
PHYSICAL REVIEW B 94, 115104 (2016)

Composite particle theory of three-dimensional gapped fermionic phases:
Fractional topological insulators and charge-loop excitation symmetry
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Topological phases of matter are usually realized in deconfined phases of gauge theories. In this context,
confined phases with strongly fluctuating gauge fields seem to be irrelevant to the physics of topological phases.
For example, the low-energy theory of the two-dimensional (2D) toric code model (i.e., the deconfined phase
of Z2 gauge theory) is a U(1) × U(1) Chern-Simons theory in which gauge charges (i.e., e and m particles) are
deconfined and the gauge fields are gapped, while the confined phase is topologically trivial. In this paper, we
point out a route to constructing exotic three-dimensional (3D) gapped fermionic phases in a confining phase of
a gauge theory. Starting from a parton construction with strongly fluctuating compact U(1) × U(1) gauge fields,
we construct gapped phases of interacting fermions by condensing two linearly independent bosonic composite
particles consisting of partons and U(1) × U(1) magnetic monopoles. This can be regarded as a 3D generalization
of the 2D Bais-Slingerland condensation mechanism. Charge fractionalization results from a Debye-Hückel–type
screening cloud formed by the condensed composite particles. Within our general framework, we explore two
aspects of symmetry-enriched 3D Abelian topological phases. First, we construct a new fermionic state of matter
with time-reversal symmetry and � �= π , the fractional topological insulator. Second, we generalize the notion
of anyonic symmetry of 2D Abelian topological phases to the charge-loop excitation symmetry (Charles) of
3D Abelian topological phases. We show that line twist defects, which realize Charles transformations, exhibit
non-Abelian fusion properties.
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I. INTRODUCTION

A. Background and overview: Parton construction
and gauge confinement

In models of noninteracting fermions, several topological
phases of matter have been found, such as integer quantum
Hall states (IQH), Chern insulators, and topological insula-
tors (TI) [1–9]. Owing to the noninteracting nature of the
problem, tremendous progress has been made in both theory
and experiment. In the presence of weak interactions, these
phases can also be analytically understood. If interactions
are strong enough such that a perturbative analysis is no
longer meaningful, one usually faces a problem in strongly
correlated electron physics. While exact solutions are possible
in a few specific models, one often constructs approximate
effective descriptions of such systems. One such approach is
the parton construction approach, also known as the projective
construction, or slave-particle approach. It has been widely
applied in studies of strongly correlated electron systems
such as high-temperature superconductors and fractional
quantum Hall states (FQH) [10–32]. Recently, it has also been
applied [33–37] to bosonic symmetry-protected topological
phases (SPT) as well [38–41].

Generally speaking, in the parton construction we start with
a lattice action S that describes a strongly correlated electronic
system. In this paper, the electron operator c is meant to repre-
sent a generic Grassmann variable that is the only dynamical
variable in S. We further write the electron operator c in terms
of several parton operators f i . The Hilbert space for S is
equivalently replaced by a projected Hilbert space formed by

partons and gauge fields. In practice, there are many different
kinds of parton constructions. We focus on one of them, where
all partons are fermionic such that an odd number of partons
are required to form an electron. Mathematically, the electron
operator is formally fractionalized as c = f 1f 2 . . . f 2n+1. The
electron operator c is a singlet of the SU(2n + 1) gauge group.
The largest totally commuting subgroup, or maximal torus, is
given by the compact Abelian [U(1)]2n gauge group which
acts with gauge transformations f 1 → f 1eiθ1 , . . . ,f i →
f ieiθi−iθi−1 , . . . ,f 2n+1 → f 2n+1e−iθ2n , where {θi} (i = 1,2,

. . . ,2n) are arbitrary functions of the lattice sites and a
continuous time variable. As such, by applying the ’t Hooft
gauge projection [42], the lattice action deep in the confined
phase is reformulated to describe a system of interacting
partons and 2n dynamical compact Abelian gauge fields {a(i)

μ }.
It should be noted that the gauge-field coupling constants

gi at the lattice scale should be treated as being very strong
since the usual lattice kinetic terms (with coefficient 1/g2

i ) for
compact gauge fields are not present in S. From here one can
usually proceed further by assuming a mean-field theory of
partons where the effects of gauge fluctuations are assumed
negligible. As such, a very important feature, the compactness
of gauge fields, is totally ignored. A standard perturbative
analysis can be applied in order to quantitatively recover
the effect of gauge fluctuations at leading order. In some
cases, this assumption is legitimate. A typical example is a
two-dimensional (2D) system where fermionic partons occupy
energy bands with nonzero Chern number at the mean-field
level [34]. In this case, a Chern-Simons term is generated and
a topological mass gap [43] for the gauge fields is produced,
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which suppresses instanton tunneling. However, there is no
reason to rule out the possibility that g at low energies flows
to strong coupling, such that the compactness of the gauge
fields plays a fundamental role in reshaping the nature of the
emergent ground states. In such cases, mean-field theories of
partons fail to describe the physical states formed by electrons,
even at a qualitative level.

Despite the strong coupling nature of the problem, the
leading-order effect of gauge fluctuations can still be perturba-
tively treated by considering the Bose-Einstein condensation
of composite particles. In the regime of strong gauge coupling,
condensed composites contain magnetic monopoles of the in-
ternal compact gauge fields (and possible electric gauge charge
as well). Historically, this line of thinking was developed in
the context of strongly coupled gauge theories. For example,
condensed monopole phases are relevant for studies of (3+1)-
dimensional [(3+1)D] compact quantum electrodynamics, the
Georgi-Glashow models, and supersymmetric Yang-Mills the-
ory [42,44–54]. For an Abelian gauge theory with a compact
U(1) gauge group, the monopole creation operator has been
constructed explicitly and gains a nonzero vacuum expectation
value as shown in Ref. [52]. Recently, it was further suggested
that the behavior of the nontrivial line operators may be used
to make the proper distinction between confinement phases of
strongly coupled gauge theories [55]. Note that since electric
(i.e., gauge) charge excitations are linearly confined during
this condensation process, the monopole condensation phase
is also called the confinement phase.

Unfortunately, the usual monopole condensation sce-
nario [42,44–54], when applied to the 3D parton construction,
will simply confine all partons back into electrons, resulting
in a nonfractionalized trivial insulator. In this sense, the
parton construction with gauge confinement driven by the
usual monopole condensation does not seem to be a good
pathway to reach topological states. To save the parton
construction approach, we should look for new scenarios of
gauge confinement. More precisely, can we have a new kind
of condensation that confines partons while still leading to a
fractionalized insulator? How can we imagine the existence
of fractionalized excitations when partons are confined? If
these questions can be solved, a systematic treatment of 3D
fermionic fractionalized phases will be established. This is the
main goal of this paper, and that this is possible can be gleaned
from the success of the 2D Bais-Slingerland condensation
mechanism [56]. Indeed, we show that there are new pathways
to fractionalization in 3D, now in the confining regime of the
gauge theory, provided that confinement occurs as the result
of condensation of a class of composites made of fermionic
partons and monopoles (from different sectors of the gauge
group). We will see that this form of oblique confinement [42]
leads to unexpected phases of matter, particularly states
with fractionalized � angles and yet compatible with time-
reversal invariance. While oblique confinement as a pathway
to topological phases has been considered before in the context
of bosonic phases of matter [57], here we focus on topological
phases of interacting fermions. In addition, we also study sev-
eral applications. For example, how can we impose symmetry
in such a parton construction with gauge confinement? The
latter leads to the notion of symmetry-enriched topological
phases (SET) in the parton construction approach.

B. Summary of main results

(1) Composite particle theory of fermionic phases. In this
paper, we will consider the condensation of “composites” that
not only carry magnetic charges, but also contain fermionic
partons that are charged under different internal gauge fields
[i.e., U(1) × U(1) strongly fluctuating gauge fields in our
concrete example c = f 1f 2f 3] and under the external elec-
tromagnetic (EM) field Aμ. One caveat is that, despite the
mixture of partons and magnetic monopoles, those condensed
composites are not dyons. More concretely, they carry either
electric charge or magnetic charge in a given gauge group,
not both. This fact allows us to make reliable statements
and calculations from a local theory. All excitations can
be organized as a set of charge-loop composites, and, as a
whole, form a charge-loop lattice in which each lattice site
corresponds to a deconfined excitation. Especially, partons are
confined as usual but some composites constituted by partons
and magnetic monopoles of U(1) × U(1) gauge fields may be
deconfined and carry fractionalized EM electric charge. Many
universal physical properties can be easily determined from
the charge-loop lattice, such as the braiding statistics between
pointlike excitations and loop excitations, the self-statistics of
pointlike excitations, the EM charge of the excitation, and the
bulk axion � angle [58,59]. We will refer to this approach
to constructing 3D fermionic gapped phases as a composite
particle theory.

In this theory, charge fractionalization is achieved via a
Debye-Hückel–type charge-screening cloud formed by the
composite condensates. This is analogous to the charge-
screening phenomenon in the composite fermion theory of the
FQH effect [60–66]. In fact, we prove that the Debye-Hückel–
type screening is the unique source of charge fractionalization.
In principle, all physical quantities of the resulting phases
can be expressed as functions of a set of parameters that
characterize composite particle theory. This line of thinking is
also analogous to the composite fermion theory of FQH states
where the filling fraction is unified in a sequence of discrete
numbers, each of which corresponds to a specific Ansatz in
the composite fermion construction. From this perspective,
the composite particle theory may be regarded as an attempt
to find a 3D analog of the composite fermion theory of FQH
states, with the caveat that we are considering confined phases
while in the composite fermion theory, all gauge fields are
deconfined.

(2) Fractional topological insulators. Based on the com-
posite particle theory, we will study two symmetry-enriched
properties. The first property is the bulk axion angle �

in the presence of time-reversal symmetry [58,59]. When
� is nonvanishing, an externally inserted EM monopole
with integral magnetic charge M will induce an electric
polarization charge �

2π
M , a phenomenon known as the Witten

effect [58,59,67]. For free-fermion topological insulators, the
� angle is π mod 2π with M ∈ Z [59]. However, it was
theoretically proposed that � could be different from π if
strong interactions and correlations are taken into account
[68–72], leading to the notion of 3D fractional topological
insulators (FTI) with deconfined gauge fields. The periodicity
of � should also be properly modified so as to preserve
time-reversal symmetry.

115104-2



COMPOSITE PARTICLE THEORY OF THREE- . . . PHYSICAL REVIEW B 94, 115104 (2016)

In Ref. [68], FTIs were obtained via parton constructions
where the internal gauge fields are in the Coulomb phase
(photons are gapless). Therefore, a gapless channel, despite
of its electric neutrality, can in principle adiabatically connect
the FTIs to a fractionalized state with vanishing axion angle. In
Ref. [71], bosonic FTIs were obtained via parton constructions
where the mean-field Hamiltonian of partons explicitly breaks
SU(2) gauge group down to Z2 discrete gauge group. As
a result, the unbroken discrete gauge group leads to bulk
topological order and deconfined fractionalized excitations.
The gauge fluctuations in both Refs. [68,71] are perturbatively
weak. In this work, we explore the possibility of realizing
FTIs via the condensation of composites (introduced above)
when gauge fluctuations are sufficiently strong and gauge
confinement occurs.

In Refs. [68,71], each parton is assumed to carry a fractional
EM electric charge such that a fractionalized � angle should
be expected (by simply noting that the coefficient of F ∧ F

has unit of e2). This is not the case in our work. We show that
even if partons carry integral EM electric charge (i.e., both f 1

and f 2 carry +1 electric charge and f 3 carries −1 electric
charge, see Sec. II A for more details), a fractionalized �

and gapped bulk can also be achieved as long as a proper
composite condensation is considered and partons occupy
nontrivial topological insulator bands. This feature is unique
in the parton construction with gauge confinement.

In the FTI state constructed in this work (Secs. III B
and III C), we show that the EM electric charge of deconfined
excitations is fractionalized at 1

3 . This is consistent to the
claim by Swingle et al. [71] that an FTI necessarily has a
fractionalized bulk. Indeed, the fractionalization nature of the
FTI state in this work can be traced back to the presence of
Z2 × Z6 topological order (see Sec. III C for more details).
The latter arises from the deconfined discrete subgroup of the
confined SU(3) gauge group.

(3) Charge-loop excitation symmetry and extrinsic twist
defects. Noting that the set of all excitations forms a charge-
loop lattice, the second symmetry-enriched property is the
concept of “charge-loop excitation symmetry,” abbreviated as
Charles (see Definition 5). Charles can be viewed as a hidden
symmetry of (3+1)D topological quantum field theories.
Meanwhile, Charles has a geometric interpretation as a
point-group symmetry of the charge-loop lattice that preserves
physical properties of the excitations. The study of Charles
is motivated by the theory of anyonic symmetry [73–84] and
its relation to extrinsic twist defects of 2D Abelian topological
phases. We expect that 3D Abelian topological phases where
charge-loop composite excitations are allowed may host even
more exotic physics if extrinsic defects are considered.

Physically, extrinsic defects (which may come in the form
of vortices or disclinations, for example) are semiclassical
objects that are externally imposed into a 2D topological phase.
An extrinsic twist defect is one which may be associated with
an element of an anyonic symmetry group that acts to permute
the set of anyons. The inclusion of such defects enriches the
tensor category theory of the Abelian parent topological phase.
Indeed, this line of thinking has attracted a lot of attention
since extrinsic twist defects can bind non-Abelian objects
even though all of excitations of the parent topological phase
without defects are Abelian [79–84]. A typical example is

found in some lattice systems exhibiting ZN topological order
that contain, for example, the ZN charge and flux anyons e and
m [79,84]. In these cases, the anyonic symmetry is intertwined
with a lattice translation symmetry such that a dislocation
defect acts to exchange the e particle type with the m particle
type when they orbit around the defect. This implies that
the defect harbors a rich internal (non-Abelian) structure so
that it can convert between the anyon types. In this work, we
propose Charles as a 3D version of anyonic symmetry in 2D.
In analogy to 2D, each extrinsic defect in 3D is also associated
with a Charles group element. We also study defect species
and some defect fusion properties (see Fig. 7).

The remainder of the paper is organized as follows.
Section II is devoted to a general discussion of the parton
construction and composite condensation. In Sec. III, FTIs are
constructed from a composite condensation phase where all of
the partons occupy topological insulator bands. A concrete
example with time-reversal symmetry and fractional � =
π
9 mod 2

9π is shown (see Fig. 5, Sec. III). As a comparison,
we also show a parton construction in the Coulomb (gapless
photon) phase using a perturbative approach, which leads to
� = π mod 2π and two gapless neutral modes in the bulk.
In Sec. IV, the charge-loop excitation symmetry (Charles)
of the charge-loop excitations, and its relation to 3D extrinsic
defects, is studied. Section V is devoted to the conclusion and
future directions. Many key notations, mathematical formulas,
and terminologies are introduced in Sec. II, which provides
the preliminaries for the subsequent parts. Several technical
details can be found in the Appendixes. In Appendix A, several
notations and abbreviations are collected.

