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Electronic stopping for protons and α particles from first-principles electron dynamics:
The case of silicon carbide
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We present the first-principles determination of electronic stopping power for protons and α particles
in a semiconductor material of great technological interest: silicon carbide. The calculations are based on
nonequilibrium simulations of the electronic response to swift ions using real-time, time-dependent density
functional theory (RT-TDDFT). We compare the results from this first-principles approach to those of the widely
used linear response formalism and determine the ion velocity regime within which linear response treatments
are appropriate. We also use the nonequilibrium electron densities in our simulations to quantitatively address
the longstanding question of the velocity-dependent effective charge state of projectile ions in a material, due
to its importance in linear response theory. We further examine the validity of the recently proposed centroid
path approximation for reducing the computational cost of acquiring stopping power curves from RT-TDDFT
simulations.
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I. INTRODUCTION

Understanding the stopping process of highly energetic ions
in condensed matter systems has great implications in modern
technologies ranging from nuclear fission/fusion reactors [1]
to semiconductor devices for space missions [2] to cancer
therapy based on ion beam radiation [3]. The kinetic energy of
irradiating energetic ions is dissipated in a material in the
stopping stage, a fundamental process in which deposited
energy becomes available for inducing structural transitions
through various mechanisms. Conceptually, the stopping stage
is divided into two regimes, depending on the type of excitation
produced [4]: At low ion velocities, the dominant effect is nu-
clear stopping, which primarily results in lattice excitations and
nuclei displacements. At higher velocities (typically greater
than kiloelectronvolts), the relevant excitations are electronic,
hence the term electronic stopping. The average rate of energy
transfer from the ion to the target material is generally
measured with respect to the unit distance of projectile ion
movement, and this is referred to as stopping power.

Ever since the phenomenon of electronic stopping was
discovered, a number of approximated analytical models have
been developed: the classical Coulomb scattering formulas of
Rutherford [5], Thomson [6], and Darwin [7], the quantum-
mechanical perturbation approach by Bethe [8], electron gas
models by Fermi and Teller [9], and the dielectric formalism
treatment by Lindhard et al., Lindhard and Winther, and Nagy
et al. (see Refs. [10–12], respectively and references therein).
Nonperturbative calculations (necessary to model, e.g., the
Barkas effect [13] and so-called Z1 oscillations) of electronic
stopping in the uniform electron gas started in the 1980s by
Echenique et al. and Arnau et al. [14,15] with the advent of
density functional calculations and their time-dependent coun-
terparts [16]. For historical reviews of theoretical approaches
to electronic stopping, see Refs. [17,18]. Today, perhaps the
most widely used approach is the linear response formalism,
originating with Bethe [8], but also used by Lindhard et al. [10]
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In the framework of linear response theory (consequently, the
projectile ion is assumed to have a fixed charge Z with no
velocity dependence), the stopping power can be expressed in
a mathematically closed form [19]

S(v) = 4πZ2

v2
L(v), (1)

where v is the projectile ion velocity, and L(v) is a velocity-
dependent quantity called the stopping logarithm. This quan-
tity is given in terms of either mean excitation energy of the
target material in Bethe theory [8], or as the energy/wave-
vector dependent dielectric response function in the formula
of Lindhard et al. and Lindhard and Winther [10,11]. Note that
the mean excitation energy can be obtained from the optical
limit of dielectric response function [20,21] or from electronic
structure calculations [22,23], whereas Lindhard and Winther
[11] approach requires a full dielectric function
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where ε is the macroscopic dielectric function of frequency ω

and wavelength q.
In the last few decades, both rapidly advancing high-

performance computers and modern electronic structure meth-
ods have made it possible to obtain key parameters in the
analytical models directly from first-principles theory [24–27].
Parameter-free methods can go significantly beyond analytical
models because they provide detailed information at the
atomistic level, allowing one to study the specific influences of
defects, surfaces, or even the nature of electronic excitations
involved in the stopping process. However, a fully atomistic
first-principles calculation of electronic stopping for a wide
range of projectile velocities, especially around the maximum
of the electronic stopping curve, has remained elusive. The
possibility of quantitatively describing the interaction of
projectile atoms with the electronic and ionic systems of
the host material entirely within first-principles calculations
has come within reach [28,29]. These advances for realistic
materials rely on nonperturbative, real-time, time-dependent
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density functional theory (RT-TDDFT) [16]. In a recent paper
[30], we demonstrated an accurate calculation of the electronic
stopping power curve for protons and α particles in a repre-
sentative metallic system of aluminum, for which practical
approximations within RT-TDDFT, such as the exchange-
correlation (XC) potential, are thought to be satisfactory.

