p − p′)〈〈c†k′σ ckσ b
†
k−k′ ; c†pτ cp′τ bp−p′ 〉〉z).

(32)

On further simplifications, the above expression reduces
to

= 2

m2

∑
kk′

[(k(εk − μ) − k′(εk′ − μ)).n̂]2|D(k − k′)|2,

(fk(1 − fk′)(1 + n) − (1 − fk)fk′n),{
1

z + εk − εk′ − ωk−k′
− 1

z + εk′ − εk + ωk−k′

}
, (33)

where n = 1
eβωq −1

is the Boson distribution function at a
temperature 1/β.

On substituting the above equation in the thermal memory
function Eq. (9) and then performing the analytic continuation
z → ω + iη, η → 0+, the imaginary part of the thermal
memory function can be written as

M ′′
QQ(ω,T ) = 2π

χ0
QQ(T )m2

∑
kk′

[(k(εk − μ)−k′(εk′−μ)).n̂]2,

|D(k − k′)|2(1 − fk)fk′n,{
eω/T − 1

ω
δ(εk − εk′ − ωk−k′ + ω)

+ (terms with ω → −ω)

}
. (34)
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To evaluate the above equation, we use the law of conservation
of energy εk = εk′ − ωq and conservation of momentum
q = k′ − k which simplify a factor appearing in Eq. (34) as
follows:

[(k(εk − μ) − k′(εk′ − μ).n̂]2 = [(ωqk′ + (εk − μ)q).n̂]2.

(35)

For simplicity, we consider that the system has cubic symmetry
as considered in the case of impurity. Then on averaging over
all directions, we obtain

[(ωqk′ + (εk − μ)q).n̂]2

= 1
3

{
ω2

qk
′2 + q2(εk − μ)2 + ωq(εk − μ)q2

}
. (36)

Substituting Eq. (36) in (34) and on converting the summations
to integrals, we get

M ′′
QQ(ω,T ) = N2

3χ0
QQ(T )m2(2π )5

∫
dεk

vk
k2 sin θdθdφ,

∫
dεk′

vk′
k′2 sin θ ′dθ ′dφ′

∫
dq|D(q)|2,

δ(q − |k − k′|)(1 − fk)fk′n,{
ω2

qk
′2 + q2(εk − μ)2 + ωq(εk − μ)q2

}
,{

eω/T − 1

ω
δ(εk − εk′ − ωk−k′ + ω)

+ (terms with ω → −ω)

}
. (37)

Following the argument as quoted in the impurity case, for low
energy scattering, we consider the magnitudes of k and k′ of
the order of kF . With these facts and solving one of the energy
integrals, the above equation reduces to

M ′′
QQ(ω,T ) = N2

12π3

1

χ0
QQ(T )

∫ ∞

0
dη

∫ qD

0
dqq|D(q)|2,

1

ey−1

1

e−η + 1

{
ω2

qk
2
F +q2η2T 2+ωqηT q2

}
,[

1

eη−y−x+1

ex−1

x
+(terms with ω → −ω)

]
.

(38)

Here we introduce new dimensionless variables εk−μ

T
= η,

ωq

T
= y, and ω

T
= x. Now integrating over η, we obtain

M ′′
QQ(ω,T ) = N2T 6

12πχ0
QQ(T )

(
qD

�D

)4 ∫ �D/T

0
dyy3|D(y)|2,

[
(x − y)

ex−y − 1

ex − 1

x(ey − 1)
,

{
k2
F

π2

(
�D

qDT

)2

+ 1

3
+ (x − y)2

π2
+ 1

2π2
y(x − y)

}

+ (terms with ω → −ω)

]
. (39)

Substituting the phonon matrix element using Eq. (15), the
thermal memory function is simplified to

M ′′
QQ(ω,T ) = N

24πmiρ
2
F

T 7

χ0
QQ(T )

(
qD

�D

)6 ∫ �D/T

0
dyy4,

[
(x − y)

ex−y − 1

ex − 1

x(ey − 1)

{
k2
F

π2

(
�D

qDT

)2

+ 1

3
+ (x − y)2

3π2
+ 1

2π2
y(x − y)

}

+ (terms with ω → −ω)

]
. (40)

This is the frequency and the temperature dependent thermal
memory function for the case of electron-phonon interaction.
In certain regimes of temperature and frequency, this can be
solved analytically and is discussed as follows:

Case I. In the dc limit, i.e., ω → 0.
In this limit, Eq. (40) reduces to

M ′′
QQ(T ) = N

12πmiρ
2
F

T 7

χ0
QQ(T )

(
qD

�D

)6 ∫ �D/T

0
dy,

y5ey

(ey − 1)2

{
k2
F

π2T 2

(
�D

qD

)2

+ 1

3
− 1

6π2
y2

}
.