II. COMPOSITE PARTICLE THEORY IN THREE
DIMENSIONS: A GENERAL DISCUSSION

A. Compact U(1) × U(1) × U(1) gauge symmetry of composites

In the simplest fermionic parton construction, the electron
operator is decomposed into three fermionic partons: c =
f 1f 2f 3 (Fig. 1), where both f 1 and f 2 carry unit EM charge
e while f 3 carries −e. As a result, the electron carries e. In
a 3D mean-field theory where the partons are deconfined, we
consider that all fermionic partons have a gapped spectrum

FIG. 1. Parton construction of electron operators in this work.
The wavy lines denote interactions mediated by gauge bosons. Aμ is
the external nondynamical EM (electromagnetic) field, serving as a
probe of the electromagnetic response of the system. aμ and bμ are
two dynamical, compact U(1) gauge fields, belonging to the U(1)a
and U(1)b gauge groups, respectively. The partons f 1 and f 2 carry
1 and −1 gauge charges of the U(1)a gauge group, respectively. The
partons f 3 and f 2 carry 1 and −1 gauge charges of the U(1)b gauge
group, respectively. The EM electric charges carried by the partons
f 1, f 2, f 3 are e, e, −e, respectively.
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and form either a trivial band insulator (θ = 0) or a strong
topological insulator (θ = π ) simultaneously, where θ denotes
the axion angle of the partons [58,59]. To avoid confusion,
we will use the capital letter � to denote the axion angle of
the electron, which will be calculated in detail in Sec. III.
The internal gauge group is SU(3) whose maximal torus
(maximal commuting subgroup) U(1)a × U(1)b is sufficient
to capture the confinement phase properties due to the ’t Hooft
gauge projection [42]. Here, both U(1) factors are compact
gauge groups that support magnetic monopoles [42]. U(1)a
corresponds to the gauge field aμ that glues f 1 and f 2

together, while U(1)b corresponds to the gauge field bμ that
glues f 2 and f 3 together (Fig. 1). Adding the EM gauge
group with gauge field Aμ, the total gauge group is given
by U(1)a × U(1)b × U(1)EM. It should be noted that Aμ is a
nondynamical (i.e., background) gauge field, which is useful
for diagnosing the EM linear response properties of the
resulting phases. For the same reason, we consider monopole
configurations of Aμ (with magnetic charge M) as externally
imposed background configurations.

Alternatively, one may also define the following three gauge
fields:

Af 1
μ = aμ +Aμ, Af 2

μ = −aμ − bμ + Aμ, Af 3
μ = bμ − Aμ,

where Af i is the gauge field that only couples to f i (i =
1,2,3). The relation between the two sets of gauge fields can
be expressed in matrix form⎛

⎜⎝
Aμ

aμ

bμ

⎞
⎟⎠ =

⎛
⎜⎝

1 1 1

0 −1 −1

1 1 2

⎞
⎟⎠

⎛
⎜⎝

A
f 1
μ

A
f 2
μ

A
f 3
μ

⎞
⎟⎠, (1)

where the matrix is integer valued and invertible, i.e., belongs
to the GL(3,Z) group. We now turn to the description of
generic composite particles, which are labeled by a set of
electric charges and magnetic charges. We use Na,b to denote
the electric charge of the U(1)a,b gauge group and Na,b

m to
denote the magnetic charge of that same gauge group. We use
NA and M to denote the bare electric and magnetic charges in
the EM gauge group, and Nf i and N

f i
m to denote the electric

and magnetic charges of the U(1)f i gauge groups.
Due to Eq. (1), the magnetic charges transform as

Nf 1
m = Na

m + M,

Nf 2
m = −Na

m − Nb
m + M,

Nf 3
m = Nb

m − M,

and electric charges transform as

NA = Nf 1 + Nf 2 − Nf 3,

Na = Nf 1 − Nf 2,

Nb = Nf 3 − Nf 2.

For convenience, we can easily derive the following useful
formulas:

M = Nf 1
m + Nf 2

m + Nf 3
m ,

Na
m = −Nf 2

m − Nf 3
m ,

Nb
m = Nf 1

m + Nf 2
m + 2Nf 3

m .

To summarize, a composite particle can be uniquely labeled
by six numbers (three electric charges and three magnetic
charges). The above relations can be recast in matrix form⎛

⎜⎝
NA

Na

Nb

⎞
⎟⎠ =

⎛
⎜⎝

1 1 −1

1 −1 0

0 −1 1

⎞
⎟⎠

⎛
⎜⎝

Nf 1

Nf 2

Nf 3

⎞
⎟⎠, (2)

⎛
⎜⎝

M

Na
m

Nb
m

⎞
⎟⎠ =

⎛
⎜⎝

1 1 1

0 −1 −1

1 1 2

⎞
⎟⎠

⎛
⎜⎝

N
f 1
m

N
f 2
m

N
f 3
m

⎞
⎟⎠, (3)

where the two matrices belong to the GL(3,Z) group. All
magnetic charges take values in an integral domain, i.e., M ,
Na

m, Nb
m, N

f i
m ∈ Z, where i = 1,2,3. However, we will soon

see that this integral domain will be potentially restricted to a
smaller domain if we only consider the deconfined excitations
in the presence of a composite condensate. We will introduce
the notion of excitations in Sec. II D.

By the bare electric charge, we mean that NA is a naive
count of the EM electric charge. In Sec. II D, it will be shown
that composite condensates will partially screen the charge,
leading to a net EM electric charge Q to be defined in Eq. (28).
The electric charges Nf i (i = 1,2,3) are related to the number
of attached fermions via the Witten effect formula

Nf i = nf i + θ

2π
Nf i

m , with nf i ∈ Z. (4)

The integer nf i counts the total number of fermions f i in
the composite, and θ is determined by the Z2 index of a
3D time-reversal-invariant topological insulator. If θ = 0, the
partons occupy a trivial band structure; if θ = π , the partons
occupy a nontrivial topological insulator band structure. The
defining domains of Nf 1,f 2,f 3,Na,Nb,NA can be either integer
or potentially half-integer, depending on θ .

B. A local field-theoretic description of condensed composites

Since there are two internal gauge fields with strong gauge
fluctuations, we can consider two linearly independent Bose
condensates denoted by ϕ1 and ϕ2, as shown in Fig. 2.
Both condensates should contain magnetic monopoles of the
internal gauge fields but be neutral under both the U(1)a
and U(1)b gauge groups, i.e., Na = 0, Nb = 0. Since the
EM gauge field is treated as a background gauge field for
the purpose of the EM response, the condensates should not
carry M . Otherwise, the EM gauge field must be strongly
fluctuating, which is not our working assumption. In summary,
the electric and magnetic charges of ϕ1 and ϕ2 can be
completely determined by six parameters (q,u,v,q ′,u′,v′) in
Table I. Since the condensates are not dyonic in each gauge
group the order parameters 〈ϕ1〉 and 〈ϕ2〉 are local to each other
and can be described by an effective local quantum field theory.
More concretely, we may start with a phenomenological
Ginzburg-Landau–type action in 4D Euclidean space-time:

SGL =
∫

d4x

2∑
I

(|D̂μϕI |2 + μ2|ϕI |2+λ|ϕI |4) +SM, (5)
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b

a
Condensation 

ϕ1 ϕ2 ϕ1 ϕ2

ϕ1

ϕ2
ϕ1

ϕ2

,       condensates ϕ1 ϕ2

FIG. 2. Schematic representation of composite particle conden-
sation. Before condensation, the system is an electromagnetic plasma
of composites in the U(1)EM × U(1)a × U(1)b gauge group. There
are many composite particles (denoted by solid circles) including
ϕ1 and ϕ2. There are also two gapless photons (denoted by a and
b in the figure), indicating that the phase before condensation is a
gapless Coulomb phase for both internal dynamical gauge fields.
After condensing ϕ1 and ϕ2, the system enters a gapped phase in the
absence of photons. All composites (denoted by black solid circles
on the left) that have nonzero mutual statistics with both ϕ1 and ϕ2 are
confined. Otherwise, those composites that have trivial (zero) mutual
statistics with both condensates survive as excitations (denoted by
blue solid circles) of the gapped phase. The red loops on the right
represent loop excitations due to the two condensates.

where the Ginzburg-Landau parameter λ is positive. D̂μ is the
covariant derivative defined by

D̂μ ≡ ∂μ + iNAAμ + iNa
mãμ + iNb

mb̃μ. (6)

Here, NA,Na
m,Nb

m are two sets of electric/magnetic charges of
ϕ1 and ϕ2, which can be found in Table I. The one-form gauge
fields ãμ and b̃μ serve as the magnetic dual of the gauge fields
aμ and bμ, respectively. For example, ãμ is introduced such that
its gauge charge is carried by magnetic monopoles of the U(1)a
gauge group. Meanwhile, the magnetic flux of ãμ gives the
electric field Ea , namely, Ea = ∇ × ã. b̃μ can be understood
analogously to ãμ. SM includes the Maxwell terms: SM =∫

d4x( 1
4 f̃ a

μνf̃
a
μν + 1

4 f̃ b
μνf̃

b
μν) . In the condensed phase where

the mass parameter μ2 < 0, nonzero expectation values 〈ϕI 〉 �=
0 develop. Here, f̃ a,b

μν are the field strength tensors of ãμ and b̃μ.
One advantage to using dual gauge fields is that the problem
of strong gauge fluctuations (ga 
 1, gb 
 1) of the aμ and
bμ gauge fields is transformed into the problem of weak gauge
fluctuations of the dual gauge fields ãμ and b̃μ by noting that
the coupling constants between magnetic charges and dual
gauge fields is the inverse of the original coupling constants,
i.e., 1/ga,b.

It is noteworthy that the six numbers (u,v,u′,v′,q,q ′)
describing the condensates are not completely free since the
following three conditions should be satisfied:

(1) ϕ1 and ϕ2 are bosonic;
(2) ϕ1 and ϕ2 are allowed to condense simultaneously;
(3) ϕ1 and ϕ2 are linearly independent,

such that the composite condensates ϕ1 and ϕ2 are physically
viable. In more detail, according to the domains of definition
of every charge (e.g., all magnetic charges are integer valued,
all nf i are integer valued), we can deduce the domains of the
six numbers (see Table I):

u ,v ,u′ ,v′ ,q − θ

2π
u , q + θ

2π
(u + v) , q − θ

2π
v ∈ Z,

(7)

q ′ − θ

2π
u′ , q ′ + θ

2π
(u′ + v′) , q ′ − θ

2π
v′ ∈ Z . (8)

Since only bosonic particles can undergo Bose condensation,
one should carefully check the self-statistics of ϕ1 and ϕ2.
Furthermore, the mutual statistics between ϕ1 and ϕ2 must be
zero so that they are allowed to condense simultaneously.

Let us first consider the latter. The trivial mutual statistics
between two composites (with and without prime) is given by
the following equation:

3∑
i

(
Nf i

m nf i ′ − Nf i
m

′
nf i

) = 0 (9)

TABLE I. The electric charges and magnetic charges of composite condensates ϕ1 and ϕ2 are determined by parameters (u,v,u′,v′,q,q ′,θ ).
The charges are shown for both the U(1)a × U(1)b × U(1)EM gauge group labels and the U(1)f 1 × U(1)f 2 × U(1)f 3 gauge group labels, both
of which are used interchangeably in the main text. The two sets of parameters are related via Eqs. (2) and (3). The value of θ = 0,π is
determined by the band-structure topology of the partons. Given θ , the other six parameters are constrained by several conditions listed in
Eqs. (7), (8), (12), and (13). A concrete example of composite condensates that generates a fractional topological insulators (FTI) with � = π

9
discussed in Sec. III B is also shown. For this case, we see that ϕ1 is a bosonic bound state of two aμ magnetic monopoles, two bμ magnetic
monopoles, one f 1 parton, four f 2 partons, and one f 3 parton, while ϕ2 is a bosonic bound state of four aμ magnetic monopoles, ten bμ

magnetic monopoles, nine f 2 partons, and three holelike f 3 partons. We may call the partons themselves as the simplest composites although
literally they are not composites. Also, the electron is just a collection of one f 1, one f 2, and one f 3.

U(1)a × U(1)b × U(1)EM U(1)f 1 × U(1)f 2 × U(1)f 3

Composite particles Na Nb NA Na
m Nb

m M Nf 1 Nf 2 Nf 3 Nf 1
m Nf 2

m Nf 3
m nf 1 nf 2 nf 3

ϕ1 0 0 q u v 0 q q q u −u − v v q − θ

2π
u q + θ

2π
(u + v) q − θ

2π
v

ϕ2 0 0 q ′ u′ v′ 0 q ′ q ′ q ′ u′ −u′ − v′ v′ q ′ − θ

2π
u′ q ′ + θ

2π
(u′ + v′) q ′ − θ

2π
v′

ϕ1 of FTI in Sec. III B 0 0 2 2 2 0 2 2 2 2 −4 2 1 4 1
ϕ2 of FTI in Sec. III B 0 0 2 4 10 0 2 2 2 4 −14 10 0 9 −3
Parton f 1 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0
Parton f 2 −1 −1 1 0 0 0 0 1 0 0 0 0 0 1 0
Parton f 3 0 1 −1 0 0 0 0 0 1 0 0 0 0 0 1
Electron 0 0 1 0 0 0 1 1 1 0 0 0 1 1 1
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or, equivalently,
∑3

i (Nf i
m Nf i ′ − N

f i
m

′
Nf i) = 0 . If this equa-

tion is satisfied, then the two composites can condense
simultaneously. Furthermore, condensation of one of the
composites will lead to deconfined particles (an excitation
spectrum) having electric and magnetic charges are determined
by this equation. If the equation is not satisfied, the conden-
sation of one of the composites will confine the other [85,86].
Inserting the electric and magnetic charges of ϕ1,ϕ2 into the
equation, it turns out that ϕ1 and ϕ2 always satisfy the condition
of trivial mutual statistics.