In light of this encouraging result, we apply the method-
ology to the representative semiconductor material silicon
carbide (SiC). SiC has garnered attention for fusion and
advanced fission energy applications due to its ability to retain
important physical and chemical properties when exposed to
extreme particle radiation [31–34]. Also, SiC has potential
for use in semiconductor nuclear radiation detectors due to
its ability to withstand radiation-induced damage better than
conventional semiconductor materials, such as silicon and
germanium [35]. These applications make SiC a scientifically
and technologically relevant case for studying electronic
stopping in semiconductors. In addition to the nonempirical
determination of the electronic stopping power for protons
and α particles from first-principles simulations, we address
the longstanding question of the effective charge state of the
projectile ion and the related issue of the extent to which
a linear response formalism can be applied over different
velocity regimes. Also, we examine the validity of the recently
used centroid path approximation for calculating stopping
power [36,37].

II. THEORETICAL METHOD

The simulation methods employed in this paper closely
follow that described by Schleife et al. [38,39] involving a
real-time propagation approach within TDDFT. For all sim-
ulations, the Perdew-Burke-Ernzerhof (PBE) XC functional
[40] was used within the adiabatic approximation [40,41]. In
the current method, a plane-wave pseudopotential scheme is
used in solving the time-dependent Kohn-Sham equations in
which a real, swift ion (proton or α particle) is responsible
for the time dependence of the external potential acting on
the electronic system. Hamann-Schluter-Chiang-Vanderbilt
norm-conserving pseudopotentials were used for all atoms
[42], including the projectile ions. We employ our recently
developed, highly parallelized implementation of RT-TDDFT
[38,39] in the Qb@ll branch of the Qbox code [43,44].

In this paper, we use a simulation cell consisting of 216
atoms (864 electrons) in a cubic supercell (lattice constant
4.36 Å) of 3C-SiC, the zinc-blende polytope of silicon carbide.
Despite the large simulation cell we employ, the electronic
stopping power curve is not completely converged with respect
to the simulation cell size. Unfortunately, it is not possible to
achieve the strictest convergence at the present time because of
the large computational cost associated with these RT-TDDFT
simulations in obtaining the ensemble average. Instead, we
used a representative projectile ion path (i.e. centroid path
as discussed later) to estimate the finite size correction using
a much larger simulation cell as discussed in detail in the
Supplemental Material [45]. For the remainder of the paper,
electronic stopping power curves are shown with and without
the finite size error correction. The � point was used in
sampling of the Brillouin zone, and it was found to be
sufficient for convergence by comparing with calculations with

4 k-points as shown in the Supplemental Material [45]. A
plane-wave energy cutoff of 50 Rydberg was used. In this
paper, we did not use a single, long, reentering projectile
path for obtaining an ensemble average as done previously
for metallic systems [30]. Instead, we directly obtained the
ensemble average using 10 independent projectile ion paths
that are determined via a random number generator, and
there are no constraints on the impact parameters. Thus, there
are rare instances in which the projectile ion penetrates into
the pseudopotential spheres of other atoms. The positions
of all atoms, except the projectile ion, are held fixed in the
simulation cell while the electronic system evolves in response
to the time-dependent potential due to the projectile ion.
The nonequilibrium simulations yield the electronic energy
increase as a function of the projectile displacement for
a specific ion velocity. We then apply a baseline fitting
with asymmetric least squares fitting proposed by Eilers and
Boelens [46] in order to acquire a linear regression. This slope
represents the energy derivative that can be used to calculate
the electronic stopping power via the following equation:

S(v) =
〈
dE[ρ(r; t)]

dx

〉
v

, (3)

where E is the time-dependent electronic energy and ρ(r; t) is
the nonequilibrium electron density [30], and x is the projectile
ion position.