(41)

In the high temperature limit, i.e., when the temperature is
much more than the Debye temperature (T � �D), the second
term within the curly brackets contributes more as compared
to the other terms. Because the other terms vary inversely as
square of the temperature, they contribute less then the second
term (i.e., 1/3). Hence, the thermal memory function M ′′

QQ(T )
with leading term can be approximated as

M ′′
QQ(T ) ≈ N

36πmiρ
2
F

T 7

χ0
QQ(T )

(
qD

�D

)6

,

∫ �D/T

0
dy

y5ey

(ey − 1)2
.

M ′′
QQ(T ) = N�4

D

144πmiρ
2
F

(
qD

�D

)6
T 3

χ0
QQ(T )

. (42)

Thus on considering the temperature variation of the static
thermal correlation function, we find that the imaginary part
of the dc thermal memory function varies linearly with the
temperature in the high temperature regime. On substituting
this in Eq. (10), we find that the real part of the thermal
conductivity varies as

Re[κ(T )] = constant. (43)

In the low temperature limit, i.e., when the temperature is
much less than the Debye temperature (T � �D), the first
term and the third term in Eq. (41) contributes more to the
thermal memory function as compared to the second term. If
we consider qD to be smaller than the kF , then the first term
dominates over the third term. Thus using this fact M ′′

QQ(T )
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becomes

M ′′
QQ(T ) ≈ Nk2

F

12π3miρ
2
F

(
qD

�D

)6
T 5

χ0
QQ(T )

,

∫ ∞

0
dyy5 ey

(ey − 1)2
. (44)

The above equation tells that the imaginary part of the thermal
memory function or the thermal scattering rate varies as
T 3 (1/τth ∝ T 3). As argued in the impurity case, the mass
renormalization is zero. Thus, we find that the real part of
the thermal conductivity [Eq. (10)] which varies inversely as
square of the temperature, i.e.,

Re[κ(T )] ∝ T −2. (45)

These results in different temperature regimes are in accord
with the results obtained by the Boltzmann equation ap-
proach [8,9] and with the experimental results [38–40]. In
Appendix C 2, we compare these results with the results from
the Bloch-Boltzmann equation and we observe agreement.

Case II. In the finite frequency case.
In the high frequency limit, i.e., when frequency is much

higher than the Debye frequency (ω � ωD), the thermal
memory function [Eq. (40)] becomes

M ′′
QQ(ω,T ) ≈ N

12πmiρ
2
F

T 7

χ0
QQ(T )

(
qD

�D

)6 ∫ �D/T

0
dy,

y4

ey − 1

{
k2
F

π2

(
�D

qDT

)2

+ 1

3
+ 1

3π2

ω2

T 2

}
.

(46)

In the high temperature limit, i.e., T � �D and ω � T , the
second term of Eq. (46) contributes more over the other terms.
Thus, the imaginary part of the thermal memory function
becomes

M ′′
QQ(ω,T ) ≈ N

36πmiρ
2
F

(
qD

�D

)6
T 7

χ0
QQ(T )

×
∫ �D/T

0
dy

y4

ey − 1
. (47)

On solving the integral in the above limits, we obtain

M ′′
QQ(ω,T ) ∝ T . (48)

In the case, when T � �D and ω � T , the third term of
Eq. (46) contributes to the thermal memory function as

M ′′
QQ(ω,T ) ≈ N

36π3miρ
2
F

T 7

χ0
QQ(T )

(
qD

�D

)6

× ω2

T 2

∫ �D/T

0
dy

y4

ey − 1
. (49)

In the above mentioned frequency and temperature regime, the
thermal memory function varies as ω2

T
.

In the low temperature limit, i.e., T � �D , the first term
and the third term are the leading order terms in the thermal

memory function. Further in the limit ω � T ,

M ′′
QQ(ω,T ) ≈ N

12πmiρ
2
F

T 7

χ0
QQ(T )

(
qD

�D

)6

×
{

k2
F

π2

(
�D

qDT

)2

+ 1

3π2

ω2

T 2

} ∫ ∞

0
dy

y4

ey − 1
.