Next, we need to further check the self-statistics of ϕ1 and
ϕ2. For a generic composite, the self-statistics phase eiπ	 is
determined by the following integer:

	 =
3∑
i

(
Nf i

m nf i + nf i
)
, (10)

where the second term nf i counts the number of fermionic
partons inside the composite. The first term N

f i
m nf i arises

from the angular momentum of the relative motion between the
electric charge and magnetic charge. Note that the polarization
charge “ θ

2π
N

f i
m ” due to the Witten effect in Eq. (4) does

not enter the statistics. A field-theoretic understanding of this
phenomenon can be found in Ref. [87]. For later convenience,
we may express Eq. (10) in terms of the U(1)EM × U(1)a ×
U(1)b gauge groups:

	 = Na
m(nf 1 − nf 2) + Nb

m(nf 3 − nf 2)

+ (M + 1)(nf 1 + nf 2 − nf 3), (11)

where we have added even integers during the derivation as
only the value of 	 mod 2 is meaningful. If 	 is even, the
composite is bosonic; otherwise, it is fermionic. After inserting
the values of the electric and magnetic charges of ϕ1 and
ϕ2 into 	, we may obtain the 	 formulas of both ϕ1 and
ϕ2 [denoted as 	(ϕ1),	(ϕ2)] as functions of u,v,u′,v′,q,q ′
(see Appendix B 1). The requirement that both ϕ1 and ϕ2 are
bosonic leads to the following constraints on u,v,u′,v′,q,q ′:

	(ϕ1) ∈ Zeven, 	(ϕ2) ∈ Zeven. (12)

So far, we have deduced several constraints on the six numbers:
Eqs. (7), (8), and (12), but there is one more constraint,
i.e., Eq. (13), which enforces that ϕ1 and ϕ2 are linearly
independent. It is possible that one of the composites consists
of several copies of the other composite, in which case there
is actually only one condensate. To avoid this situation, the
following condition should be strictly imposed:

uv′ − u′v �= 0. (13)

A physical understanding of this condition will be presented
in Sec. II C. For convenience, we introduce the following
notation:

K =
(

u v

u′ v′

)
, Nm =

(
Na

m

Nb
m

)
, q =

(
q

q ′

)
, (14)


e =
(


a
e


b
e

)
, Ne =

(
Na

Nb

)
. (15)

Then, the matrix K is invertible, namely, its determinant
should be nonzero, as given by Eq. (13). In summary, the

conditions (7), (8), (12), and (13) should be imposed on the six
integers u,v,q; u′,v′,q ′ such that the two condensates satisfy
conditions 1, 2, and 3.

C. Generalized flux quantization and loop excitations

In order to gain a better physical understanding of the
condition (13), we need to carefully study the “generalized
flux quantization” induced by the two condensates ϕ1 and ϕ2

whose electric and magnetic charges are listed in Table I. In a
usual type-II superconductor, we know that the EM magnetic
flux denoted by 
A

M is screened and quantized according
to 2
A

M/2π = 
A
M/π ∈ Z since the Cooper pair condensate

carries 2e EM electric charge. In our case, the two condensates
ϕ1 and ϕ2 carry not only EM electric charges but also magnetic
charges of the a and b gauge groups as shown in Table I. As
a result, we have the following generalized flux quantization
conditions:

q
A
M + u
a

e + v
b
e = 2π�, (16)

q ′
A
M + u′
a

e + v′
b
e = 2π�′, (17)

where 
A
M is the EM magnetic flux piercing a spatial loop

S1. 
a
e and 
b

e are the a- and b-electric fluxes piercing
S1, respectively. Here, instead of magnetic fluxes, electric
fluxes of the U(1)a × U(1)b gauge group are involved since
the condensates carry magnetic charges rather than electric
charges of the U(1)a × U(1)b gauge group. �,�′ ∈ Z label the
winding numbers of the mappingS1 → U(1) of the condensate
order parameters ϕ1,ϕ2.

In contrast with fluxes of the internal gauge groups,
arbitrary values of 
A

M are allowed to be inserted. In other
words, Aμ itself is not Higgsed, and the EM electric charge of
the electrons is a well-defined quantum number. This implies
that the two condensates must provide a new charge screening
mechanism such that the net EM electric charge of each
condensate is zero, although both condensates carry a nonzero
bare EM electric charge (NA = q,q ′). This screening effect
can lead to fractionalization of the charge of excitations, even
in the absence of an external EM magnetic charge. We will
postpone a discussion of this issue until Sec. II D.

Since Aμ is an external nondynamical field, we may
temporarily turn it off in Eqs. (16) and (17) to find

u
a
e + v
b

e = 2π�, u′
a
e + v′
b

e = 2π�′. (18)

A generic solution of Eq. (18) is given by


a
e = 2π

�v′ − �′v
DetK

, 
b
e = 2π

�′u − �u′

DetK
. (19)

Here, u,v,u′,v′ ∈ Z satisfy the condition (13). By noting
that �v′ − �′v is divisible by the greatest common divisor
GCD(v,v′) and �′u − �u′ is divisible by the greatest com-
mon divisor GCD(u,u′), one can use Bézout’s lemma (see
Appendix B 2) to obtain the minimal quantized electric fluxes:(

a

e

)
min =2π

∣∣∣∣GCD(v,v′)
DetK

∣∣∣∣, (

b

e

)
min =2π

∣∣∣∣GCD(u,u′)
DetK

∣∣∣∣. (20)

Since |uv′ − u′v| is divisible by both GCD(v,v′) and
GCD(u,u′), we have the following two useful inequalities:

|uv′ − u′v|� |GCD(u,u′)|, |uv′ − u′v|� |GCD(v,v′)|. (21)
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Based on Bézout’s lemma, we can easily prove the
following theorem. The proof is shown in Appendix B 2.

Theorem 1. (
a
e )min = 2π and (
b

e )min = 2π if and only if
|uv′ − u′v| = 1.

The above theorem leads to the following criterion for
loop/flux excitations:

Criterion 1 (Criterion for loop excitations). If |DetK| =
1, the bulk has no deconfined discrete gauge fluxes (therefore,
no detectable loop excitations). If |DetK| > 1, the bulk has
deconfined discrete gauge fluxes (therefore, detectable loop
excitations with minimal flux strength smaller than 2π ).

The solutions (
a
e ,


b
e ) in Eq. (19) can be recast in the

following form:


e = 2πK−1L, (22)

where the integer vector L = (�,�′)T . Thus, we may define a
2D loop lattice generated by a dimensionless integer vector L:

Definition 1 (Loop lattice). A loop lattice is a 2D square
lattice where each site corresponds to a loop excitation labeled
by L = (�,�′)T . The corresponding electric flux strength 
e of
each site is determined by Eq. (22).

D. Point-particle excitations and charge fractionalization

In addition to loop excitations, we also have point-particle
excitations:

Definition 2 (Excitation and charge lattice). Excitations
are defined as deconfined particles that have trivial mutual
statistics with both condensates. All excitations form a
4D charge lattice which is a sublattice of the original 6D
lattice. Unless otherwise specified, excitations always refer to
point-particle excitations.

By definition, all excitations have trivial mutual statistics
with respect to the condensates. In other words, Eq. (9) holds
between any excitation and ϕ1, and also holds between any
excitation and ϕ2. By explicitly using the parameters of ϕ1 and
ϕ2 in Table I, the electric and magnetic charges of excitations
are constrained by the following two equations:

qM = uNa + vNb, q ′M = u′Na + v′Nb. (23)

Therefore, a generic particle that has six independent charges
(NA,Na,Nb,M,Na

m,Nb
m) is now completely determined by

four of them (NA,M,Na
m,Nb

m) if the particle is a deconfined
excitation in the condensed phase. Keeping Eq. (13) in mind,
Na and Nb are fully determined by M: Na = qv′−q ′v

DetK M, Nb =
q ′u−qu′

DetK M which can be written as

Ne = MK−1q (24)

by using the notation in Eqs. (14) and (15).
As mentioned in Sec. II, the EM electric charge of a particle

NA is called the “bare” charge, which suggests that it will be
partially screened due to the condensates. In order to clearly
see the screening, we turn on the external EM field Aμ to
probe the EM response and consider a spatial loop C. The
total Aharonov-Bohm phase accumulated by an adiabatically

NA Q→ →

ϕ1

ϕ2

ϕ1 ϕ2

ϕ1

ϕ2

Q

(a) 

(b) 

ϕ1

ϕ2

ΦA
M ΦA

M
Φa

e Φb
e

FIG. 3. Schematic representation of the charge-screening mecha-
nism. Consider a composite particle carrying NA units of the EM (Aμ)
electric charge [i.e., U(1) symmetry charge], Na

m units of magnetic
charge of the aμ field, and Nb

m units of magnetic charge of the bμ gauge
field. Due to the condensates, NA is partially screened such that the net
EM electric charge Q is given by Eq. (28), which is different from NA.
In (a) the physics of Aharonov-Bohm effect in Eq. (25) is illustrated.
An excitation (denoted by the blue ball) adiabatically moves along a
closed trajectory and feels the EM magnetic flux 
A

M , the electric flux

a

e of the aμ gauge field, and the electric flux of the bμ gauge field. In
(b), condensed particles ϕ1 and ϕ2 form a Debye-Hückel–type charge
cloud around an excitation, providing the screening charge QDebye

in Eq. (29).

moving test particle is given by (see Fig. 3)

Aharonov-Bohm phase

= exp
{
iNA
A

M + iM
A
E + iNa
a

m + iNb
b
m

+ iNa
m
a

e + iNb
m
b

e

}
, (25)

where 
A
E is EM electric flux piercing C, 
a

m and 
b
m are the

a- and b-magnetic fluxes, respectively. However, Eqs. (16)
and (17) indicate that 
a

e and 
b
e depend linearly on the

external EM magnetic flux 
A
M . Solving Eqs. (16) and (17)

leads to


a
e = 2π

kv′ − k′v
DetK

− 
A
M

qv′ − q ′v
DetK

, (26)


b
e = 2π

k′u − ku′

DetK
− 
A

M

q ′u − qu′

DetK
. (27)

The terms that depend linearly on 
A
M correct the saddle-point

solutions in Eq. (19).
Taking Eqs. (26) and (27) into account, the contribution to

the Aharonov-Bohm phase due to the external EM gauge field
can be isolated. Equation (25) can be recast into eiQ
A

M+···,
where the ellipsis denotes the remaining terms that do not
contain the factor 
A

M , and, Q is the net EM electric charge:

Q = NA − QDebye , (28)

where

QDebye = Na
m

qv′ − q ′v
DetK

+Nb
m

q ′u − qu′

DetK
= NT

mK−1q (29)

denotes the charge carried by the Debye-Hückel–type screen-
ing cloud (see Fig. 3). The matrix K , vector Nm, and the
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vector q are defined in Eq. (15). Concerning the screening
charge, there are two interesting limits. First, the total EM
electric charge of each condensate is zero, i.e., Q = 0 for both
condensates ϕ1 and ϕ2 (see Table I). For example, we have
QDebye = q for ϕ1, which completely screens its bare EM
electric charge NA = q. Second, let us consider an intrinsic
excitation whose bare EM electric charge vanishes, NA = 0.
Its net EM electric charge Q is nonzero and completely
given by that of the Debye screening cloud: Q = −QDebye =
−NT

mK−1q.
In fact, charge fractionalization in Abelian FQH states can

also be understood via the above Aharonov-Bohm thought
experiment. As an example, let us derive the fractionalization
of charge in the ν = 1

3 Laughlin state. The effective field theory
is described by the following Lagrangian:

L = 3

4π
aμ∂νaλε

μνλ + 1

2π
Aμ∂νaλε

μνλ . (30)

Here, the gauge field aμ is a dual description of the electron cur-
rent Jμ: Jμ = 1

2π
∂νaλε

μνλ. The second term in the Lagrangian
L means that each electron carries one unit of electric charge.
Excitations in FQH states are labeled by gauge charges of the
aμ gauge group since they minimally couple to aμ. In this
sense, let us consider the Aharonov-Bohm experiment for an
excitation that carries one unit of gauge charge of aμ. The
Aharonov-Bohm phase is given by ei
a where 
a is the aμ

magnetic flux felt by the excitation. In the hydrodynamical
field theory L, 1

2π

a corresponds to the electron density.

By studying the equation of motion of aμ in L, we obtain

A = 3
a . Physically, this identity means that each electron
effectively corresponds to three units of magnetic flux of the
background EM field, which is nothing but the definition
of filling fraction ν = 1

3 . Thus, the Aharonov-Bohm phase

accumulated by the excitation is identical to ei
a = ei 1
3 
A .

The coefficient 1
3 indicates that the excitation in the presence

of Aμ behaves as an electrically charged particle with 1
3 charge.

Let us come back to our 3D system. We introduce the
following two equivalent criteria for charge fractionalization:

Criterion 2 (Criterion for charge fractionalization).
Charge fractionalization exists if excitations with zero M and
fractionalized Q exist.

Criterion 3 (Criterion for charge fractionalization).
Equivalently, charge fractionalization exists if the EM mag-
netic charge M of excitations is quantized in units of an integer
w > 1, i.e., M = 0,±w,±2w, . . . .

In Appendix B 3, the equivalence of the above two criteria
is explained by using the well-known Dirac-Zwanziger-
Schwinger quantization condition. The requirement of M =
0 in Criterion 2 can be understood as follows. Typically,
in the presence of M , excitations can potentially carry a
fractionalized Q due to the Witten effect. However, this
does not mean our 3D quantum system is fractionalized.
The topological insulator (TI) is a typical example. If a
single EM monopole (M = 1) is inserted into the bulk, there
is a half-charge cloud surrounding the monopole [59,67].
However, since the TI can be realized in a noninteracting band
insulator, we do not consider it to be fractionalized. In order to
highlight the set of excitations with M = 0, we introduce the
notion of intrinsic excitations and intrinsic charge lattice.

Definition 3 (Intrinsic excitations and intrinsic charge
lattice). Intrinsic excitations are excitations with zero EM
magnetic charge, i.e., M = 0; the intrinsic charge lattice is
a special 3D charge lattice with zero EM magnetic charge, i.e.,
M = 0.

One can verify that QDebye in Eq. (28) is the unique source
of charge fractionalization. In other words, NA in Eq. (28) is
always integer valued when M = 0 (see Appendix B 4 for
details); charge fractionalization exists if and only if QDebye is
fractional when M = 0.

