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Fermionic boundary modes in two-dimensional noncentrosymmetric superconductors
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We calculate the spectrum of the Andreev boundary modes in a two-dimensional superconductor formed at
an interface between two different nonsuperconducting materials, e.g., insulating oxides. Inversion symmetry is
absent in this system, and both the electron band structure and the superconducting pairing are strongly affected
by the spin-orbit coupling of the Rashba type. We consider isotropic s-wave pairing states, both with and without
time-reversal symmetry breaking, as well as various d-wave states. In all cases, there exist subgap Andreev
boundary states, whose properties, in particular, the number and location of the zero-energy modes, qualitatively
depend on the gap symmetry and the spin-orbit coupling strength.
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I. INTRODUCTION

Superconducting materials without inversion symmetry
have recently become a subject of rapidly growing interest (see
Refs. [1,2] for a review and references). Due to the qualitative
changes in their band structure caused by the spin-orbit
(SO) coupling of electrons with the crystal lattice, properties
of these materials differ significantly from the predictions
of the standard Bardeen-Cooper-Schrieffer (BCS) theory of
superconductivity. In a nutshell, the SO coupling in a non-
centrosymmetric crystal lifts the spin degeneracy of the Bloch
states almost everywhere in the Brillouin zone (BZ). Spin is
no longer a good quantum number, and the nondegenerate
bands are instead labeled by “helicity” and have a nontrivial
topology in the momentum space. If the SO band splitting is
large compared to all superconducting energy scales (which is
the case in real materials), then the Cooper pairing occurs only
between time-reversed quasiparticle states of the same helicity,
with profound consequences for superconductivity [3].

While noncentrosymmetric superconductivity has mostly
been observed in three-dimensional (3D) materials, it can
also be realized in two dimensions (2D), for example, at
the interface LAO/STO between two band insulators LaAlO3

and SrTiO3 (Ref. [4]). Other similar systems include the
LSCO/LCO or LTO/STO interfaces between various metallic
or insulating oxides, and also surfaces of doped insulators,
such as STO and possibly WO3 (see Refs. [5,6] for a review).
The superconducting critical temperature Tc can be as high
as 109 K, for FeSe monolayers deposited on doped STO
substrates [7]. In all these systems, the inversion symmetry is
broken due to the different nature of the materials sandwiching
the conducting layer. As an added bonus, the SO coupling
strength in the oxide interfaces can be controlled by applying
an external gate voltage. For instance, the SO band splitting
in the 2D electron gas at the LAO/STO interface can be tuned
between 1 and 10 meV, while the maximum value of Tc is
about 0.3 K (Ref. [8]).

The qualitative significance of the electron-lattice SO
coupling makes noncentrosymmetric materials promising
candidates for applications to spintronics [9], as well as for
topological superconductivity [10]. The hallmark property
of topological superfluids and superconductors is that, while
fermionic excitations in the bulk are gapped, there are zero-
energy boundary modes propagating along the surface of the

system (see Refs. [11,12]). These modes are topologically
protected against sufficiently small perturbations, can carry
charge and spin currents, and also lead to prominent peaks in
the tunneling conductance [13,14].

In this paper, we study the spectrum of the fermionic
modes localized near the boundary of a semi-infinite 2D
noncentrosymmetric superconductor. Previous works on this
subject have focused mostly on time-reversal (TR) invariant
isotropic pairing states (see Ref. [15] for a review). The
Bogoliubov–de Gennes (BdG) equation in a half-plane with
the SO coupling of the Rashba form [16] was solved in Ref.
[17], while a different approach, based on the Eilenberger
equations without the SO band splitting, corresponding to a
weak SO coupling limit, was developed in Refs. [18,19]. The
main result is that the fermionic boundary modes are present
only if the “protected” spin-triplet component [20] of the gap
function is greater than the spin-singlet component, which puts
the system in a Z2-nontrivial topological class [21]. The effects
of the TR symmetry breaking by an external magnetic field
have been studied in Ref. [22], where the Zeeman interaction
was included in the singlet-triplet-mixing BdG Hamiltonian. It
was found that the gapless boundary modes can appear even in
the absence of the triplet component, if the field is sufficiently
strong.