(50)

Similarly in the low frequency limit, i.e., when frequency is
much smaller than the Debye frequency (ω � ωD), Eq. (40)
is written as

M ′′
QQ(ω,T ) ≈ N

24πmiρ
2
F

T 7

χ0
QQ(T )

(
qD

�D

)6 sinh (ω/T )

ω/T
,

∫ �D/T

0
dy

y5ey

(ey − 1)2
,

{
k2
F

π2

(
�D

qDT

)2

+ 1

3
− y2

6π2

}
. (51)

In the limit T � �D and ω � T ,

M ′′
QQ(ω,T ) ≈ N

36πmiρ
2
F

T 7

χ0
QQ(T )

(
qD

�D

)6

×
∫ �D/T

0
dy

y5ey

(ey − 1)2
. (52)

This shows the linear temperature variation and frequency
independent character of the thermal scattering rate.

In the case when T � �D and ω � T , Eq. (51) becomes

M ′′
QQ(ω,T ) ≈ Nk2

F

12π3miρ
2
F

T 5

χ0
QQ(T )

(
qD

�D

)4

×
∫ ∞

0
dy

y5ey

(ey − 1)2
. (53)

From the above equation, we find that M ′′
QQ(ω,T ) varies as T 3

and frequency independent behavior.
In the limit T � �D and ω � T ,

M ′′
QQ(ω,T ) ≈ Nk2

F

24π3miρ
2
F

T 5

χ0
QQ(T )

(
qD

�D

)4 sinh (ω/T )

ω/T

×
∫ ∞

0
dy

y5ey

(ey − 1)2
. (54)

FIG. 1. (a) The imaginary part of the thermal memory function for
the case of electron-impurity interaction is plotted with frequency at
different temperatures such as 200 (purple), 300 (brown), and 400 K
(blue) at fixed interaction strength U and impurity concentration Nimp.
(b) The low frequency regime of Fig. 1(a) is elaborated.
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TABLE II. The thermal scattering rate due to the electron-phonon interaction in different frequency and temperature domains.

ω = 0 ω � ωD ω � ωD

T � �D T � �D

1/τth ∼ T 1/τth ∼ T 3

ω � T ω � T

T � �D T � �D

1/τth ∼ ω2

T
1/τth ∼ T 3(

k2
F

�2
D

π2q2
D

+ ω2

3π2 )
T � �D

1/τth ∼ T

ω � T ω � T

T � �D

1/τth ∼ T 4 sinh(ω/T )
ω

T � �D T � �D

1/τth ∼ T 3 1/τth ∼ T

These analytical predictions of the dynamical behavior of
the thermal memory functions in different temperature and
frequency domains are supplemented by numerical calculation
in the next section. We summarize the above results in Table II.

IV. RESULTS AND DISCUSSION

In this section, we have plotted the imaginary part of the
dynamical thermal memory functions M ′′

QQ(ω,T ) for the case
of the electron-impurity and electron-phonon interactions. To
extract the characteristic frequency dependent and temperature
dependent behavior of M ′′

QQ(ω,T ), we suitably normalize it in
various cases.

First for the impurity interaction, we plot M ′′
QQ(ω,T )/M ′′

0
where M ′′

0 is the frequency and temperature independent

constant (= 2k4
F m

π5Ne
), as a function of frequency using Eq. (25) in

Fig. 1. Here we consider impurity concentration Nimp = 0.001
and interaction strength U = 0.1 eV. It is found that the
normalized thermal scattering rate increases linearly with the
frequency in the range where the frequency is very high as
compared to the temperature (as shown in Fig. 1(a)). This linear
feature becomes more prominent as the temperature is lowered.
For example in Fig. 1(b), the purple curve drawn at T = 200 K
starts showing a linear behavior above a frequency lower than
that of the other two curves drawn at higher temperatures such
as 300 and 400 K. The low frequency regime ω � T of the
plot is more elaborated in Fig. 1(b) which shows deviations
from linearity. Also in both the regimes, the thermal scattering
rate due to the impurity interaction decreases with the rise in
temperature. These features are in accord with our asymptotic
analytical predictions (Table I).

In the zero frequency limit, the thermal scattering rate
[Eq. (26)] becomes temperature independent. The same result

FIG. 2. (a) The imaginary part of the thermal memory function
for electron-phonon interaction is plotted with frequency at different
temperatures such as 200 (purple), 250 (red), 300 (brown), and
400 K (blue) at fixed Debye temperature �D = 300 K. (b) The low
frequency regime of Fig. 2(a) is elaborated.

can be obtained using the Boltzmann approach as mentioned
in Appendix C 1. This feature is also in accord with the
experimental findings [8,9].