Finally, we show that the Debye charge cloud QDebye in
Eq. (29) can also be understood in a more formal way, i.e.,
from a topological BF field theory. Without loss of generality,
we consider the London limit (i.e., deep in the confined phase)
such that the amplitude fluctuations of |ϕI | are negligible. In
this limit, we may dualize SGL in Eq. (5) into a two-component
topological BF field theory [88]:

S = i

∫
1

2π
BT ∧ K dA + i

∫
1

2π
qT B ∧ dA + Sex, (31)

where we define the two-component vectors B = (B,B′)T and
A = (ã,b̃)T , and use a differential form notation. Here, B
and B′ are two Kalb-Ramond 2-form gauge fields introduced
as a result of the particle-vortex line duality transformation
in (3+1)D [89]. Physically, they are related to the supercur-
rents of the condensates ϕ1 and ϕ2, respectively, via J ϕ1 =

1
2π


 dB , J ϕ2 = 1
2π


 dB′ , where 
 is the usual Hodge-dual
operation. Since the energy gap in the bulk of the topological
BF field theory is effectively infinite, the term Sex is added
by hand in order to take into account the pointlike excitations
labeled by Nm = (Na

m,Nb
m)T , and the loop excitations labeled

by the integer vector L = (�,�′)T (see Definition 1):

Sex = i

∫
NT

mA ∧ 
j + i

∫
LT B ∧ 
� , (32)

where the vector j denotes the composite excitation current,
and the tensor � denotes the loop excitation current. Inte-
grating out the dynamical fields A and B yields an effective
theory for j and � in the presence of the external EM field
Aμ:

Seff = iNT
mK−1q

∫
j∧ 
A +i2πNT

mK−1L
∫

� ∧ d−1 j. (33)

It is remarkable that the first term in the effective action (33) is
nothing but the Debye screening charge cloud QDebye defined
in Eq. (29). Thus, QDebye is a topological property of an exci-
tation. The second term represents the long-range Aharonov-
Bohm statistical interaction between fluxes and particles. The
operator d−1 is a formal notation defined as the operator inverse
of d, whose exact form can be understood in momentum space
by Fourier transformation. The coefficient NT

mK−1L gives rise
to the charge-loop braiding statistics ϑcl between composite
particles with quantum number Nm and loop excitations with
electric fluxes 
e = 2π (K)−1L due to Eq. (22):

ϑcl = 2πNT
mK−1L = NT

m
e . (34)

Now that we have carefully developed a theory that
describes topological phases in the presence of U(1) composite
condensates, we will use the results to construct fractionalized
3D topological insulators with time-reversal symmetry.
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III. FRACTIONAL TOPOLOGICAL INSULATORS

In this section, we will study 3D topological phases of
matter with nonvanishing axion angle �. The presence of
nontrivial values of � leads to several observable phenomena
including a surface quantum Hall effect and the celebrated
Witten effect: a magnetic monopole will bind a electric
charge. For free-fermion time-reversal-invariant topological
insulators, the angle is π mod 2π [59]. In fractionalized states
where strong interactions and correlations are taken into
account, in principle, the axion angle can be fractional (i.e.,
�/π is not integral) while time-reversal invariance is still
maintained [35,68–71]. Such topological phases are called
“fractional topological insulators” (FTI). In Ref. [68], FTIs
were obtained via parton constructions where the partons
themselves carry fractional EM electric charges, and the
internal gauge fields are in the Coulomb phase where gauge
fluctuations are weak and the photon(s) are gapless. In
a different nonfractionalized state where U(1) × U(1) � Z2

symmetry is considered [90], the � term may signal a mutual
Witten effect where a monopole of one U(1) gauge group
induces an electric charge of another U(1) gauge group.

In the following, we will explore FTIs via the parton
construction introduced in Sec. II. However, in Sec. III A, we
shall first study charge lattices for which all partons occupy
topological insulator bands and the internal gauge fields are
in the Coulomb phase. The resulting state is a nonfractional
topological insulator (i.e., � = π ) and there are two massless
gauge bosons in the bulk. In order to obtain a gapped bulk and
a fractional �, in Sec. III B we again assume that all partons
occupy topological insulator bands and then we condense
certain composites (see ϕ1 and ϕ2 of FTI in Table I). We focus
on a concrete example and show that the resulting state is a
FTI with time-reversal symmetry and � = π

9 [cf. Eq. (57)].
As a side result, in Appendix C 1, we show that the Ansätze in
which all partons are in a topologically trivial band structure
always gives a topologically trivial state with � = 0 regardless
of the condensate structure.

A. Topological insulators in the Coulomb phase

In the following, we consider partons occupying nontrivial
3D topological insulator bands (i.e., θ = π ). Previously, it
was shown that partons with θ = π can potentially support a
fractional � angle if the Coulomb phase is considered, and
a special parton representation of an electron is used [68]. In
the Coulomb phase, the dynamical gauge fields aμ and bμ

are weakly fluctuating and noncompact; hence, the standard
perturbative analysis is applicable. Integrating out the partons
to quadratic order in the gauge fields [59], we obtain the
following effective action Seff :

Seff =
∫

d4x
θ

32π2

(
gaf

a
μν + eGμν

)(
gaf

a
λρ + eGλρ

)
εμνλρ

+
∫

d4x
θ

32π2

(−gaf
a
μν − gbf

b
μν + eGμν

)
× (−gaf

a
λρ − gbf

b
λρ + eGλρ

)
εμνλρ

+
∫

d4x
θ

32π2

(
gbf

b
μν − eGμν

)
× (

gbf
b
λρ − eGλρ

)
εμνλρ + SMaxwell , (35)

where θ = π . The quantities f a
μν = ∂μaν − ∂νaμ and f b

μν =
∂μbν − ∂νbμ are field strength tensors of aμ and bμ, respec-
tively. Both aμ and bμ are smooth variables and do not support
monopole configurations. Gμν is defined as Gμν=Fμν− 2π

e
Sμν ,

where Fμν = ∂μAν − ∂νAμ, Aμ is smooth external EM field,
and the tensor Sμν forms the EM monopole current via
Mμ = 1

2εμνλρ∂νSλρ . The constant e2 denotes the fine-structure
constant of the EM field Aμ. The coupling constants ga,b

of the aμ and bμ gauge fields are written explicitly and
0 < ga,gb � 1 in the Coulomb phase. SMaxwell includes all
nontopological terms (Maxwell-type) of aμ, bμ, and Aμ. Since
both aμ and bμ are smooth variables, all terms of the form
f a ∧ f a , f a ∧ f b, and f b ∧ f b are total-derivative terms
that can be neglected in the bulk effective field theory. The
term − 4θ e gb

32π2 f b
μνGλρε

μνλρ = θgb

π
Mμbμ implies that Mμ carries

integer gauge charge of the U(1)b gauge group by noting that
θ
π

= 1. As such, after integrating aμ,bμ Seff reduces to

Seff = �e2

32π2

∫
d4x GμνGλρε

μνλρ + · · · , (36)

where � = 3π . The terms represented by the ellipsis include
the long-range Coulomb interactions between the monopole
currents Mμ mediated by the bμ photons, and other nontopo-
logical terms. Since the periodicity of � is still 2π in the
absence of charge fractionalization, � reduces to π by a 2π

periodic shift. In summary, the resulting state shows a � angle
that is the same as a free-fermion topological insulator. The
bulk admits two gapless, electrically neutral excitations, i.e.,
photons of the U(1)a and U(1)b gauge fields.

B. Fractional topological insulators in the composite
condensation phase

The charge lattice in Sec. III A was obtained from the
assumptions that (i) partons occupy θ = π topological in-
sulator bands, and (ii) the internal gauge fields are in the
Coulomb phase. However, the resulting phase supports a
nonfractional � = π angle and the bulk spectrum is gapless.
In the following, we consider composite condensation phases
as discussed in Sec. II instead of the Coulomb phase. When the
partons are in topological insulator bands, the resulting phase
can support fractionalized � angles and a fully gapped bulk.

Let us start with the scenario that all partons occupy
topological insulator bands (i.e., θ = π ) and then consider
composite condensations. One can prove that parameters
u,v,u′,v′,q,q ′ must be even,

u,v,u′,v′,q,q ′ ∈ Zeven , (37)

in order to satisfy the set of constraints given by Eqs. (8)
and (12). We obtain the following relations via Eqs. (2)–(4)
(θ = π ):

nf 1 − nf 2 = Na − Na
m − 1

2Nb
m, (38)

nf 3 − nf 2 = Nb − Nb
m − 1

2Na
m + M, (39)

nf 1 + nf 2 − nf 3 = NA + Nb
m − 3

2M. (40)

In order to see whether or not there is charge fractionalization
(Definition 2), we may check the value of Q defined in Eq. (28)
when M = 0. Then, Eq. (40) indicates that NA is always
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integer valued when M = 0 by noting that nf i and Nb
m are

integer valued.
Thus, we should further check whether or not QDebye

defined in Eq. (29) is fractional when M = 0. In princi-
ple, one may deduce � as a function of the parameters
(u,v,u′,v′,q,q ′,θ ). However, such a generic discussion is
technically intricate and not illuminating. Instead, we will
proceed further with a concrete example as a proof of principle
(see Table I): u = 2, v = 2, u′ = 4, v′ = 10, q = 2, q ′ = 2 .
In terms of the matrix notation defined in Eq. (14), we have

K =
(

2 2
4 10

)
, q =

(
2
2

)
. (41)

From Table I, we see that ϕ1 is a bosonic bound state of two
aμ magnetic monopoles, two bμ magnetic monopoles, one f 1

parton, four f 2 partons, and one f 3 parton. ϕ2 is a bosonic
bound state of four aμ magnetic monopoles, ten bμ magnetic
monopoles, nine f 2 partons, and three holelike f 3 partons.

By using Eq. (24), it is straightforward to work out the
relation between Na,b and M:

Na = 4
3M, Nb = − 1

3M, (42)

which must be satisfied for all excitations. Plugging Eq. (42)
into Eqs. (38) and (39), we end up with

nf 1 − nf 2 = 4
3M − Na

m − 1
2Nb

m, (43)

nf 3 − nf 2 = 2
3M − Nb

m − 1
2Na

m. (44)

It is obvious that the single parton f i whose charges are shown
in Table I is confined since Eqs. (43) and (44) are not satisfied
simultaneously.

By noting that nf i,Na
m,Nb

m,M are integer valued, Eqs. (43)
and (44) require that

Na
m,Nb

m ∈ Zeven; M = 0,±3,±6,±9, . . . . (45)

Therefore, the quantization of M is modified compared to the
usual quantization M = 0,±1,±2, . . . found in the vacuum
and a nonfractionalized TI. A direct consequence is that an
M = 1 particle is not allowed to pass through the FTI, which
is illustrated in Fig. 4.

Vacuum cuumTI
M = 3

M = 2

M = 1

TI FTI Va

FIG. 4. Throwing three external EM magnetic monopoles (de-
noted by blue balls) in vacuum into topological materials TI and FTI.
Only the EM magnetic monopole with 3k, k ∈ Z, magnetic charge
shown in Eq. (45) can penetrate the FTI boundary in our example. An
EM magnetic monopole with M = 1,2 will be completely reflected
on the FTI boundary, as shown by the leftward arrows. The shadow
of each ball pictorially denotes the polarization charge cloud induced
by the Witten effect.

We may use nf 1, nf 2, nf 3, and M to uniquely label all
excitations. Solving Eqs. (43) and (44) gives rise to

Na
m = 4

3M − 4
3nf 1 + 2

3nf 2 + 2
3nf 3, (46)

Nb
m = 2

3nf 1 + 2
3nf 2 − 4

3nf 3. (47)

By using the above two equations, NA in Eq. (40) and QDebye

in Eq. (29) can be expressed as

NA = 1
3nf 1 + 1

3nf 2 + 1
3nf 3 + 3

2M, (48)

QDebye = −2nf 1 + 2
3nf 2 + 4

3nf 3 + 16
9 M. (49)

The net EM electric charge Q is defined as NA − QDebye and
thus is given by

Q = 7
3nf 1 − 1

3nf 2 − nf 3 − 5
18M. (50)

Thus, the quantization of Q is given by (see Appendix C 2)

Q = 0,± 1
3 ,± 2

3 ,±1 , . . . when M
3 = 0,±2, . . . , (51)

Q = 0,± 1
6 ,± 3

6 ,± 5
6 , . . . when M

3 = ±1,±3, . . . . (52)

Equation (51) indicates that the intrinsic excitations of the
FTI (Definition 3) carry 1

3 quantized EM electric charge. In
other words, the FTI bulk supports charge fractionalization
(Criterion 2). Due to the quantization of M in Eq. (45),
Criterion 3 is automatically satisfied.

Equation (52) indicates that the 2D (M,Q) lattice is tilted
by an angle 5

18M . More precisely, an axion angle � can be
defined as � = − 5

9π by identifying − 5
18M = �

2π
M . This M-

dependent EM electric charge is a known consequence of the
Witten effect [58,59,67].

The self-statistics of excitations (i.e., either fermionic or
bosonic) can also be derived as a function of (nf 1,nf 2,nf 3,M).
For this purpose, let us start with 	 defined in Eq. (11) and
take Eq. (45) into account. Therefore, the first two terms of
Eq. (11) are even and can be removed, giving

	 = (M + 1)(nf 1 + nf 2 + nf 3), (53)

where −nf 3 is also changed to nf 3 leaving the even-odd
property of 	 unaltered. In analogy to a TI, time-reversal
symmetry should also be maintained. From the point of view
of the charge lattice, time-reversal symmetry is a reflection
symmetry M → −M that keeps the net EM electric charge
and self-statistics invariant: Q → Q, 	 → 	 + even integer.
One possible definition of time-reversal symmetry that satisfies
these properties is as follows:

T nf 1T −1 = nf 1 − 1
3M, T nf 2T −1 = nf 2 − 2

3M, (54)

T nf 3T −1 = nf 3, T MT −1 = −M , (55)

where T denotes the time-reversal operator. It can be verified
that Q is invariant and 	 is only changed by an even integer,
thus leaving its even-odd property unaltered. Using the above
transformations, we may also derive the transformations
below:

T Na
mT −1 = Na

m − 8
3M, T Nb

mT −1 = Nb
m − 2

3M. (56)

The shifted amounts − 8
3M and − 2

3M are even integers, which
guarantees the transformed Na,b

m are still even as required by
Eq. (45). A time-reversed excitation is still an excitation, in
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the sense that the transformed electric and magnetic charges
also satisfy all equations that are satisfied by the excitation
before time reversal. Geometrically, this means that after the
above transformations, the new particle is still on the 4D
charge lattice. Furthermore, Q and 	 are unchanged. From
this geometric point of view, the time-reversal symmetry
defined above effectively acts like a subgroup of the point
group of the 4D charge lattice.