III. RESULTS AND DISCUSSION

A. Electronic stopping power for proton and α particle

Janson et al. [47] conducted ion-implantation experiments
to acquire low-velocity electronic stopping power for 1H
and 2H ions using time-of-flight (TOF) techniques. The
experimental data shown in Fig. 1 was obtained by removing
the nuclear stopping power component from their experimental
measurements. The analytical model by Heredia-Avalos et al.
[48] employs the dielectric response formulation using a
Mermin-type dielectric function [49] together with a modified
Brandt-Kitagawa model [50,51] for the effective charge state
of the proton. The dielectric function was obtained by fitting
to the experimental spectrum of the energy loss function in
the optical limit (q = 0). Additionally, SRIM 2003 provides
empirically fitted data from a combination of experimental
results for electronic stopping in Si and C [52]. As can be
seen in Fig. 1, the analytical model by Heredia-Avalos et al.
[48] and the SRIM model are in rather good agreement with
each other, especially for higher velocities beyond the stopping
power maximum.

As an alternative to using a model dielectric function, the
dielectric formalism can be cast in terms of the microscopic
dielectric function, which can be computed using modern
first-principles electronic structure calculations [24,25]. Re-
cently, Shukri et al. [26] employed such a dielectric response
formalism

S(v) = 4πZ2

Nk�v

BZ∑
q

∑
G

Im
{
ε−1

G,G(q,ω)
}v · (q + G)

|q + G|2 , (4)

where Nk is the number of k points used in the Brillouin zone,
� is the volume of the unit cell, q is a lattice vector in the first
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FIG. 1. Electronic stopping power as a function of the velocity
of a proton projectile in 3C-SiC. The solid black curve represents
the empirical SRIM model [51]. The dashed black curve represents a
dielectric formalism calculation with an empirically fitted dielectric
function [47]. Red circles and blue squares show experimental
data for protons and deuterium ions, respectively [46]. The pink
curve represents results from the dielectric response formalism using
LR-TDDFT for calculating the dielectric matrix [26]. The solid
green curve corresponds to the values we obtained by calculating the
nonequilibrium response using RT-TDDFT. The error bars represent
standard deviations for the path distribution. The dashed green
curve shows the RT-TDDFT results with an added finite size error
correction.

Brillouin zone, G are reciprocal lattice vectors, v is the ion
velocity and the microscopic dielectric matrix was calculated
using linear response TDDFT with the adiabatic local density
approximation (ALDA). The energy dependence is given by
ω = v · (q + G), and their result for the cubic 3C-SiC is also
shown for comparison in Fig. 1.

In Fig. 1, our RT-TDDFT simulation results for protons in
SiC are shown with and without the finite-size error correction
as discussed in the Theoretical Method section. Note that
the correction becomes appreciable for the ion velocities
beyond the stopping power peak. Our RT-TDDFT simulation
results show good agreement with the available experimental
data and the empirical models for the low-velocity regime
(v < 1.5 a.u.). Additionally, the position and magnitude of
the stopping power peak is in good agreement with the
empirical models, showing the stopping power maximum at
v = ∼1.5 a.u., which is close to the result by Heredia-Avalos
et al. [48]. However, for the higher velocities (v > 2 a.u.),
the RT-TDDFT simulation results yield stopping powers that
are significantly lower (∼50%) than those given by the
empirical models even when the finite size error is taken
into account. The linear response formulation is expected to
become more accurate with the increasing velocity, and the
noticeable difference between our RT-TDDFT result and the
linear response result using the TDDFT microscopic dielectric
matrix [26] is notable even for the high-velocity regime.
Part of the disagreement between these two first-principles
approaches stems from the use of the PBE XC approximation
in our RT-TDDFT simulations and the use of the LDA XC
approximation in calculating TDDFT microscopic dielectric
matrix [26]. Indeed, when we calculate the electronic stopping
power using LDA in RT-TDDFT simulations, the resulting

0 1 2 3 4 5
 α-Particle Velocity (a.u.)