Our goal is twofold. First, we would like to fill the gaps
in the literature and study the boundary mode spectra in (i)
a general isotropic superconducting state, in which the TR
symmetry is broken intrinsically, i.e., without any external
field (according to the symmetry classification of the stable
states in 2D noncentrosymmetric superconductors [23], such
states are possible on phenomenological grounds), and (ii)
anisotropically paired states, both with and without gap nodes
and/or TR symmetry breaking. Since the boundary modes
can be probed in tunneling experiments, understanding their
spectra can help determine the pairing symmetry in the bulk.
Second, we aim to go beyond the weak SO coupling limit and
develop a formalism which is applicable for any SO coupling
strength, pairing symmetry, and potentially any type of the
surface scattering.

The treatment of the fermionic boundary modes in this
paper is based on the semiclassical, or Andreev, equations [24]
for the quasiparticle wave functions in the helicity representa-
tion. The standard theoretical approach [25], which describes
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superconductivity in terms of spin-singlet and spin-triplet gap
functions, is not justified in noncentrosymmetric materials
with a large SO splitting of nondegenerate bands. Instead,
one should work in the helicity representation and construct
the pairing interaction using the exact band eigenstates,
which incorporate all effects of the noncentrosymmetric lattice
potential and the strong SO coupling. In the semiclassical
picture, the Fermi-surface quasiparticles of definite helicity
propagate along straight lines in the bulk, while the surface
scattering is described by an effective boundary condition
formulated in terms of the surface S matrix mixing the Andreev
amplitudes for different semiclassical trajectories [26].

The paper is organized as follows. In Sec. II, we introduce
the helicity representation, using the Rashba model as an
example, and discuss the peculiarities of the superconducting
pairing in the nondegenerate helicity bands. In Sec. III, we
derive general equations for the energy of the fermionic
boundary modes as a function of the momentum along the
surface. The results strongly depend on the number of the
surface scattering channels. In Secs. IV and V, the boundary
mode spectrum is calculated in the fully gapped states, s wave
and the chiral d wave, respectively, with particular attention
given to the fate of the zero-energy modes. In Sec. VI, the
TR invariant (nonchiral) d-wave states with gap nodes are
examined. Section VII concludes with a summary of our
results. Throughout the paper, we use the units in which
� = kB = 1, neglecting, in particular, the difference between
the quasiparticle momentum and wave vector.

II. SUPERCONDUCTIVITY IN NONDEGENERATE BANDS

The minimal model that captures the essential physics of a
2D electron gas with an asymmetric SO coupling is described
by the following Hamiltonian:

Ĥ0 =
∑
k,αβ

hαβ(k)â†
kαâkβ. (1)

Here, k = (kx,ky) is a 2D wave vector, α,β = ↑,↓ are spin
indices, ĥ(k) = ε(k)σ̂0 + γ (k)σ̂ , and σ̂ are the Pauli matrices.
The first term in ĥ is the “bare” band dispersion without the
SO coupling. The chemical potential, which is assumed to be
equal to the Fermi energy εF , is included in ε(k). The second
term describes the SO coupling of 2D electrons with their
noncentrosymmetric environment. For example, at an interface
between two insulating oxides, this SO coupling is due to the
intrinsic electric field normal to the interface, which compen-
sates the charge discontinuity between the two sides [6]. Due
to the TR invariance of the normal state, we have ε(k) = ε(−k)
and γ (k) = −γ (−k), with additional constraints imposed by
the 2D point-group symmetry [23]. Diagonalization of the
Hamiltonian (1) produces two nondegenerate bands

ξλ(k) = ε(k) + λ|γ (k)| = ξλ(−k), (2)

labeled by helicity λ = ±. Physically, the helicity corresponds
to the spin projection on the direction of the SO coupling γ (k).