An important result is that the FTI with � = − 5
9π is

actually topologically equivalent to the FTI with � = 1
9π by

a periodic shift. The minimal choice of � for our FTI phase is
given by

� = 1
9π mod 2

9π. (57)

To understand this result, let us revisit the self-statistics 	 in
Eq. (53). In fact, 	 can be reformulated as a unique function
of M and Q (see Appendix C 2 for details):

	 = 3(M + 1)

(
Q − �

2π
M

)
, (58)

where � is given by Eq. (57). We manifestly see that the
even-odd property of 	 is unaltered by the minimal shift
� → � + 2

9π . 	 is pictorially illustrated in Fig. 5(b) and we
can see that geometrically, � describes how tilted the charge
lattice is with respect to its initial orientation [Fig. 5(a)]. To
illustrate, the red dashed line in Fig. 5(b) can be either more

M

Q1

9

6

3 α

1/3 2/3

boson
fermion

M

Q1

9

6

3

1/3 2/3

Shear
deformation

2

8

4 10 Na
m

N b
m

FIG. 5. Self-statistics distribution on the 4D charge lattice.
(a) Self-statistics distribution as a function of M and Q by turning off
� in Eq. (58). (b) Self-statistics distribution as a function of M and Q

as shown in Eq. (58). The allowed values of M and Q are determined
by Eqs. (51) and (52). Geometrically, � = 2π tan α, where tan α =
1/6
3 = 1

18 . Thus, � angle can be viewed as a consequence of a shear
deformation from (a) to (b). During the shear deformation, the area of
“Dirac unit cell” (denoted by the shaded area) is invariant. Since the
charge lattice is 4D (Definition 2), each site in (b) on the (M − Q)
parameter space corresponds to more than one excitation. An example
is shown in (c), where Na

m,Nb
m are used to label excitations that have

the same Q and M: Q = 1
6 , M = 3.

or less tilted with respect to the vertical axis via a shear
deformation. The charge lattice [Fig. 5(b)] with a nonzero
� can be obtained through such a shear deformation from
the nontilted charge lattice [Fig. 5(a)]. Since � = 1

9π , the
charge lattice shown in Fig. 5(b) is time-reversal invariant
(Q → Q,M → −M,	 → 	 + even integer), which can be
viewed as a reflection symmetry about Q axis.

It is obvious that the entire charge lattice [Fig. 5(b)] as
well as the self-statistics distribution is unaltered if we further
increase � by 2

9π (i.e., increase tan α by 1
9 ). For this reason,

� is well defined only mod 2
9π as shown in Eq. (57). For

example, the bosons on the site ( 1
6 ,3) are shifted to the bosons

on the site ( 1
2 ,3); the fermions on the site (0,6) are shifted to

the fermions on the site ( 2
3 ,6). Furthermore, since the charge

lattice is actually four dimensional (Definition 2), each lattice
site of Fig. 5(b) actually corresponds to many excitations
that are different from each other by Na

m,Nb
m as shown in

Fig. 5(c) where Q = 1
6 ,M = 3 is illustrated. The lattice sites

in Fig. 5(c) follow a simple relation: (Nb
m − Na

m − 1)/3 ∈
Z where Na

m,Nb
m are even (see Appendix C2 for details).

More concrete examples of excitations including the original
electrons are collected in Table II.

Experimentally, one may understand the physics of � via
the surface quantum Hall effect on a surface with broken time-
reversal symmetry. For example, by placing a ferromagnetic
thin film on top of the surface of a FTI, we may observe a Hall
effect with Hall conductance σH = �

2π
e2

h
[59]:

σH =
(

1

18
+ n

9

)
e2

h
, n ∈ Z (59)

where h is the usual Planck constant. It should be kept
in mind that, although the minimal nonzero σH is 1

18 , the

TABLE II. Examples of excitations in our FTI. The electric and
magnetic charges are explicitly shown. “F” is short for “fermionic”
where 	 is odd. “B” is short for “bosonic” where 	 is even. We
call an elementary charge an intrinsic excitation (Definition 3) that
carries Q = 1

3 or Q = 2
3 EM electric charge, in analogy to the

fractionalized charge excitations in the ν = 1
3 FQH state. The two

elementary charges in the table are just two concrete examples, and
there are many other excitations that carry Q = 1

2 , 2
3 and M = 0. The

elementary EM monopole is an excitation that carries the minimal
nonzero EM magnetic charge M = 3 and does not contain any partons
(i.e., nf i = 0, ∀ i = 1,2,3). A nonzero M can be externally added into
the bulk in order to probe the EM response (see Definition 3). The
minimal quantum of charge fractionalization is 1

3 determined by the
intrinsic excitations, i.e., Eq. (51) rather than Eq. (52).

nf 1 nf 2 nf 3 M NA QDebye Q Na
m Nb

m 	

Elementary charge 1 0 2 0 1 2
3

1
3 0 −2 F

Elementary charge 2 9 1 0 4 10
3

2
3 4 6 B

Electron 1 1 1 0 1 0 1 0 0 F

Elementary EM monopole 0 0 0 3 9
2

16
3 − 5

6 4 0 B

An example with M = 3 1 1 1 3 11
2

16
3

1
6 4 0 B

An example with M = 3 2 1 0 3 11
2 2 7

2 2 2 B

An example with M = 6 1 1 1 6 10 32
3 − 2

3 8 0 F

An example with M = 6 2 1 0 6 10 22
3

8
3 6 2 F
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corresponding charge induced by the Hall response is not 1
18

since the quantization of M in Eq. (45) is modified from
its nonfractionalized value. More precisely, an external EM
monopole with M magnetic charge can be viewed as 2πM

EM magnetic fluxes threading the surface [91]. By using the
Laughlin argument, the surface will generate 1

18M response
charge once the EM monopole penetrates the surface. Since
the minimal nonzero M is 3 due to Eq. (45), the minimal
surface response charge is 1

18 × 3 = 1
6 rather than 1

18 . Further,
the 1

6 charge will be attached onto the EM magnetic monopole
that moves into the FTI bulk, which renders the Witten
effect [58,59,67]. This phenomenon is nontrivial in a sense that
the 1

6 charge cannot be formed by the bulk intrinsic excitations
(Definition 3) whose Q is quantized at 1

3 due to Eq. (51).
An FTI can be viewed as a symmetry-enriched topological

phase (SET) which is characterized by both bulk topological
order (TO) data and a symmetry action. In our case, the latter
is encoded by the structure of the charge lattice in Fig. 5.
The former is given by the set of all intrinsic excitations
(Definition 3, i.e., all sites along the Q axis in Fig. 5) and
also loop excitations (Definition 1). With these preliminaries,
we may discuss the consequence of stacking operations in
the context of topological order [92,93]. Stacking operations,
denoted as �, form a monoid that does not contain inverse
elements. It is known that stacking two TIs leads to the
topologically trivial vacuum state: TI � TI = Vacuum. Let us
stack a 3D TI and a 3D FTI together. The resulting phase is
a TO: FTI � TI = TO. In other words, the stacking operation
removes the nontrivial Witten effect of the FTI, rendering a
state with pure topological order. This can be understood in
two steps. First, since the bulk intrinsic excitations of a TI
only contain electron excitations, the above stacking operation
indeed does not change the TO of the FTI. Second, in the
stacked phase, the net EM electric charge Q is given by
Q = ( π

18M + n
3 ) + (π

2 M + n′) with n,n′ ∈ Z, where the first
term is given by the Witten effect of the FTI while the second
term is given by the Witten effect of the TI. Since the stacked
phase is formed by putting the FTI and TI in the same spatial
3D region, the quantization of M in Eq. (45) still holds in the
stacked phase. As a result, the electric charge Q in the stacked
phase is given by Q = 5

9M + n
3 + n′, where the M-induced

charge 5
9M is quantized to 5

3 . This charge can be completely
screened by n

3 + n′, e.g., n = −2 , n′ = −1. Thus, the charge
lattice of the stacked phase is not tilted, meaning that � = 0.

In summary, the stacking of a FTI and a TI leads to a phase
with pure topological order where the Witten effect is absent.
We may also consider stacking two FTIs: FTI � FTI =
TO � TO, which means that the stacked phase is a purely
topologically ordered phase where the charge lattice is not
tilted and the topological order is given by TO � TO. Surely,
this is just an example while it is possible that other examples
of FTI may produce different phases when stacked together
with TI or with themselves. Stacking operations in SET phases
generally change TO to a new topological order denoted as
“T̃O.” For example, stacking two FTIs here gives rise
to T̃O = TO � TO. In order to see if the resulting
phase is a new SET or not, one should further consider
symmetry-respecting condensations that change T̃O back
to TO. In this way, we may make progress toward the

classification of SETs. As it is beyond the scope of this work,
we will leave this issue to further studies.

The above calculation is based on concrete numerical
inputs (41). As mentioned previously, one may in princi-
ple generically deduce � as a function of the parameters
(u,v,u′,v′,q,q ′,θ ) that fully determine the two permissible
composite condensations and the entire bulk spectrum. In 2D,
we know that some FQH states can be unified into Jain’s
sequence [60,61] such that they can be understood in the
composite-fermion theory with different microscopic designs
of the composite particles. Our 3D composite particle theory is
similar to this 2D scenario: the � angle, and other properties
of composite condensation phases, are also determined by
the different designs of composite condensations. Therefore,
all phases constructed from composite condensations can be
thought to form a sequence. We expect more studies in the
future along this line of thinking will be helpful in uncovering
the physics of 3D Abelian topological phases of strongly
interacting fermion systems.

C. Deconfined discrete gauge subgroup Z2 ×Z6:
Abelian topological order in the bulk

The FTI state obtained in Sec. III B supports fractionalized
intrinsic excitations as indicated by Eq. (51) and the texts
around it. Reference [71] has pointed out that FTIs necessarily
have a fractionalized bulk. Therefore, our construction is
consistent to the claim. Usually, a fractionalized gapped bulk
can be understood as the presence of a topological order
of some form. To see more clearly the exact form of the
topological order of our FTI, let us start with the K matrix
in Eq. (41). By using two independent unimodular matrices
(i.e., � and W that will be discussed in details in Sec. IV), we
may diagonalize K:

�KWT =
(

2 0

0 6

)
, (60)

where

� =
(

1 0

−2 1

)
, W =

(
1 0

−1 1

)
. (61)

In the new basis, it is clear that the bosonic sectors of the ground
state are described by deconfined Z2 × Z6 gauge group. In
other words, the maximal torus U(1) × U(1) of the SU(3)
gauge group of the parton construction is confined except the
Z2 × Z6 gauge subgroup. In Ref. [71], the discrete gauge
group Z2 arises since the choice of parton mean-field Hamil-
tonian explicitly breaks the original pseudospin SU(2) gauge
group down toZ2 subgroup. However, in our FTI state, the dis-
crete gauge subgroup arises from the the deconfined subgroup
of a confined non-Abelian gauge group, physically due to the
condensation of composites that contain magnetic monopoles.

IV. CHARGE-LOOP EXCITATION SYMMETRY AND ITS
RELATION TO EXTRINSIC TWIST DEFECTS

In Sec. III, we have explored the axion angle of the charge
lattice with composite condensation. In this section, we will
explore the charge-loop excitation symmetry based on the
composite particle theory introduced in Sec. II.
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The topological BF field theory (31), which is derived from
the two permissible composite condensates, only captures
the statistical interaction between particles that carry Na

m,Nb
m

magnetic charges and loops that carry 
a
e ,


b
e electric fluxes.

Specifically, several important properties of composites, such
as the self-statistics 	 in Eq. (10), and the net EM electric
charge Q in Eq. (28), are not encoded in Eq. (31). However, the
topological BF field theory reproduces QDebye, an important
part of Q. In this section, we further study the topological
BF field theory and show that it serves as a useful platform
to study “charge-loop excitation symmetry” (abbreviated as
“Charles,” see Definition 5) that can be viewed as a 3D
generalization of “anyonic symmetry” [73] (or “topological
symmetry” in Ref. [78] and references therein) in 2D Abelian
topological phases. We expect that 3D Abelian topological
phases where loop excitations are allowed may host even
more exotic physics if extrinsic twist defects are imposed,
and anticipate that 3D charge-loop excitation symmetry will
be a useful tool in future studies of such extrinsic defects.

A. Definition of Charles

In 2D topological phases, each pointlike extrinsic twist
defect is associated with an element of an anyonic symmetry
group G. The anyonic symmetry group is a finite group
that acts to permute a subset of anyons in the parent TO
phase while preserving all of the topological properties
(topological spin, statistics) of the anyons (and sometimes
their symmetry properties as well, e.g., their EM charge).
For example, the permutation of e and m particles in the
2D Wen-plaquette model (with Z2 TO) [94] is a typical
anyonic symmetry transformation. For this particular model,
this transformation can be realized by extrinsically imposing
a lattice dislocation which enacts the permutation of e and m

when an anyon passes through a 1D branch cut that terminates
at the extrinsic point defect [73,79,84,95]. Interestingly, this
quasiparticle permutation mechanism endows the dislocation
with an attached non-Abelian object at the defect core, which
opens up a possible new platform for topological quantum
computation. Mathematically speaking, the incorporation of
extrinsic defects into 2D Abelian topological phases described
by a category theory C promotes C to a G-crossed tensor
category theory C×

G [73,78].
Let us briefly recall some properties of anyonic symmetry

in 2D Abelian topological phases. As mentioned, these phases
are described using Abelian Chern-Simons theory using the
data in a symmetric, integer K matrix. There are an important
class of unimodular, integer transformations W satisfying
WKWT = K that act as the automorphisms of K (or the auto-
morphisms of the integer lattice, and dual/quasiparticle lattice,
determined by K). These transformations relabel the different
anyonic excitations, but most of them preserve the anyon
type, and just attach local quasiparticles (e.g., attaching
extra electrons). These trivial transformations are called the
inner automorphisms Inner(K) and they form a normal
subgroup of the full set of automorphisms Auto(K). The
nontrivial anyonic relabeling symmetries are hence given
by the group G ≡ Outer(K) = Auto(K)

Inner(K) . This captures the
conventional anyonic symmetries that act as point-group
operations on the quasiparticle lattice, although it leaves out

possible nonsymmorphic lattice operations or symmetries of
stably equivalent K matrices [73,74,96]. We will not consider
these more complicated possibilities for anyonic symmetries
any further and leave their 3D generalization to future work.

In order to generalize this discussion of anyonic symmetry
and extrinsic defects to 3D, let us revisit some basic facts of
excitations in our 3D fermionic gapped phase formed by two
permissible composite condensates. The 2D vectors L form
a 2D loop lattice in Definition 1. The 2D vectors Nm form
a 2D lattice which is a sublattice of the 4D charge lattice
in Definition 2. As a whole, we may define a 6D charge-loop
lattice. (N.B., this is not the same 6D lattice mentioned earlier.)

Definition 4 (Charge-loop lattice). The charge-loop lattice
is a 6D lattice whose sites are given by the 6D lattice vector

V = (NA,NT

m,M,LT ) = (NA,Na
m,Nb

m,M,�,�′). Each site cor-
responds to a charge-loop composite.