0.00

0.25

0.50

0.75

1.00

1.25

E
le

ct
ro

ni
c 

S
to

pp
in

g 
P

ow
er

 (
a.

u.
)

RT-TDDFT (This paper)
With finite size correction
SRIM 2003
Heredia-Avalos 2005
Zhang and Weber 2003
Zhang et al. 2007

FIG. 2. Electronic stopping power as a function of the velocity of
an α particle projectile in 3C-SiC. The solid black curve represents
the empirical SRIM model [51]. The dashed black curve represents
a dielectric formalism [47] calculation with an empirically fitted
dielectric function. Red circles and blue squares show experimental
data for α particles over two velocity ranges [52,53]. The solid
green curve corresponds to the values we obtained by calculating the
nonequilibrium response using RT-TDDFT. The error bars represent
standard deviations for the path distribution. The dashed green
curve shows the RT-TDDFT results with an added finite size error
correction.

stopping power is larger by as much as 18% for the velocities
above ∼1.5 a.u. (see Supplemental Material [45]). Another
source of the disagreement might come from the neglect of
core electron excitations in our RT-TDDFT simulations. From
an earlier paper on silicon [26], neglecting excitations of 2s and
2p electrons is likely to result in a slight underestimation even
in SiC for velocities beyond the stopping power maximum,
but not enough to fully explain the disagreement. Given that
our RT-TDDFT simulation uses the approximated finite-size
error correction and the linear response result by Shukri
et al. uses an extrapolation scheme [26] (because achieving
strict convergence is not possible at the present time), the
observed disagreement, even for high-velocity regimes, calls
for a systematic examination of both approaches in a future
paper. At the same time, we note that, for a simpler metallic
case of aluminum, these two first-principles approaches have
been shown to agree quite well for the case of protons, as
previously discussed [26,30].

Figure 2 shows our RT-TDDFT simulation result in com-
parison with experimental measurements for α particles. For
α particles, Zhang and Weber [53] and Zhang et al. [54]
used a TOF setup to determine electronic stopping power
of He ions in SiC over a wide velocity range. There is
excellent agreement between our result and the experiments
for the velocity range below the stopping power maximum.
However, for higher velocities, our results are significantly
lower than the experimental stopping power data even when the
finite-size error is taken into account. The disagreement with
the experimental measurements is indicative of underlying
approximations in RT-TDDFT simulations, specifically the
XC and adiabatic approximations.

Comparing the stopping power curves for these two
different projectile ions, proton and α particle, (Figs. 1 and 2),
there is a shift in the stopping power curve maximum going
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FIG. 3. Ratio of the calculated electronic stopping power for an α

particle to the electronic stopping power for a proton, as a function of
the projectile ion velocity. The dashed line indicates (Za/ZH )2 = 4,
which one would obtain using linear response theory by assuming
fully ionized projectile ions.

from proton to α particle: The peak of the proton stopping
power curve is located at v = ∼1.5 a.u., whereas the peak for
the α particle stopping power curve is at v = ∼2.0 a.u.. Such a
peak shift cannot be obtained by employing a linear response
model. Within linear response theory, the stopping power has
a quadratic dependence on the projectile ion charge since
the stopping logarithm [Eq. (2)] depends only on the target
medium. Considering the proton and α particle curves, the ratio
Sα(v)/SH(v) = 4 represents the validity of the linear response
theory at a specific velocity, assuming fully ionized projectiles.
The ratio Sα(v)/SH(v) from our RT-TDDFT results is plotted in
Fig. 3 as a function of the ion velocity. The ratio of the stopping
power curves for α particles to that for protons approaches 4
for velocities larger than v = ∼3 a.u., which is well beyond
the stopping power maxima for both protons and α particles.
This corroborates the notion that additional higher-order Z

corrections and/or effective ion charge models are necessary
for the linear response theory to correctly capture the stopping
power maximum, despite the inconvenience associated with
having more empirical parameters [55,56].

The observed difference in stopping power curves between
protons and α particles is directly related to the difference in
the nonadiabatic forces on the projectile ion [57], and it is in-
formative to analyze the spatial dependence of nonequilibrium
electron density beyond what is described by linear response
theory. In the electronic stopping of ions, induced electron
density is proportional to the electronic stopping power. To this
end, the response-normalized density difference is calculated
as follows:

	ρα−H(t) = ρα(t)/2 − ρH(t)

ρH(t)
× 100%, (5)

where ρα(t) and ρH (t) are the time-dependent electron
densities for the α particle and proton cases, respectively. The
factor of 2 takes into account the fact that the induced electron
density response is twice as large with the α particle within
linear response theory. In plotting the response-normalized
density difference, as in Fig. 4, one can directly observe
the deviations of linear response theory from the RT-TDDFT
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FIG. 4. Response-normalized density differences 	ρα−H be-
tween α particle and proton partway through the simulations. Blue
and red indicate negative and positive deviations, respectively, from
the induced density predicted by linear response theory. Volume slices
parallel to the projectile ion path are shown. For clarity, atoms are not
shown.