The superconducting pairing takes places between the time-
reversed Bloch states of the same helicity, |k,λ〉 and K|k,λ〉,
which belong to k and −k, respectively, and have the same
energy. Recall that the TR operator for spin- 1

2 particles has the
form K = iσ̂2K0, where K0 is complex conjugation. Since the

bands are nondegenerate almost everywhere in the BZ, one has

K|k,λ〉 = tλ(k)| − k,λ〉, (3)

where tλ(k) = −tλ(−k) is a phase factor [27], which cannot
be removed by a gauge transformation of the Bloch states.
While the phase factor is not defined at the band degeneracy
points, one can use its winding numbers around these points to
introduce a Z2 topological invariant of the normal-state band
structure [23].

To make analytical progress, we will use the isotropic
effective mass approximation for the bare band dispersion and
a particular form of the SO coupling known as the Rashba
model (see Ref. [16] and the references therein), which is
described by the following Hamiltonian:

ĥ(k) =
(

k2

2m∗ − εF

)
σ̂0 + γ0(kyσ̂x − kxσ̂y), (4)

where εF = k2
F /2m∗ and kF is the Fermi wave vector in the

absence of the SO coupling. For the helicity bands we obtain

ξλ(k) = |k|2 − k2
F

2m∗ + λγ0|k|, (5)

assuming γ0 > 0. Although the two Fermi surfaces have
different radii

kF,λ =
√

k2
F + (m∗γ0)2 − λm∗γ0,

i.e. kF,− > kF,+, the Fermi velocities are the same in both
bands:

vF,λ = vF

k
|k| , vF = 1

m∗

√
k2
F + (m∗γ0)2. (6)

It is convenient to introduce the parameter

ρ = kF,+
kF,−

, 0 < ρ � 1 (7)

as a dimensionless measure of the SO coupling strength. Zero
SO coupling corresponds to ρ = 1, while in the limit of very
strong SO coupling, we have ρ → 0 and the minority (λ = +)
Fermi surface shrinks to a point. The eigenstates of the Rashba
Hamiltonian (4) have the form

χλ(k) = 1√
2

(
1

−iλeiϕk

)
, (8)

where ϕk = tan−1(ky/kx) is the angle between k and the
positive x axis. It follows from Eqs. (3) and (8) that the
phase factor connecting the time-reversed Rashba eigenstates
is given by tλ(k) = iλe−iϕk .

We now use the basis of the exact helicity states |k,λ〉 to
construct the pairing interaction between electrons. Assuming
a BCS-type mechanism of superconductivity, this interaction is
only effective near the 2D Fermi surface. The latter is defined,
in the λth band, by the equation ξλ(k) = 0. In real materials,
the energy scales associated with superconductivity, including
the critical temperature Tc and the BCS energy cutoff, are
much smaller than the SO band splitting ESO (in the Rashba
model, ESO = 2γ0kF ). This means that the Fermi surfaces are
sufficiently well separated to suppress the pairing of electrons
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with opposite helicities, which leads to the following mean-
field Hamiltonian:

Ĥ =
∑

k,λ=±
ξλ(k)ĉ†k,λĉk,λ

+1

2

∑
k,λ=±

[�̃λ(k)ĉ†k,λ
ˆ̃c†k,λ + �̃∗

λ(k) ˆ̃ck,λĉk,λ]. (9)

The Cooper pairing takes place between the states |k,λ〉
and K|k,λ〉, and ˆ̃c†k,λ ≡ Kĉ

†
k,λK

−1 = tλ(k)ĉ†−k,λ. Due to the
anticommutation of the fermion creation and annihilation
operators, the gap functions in the helicity representation are
even in k:

�̃λ(k) = �̃λ(−k). (10)

The momentum dependence of the gap functions, in particular
the presence and location of the gap nodes, is determined by
the irreducible representations of the 2D point group (see Ref.
[23] for a detailed analysis). In this paper, we focus on the
s- and d-wave pairing states, corresponding to the two lowest
possible values of the pair angular momentum compatible with
the condition (10).