For the electron-phonon interaction, the frequency de-
pendent behavior of the normalized thermal scattering rate
[Eq. (40)] is shown in Fig. 2 at different temperatures. Here
the Debye temperature �D is kept fixed at 300 K. In Fig. 2(a),
we observe that in the high frequency regime (ω � �D),

M ′′
QQ/M ′′

0 (M ′′
0 = Nmq6

D

6π3miρ
2
F Ne�D

) increases as the frequency
increases. While in the low frequency regime, it becomes
constant. To see the zoomed low frequency behavior, we
replot the same curves within a small frequency regime (as
shown in Fig. 2(b)). We also observe that the magnitude of
the thermal memory function reduces with the increase in
temperature. However, the exact temperature dependence in
the low frequency regime depends on whether the temperature
is greater or lower than the Debye temperature. The detail
asymptotic behaviors are obtained analytically in the previous
section (Sec. III) and given in Table II.

In Fig. 3, the real part of the thermal conductivity in the
case of electron-phonon interaction using Eq. (10) is plotted
as a function of frequency at a fixed Debye temperature �D

and at different temperatures. Here we assume that the leading
frequency dependence of the thermal conductivity is coming
from the thermal scattering rate. Thus to make our discussion
simpler, we neglect the frequency dependence of the mass
renormalization factor in the thermal conductivity coming
from the real part of the thermal memory function. Here we

have scaled the frequency with parameter ω0 (= Nmq6
D

6π3miρ
2
F Ne�D

),
which has the dimension of energy and normalized the real part
of the thermal conductivity Re[κ(ω,T )] with κ0 (= π2Ne

4mω0
). It is

FIG. 3. (a) The normalized frequency dependent thermal conduc-
tivity is plotted with the ratio ω/ω0 for electron-phonon interaction at
different temperatures such as 200 (purple), 250 (red), 300 (brown),
and 400 K (blue) and at Debye temperature �D = 300 K. Here ω0 is a
constant having dimensions of energy and the dashed line corresponds
to the scale for Debye frequency cutoff, i.e., ωD/ω0. (b) The low
frequency regime of Fig. 3(a) is elaborated.
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FIG. 4. (a) Plot of temperature dependent normalized dc imag-
inary part of the thermal memory function for electron-phonon
interaction at different Debye temperatures such as 200 (purple),
300 (brown), and 400 K (blue). (b) The variation of the normalized
thermal conductivity with T at the same Debye temperatures.

observed that the thermal conductivity decays with the increase
in frequency in a nonlinear manner. Also with the increase of
temperature, the thermal conductivity increases. This detail
behavior can be understood as follows. Since our calculation
is limited to a perturbative regime, i.e., M ′′

QQ(ω,T ) � ω,

then Re[κ(ω,T )] ∼ χ0
QQ

T

M ′′
QQ(ω,T )

ω2 . As χ
QQ
0 (T ) ∼ T 2, thus the

real part of the thermal conductivity becomes Re[κ(ω,T )] ∼
T M ′′

QQ(ω,T )
ω2 . Under this condition, the increase in the thermal

conductivity due to the increase in temperature is governed
by the factor T M ′′

QQ(ω,T ) which is an increasing function
of temperature. Using this relation and Table II, various
regimes of Fig. 4 can be understood. For example, (1) in
the regime T � ω � ωD , Re[κ(ω,T )] ∼ T 5 sinh(ω/T )

ω3 , (2) in

regime T � ω � ωD , Re[κ(ω,T )] ∼ T 2

ω2 , (3) for ω � ωD ,
ω � T , and T � �D , Re[κ(ω,T )] ∼ T 4( a

ω2 + b), where a

and b are constants, etc. The detail asymptotic results of
the thermal conductivity due to the electron-phonon and the
electron impurity is given in Tables III and IV. These signatures
are new predictions from our formalism and can be verified in
future experiments.

Now in the dc limit, we plot M ′′
QQ(T )/M0 as a function of

temperature T at different Debye’s temperatures in Fig. 4(a).
Here we find three important features. One is the increase
of the nonlinear thermal scattering rate with temperature
in the low temperature regime (∼T 3, refer to Table II).
Second, it increases linearly with the temperature at the
high temperature regime. Third in the intermediate regime
around the Debye temperature, there is a minima in the
thermal scattering rate. These features (at high and low
temperatures namely T 3 at T � �D and T at T � �D) are
in agreement with experiments [38–40]. In Fig. 4(b), using
Eq. (10) the normalized thermal conductivity has been plotted
with temperature T . This shows that it decreases as T −2

TABLE IV. The real part of the thermal conductivity due to the
electron-impurity interaction in different frequency and temperature
domains.

ω = 0 ω �= 0

κ ∼ T
ω � T ω � T

κ ∼ 1
ω

κ ∼ T

ω2

in the low temperature regime and becomes constant in the
high temperature regime. These results are consistent with the
results derived using the Boltzmann approach in Appendix C 2.
In the intermediate temperature regime, it passes through a
minimum. This minimum in the thermal conductivity plot is an
artifact of neglecting contributions from the Umklapp process
in the memory function. Such minima occurs near the Debye
temperature where the Umklapp process becomes important.
The same peculiarity is also found in the Bloch-Boltzmann
theory when the Umklapp processes are neglected [9,41]. Such
a minima is purely a theoretical artifact and is not observed in
any experiments [42].