In order to avoid confusions in terminology, the word
“composite,” if used by itself, always denotes a pointlike
particle, unless otherwise specified. The symmetry group
Charles is then defined as below:

Definition 5 (Charge-loop excitation symmetry
(Charles)). The charge-loop excitation symmetry group
is a subset of the point group of the 6D charge-loop lattice
and corresponds to the following quotient group:

Charles = Auto(K)

Inner(K)
, (62)

where Auto(K) is the group of generalized automorphisms of
K . Inner(K) is the group of generalized inner automorphisms
of K , which is a subgroup of Auto(K). Group elements of
Auto(K) have the matrix representation G = W ⊕ �, where
the two independent rank-two unimodular matrices W and �

satisfy the following two conditions:

(i) �KWT = K, (63)

(ii) 	(. . . ,Nm, . . . ) = 	(. . . ,W−1Nm, . . . ). (64)

Here, 	 is the self-statistics of composites, which is a function
of lattice sites labeled by the 4D coordinates (NA,NT

m,M).
In addition to conditions (i) and (ii), the group elements in
Inner(K) have the property that W−1Nm − Nm = KT (n1,n2)T

and �−1L − L = K(n3,n4)T , where n1, . . . ,n4 are integers. n1

and n2 are functions of Nm,W ; n3 and n4 are functions of L,�.
Just like the 2D anyonic symmetry group, the definition

of Charles also involves the definitions of Auto(K) and
Inner(K). One can prove that Auto(K) satisfies the usual
group axioms (identity element, inverse element, closure,
associativity) and that Inner(K) is a normal subgroup of
Auto(K), such that Charles forms a group. Details of this
proof can be found in Appendix D.

Physically, group elements G = W ⊕ � in Charles cor-
respond to point-group transformations: (Nm)new = W−1Nm,

(L)new = �−1L. Conditions (i) and (ii) guarantee that the
transformed charge-loop lattice is identical to the original
one, which means that Charles keeps not only the lattice
geometry invariant, but also leaves all topological properties
of particle excitations and loop excitations (denoted by lattice
sites) unaffected. Those topological properties include the self-
statistics of particle excitations 	, the charge-loop braiding
statistics ϑcl , and the Debye screening QDebye. However, there
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is a redundancy corresponding to Inner(K) that should be
removed. Inner(K) includes all trivial transformations whose
point-group effects are equivalent to effectively shifting both
Nm and L by undetectable amounts [i.e., ϑcl = 0 mod 2π in
Eq. (34); see also Sec. II C], and thereby must be modded
out from Auto(K) if we only want to keep nontrivial transfor-
mations. Again, the transformations in Inner(K) can be inter-
preted as changing the excitations by a trivial, topologically
undetectable charge or flux.

In contrast to the 2D definition of “anyonic symmetry”
where condition (i) (where the simpler structure only allows
for W = �) is enough to guarantee the invariance of the self-
statistics of anyons, one now needs condition (ii) in order to
guarantee that the self-statistics of excitations on the 4D charge
lattice remains invariant under Charles transformations. The
main reason for this is that the self-statistics of an excitation
(Definition 2) cannot be captured by the topological BF field
theory. Whether or not W satisfies condition (ii) relies on the
specifics of the parton decomposition, and in the following
subsections, we will assume condition (ii) is satisfied.

B. General theory of Charles and its
tensor-network-type representation

It should be noted that W , �, and K in Definition 5
can be naturally generalized to arbitrary rank if a physical
realization using a scenario having any number of permissible
composite condensates in Sec. II A can be achieved. For
example, one can consider a single composite condensate or
three linearly independent condensates with entirely different
parton constructions, which leads to a number K ∈ Z or a
rank-three K matrix, respectively.

Before proceeding further, we introduce a simplified no-
tation that will be useful for subsequent discussions. The
notation in the two-component BF action (31), such as ã

and b̃, comes from the specific physical realization described
in Sec. II A. It is, however, inconvenient for the purpose of
generalizing Charles. Thus, in the current section (Sec. IV B),
we temporarily use a new notation for the gauge fields
b = (b1,b2, . . . ) and a = (a1,a2, . . . ) where b is a set of
2-form Kalb-Ramond U(1) gauge fields while a is a set of
1-form U(1) gauge fields. As a result, the topological BF term
is expressed as

iKIJ

2π

∫
bI ∧ daJ = i

2π

∫
bT ∧ Kda (65)

with a square matrix K of rank N . The excitation terms in
Eq. (32) are rewritten as

Sex = i

∫
tT a ∧ 
j + i

∫
LT b ∧ 
� , (66)

where t = (t1,t2, . . . ) is an integer vector replacing the
notation Nm. Then, the charge-loop lattice is formed by
an N -dimensional charge lattice labeled by vectors t and
an N -dimensional loop lattice labeled by vectors L. Group
elements of Charles are still denoted as “G = W ⊕ �” with
the transformations (t)new = W−1t and (L)new = �−1L.

Let us consider some examples. In Table III, all possible
Charles groups are listed for a 1 × 1 matrix K ∈ Z. From the
table, we see that Z2 gauge theory in (3+1)D (K = 2) only

TABLE III. Examples of Charles (Sec. IV B) when the matrix
K reduces to an integer. A generic group element is denoted by
G = W ⊕ �. GI denotes the identity element: GI = I ⊕ I.

K Charles

K = ±1 {GI}
K = ±2 {GI}
|K| � 3 {GI,−I ⊕ −I}

has trivial Charles, which is surprisingly different from a
deconfined Z2 gauge theory in (2+1)D (e.g., as appears in the
Wen-plaquette model), where the e ↔ m exchange process
is an anyonic symmetry transformation. Nontrivial Charles
arises for ZK gauge theory in (3+1)D only when |K| � 3.
For example, for Z3 gauge theory, the nontrivial element of
Charles is −I ⊕ −I which means that W = � = −I (here I
reduces to the natural number “1”). Under the transformation
of this group element, there is an exchange symmetry between
a particle with one unit of gauge charge and a particle with
two units of gauge charge since the latter is trivially equivalent
to a particle with gauge charge −1. There is also an exchange
symmetry between a loop with magnetic flux 2π/3 and a loop
with magnetic flux 4π/3 (= − 2π

3 + 2π ). These two exchange
processes must occur simultaneously.

A simple example of a rank-2 K matrix is K = 2σx . If we
do not worry about Charles for a moment, a diagonalization
can be achieved by using W = σx,� = I2×2. In the new basis,
we end up with two copies of the level-2 topological BF field
theory, thereby obtaining a Z2 × Z2 discrete gauge theory
(i.e., Z2 × Z2 topological order). Due to Definition 5, such a
basis change is clearly not a group element of Charles, but it
reveals that the gauge structure is Z2 × Z2 rather than Z4. It
is important to distinguish these possibilities since those two
gauge structures produce the same ground state degeneracy
(GSD) on a 3-torus [88,97–99]. For this example, a typical
group element of Charles is G = σx ⊕ σx , which satisfies
condition (i) in Eq. (63). Physically, � exchanges a particle
labeled by t = (0,1)T and a particle labeled by t = (1,0)T . At
the same time, � exchanges a loop labeled by L = (0,1)T and
a loop labeled by L = (1,0)T .

For convenience, condition (i) in Eq. (63) can be visually
represented by a tensor-network-type graph as shown in
Fig. 8(a) of Appendix D. It indicates that K is a fixed-
point tensor (here, a matrix) that is invariant under Charles
renormalization-group-like transformations. The bond dimen-
sion is given by the rank of K . This graphical representation
allows us to straightforwardly generalize the notion of Charles
to more general Abelian topological quantum field theories
(TQFTs) in (3+1)D that include more exotic topological
terms. For instance, let us consider a TQFT with the action

S = i

2π

∫
bT ∧ Kda + i

∫
�IJKaI ∧ aJ ∧ daK, (67)

where �IJK is a real tensor with three legs as shown in Fig. 8(b)
of Appendix D. By itself, and at a classical level, the second
term in this action corresponds to a topological invariant for
the mutual linkage of three electromagnetic flux loops [100].
At a quantum level, the action S was also proposed as a
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continuum field theory description of Dijkgraaf-Witten lattice
gauge theory [101,102]. It can also be derived by gauging the
global onsite symmetry group G = ZN1 × ZN2 × · · · of the
TQFT action of a 3D SPT phase with N1 × N2 × · · · = |detK|,
where the quantization of �IJK is determined by the number of
topologically distinct ways to impose G in SPT phases [103].
The relation to three-loop statistics [104–106] is being in-
vestigated [103,104,107]. It is believed that the coefficient
�IJK encodes the information of three-loop statistics that
classifies topologically distinct twisted discrete Abelian gauge
field theories in (3+1)D. In analogy to the topological BF field
theory, the tensor �IJK must also be transformed accordingly
under the charge-loop-lattice point-group transformations. In
order to keep the important three-loop statistics data [104]
invariant, the generalized Charles should incorporate the
following condition:∑

I ′J ′K ′
WI ′IWJ ′J WK ′K�I ′J ′K ′ = �IJK (68)

in addition to those conditions in Definition 5. Likewise,
we can also use a tensor-network-type graph [Fig. 8(b) of
Appendix D] to graphically represent Eq. (68), where the bond
dimension is no less than two.

Finally, we can also consider a TQFT with the action

S = i

2π

∫
bT ∧ K da + i

∫
�IJKLaI ∧ aJ ∧ aK ∧ aL,

(69)

where the coefficient �IJKL is a tensor with four legs.
Likewise, the quantized values of � encode the information
of the four-loop braiding process [105] and can provide
topological invariants for classifying twisted discrete gauge
field theories in (3+1)D. In order to keep � invariant under
point-group transformations of the charge-loop lattice, the
following relation should be obeyed:∑

I ′J ′K ′L′
WI ′IWJ ′J WK ′KWL′L�I ′J ′K ′L′ = �IJKL. (70)

A tensor-network-type representation is shown in Fig. 8(c) of
Appendix D, where the bond dimension is no less than four.

We may also consider the scenario that Charles transfor-
mations can be performed locally so that Charles becomes
dynamically gauged. In this case, the extrinsic twist defects
become well defined, deconfined excitations of a new topolog-
ical phase. The resulting phases have been thoroughly studied
in 2D and are non-Abelian topological phases called twist
liquids [73–84]. As a result, W and � become space-time
dependent. The difference between the next-nearest lattice
sites is compensated by locally twisting matter fields. The
tensor-network graph representations of the various symmetry
transformations in Fig. 8 of Appendix D are suggestive that
such a tensor-network analysis may be a useful tool for future
studies of 3D twist liquids.

C. Theory of Charles defects: Twist defect species and fusion

In the following, we study extrinsic twist defects associated
with Charles group elements in analogy to extrinsic twist
defects in 2D Abelian topological phases with anyonic symme-
try [73,74,77–81,84]. More specifically, we explore two issues:

(i) the universal labeling of a defect in 3D, and (ii) the fusion
properties of defect-charge-loop composites. Recently, re-
markable progress in the study of various aspects of string/loop
excitations in (3+1)D topological phases of matter, such as
their description using lattice models and field theories, their
associated ground-state degeneracy (GSD), and their braiding
and fusion properties has been made [75,92,104,108–117]. As
will be seen below, the consideration of extrinsic defects within
the framework of charge-loop excitation symmetry introduces
a new aspect to the physics of loop excitations in (3+1)D
topological phases.

We begin by reviewing the physics of twist defects and
defect-anyon composites in 2D Abelian topological phases.
From a topological point of view, externally imposed defects
in such phases are a set of special, potentially non-Abelian
objects. For Abelian groups, each group element of the anyonic
symmetry group G corresponds to a bare defect and there
are ord(G) distinct bare defects, where ord(G) is the order
of G. Generically, the defects are labeled by the conjugacy
classes of G, but since we only deal with Abelian groups
here we will not often make this distinction. By a “bare”
defect, we really mean that the defect is externally imposed
alone in the bulk. In general, defects can be bound to anyons
of the parent Abelian topological phase, thereby forming a
defect-anyon composite which is, by definition, not bare. When
given a group element of G, the total number of topologically
distinct defects (also known as defect species) includes bare
ones and composite ones, and is not always the same as the
number of topologically distinct anyons. In other words, two
defect-anyon composites might be topologically equivalent
to each other if there do not exist gauge-invariant Wilson
measurements that can distinguish them. Indeed, there is a
consistency equation for determining the equivalence classes
of defect types [73,74]

D0
G × qp = D0

G × [qp + (I − G )qp1], (71)

which is diagrammatically shown in Fig. 7(a). Here, qp

denotes a quasiparticle (i.e., an anyon) that is provided by
the parent 2D Abelian topological phase. D0

G denotes a bare
defect labeled by a group element G of the anyonic symmetry
group G. The particle qp1 is any anyon provided by the
parent 2D Abelian topological phase. The composite object
D0

G × qp denotes the fusion between D0
G and qp that forms

a defect-anyon composite. Specifically, Eq. (71) determines
when this defect-anyon composite is topologically identical
to a defect-anyon composite that is formed by the fusion
between the same bare defect and a different anyon given
by qp + (I − G )qp1. The symbol “+” should be regarded as
the addition of quasiparticle vectors in the K-matrix Chern-
Simons theory. The physical reason of this equivalence is
really due to the nontrivial internal structure of a defect-anyon
composite. More specifically, the anyon qp that is trapped
at the defect can emit anyon qp1 which moves around the
defect once. As a result, anyon qp1 is changed to anyon
G qp1 that is finally absorbed by the defect. Such a process
occurs inside the defect-anyon composite and cannot change
the defect species [74]. Therefore, the process provides an
equivalence between two defect-anyon composites.

A typical example in (2+1)D is K = 2σx Chern-Simons
theory that describes Z2 topological order. Its anyonic

115104-15



YE, HUGHES, MACIEJKO, AND FRADKIN PHYSICAL REVIEW B 94, 115104 (2016)

symmetry group is given by {I,σx}. The nontrivial group ele-
ment σx interchanges the anyon e, labeled by the quasiparticle
vector (1 mod 2,0 mod 2)T , and the anyon m, labeled by the
quasiparticle vector (0 mod 2,1 mod 2)T . A defect labeled by
this group element can in principle be realized by externally
imposing a dislocation in the Wen-plaquette model as men-
tioned previously. For convenience, the identity quasiparticle
(vacuum) vac is labeled by (0 mod 2,0 mod 2)T , and the
fermion quasiparticle ψ is labeled by (1 mod 2,1 mod 2)T .
Thus, the only non-trivial, bare defect is given by D0

σx
. Next,

we need to deduce equivalence classes of defect-anyon com-
posites. Taking into account Eq. (71) and I − σx = ( 1 −1

−1 1 ),
we have

D0
σx

× qp = D0
σx

× (qp + ε), ∀ qp ∈ {vac,e,m,ε}.
Here, the symbol “+” denotes the usual addition of quasipar-
ticle vectors of qp and ε. Therefore, there are two equivalence
classes: D0

σx
× e = D0

σx
× m and D0

σx
× ψ = D0

σx
. In other

words, there are two topologically distinct defects: one is bare,
given by a bare defect D0

σx
; the other one is a defect-anyon

composite, denoted by D1
σx

= D0
σx

× e. The fusion rules of
these two defects are given by

D0
σx

× D0
σx

= D1
σx

× D1
σx

= vac + ψ, D0
σx

× D1
σx

= e + m,

where “+” here denotes the collection of different fusion
channels into quasiparticles of simple type.