The model defined by the Hamiltonian (9) is formally
similar to the two-band BCS theory, which has been recently
applied to MgB2, iron-based high-temperature superconduc-
tors, and other materials [28]. Note though that, in our
case, the bands are nondegenerate and the pairing symmetry
classification is different (see Ref. [23]). In general, the number
of bands split by the SO coupling can be greater than two,
leading to multicomponent superconducting order parameters
and complex phase diagrams. It has been shown [29] that some
of the stable states found by minimizing the Ginzburg-Landau
free energy with two or more bands break the TR symmetry.
We consider the TR symmetry-breaking s- and d-wave states
in Secs. IV and V, respectively.

To conclude this section, we note that the helicity band
description of noncentrosymmetric superconductivity with a
strong SO coupling can be easily translated into the language
of spin-singlet and spin-triplet components. The gap function
in the spin representation contains both the singlet and triplet
parts, given by ψ ∼ �̃+ + �̃− and d ∼ (�̃+ − �̃−)γ̂ , respec-
tively [1]. In the limit of a local BCS attractive interaction,
both gap functions are the same: �̃+ = �̃− = �0, which
corresponds to a purely singlet isotropic pairing, regardless
of the SO coupling strength. Any difference between �̃+
and �̃−, giving rise to the “protected” triplet order parameter
d(k) ‖ γ (k) ([20]), is only possible if the pairing interaction
contains a triplet component.

III. FERMIONIC BOUNDARY MODES

Consider a 2D noncentrosymmetric superconductor occu-
pying the positive-x half-plane, in which quasiparticles are
reflected specularly from an atomically smooth straight bound-
ary at x = 0. To make analytical progress, we neglect self-
consistency and assume that the order parameter is uniform.
Translational invariance along the boundary implies that ky is
a good quantum number. Then, the Bogoliubov quasiparticle
wave function in each band is a two-component (electron-hole)
spinor, which can be represented in the semiclassical, or

Andreev, approximation [24] as eikλ,n rψλ,n(x), where kλ,n is
a Fermi-surface wave vector in the λth band and n labels the
roots of the equation

ξλ(k) = 0 (11)

at given ky . The helicity band dispersions for a general
antisymmetric SO coupling are given by Eq. (2). The Andreev
envelope function ψλ,n varies slowly on the scale of the Fermi
wavelength and satisfies the following equation:(−ivλ,n∇x �λ,n

�∗
λ,n ivλ,n∇x

)
ψ = Eψ. (12)

Here, vλ,n = (∂ξλ/∂kx)|k=kλ,n
is the x projection of the Fermi

velocity and

�λ,n ≡ �(kλ,n) = �̃λ(kλ,n)

is a shorthand notation for the gap function sensed by the
quasiparticles in the λth band propagating with the wave vector
kλ,n.

At given momentum along the surface, Eq. (11) can have
several solutions, determined by the band structure. Depending
on the direction of propagation, the corresponding Andreev
states are classified as either incident, for which vλ,n < 0, or
reflected, for which vλ,n > 0. For vλ,n = 0, the quasiparticles
move along the surface and the semiclassical approximation
is not applicable.