V. CONCLUSION

Traditionally, the dc transport of a metallic system is discussed
in several contexts using the Boltzmann equation approach
with much success [8,34,43]. However within this approach,
the calculation of the dynamical thermal conductivity is
lacking. Also, the Boltzmann approach is solved using
relaxation time approximation [29]. On the other hand, the
memory function approach is beyond the relaxation time
approximation. So, it is a better choice to study the dynamical
transport properties in various electronic systems. Also, this
approach does not require the quasiparticle picture, hence has
a broader range of applicability [44–46]. Thus, the memory
function formalism is a better choice to study the dynamical
transport properties in various electronic systems. However, in
the present work, we deal with the system having well-defined
quasiparticles, i.e., metals.

In this work, we perform analytical calculation of the
dynamical thermal conductivity of metal for electron-impurity
and electron-phonon interactions. We discuss the results in
different frequency and temperature domains. Since in the
zero frequency limit thermal conductivity of the metal is well
known, we consider the results from the Bloch-Boltzmann
approach and the experimental findings as a benchmark and
compare our results with them.

According to the memory function formalism, the total
thermal memory function is the thermal current-thermal
current correlation function which captures the role of the
impurity and the electron-phonon interactions. This leads

TABLE III. The real part of the thermal conductivity due to the electron-phonon interaction in different frequency and temperature domains.

ω = 0 ω � ωD ω � ωD

T � �D T � �D

κ ∼ T 0 κ ∼ T −2

ω � T ω � T

T � �D T � �D

κ ∼ ω0T 0 κ ∼ T 4( a

ω2 + b)
T � �D

κ ∼ T 2

ω2

ω � T ω � T

T � �D

κ ∼ T 5 sinh(ω/T )
ω3

T � �D T � �D

κ ∼ T 4

ω2 κ ∼ T 2

ω2
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the thermal memory function as the sum of the memory
functions due to the electron-impurity interactions and the
electron-phonon interactions which further result to the total
thermal conductivity. We found that at the low temperature,
the thermal memory function due to the impurity interaction
shows the temperature independent behavior [Eq. (26)]. While
due to the electron-phonon interaction, it shows T 3 behavior
[Eq. (44)]. On the other hand, at the high temperature, the
thermal memory function gives linear temperature behavior
[Eq. (42)].

Now, in the dc limit, the thermal conductivity can be written
as

κ(T ) ≈ T

M ′′
QQ(T )

, (55)

which shows that it varies with an inverse of the memory func-
tion. According to the Matthiessen’s rule [9,47], resistivities
add up. Hence, the memory function also adds up which is
the sum of the memory function due to the electron-impurity
and the electron-phonon interactions. Based on that the thermal
conductivity can be explained as follows. At very low tempera-
ture regime, the conductivity comes mainly due to the impurity
interactions which gives the linear temperature dependence
behavior. As the temperature increases, the population of
the phonon starts increasing, resulting in the increase of the
memory function due to the electron-phonon interaction and
the corresponding thermal conductivity decreases. But as the
temperature becomes more than the Debye temperature �D ,
the population of the phonon saturates and thus the memory
function gives linear temperature dependent behavior and
hence the thermal conductivity becomes constant.

In other words, if we consider the impurity and phonon
contribution together, we see that the total thermal conductivity
can be expressed in an empirical form as

1

κtotal(T )
= 1

κimp(T )
+ 1

κep(T )

∼
{

A
T

+ BT 2, at T � �D

A
T

+ C, at T � �D.
(56)

Here, the first term and the second term are due to the electron-
impurity interaction and the electron-phonon interaction,
respectively and A, B, and C are material dependent con-
stants. These results are in accord with the results calculated
using the Bloch-Boltzmann approach [8,9] and also with the
experimental findings [38–40].

In a general theory of electrical and/or thermal conductivity
within the memory function(matrix) theory one must consider
the slow relaxation of the conserved total momentum. In
principle, one should consider all the relevant slow modes
to construct the “full memory matrix.” The mode with the
slowest relaxation rate is the most relevant in studying the
dynamics. First, to keep our discussion simple we neglect
the inclusion of the conserved total momentum. However,
we see good agreement between our results with that of the
previous theories and experiments as well. This is possible
because we have confined our discussions on metals with a
well-defined Fermi surface.