Now that we have reviewed the lower-dimensional case,
let us move on to 3D. Simply from a dimensionality point
of view, there are two types of extrinsic defects in 3D: line
defects and point defects. The latter also appear in 2D and
serve as end points on which 1D branch cuts [i.e., the dashed
line in Fig. 6(b)] terminate. The former are really looplike.
In Fig. 6(a), the line defect is drawn as a finite line that ends
at the top and bottom boundaries where a periodic boundary
condition is implicitly imposed. A 2D branch “brane” [i.e., the
shaded plane in Fig. 6(a)] is attached to each line defect.

From Fig. 6, we see that line defects can perform generic
Charles operations where both point particles and loops
are transformed. In contrast, point defects can only perform
Charles operations on loops, meaning that G = W ⊕ � =
I ⊕ � for point defects. However, due to Eq. (63), the only
candidate for � is I. This means that point defects can
only behave like the identity element GI = I ⊕ I of Charles.
Therefore, in 3D, we only consider line defects since point
defects cannot perform nontrivial Charles operations.

In a manner similar to 2D, a defect-charge-loop composite
is allowed, where the term “defect” corresponds to a line
defect, “charge” corresponds to a pointlike excitation, and
“loop” corresponds to a loop excitation. Since loops are
always transformed to loops by �, and particles are always
transformed to particles by W , we may study defect-charge
composites and defect-loop composites separately. In order to
determine defect species for a given Charles group element
G , we need to study the equivalence classes of the above two
kinds of defect composites. For defect-charge composites, the
following equation determines the equivalence classes:

D0
G × qp = D0

G × [qp + (I − W )qp1], (72)

FIG. 6. Extrinsic twist defects in 3D. (a) Line defect; (b) point
defect. The two cubic boxes denote the 3D bulk of an underlying
quantum many-body system. The shaded plane in (a) denotes a 2D
branch cut/plane ending at the line defect, while the dashed line in
(b) denotes a 1D branch cut ending at the point defect. A line defect
can act on both composite particles denoted by a black dot, and
loops denoted by a red circle. Once a pointlike excitation and a loop
excitation move around a line defect, the defect performs the Charles
symmetry transformation � and W on the pointlike excitation and
the loop excitation, respectively. In (b), the loop moves around the
point defect such that the branch line intersects at the loop’s spatial
trajectory (a torus) only once. A Charles transformation induced by
a point defect can only be G = W ⊕ � = I ⊕ �, which acts only on
the loop excitations. However, due to Eq. (63), the only candidate
for � is I. This means that point defects can only behave like the
identity element GI of Charles. Therefore, in 3D, we only consider
line defects.

which is diagrammatically shown in Fig. 7(b). qp denotes
pointlike particle excitations. D0

G denotes the bare line defect
that is labeled by a Charles group element (or conjugacy class
for a non-Abelian group) G = W ⊕ �. qp1 is any particle
excitation provided by the parent 3D Abelian topological
phase. Equation (72) means that the defect-charge composite
D0

G × qp is topologically equivalent to the defect-charge
composite that is formed by the fusion between the same
bare line defect and a different particle excitation given by
[qp + (I − W )qp1]. Likewise, we have a similar equation for
defect-loop composites:

D0
G × loop = D0

G × [loop + (I − �)loop1], (73)

which is diagrammatically shown in Fig. 7(c). One can
also unify Eqs. (72) and (73) by considering charge-loop
composites. We will show this in the following example.

Let us take K = 3 in Table III as an example. There
is only one nontrivial group element given by G = −I ⊕
−I. For convenience, we label the three topologically
distinct particle excitations as t0,t1,t2 and the three dis-
tinct loop excitations as l0,l1,l2. Using numerical labels,
we have t0 = 0 mod 3, t1 = 1 mod 3, t2 = 2 mod 3, and l0 =
0 mod 3, l1 = 1 mod 3, l2 = 2 mod 3. We can consider the set
of 2D vectors Vij = (ti ,lj )T where i,j = 0,1,2 and hence,
there are 32 = 9 vectors that label the 9 topologically distinct
charge-loop composites:

{Vij } =
(

0

0

)
,

(
1

0

)
,

(
2

0

)
,

(
0

1

)
,

(
1

1

)
,

(
2

1

)
,

(
0

2

)
,

(
1

2

)
,

(
2

2

)
.

As a result, Eqs. (72) and (73) can be unified as

D0
G × V = D0

G × [V + (GI − G )V′] , (74)
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FIG. 7. Diagrammatic description of equivalence classes of fusion rules. (a) Shows the equivalent defect-anyon composites in 2D Abelian
topological phases [74]. The bare point defect is labeled by a group element G of the anyonic symmetry group. The dashed lines are branch cuts
that end at the defect. The vertical solid lines are quasiparticle (i.e., anyon, denoted by qp) strings (e.g., a string operator in the Wen-plaquette
model), ending at the point defect. An anyon is transformed to another anyon when passing through the branch cut (qp1 → G qp1). The fusion
of a bare defect denoted as D0

G and anyon (qp) forms a defect-anyon composite denoted as “D0
G × qp.” It is topologically equivalent to

the defect-anyon composite denoted as D0
G × [qp + (I − G )qp1] where qp1 denotes all anyons of the 2D Abelian topological phase. In 3D

systems where Charles replaces the anyonic symmetry of 2D systems, (b) and (c) show line defects (denoted as solid blue circles) on which
the 2D branch branes (denoted as the surface of a cylinder) terminate. By passing through the 2D branch branes, a particle and a loop are
transformed to another particle and loop, respectively (qp1 → Wqp1, loop1 → �loop1). In (b), the defect-charge (i.e., qp) composite denoted
D0

G × qp is topologically equivalent to D0
G × [qp + (I − W )qp1] where qp1 denotes all topologically distinct charge excitations. In (c), the

red cylinder denotes the membrane operator that creates loop excitations and end on the line defect (the solid blue circles). The defect-loop
composite denoted D0

G × loop is topologically equivalent to D0
G × [loop + (I − �)loop1] where ∀ loop1 denotes all topologically distinct

loop excitations.

where V,V′ ∈ {Vij }. By noting that GI − G = (1 0
0 1

) −(−1 0
0 −1

) = (2 0
0 2

)
, the above relation reduces to

D0
G × V = D0

G × (V + 2V′). (75)

As a result, all defect-charge-loop composites are topologi-
cally equivalent to the bare defect D0

G = D0
G × Vij , where

{Vij } denotes the nine vectors (i,j = 0,1,2). The resulting
fusion rules are given by

Vij × Vi ′j ′ = V(i+i ′)mod3,(j+j ′)mod3 , (76)

D0
G × D0

G =
∑
ij

Vij , (77)

from which we see that there are multiple fusion channels when
two defects are fused together. It indicates that the externally
imposed line defect D0

G is of non-Abelian nature.

V. CONCLUSIONS

In this work, a composite particle theory for 3D fermionic
gapped phases was formulated based on a specific parton
construction of electrons. Composite particles are bound states
of partons and magnetic monopoles for a set of internal gauge
fields and the external electromagnetic field Aμ. The resulting
fully gapped phases were constructed by condensing two
composite particles. All excitations including pointlike and
stringlike excitations as a whole form a charge-loop lattice.
Each site of the charge-loop lattice corresponds to a deconfined
excitation of the condensed phase. A general mechanism for
charge fractionalization in 3D was studied in detail. Based on
the general framework of composite particle theory, we further
explored two important properties of 3D Abelian topological
phases. First, we studied phases with nonvanishing axion �

angle which is characteristic of the tilted charge lattice. It
was found that time-reversal-invariant fractional topological
insulators with � �= π can be constructed from composite
particle theory. Second, we generalized the notion of anyonic
symmetry of 2D Abelian topological phases to a charge-loop
excitation permutation symmetry (Charles) group in 3D
Abelian topological phases. We also investigated the relation
between Charles group elements and line twist defects in
(3+1)D Abelian topological phases.

There are several interesting directions for future studies.
First, it is interesting to propose a systematic theory of the
symmetric surface states of fractional topological insulators
based on the composite particle theory. The 2D surface
may exhibit quantum phenomena that are even more exotic
than the surface topological order recently found on the
surface of interacting topological insulators and interacting
bosonic topological insulators [91,118–128]. For the FTI
bulk lattice model construction and the phase diagram of
confinement/deconfinement, the idea in Ref. [57] may be
helpful. Second, one may consider the composite particle
theory by assuming that partons form topological supercon-
ductor Ansätze, which may lead to interacting topological
superconductors with fractional gravitoelectromagnetism and
a fractional version of the gravitational Witten effect [129,130].
Third, as discussed in Sec. IV B, the tensor-network-type
graphs may be helpful for understanding 3D analogs of the
twist liquid, i.e., the topological phases obtained by gauging
Charles. Fourth, it is interesting to think if there are simple
3D lattice models that can demonstrate the physics of extrinsic
defects and Charles, in analogy to the 2D case where there
are lattice models like the Wen-plaquette model. In addition,
some group elements of Charles may break U(1) charge
symmetry. A line defect associated with such a group element
might be realized in a U(1)-symmetric 3D lattice model as an
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extrinsic defect coated with a superconducting region. Fifth,
in analogy to 2D anyonic symmetry where G-crossed tensor
category theory [73,78] was proposed, a generic mathematical
framework is also needed for 3D extrinsic defects. Sixth, it
would be useful to have a microscopic theory of 3D line twist
defects in terms of a cutting and gluing procedure where the
twist defects are formed by tuning/twisting allowed tunneling
terms between the two sides of a gapless cut [80–82,131].
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APPENDIX A: SUMMARY OF NOTATIONS,
ABBREVIATIONS, AND DEFINITIONS

In this Appendix, several notations, abbreviations, defini-
tions, and criteria are collected for the reader’s convenience.

1. Mathematical notations

u,v,u′,v′,q,q ′: a set of parameters that label the two
condensed composites as shown in Table I.

Q: the net EM electric charge carried by a composite.
QDebye: the screening charge cloud around a composite. It

is induced by the two composite condensates ϕ1 and ϕ2.
NA: the bare EM electric charge carried by a composite. It

is related to Q via Eqs. (28) and (29).
M: the EM magnetic charge carried by a composite.
Mμ: the 4-current of EM magnetic monopoles, introduced

in Sec. III A.
Na,b: gauge charges in U(1)a and U(1)b gauge groups. An

integer vector Ne is formed via Eq. (15).
Na,b

m : magnetic charges in U(1)a and U(1)b gauge groups.
An integer vector Nm is formed via Eq. (14).

	: self-statistics of a composite. 	 is even (odd) if the
composite is bosonic (fermionic) [see Eq. (11)].

θ : θ = 0 if all partons (f 1,f 2,f 3) form trivial band
insulators. θ = π if all partons form topological insulators.

ϑcl : the mutual statistics between a pointlike particle
excitation and a loop excitation [see Eq. (34)].

�: the axion angle of the electron states (i.e., the resulting
fermionic gapped phase constructed via the composite particle
theory).

ga,b: dimensionless gauge coupling constants of U(1)a,b

gauge groups.
D0

G : a bare line defect associated with Charles group
element G .

2. Abbreviations

Charles: charge-loop excitation symmetry.
EM: electromagnetic (specific to the usual background

electromagnetic field Aμ).
FQH: fractional quantum Hall effect.
FTI: fractional topological insulator.
GCD: greatest common divisor.
GSD: ground state degeneracy.
IQH: integer quantum Hall effect.
SET: symmetry-enriched topological phase.
SPT: symmetry-protected topological phase.
TI: free-fermion topological insulator.
TO: topological order.
TQFT: topological quantum field theory.

3. Definitions

Loop-lattice: Definition 1.
Excitation and charge lattice: Definition 2.
Intrinsic excitation and intrinsic charge lattice: Definition 3.
Charge-loop lattice: Definition 4.
Charge-loop excitation symmetry: Definition 5.

4. Others

Criterion 1 for loop excitations.
Criterion 2 for charge fractionalization.
Criterion 3 for charge fractionalization.

APPENDIX B: TECHNICAL DETAILS IN SEC. II

1. Details of Eq. (12)

By inserting the data of ϕ1 and ϕ2 in Table I into Eq. (10),
one may obtain

	(ϕ1) = 3q − θ

2π
[u(u + 1)+v(v + 1)+(u + v)(u + v − 1)]

(B1)

and

	(ϕ1) = 3q ′ − θ

2π
[u′(u′ + 1) + v′(v′ + 1)

+ (u′ + v′)(u′ + v′ − 1)]. (B2)

2. Proof of Theorem 1

We present Bézout’s lemma as a preliminary [132]: Let a

and b be nonzero integers and let d be their greatest common
divisor (GCD). Then there exist integers x and y such that
ax + by = d. In addition, d is the smallest positive integer that
can be written as ax + by; every integer of the form ax + by

is a multiple of d.
Let us now prove Theorem 1.
Proof.
Sufficiency: When |uv′ − u′v| = 1, according to Eq. (21),

we straightforwardly obtain |GCD(u,u′)| = 1,|GCD(v,v′)| =
1. Then, the equalities in Eq. (21) hold. Therefore, (
a

e )min =
2π, (
b

e )min = 2π in Eq. (20).
Necessity: We start with the equalities in Eq. (21), i.e.,

|uv′ − u′v| = |GCD(u,u′)| = |GCD(v,v′)|. If |uv′ − u′v| �=
1, meaning that |GCD(u,u′)| = |GCD(v,v′)| �= 1. Therefore,
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u,u′ are not coprime; v,v′ are not coprime. Then, we consider

1 =
∣∣∣∣ u

GCD(u,u′)
v′ − u′

GCD(u,u′)
v

∣∣∣∣ , (B3)

where u
GCD(u,u′) ,

u′
GCD(u,u′) are coprime by definition, i.e.,∣∣∣∣GCD

(
u

GCD(u,u′)
,

u′

GCD(u,u′)

)∣∣∣∣ = 1 .