simulation results. Figure 4 shows 	ρα−H(t) at a representative
instant of time for three different velocities, representing the
low-velocity region (v = 0.25 a.u.), the velocity region near
peak stopping power (v = 2.0 a.u.), and the high-velocity
region (v = 5.0 a.u.). Green color in Fig. 4 would represent
the response of electron density that is consistent with linear
response treatment. As can been seen, the density response for
the α particle case is much less in comparison for most regions
except the immediate vicinity of the projectile ion.

B. Examining the centroid path approximation

The instantaneous energy loss rate of the projectile ion
in a condensed matter system often depends strongly on the
specific path taken by the ion and its proximity to atoms
and bonds over the course of the trajectory. In order to
obtain the electronic stopping power in real materials like
SiC, an ensemble average over numerous projectile paths
needs to be taken until satisfactory convergence is reached.
Unfortunately, numerous expensive RT-TDDFT simulations
are necessary to obtain an accurate ensemble average, making
it a computationally demanding procedure. In an attempt to
reduce this computational expense and still acquire accurate
results, Ojanperä et al. [36] posited that, for the case of a
symmetric two-dimensional system like graphene, a geometric
centroid path could be used to approximate the ensemble
average of projectile paths through the graphene surface.
However, a thorough analysis of this approximation for
different ion velocities and different materials has not been
reported. In order to examine how well this approach works
for three-dimensional (3D) crystalline materials, like SiC, over
a wide velocity range, we compared the calculated electronic
stopping power curves from the 3C-SiC centroid path to the
ensemble average from 10 random paths.

The centroid path was determined by considering a two-
dimensional (2D) orthographic perspective of one channel of
3C-SiC. This perspective is deconstructed into its irreducible
representation consisting of a triangle with a silicon atom, a
carbon atom, and the channeling point as vertices (see Fig. 5).
The centroid of this triangle is given by the intersection of the
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FIG. 5. Electronic stopping power calculated from the ensemble
average of RT-TDDFT simulations for α particle (darker blue) and
proton (darker green) in SiC. Calculation results using the centroid
path approximation are shown for α particle (light blue) and proton
(light green). Shown in the upper right corner is a schematic indicating
the centroid path in 3C-SiC relative to atomic positions of C and Si.

triangle’s three medians. Finally, the direction of the centroid
path is given the path along the [001] crystal direction that
passes through the centroid point. This procedure can easily be
abstracted to other materials with symmetric crystal structures.
Figure 5 shows the centroid path from a 2D orthographic
perspective of a 3C-SiC channel, where the ion path is through
the centroid along the [001] direction.

Figure 5 shows the stopping power curves from both the
centroid path and the ensemble average of 10 random projectile
paths. Except for some differences near the stopping power
peak, the centroid path stopping power is in remarkably good
agreement with the ensemble average. This implies that the
electronic response along the centroid path is close to the
average of the electronic responses in 3C-SiC. In recent RT-
TDDFT simulation work by Ullah et al. [58], a systematic
investigation of impact parameters along channeling paths in
bulk cubic germanium showed that the electronic stopping
power can be related to the average density along the trajectory.
Our results also support this finding, and they support the
notion that the average electron density along the centroid path
result in a stopping power that is in good agreement with the
ensemble average of random paths. Thus, these results appear
to support the proposition put forth by the empirical Bragg’s
additivity rule that the electronic stopping power is mainly
proportional to the average density of electrons [59]. However,
the results also imply that this empirical rule becomes less
acceptable near the peak of the stopping power curve (6.5 and
5.5% underestimations at the stopping power maximum for
proton and α particle, respectively). Shukri et al. [26] found
that Bragg’s additivity rule is only effectual at higher velocities
(v > 2 a.u.) for SiC, and that the deviation between Bragg’s
rule stopping power and their calculated stopping power was as
large as 15% for low to moderate ion velocities. It appears that
the centroid path approximation is able to partly capture details
of the chemical bonds in the target material (so-called “bond
effects” [22]), which are completely missed when employing
Bragg’s additivity rule.