In the finite frequency cases we have several predictions
depending on the relative values of the frequency ω, tem-

perature T , and the Debye frequency ωD . Few of them can
be summarized as follows: (1) T � ωD: in this case, as we
move from the low frequency regime to the high frequency
regime we see a crossover from the κ ∼ T 2

ω2 behavior to the
κ ∼ T 0/ω0 behavior. (2) On the other hand for T � ωD , we
observe that κ ∼ T 4

w2 in the low frequency regime, then we
see κ ∼ T 5 sinh ω/T

ω3 behavior in the intermediate regime, and
finally see κ ∼ T 4( a

ω2 + b) behavior. These predictions can be
verified in future experiments. Moreover, the present approach
can also be used to study other transport properties such as
thermoelectric coefficients, etc.

APPENDIX A: THERMAL CONDUCTIVITY
AND MEMORY FUNCTION RELATION

In the linear response theory, the thermal conductivity is
expressed as [30–32]

κμν(z) = 1

T

∫ ∞

0
dteizt

∫ β

0
dλ〈JνQ(−i�λ)JμQ(t)〉. (A1)

Here μ, ν = x,y,z and represent special directions.
In the classical limit, i.e., � → 0, the above equation

reduces to

κμν(z) = 1

T 2

∫ ∞

0
dteizt 〈JνQ(0)JμQ(t)〉. (A2)

The time evolution of a dynamical variable f follows the
Liouville equation which is given as

∂f

∂t
= −Lf, (A3)

where L is the Liouvillian operator. The solution of the above
equation yields

f (t) = eiLt f (0). (A4)

Using the above relation, the Kubo formula for the thermal
conductivity can be written as

κμν(z) = 1

T 2

∫ ∞

0
dteizt 〈JνQ(0)eiLt JμQ(0)〉. (A5)

On further simplification, it becomes

κμν(z) = 1

T 2

〈
JνQ

∣∣∣∣ i

z + L

∣∣∣∣JμQ

〉
. (A6)

Now we introduce the projection operator P which is defined
as follows:

P =
∑
ν,μ

|JνQ〉〈JμQ|
〈JνQ|JμQ〉 = I − Q, (A7)

where I is an identity matrix and Q = I − P is an unprojected
part. Then replace L by L(P + Q) in Eq. (A6), and κμν(z)
becomes

κμν(z) = i
1

T 2

〈
JνQ

∣∣∣∣ i

z + LQ

∣∣∣∣JμQ

〉

− i
1

T 2

〈
JνQ

∣∣∣∣ i

z + LQ
LP 1

z + L

∣∣∣∣JμQ

〉
. (A8)

On expanding the above equation, the first term is

i 1
zT 2 〈JνQ|JμQ〉 which can be written as i

χ0
QQ(T )
T z

where χ0
QQ(T )
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is the static thermal current-thermal current correlation func-
tion. Inserting the projection operator into the second term, the
latter becomes

1

T 2

〈
JνQ

∣∣∣∣ i

z + LQ
L

∑
μ′Q

|Jμ′Q〉〈Jμ′Q| 1

z + L

∣∣∣∣JμQ

〉
. (A9)

Inserting the above expressions of the first and second terms
in Eq. (A8), the thermal conductivity in the isotropic case can
be written as

κ(z,T ) = i
1

T

χ0
QQ(T )

z + MQQ(z,T )
, (A10)

where MQQ(z,T ) is the thermal memory function,

MQQ(z,T ) = 1

T χ0
QQ(T )

〈
JQ

∣∣∣∣ z

z + LQL
∣∣∣∣JQ

〉
. (A11)

APPENDIX B: DERIVATION OF STATIC
CORRELATION FUNCTION

The static thermal current-thermal current correlation is
defined as [3]

χ0
QQ(T ) = 1

3T

∑
k

(εk − μ)2v2
kfk(1 − fk). (B1)

Converting the summation into the energy integral and
substituting εk−μ

T
= η, the above equation reduces to

χ0
QQ(T ) = T 2k3

F

3m

1

2π2

∫ ∞

0
dη

η2eη

(eη + 1)2

= T 2 Ne

m

π2

12
. (B2)

This shows that the static thermal current-thermal current
correlation varies quadratically in temperature.

APPENDIX C: THERMAL CONDUCTIVITY
USING BOLTZMANN APPROACH

1. For impurity interaction

The Boltzmann equation for the semiclassical distribution
function gk(r,t) is written as

vk
∂gk

∂r
=

(
∂gk

∂t

)
coll

=
∫

dk′

2π3
(W (k′ → k) − W (k → k′)).