Then, according to Eq. (21), we can also have the following
inequalities if we just replace u and u′ in Eq. (21) by u

GCD(u,u′)

and u′
GCD(u,u′) , respectively:∣∣∣∣ u

GCD(u,u′)
v′ − u′

GCD(u,u′)
v

∣∣∣∣ � |GCD(v,v′)| . (B4)

Due to Eqs. (B3) and (B4), we obtain |GCD(v,v′)| = 1.
This is contradictory to our starting point |GCD(v,v′)| �=
1. Therefore, the only possibility is |uv′ − u′v| =
|DetK| = 1. �

3. Equivalence between Criteria 2 and 3

Consider two excitations in a U(1)EM-symmetric system.
Let one carry zero EM magnetic charge M = 0 and minimal
nonvanishing EM electric charge Q = 1

w
with w ∈ Z. Let

the other excitation carry a minimal nonzero EM magnetic
charge w′ and an EM electric charge, say, y. y can be either
integer or noninteger. Due to the Dirac-Zwanziger-Schwinger
quantization condition [133–137], the magnetic and electric
charges of the above two excitations satisfy(

1

w
× w′ − 0 × y

)
= 0, ±1,±2, . . . . (B5)

Therefore, the minimal choice of w′ is w′ = w, indicating that
the change of quantization of the EM magnetic charge M is
accompanied with a change of the charge quantization. Once
w > 1, w′ is also larger than one. In this sense, the two criteria
are equivalent.

4. Debye-Hückel charge cloud QDebye is the unique
source of charge fractionalization

In this Appendix, we prove that the Debye-Hückel charge
cloud QDebye defined in Eq. (29) is the unique source of charge
fractionalization. In other words, NA is always integer valued
when M = 0. By definition in Eqs. (2)–(4), NA is given by

NA = Nf 1 + Nf 2 − Nf 3

= (nf 1 + nf 2 − nf 3) + 3θ

2π
M − 2θ

2π
Nb

m , (B6)

where nf i are integer valued. Nb
m is integer valued, and θ =

0,π . Therefore, − 2θ
2π

Nb
m is always integer valued. As a result,

NA is integer valued when M = 0.

APPENDIX C: TECHNICAL DETAILS IN SEC. III

1. Partons occupying trivial bands

We assume that all partons f i (pure gauge charge carriers)
form three trivial band insulators (θ = 0). According to

Eqs. (7), (8), and 12), we have

u,v,u′,v′ ∈ Z; q,q ′ ∈ Zeven . (C1)

Since θ = 0, we have

Nf i = nf i ∈ Z (C2)

according to Eq. (4). Due to the definitions in Sec. II, we end
up with

Na,Nb ∈ Z . (C3)

Thus, in the mean-field Ansätze with θ = 0, all magnetic
charges and electric charges of composites are integer valued.
However, QDebye and Q may be fractional, depending on the
condensate parameters.

According to Definition 2, excitations are a subset of
generic composites and satisfy the two equations in Eq. (23).
Thus, only a 4D sublattice embedded in the 6D lattice survives,
i.e., the charge lattice in Definition 2. Since Na(=Nf 1 − Nf 2)
and Nb(=Nf 3 − Nf 2) are fully determined by M via Eq. (24),
we may use the labels (Nf 2,M,Na

m,Nb
m). These four linearly

independent integer numbers are “4D coordinates” of the 4D
lattice that label excitations. Then, the bare EM electric charge
NA is expressed as

NA = Nf 1 + Nf 2 − Nf 3 = (r − s)M + Nf 2 . (C4)

The net EM electric charge Q is given by

Q = NA − QDebye

= Nf 1 + Nf 2 − Nf 3 − QDebye

= (r − s)M + Nf 2 − rNa
m − sNb

m , (C5)

where Nf 1 − Nf 2 = rM , Nf 3 − Nf 2 = sM with r and s

r = qv′ − q ′v
DetK

, s = q ′u − qu′

DetK
. (C6)

We note that r and s can be either integer or nonintegral rational
numbers. However, rM and sM must be integer valued in order
to ensure the Nf i are integer valued. Thus, the quantization of
M should be altered properly if r and s are nonintegral rational
numbers. In summary, we can define the following domains:

Nf 2 ∈ Z, Na
m ∈ Z, Nb

m ∈ Z,
M

w
∈ Z , (C7)

where w is a positive minimal integer such that both rM ∈ Z
and sM ∈ Z are satisfied. In Eq. (C5), the M-dependent charge
(r − s)M is integer valued:

(r − s)M ∈ Z . (C8)

Therefore, the minimal quantized value of Q is sufficiently
determined by rNa

m and sNb
m by noting that the latter two

terms can be potentially fractionalized depending on r and
s. In the language of the EM response theory, M-dependent
charge means that the EM magnetic current minimally couples
to the EM gauge field Aμ. In other words, the bulk supports
an EM response action with � term. If we define �

2π
M =

(r − s)M , then Q = �
2π

M + Nf 2 − rNa
m − sNb

m with � =
2π (r − s). However, due to Eq. (C8), this nonzero � gives
rise to an integer charge cloud surrounding EM magnetic
monopoles. This additional charge cloud does not render a new
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quantization of Q different from the quantization when M = 0.
In other words, the EM charge lattice (M − Q plane) is just a
square lattice that is not tilted. The allowed values of Q when
M = 0 are completely the same as when M �= 0. In this sense,
the resulting state with � = 2π (r − s) is equivalent to a trivial
state with � = 0. By comparison, a typical example with
nontrivial � angle has a Q quantization shown in Eqs. (51)
and (52) of Sec. III B where the quantization of Q manifestly
depends on M .

2. Derivation of Eqs. (51), (52), and (58), and the site
distribution in Fig. 5(c)

Since M is quantized in multiples of 3 as indicated in
Eq. (45), one may introduce an integer k such that M = 3k.
Meanwhile, Eq. (50) indicates that Q is generically quantized
in multiples of 1

6 . Thus, we can introduce an integer k0 such
that Q = k0

6 . Then, Eq. (50) is formulated as

k0 + 5k = 2(7nf 1 − nf 2 − 3nf 3) , (C9)

where the right-hand side is always even. 5k has the same even-
odd property as k. As a result, k0 and k must be simultaneously
either odd or even, which leads to Eqs. (51) and (52).

Then, we start with 	 in Eq. (53) and derive its equivalent
expression (58). Due to Eqs. (45) and (52), we introduce four
integer numbers k0,k1,k2,k3 via

M = 3k, Na
m = 2k1, Nb

m = 2k2, Q = k0

6
(C10)

so as to simplify the analysis below. Then, solving
Eqs. (46), (47), and (50) leads to

nf 1 = −5

2
k + k0

6
+ 5

3
k1 − 2

3
k2, (C11)

nf 2 = −13

2
k + k0

6
+ 11

3
k1 + 1

3
k2, (C12)

nf 3 = −9

2
k + k0

6
+ 8

3
k1 − 5

3
k2. (C13)

Therefore, 	 in Eq. (58) can be reformulated as

	 = (M + 1)

(
−14k + 1

2
k + k0

2
+ 8k1 − 2k2

)
. (C14)

Since (M + 1)(−14k + 8k1 − 2k2) is always an even integer,
we may remove it and end up with

	 = (M + 1)

(
1

2
k + k0

2

)
= 3(M + 1)

(
Q + 1

18
M

)
(C15)

which can be rewritten as

	 = 3(M + 1)

(
Q − �

2π
M

)
(C16)

with � = − 1
9π . One can check that 	 is invariant under

the shift � → � + 2
9π since the additional term −3(M +

1) 1
9M = −k(3k + 1) is always an even integer which leaves

the even/odd property of 	 unaltered. From this point of
view, we say that two �’s are topologically equivalent if their
difference is given by multiples of 2

9π . In conclusion,

� = 1
9π mod 2

9π . (C17)

As a result, − 1
9π , 1

9π , − 5
9π , etc., describe the same FTI states.

The periodicity 2
9π is the minimal one in the sense that any

shift smaller than 2
9π does not keep the even-odd property of

	 invariant. In other words, the charge lattice with “tilt angle”
� = 1

9π is always different from a lattice with � = 0. This
periodicity check is very important since it is possible that a
nonzero � might be entirely removed by a periodic shift. If
this happens, the resulting bulk state is actually a trivial state.

Next, we calculate the lattice sites in Fig. 5(b). Since Q = 1
6

and M = 3, we have k0 = 1, k = 1:

nf 1 = (−2 + 2k1 − k2) + −1 − k1 + k2

3
, (C18)

nf 2 = (−6 + 4k1) + −1 − k1 + k2

3
, (C19)

nf 3 = (−4 + 3k1 − 2k2) + −1 − k1 + k2

3
. (C20)

Therefore, −1 − k1 + k2 should be quantized in multiples of
3 such that the nf i’s are integer valued. By noting that Na

m =
2k1, Nb

m = 2k2, we end up with Fig. 5(c) where k0 = 1, k = 0
are assumed.

APPENDIX D: TECHNICAL DETAILS IN ESC. IV

1. Charles is a group

Proof. Step 1 is to prove that Auto(K) is a group. In other
words, the elements satisfy the four group axioms (identity
element, inverse element, closure, associativity).

Identity element: The identity element is GI = W ⊕ � =
I ⊕ I where I is a rank-2 identity matrix. For every element
G in Auto(K), the equation G · GI = GI · G = G holds. Here,
the symbol · denotes matrix multiplication. We will also omit
it unless otherwise specified.

Associativity: Associativity is guaranteed by matrix multi-
plication rules.

Inverse element: The inverse element of G is given by
G −1 = W−1 ⊕ �−1. One may check that (W−1 ⊕ �−1) ·
(W ⊕ �) = I ⊕ I = GI and (W ⊕ �) · (W−1 ⊕ �−1) = GI,
which means that G −1 · G = G · G −1 = GI.

Closure: Suppose G ′ = W ′ ⊕ �′ ∈ Auto(K). Thus,
W,�,W ′,�′ matrices satisfy conditions (i) and (ii) in
Definition 5. Then, by definition, G ′ · G = (W ′W ) ⊕ (�′�).
Both W ′W and �′� are still rank-2 unimodular matrices.
Furthermore,

(�′�)K(W ′W )T = �′(�KWT )W ′T = �′KW ′T = K .

Therefore, condition (i) is satisfied. And,

	[. . . ,(W ′W )−1Nm, . . . ]

= 	(. . . ,W−1W ′−1Nm, . . . )

= 	(. . . ,W ′−1Nm, . . . )

= 	(. . . ,Nm, . . . ) .

Therefore, condition (ii) is also satisfied.
Step 2 is to verify that Inner(K) is a subgroup of Auto(K).

First, it is a subset of Auto(K), i.e., Inner(K) ⊂ Auto(K) since
not only do W and � satisfy conditions (i) and (ii), but also
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satisfy

W−1Nm − Nm = KT (n1,n2)T (D1)

and

�−1L − L = K(n3,n4)T . (D2)

Here, n1, . . . ,n4 are integers. n1,n2 depend on Nm,W ; n3,n4

depend on L,�.
GI ∈ Inner(K) since one can obtain GIL − L = 0 and

GINm − Nm = 0 by choosing n1 = n2 = n3 = n4 = 0 for all
L’s and Nm’s. Then, elements of Inner(K) have associativity
arising from the standard matrix multiplication.

For the existence of the inverse element, we need to prove
that W−1 ⊕ �−1 ∈ Inner(K). By definition, for W ⊕ � ∈
Inner(K), the operation of W is

W−1Nm − Nm = KT JW,Nm
,

where the notation JW,Nm
denotes the integer vector (n1,n2)T

and the subscript W,Nm means that the integer vector is a
function of W and Nm. Likewise, we also have

W−1(WNm) − WNm = KT JW,WNm
.

As a result, WNm − Nm = −KT JW,WNm
. Since −JW,WNm

is
an integer vector, we obtain the operation of W−1:

(W−1)−1Nm − Nm = KT (−JW,WNm
)

which exactly satisfies the defining property of Inner(K).
Likewise, we can also prove that �−1 is an operation
in Inner(K). Therefore, the inverse element G −1 = W−1 ⊕
�−1 ∈ Inner(K).

For the closure property, we need to prove that G ′ ·
G ∈ Inner(K) if G ′ ∈ Inner(K) and G ∈ Inner(K). For this
purpose, let us calculate

(W ′W )−1Nm − Nm

= W−1W ′−1Nm − Nm = W−1
(
Nm + KT JW ′,Nm

) − Nm

= (W−1Nm − Nm) + W−1KT JW ′,Nm

= KT JW,Nm
+ KT �T JW ′,Nm

= KT
(
JW,Nm

+ �T JW ′,Nm

)
,

where we have used W−1KT = KT �T that is an equivalent
expression of condition (i). Since JW,Nm

+ �T JW ′,Nm
is an

integer vector (by noting that � is unimodular), we conclude
that W ′W satisfies the defining property of Inner(K). So does
��′. Therefore, G ′ · G ∈ Inner(K).

Step 3 is to prove that Inner(K) is normal. In other words,
we need to verify that W ′WW ′−1 ∈ Inner(K) and �′��′−1 ∈
Inner(K) for ∀ W,� ∈ Inner(K) and ∀ W ′,�′ ∈ Auto(K). For

W

K

ΩT

Λ

Ξ (a)                                 (b) 

(c) 

T

FIG. 8. Tensor-network-type graphical representations of
Charles transformations. (a) Represents Eq. (63) where K is a
fixed-point matrix. (b) Represents Eq. (68) where � is a fixed-point
tensor with a bond dimension no less than two. (c) Represents
Eq. (70) where � is a fixed-point tensor with a bond dimension no
less than four.

this purpose, let us calculate

(W ′WW ′−1)−1Nm − Nm

= W ′(W−1W ′−1Nm) − Nm

= W ′(W ′−1Nm + KT JW,W ′−1Nm

) − Nm

= W ′KT JW,W ′−1Nm
.

Since W ′ ∈ Auto(K), condition (i) in Eq. (63) leads to
�′KW ′T = K, and thereby W ′KT �′T = KT . Therefore,
W ′KT = KT (�′T )−1. Therefore,

(W ′WW ′−1)−1Nm − Nm = K(�′T )−1JW,W ′−1Nm
.

Since (�′T )−1 is obviously a unimodular matrix, it implies
that (�′T )−1JW,W ′−1Nm

is an integer vector. Thus, by the

definition of Inner(K), W ′WW ′−1 ∈ Inner(K). Likewise, we
also have �′��′−1 ∈ Inner(K). Therefore, we conclude that
Inner(K) is a normal subgroup of Auto(K).

Then, according to the definition of Charles, the elements
of Charles form a quotient group of Auto(K) by Inner(K). It
can be non-Abelian since G · G ′ �= G ′ · G may hold for some
elements. �

2. Graphical representations of Charles transformations

Equations (63), (68), and (70) are graphically represented
in Fig. 8 where a tensor-network-type graph is introduced.
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