C. Effective charge state and linear response theory

Within linear response theory, one starts by considering
a particle with a fixed charge interacting with a material.
A natural question is whether or not this fixed charge is
different from the ion charge in vacuum, and also the extent
to which the charge state depends on the inhomogeneous
electron density in real materials. As early as the 1920s,
experiments by Rutherford [60] showed the presence of singly
charged helium atoms in the beam of α particles emerging
from a penetrated material. Not only were singly charged He+

observed, but also it was found that the ratio of He+ to He2+

ions increases at lower ion velocities. Sequences of electron
capture and loss events yield the mean steady-state charge q̄

on the projectile ion [61,62]. The mean steady-state charge
has a velocity dependence, and it varies widely between solid
and gaseous stopping media [63], with solids giving rise to
more full ionization. In addition to this mass-density effect,
the velocity dependence of the charge state has also been
widely studied, and various theoretical descriptions exist in
the literature. The commonly used Brandt-Kitagawa theory
[50,51], for example, models the charge state as a function
of the scaled velocity based on the Thomas-Fermi model
[64,65]. Clearly, an important aspect in applying the linear
response theory formalism for calculating stopping power is
the question of whether the use of an effective charge for the
swift ion can better represent the electronic stopping power
curve.

As noted by other authors [66], terminological confusion
with regards to the use of the “effective charge” of a
projectile has pervaded literature due to the term’s two different
definitions: The original concept of effective charge proposed
by Bohr and Neufeld [61,67] referred to the real steady-state
charge of the ion (i.e., the q̄ mean steady-state charge value
mentioned above). It was not until later [68] that the same
terminology was used to describe a related, but distinctively
different concept: effective charge state for the projectile ion
was then defined such that Zeff = [Sion/SH]1/2 is satisfied. The
relation between these two quantities remains unclear, and
they cannot be assumed to be equivalent. For low velocities,
projectile ions are usually assumed to be nearly neutral, giving
rise to the deduction that Zeff > q̄ for low velocities. However,
for high velocities, the relation has been widely debated, with
some experiments on solid targets indicating Zeff > q̄, and
experiments on gaseous targets indicating Zeff

∼= q̄ [62].
In principle, all necessary information for calculating the

mean steady-state charge q̄ on the projectile ion is contained in
our RT-TDDFT simulations. However, a sensible partitioning
scheme for nonequilibrium electron density is needed to
quantify the electron charge belonging to the projectile ion.
We presently employ the Voronoi analysis using analysis code
by Henkelman et al. [69]. Forty equally spaced electron density
“snapshots” at different times were taken for each projectile
velocity traveling along the centroid path in the RT-TDDFT
simulations. Next, induced electron densities were calculated
by subtracting the 3C-SiC ground state electron density from
the nonequilibrium electron densities at the different times.
These induced electron densities give a spatial representation
of where electron density is accumulating in the simulation cell
and where it is being depleted. Finally, the Voronoi analysis
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FIG. 6. Velocity-dependent mean steady-state charges q̄ for α

particle (red) and proton (blue) in SiC. Error bars indicate standard
deviations of the mean. The dependence of the charge on impact
parameters is shown in the Supplemental Material [45].

is performed on the induced electron densities to quantify
the charge within the projectile ion’s Voronoi cell at different
positions in the trajectory. While partitioning schemes based
on electron density topology (e.g. Bader decomposition) are
commonly used for the ground-state electronic density, the
present problem lends itself better to the above approach using
geometry-based Voronoi analysis [69] because its partitioning
scheme satisfies two key criteria that are required for our
analysis: First, the Voronoi partitioning criterion is not affected
by the projectile ion velocity, which is necessary in order to
have a consistent definition for all ion velocities. Second, the
partitioning scheme approaches the correct limit (fully ionized
projectile ion) in the high velocity limit. The Voronoi cell of
a given atom is defined as the region of space closer to the
given atom than to any other atom. In crystalline materials, the
Voronoi cell is equivalent to the Wigner-Seitz cell. It is this
geometric criterion that ensures that the size and shape of the
ion’s Voronoi cell depends only on the position of the projectile
ion, not its velocity. Another advantage of Voronoi analysis is
that it allows us to quantify the charge of the projectile ion
throughout the entire trajectory. This can give insight into the
dynamics of the charge capture and loss process, and it allows
for the calculation of a mean steady-state charge.