(C1)
Here W (k′ → k) defines the transition probability of an
electron scattering from initial state k′ to final state k.
According to the Fermi golden rule, in the case of the impurity
scattering it can be expressed as

W (k′ → k) = 2π |〈k′|Himp|k〉|2δ(εk′ − εk). (C2)

Considering the impurity interaction Hamiltonian given in
Eq. (13), the transition probability can be expressed as

W (k′ → k) = 4π
Nimp

N2
|U (k′,k)|2gk(1 − gk′)δ(εk′ − εk).

(C3)

Here U (k′,k) = 〈k′|U |k〉, the matrix element for the impurity
interaction. Inserting the above equation in Eq. (C1), we obtain(

∂gk

∂t

)
coll

=
∫

dk′ Nimp

2π2N2
|U (k′,k)|2(gk′ − gk)δ(εk′ − εk).

(C4)

Now linearizing the Boltzmann equation using gk = fk +
δgk and taking equilibrium collision integral terms to zero,
Eq. (C4) can be written as(

∂gk

∂t

)
coll

=
∫

dk′ Nimp

2π2N2
|U (k′,k)|2(δgk′ − δgk)δ(εk′ − εk).

(C5)

In the standard procedure, the collision integral is solved by
an iterative procedure [8,34,43]. One starts with the relaxation
time approximation.

gk = fk + δgk = fk + kx

m
τ (εk)

(
∂fk

∂T

)
(∇T )x. (C6)

Thus the change in the distribution function is written as

δgk = gk − fk = kx

m
C(εk)

(
∂fk

∂ε

)
. (C7)

Here C(εk) is proportional to an energy dependent relaxation
time. On substituting the above expression in Eq. (C5) and
noticing that vx

k∇gk = kx

m

∂fk

∂T
∇T , one obtains

1

τ (εk)
= 2NimpmkF

πN2

∫ π

0
dθ |U (kF ,θ )|2 sin θ (1 − k.k′). (C8)

This shows that the thermal scattering rate due to the impurity
interaction is independent of the temperature. The thermal
conductivity is defined as

κ(T ) = 2

T 2

∑
k

τ (εk)(εk − μ)2 e(εk−μ)/T

(e(εk−μ)/T + 1)2
. (C9)

Substituting Eq. (C8) in the above equation, the thermal
conductivity due to the electron-impurity interaction shows
the temperature dependence as

κ(T ) = 1

72

πk2
F

NimpU 2m2
T ,

i.e., κ(T ) ∝ T . (C10)

From this we infer that the results of the thermal conductivity
using both approaches, the memory function and the Boltz-
mann approach, agree quantitatively with each other.

2. For electron-phonon interaction

Similarly for the electron-phonon interaction case, the
Boltzmann equation becomes

vk
∂gk

∂r
=

(
∂gk

∂t

)
coll

=
∫

dk(W (k + q → k) − W (k → k + q)). (C11)

Here W (i → f ) is the transition probability involving both
the emission and absorption of phonons. This, using the Fermi
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golden rule, can be expressed as [47]

W (k + q → k) = 2π |〈k|Hep|k + q〉|2δ(εk+q − εk ± ωq).

(C12)

Using Eq. (14), the above expression for the transition
probability can be written as

W (k + q → k) = 4π |D(q)|2gk+q(1 − gk)(nq + 1),

δ(εk + ωq − εk+q). (C13)

Considering all possible scattering processes, the collision
integral can be written as(

∂gk

∂t

)
coll

=
∫

dq(U (k + q : k)gk+q(1 − gk)

−U (k; k + q)gk(1 − gk+q)), (C14)

where

U (k + q; k) = W 0
q [(nq + 1)δ(εk + ωq − εk+q)

+ n−qδ(εk − ωq − εk+q)], (C15)

U (k; k + q) = W 0
q [(n−q + 1)δ(εk+q + ωq − εk)

+ nqδ(εk+q − ωq − εk)], (C16)

and W 0
q = 4π |D(q)|2.

The details of the calculation is given in the references
([8,34,43]). Here we note that using the relation U (k + q; k) =
eβεk+qe−βεkU (k; k + q) and linearizing the Boltzmann equa-
tion by substituting gk = fk + δgk and taking the equilibrium
collision integral terms to be zero, Eq. (C14) can be reduced
to (

∂gk

∂t

)
coll

=
∫

dqU (k; k + q){δgk+q(e−β(εk−εk+q),

(1 − fk) + fk) − δgk(e−β(εk−εk+q)fk+q

+ (1 − fk+q)}. (C17)

On further simplifications, the collision integral can be written
as(

∂gk

∂t

)
coll

= β

∫
dqW 0

q nq(fk+q(1 − fk)δ(εk+q + ω−q − εk)

+ fk(1 − fk+q)δ(εk+q − ωq − εk),

(δφ(k + q) − δφ(k)), (C18)

where δφ(k) = δgk
βfk(1−fk) .

As explained in the impurity scattering case the calculation
is done by an iterative procedure, where one introduces

δφ(k) = kx

m
C(εk). (C19)

From Eqs. (C18) and (C19), we have

kx

m

(
∂fk

∂T

)
(∇T )x =

(
∂gk

∂t

)
coll

= 4π

mT

∫
dq|D(q)|2nq,

{fk+q(1 − fk)δ(εk+q + ω−q − εk)

+ fk(1 − fk+q)δ(εk+q − ωq − εk)},
{(kx + qx)C(εk+q) − kxC(εk)}. (C20)

On inserting the phonon matrix element, solving the angular
integrals and introducing the dimensionless variables εk−μ

T
=

η and ωq

T
= z, the collision integral reduces to

(
∂gk

∂t

)
coll

= − 1

2πmiNρ2
F (2m)1/2

ε−3/2kx

∂fk

∂ε

(
T

�D

)3
q4

D

�D

,

∫ �D/T

0
dz

z2

ez − 1
,

{
eη + 1

eη−z + 1

[(
ε − 1

2
D

(
T

�D

)2

z2 − 1

2
T z

)
,

C(η − z) − εC(η)

]
+ ez(eη + 1)

eη+z + 1
,

[(
ε − 1

2
D

(
T

�D

)2

z2 + 1

2
T z

)
,

C(η + z) − εC(η)

]}
. (C21)

Here D = q2
D

2m
. On further simplifications, the above expression

can be written as

− kx

m
η

(
∂fk

∂ε

)
(∇T )x =

(
∂gk

∂t

)
coll

= − kx

2πmiNρ2
F

ε−3/2

(2m)1/2

∂fk

∂ε

(
T

�D

)3

× q4
D

�D

∫ �D/T

−�D/T

dz
z2

|ez − 1|
eη+1

eη+z+1
,

[(
ε − 1

2
D

(
T

�D

)2

z2 + 1

2
T z

)
,

C(η + z) − εC(η)

]
. (C22)

In the above equation, the contribution from the terms with
odd power in z vanishes. Thus on simplification, we have

2πmiNρ2
F ε

1/2
F (2m)1/2

m

�D

q4
D

(
�D

T

)3

η(∇T )x

=
∫ �D/T

−�D/T

dz
z2

|ez − 1|
eη + 1

eη+z + 1
,

[(
1 − D

2εF

(
T

�D

)2

z2

)
C(η + z) − C(η)

]
. (C23)

In the high temperature limit, i.e., T � �D , the term within the
bracket in Eq. (C23) with T 2 contributes more then the others
terms and in the case η � z, the C(η) can be approximated as

C(η) ≈ −16πmiρ
2
F Nε

3/2
F (2m)1/2�D

mDq4
D

(
�D

T

)
η(∇T )x.
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The thermal current is defined as

JQ = 2
∫

dk
(2π )3

vk(εk − μ)δgk

= 2k3
F

π2

∫
dηηC(η)

∂fk

∂η
. (C24)

Substituting the value of C(η) and using the relation JQ =
−κ(∇T )x , we find that the thermal conductivity in high
temperature regime becomes

κ(T ) ≈ 8

3

πk6
F miρ

2
F �2

DN

q6
Dm2

,

i.e., κ(T ) = constant. (C25)

Now in the case of low temperature (T � �D), the right-hand
side of Eq. (C23) can be written as∫ �D/T

−�D/T

dz
z2

|ez − 1|
eη + 1

eη+z + 1
[C(η + z) − C(η)]. (C26)

The above equation can be solved by the variational method
[43]. Following the Ref. [43], in the low temperature limit, we

can write

C(η) = −4π�Dε
1/2
F ρ2

F miN

3mq4
D

(
�D

T

)3

η(∇T )x. (C27)

Substituting the above equation in (C24), we observe that the
thermal conductivity shows a temperature dependence of the
following form,

κ(T ) ≈ 2

125

π3k4
F miρ

2
F �4

DN

m2q4
D

,

κ(T ) ∝ T −2. (C28)

Thus, we see that the thermal conductivity in the case of
electron-phonon interaction shows inverse square temperature
dependence in the low temperature regime and saturates
to a constant value in the high temperature regime within
the Bloch-Boltzmann approach and this agrees qualitatively
with our calculation using the memory function formalism.
Because of the approximate results of the thermal conductivity,
the numeric factors are different in the thermal conductivity
expressions in both the approaches.
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