Figure 6 shows the mean steady-state charge of the
projectile ion as a function of the ion velocity. As its velocity
increases, the projectile approaches a fully ionized state
(q̄ = Z). The Voronoi partitioning scheme yields this known
exact behavior in the limit of high velocities. For the lowest
velocity simulated, v = 0.25 a.u., the ions do not approach
complete neutrality. Instead, the proton and α particle approach
ion charges of approximately +0.25 and +1.00, respectively.
Interestingly, a recent RT-TDDFT simulation paper by Zhao
et al. [37] on two-dimensional boron-nitride and graphene
sheets also shows that the α particle acquires only about one
electron or fewer for low velocities.

Returning to the question of the relationship between the
concepts of the effective charge Zeff and Bohr’s [61] original
definition of effective charge q̄, it is interesting to examine
the extent to which these two quantities become equivalent.
Can scaling with the mean charge states rather than assuming
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FIG. 7. Ratio of mean steady-state charge (purple) between α

particle and proton over a range of projectile velocities. The green
curve corresponds to Zeff , the effective scaling factor calculated from
the stopping power ratios between α particle and proton. Within linear
response theory, the ratio Zα/ZH yields 2 as indicated by dashed line
if fully ionized projectiles are assumed.

fully ionized ion at all velocities remedy the shortcomings of
linear response theory at low ion velocities? Shown in Fig. 7 is
an examination of q̄α/q̄H from our simulations in comparison
to the calculated [Sα/SH]1/2. While the two quantities are in
excellent agreement for higher ion velocities v � 3 a.u., there
is a significant qualitative difference for v < 3 a.u.. Even if
other electron density partitioning schemes were considered,
it is highly unlikely that q̄α/q̄H would yield the behavior
observed for [Sα/SH]1/2. Thus, for the present case of SiC,
a nonempirical determination of Zeff in the context of linear
response theory for predicting the stopping power curves for
low ion velocities would not be feasible unless additional
higher-order perturbations were taken into account.

IV. CONCLUSIONS

In this paper, we presented first-principles calculations
of electronic stopping power in cubic silicon carbide (SiC)
for protons and α particles from nonequilibrium electron
dynamics simulations based on RT-TDDFT. We have shown
that the centroid path approximation [36,37] accurately re-
produces electronic stopping power values of the ensemble
average, while the agreement is worse for the velocities near
the stopping power maximum. We have also quantified the
velocity-dependent mean steady-state charges for protons and
α particles in SiC to examine the extent to which a linear
response treatment can be applied. Our results indicate that
linear response theory should be applicable for velocities
larger than ∼3 a.u. if the mean steady-state charges are used
instead of assuming fully ionized ions in SiC. While we have
made significant progress toward an accurate determination of
electronic stopping power and associated physical quantities,
there remains much room for further investigation into the
accuracy of first-principles approaches. Our RT-TDDFT result
and the linear response result by Shukri et al. [26] show a
disagreement even for high velocities for the present case of
the semiconductor SiC, and it calls for further examination
of both approaches in a future paper. This is at odds with the
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simpler case of aluminum for which these two first-principles
approaches agree [26,30].

An important approximation in this paper is the XC
potential [70] used in our RT-TDDFT simulations. First, we
adapted the adiabatic approximation such that the XC potential
depends only on the instantaneous electron density, neglecting
any potential memory effects. By using time-dependent current
DFT to calculate the linear part of the stopping power in the
low ion velocity limit for a homogeneous electron gas (i.e.
friction coefficient), Nazarov et al. [71] have shown that the
adiabatic approximation results in a negligibly small error for
ions of low-Z elements like protons and α particles. Second,
the semilocal approximation, like generalized gradient approx-
imation (GGA)-PBE, used here for the XC potential could
introduce nonnegligible errors, especially since the dynamical
charge transfer between the ion and target might be important.
A future paper will focus on exploring the dependence on
XC approximation. The XC approximation can also be an
important avenue of investigation for the threshold velocity at
which the electronic stopping power diminishes [58]. Another

more technical source of error is neglecting core electron
excitations in our simulations. From an earlier paper on silicon
[26], error stemming from neglecting the excitations of 2s

and 2p electrons would contribute to the nonnegligible un-
derestimation of the electronic stopping power for v � 2 a.u..
The role of core electrons in the high-velocity regime will be
studied in a future paper.
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