We focus on the quasiparticle states localized near the
surface, which are called the Andreev bound states (ABSs).
The corresponding solution of Eq. (12) has the form ψλ,n(x) =
φ(kλ,n)e−�λ,nx/|vλ,n|, where

φ(kλ,n) ≡ ψλ,n(x = 0)

= C(kλ,n)

⎛
⎝ �λ,n

E − i�λ,n sgn vλ,n

1

⎞
⎠, (13)

�λ,n = √|�λ,n|2 − E2, and C(kλ,n) is a coefficient. The
semiclassical approximation breaks down near the surface
due to the rapid variation of the lattice potential, which
causes elastic transitions between the states corresponding to
different Fermi wave vectors, in particular, between the states
of different helicity. Therefore, the ABS wave function away
from the surface becomes a superposition of the solutions
corresponding to all possible Fermi wave vectors kλ,n at given
ky :

�ky
(r) =

∑
λ,n

φ(kλ,n)eikλ,nre−�λ,nx/|vλ,n|. (14)

In order for the wave function to be localized near the surface,
the energy has to be inside the bulk gaps, i.e., |E| < |�λ,n| for
all kλ,n.

Suppose that at given momentum along the surface the total
number of roots of Eq. (11) in both helicity bands is equal to
2N , corresponding to the incident and reflected Fermi wave
vectors kin

1 , . . . ,kin
N and kout

1 , . . . ,kout
N , respectively. Following

Ref. [26], we describe the surface scattering by an effective
boundary condition, which expresses the Andreev amplitudes
at x = 0 for the reflected waves in terms of those for the
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FIG. 1. The incident and reflected wave vectors for N = 1
(kF,+ < |ky | < kF,−). The circular Fermi surfaces with λ = − and +
correspond to the majority and minority helicity bands in the Rashba
model.

incident waves as follows:

φ
(
kout

i

) =
N∑

j=1

Sijφ
(
kin

j

)
. (15)

Here, Ŝ is an N × N unitary matrix and i,j = 1, . . . ,N label
the surface scattering channels. The S matrix is an electron-
hole scalar, which is determined by the microscopic details in
the normal state.

According to Eq. (13), the Andreev amplitudes for the
incident waves have the form

φ
(
kin

i

) = C
(
kin

i

)(αin
i

1

)
, (16)

where

αin
i = �

(
kin

i

)
E + i

√∣∣�(
kin

i

)∣∣2 − E2
. (17)

For the reflected wave amplitudes, we have

φ
(
kout

i

) = C
(
kout

i

)(αout
i

1

)
, (18)

where

αout
i = �

(
kout

i

)
E − i

√
|�(

kout
i

)|2 − E2
. (19)

Inserting Eqs. (16) and (18) into the boundary conditions (15),
we obtain a homogeneous system of 2N linear equations for
the coefficients C(kin

1 ), . . . ,C(kin
N ) and C(kout

1 ), . . . ,C(kout
N ).

Equating its determinant to zero yields an equation for the
ABS energy E(ky). Below we consider two cases which can
be treated analytically: one scattering channel in the majority
(λ = −) band, or two scattering channels, one in each band.
These cases are illustrated in Figs. 1 and 2, respectively, for
the isotropic helicity bands in the Rashba model.

For N = 1, the scattering matrix becomes just a single
complex number (a pure phase). The energy equation then

FIG. 2. The incident and reflected wave vectors for N = 2 (|ky | <

kF,+). The circular Fermi surfaces with λ = − and + correspond to
the majority and minority helicity bands in the Rashba model.

takes the simple form αin
− = αout

− , or

E + i
√|�(kin−)|2 − E2

E − i
√|�(kout− )|2 − E2

= �(kin
−)

�(kout− )
, (20)

which remarkably does not contain any surface scattering
details. It follows from this last equation that the subgap ABS
can exist only if �(kout

− ) �= �(kin
−), i.e., when the quasiparticles

sense different gap functions before and after the surface
reflection. This is similar to other systems in which the
gap function variation along the quasiparticle’s semiclassical
trajectory leads to a bound state. Examples include the ABS
near a surface of a d-wave or a chiral p-wave superconductor
[13,14] or near a superconducting domain wall [30].

For N = 2, the boundary condition (15) takes the form⎛
⎜⎜⎜⎝

S−−αin
− S−+αin

+ −αout
− 0

S−− S−+ −1 0

S+−αin
− S++αin

+ 0 −αout
+

S+− S++ 0 −1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

C(kin
−)

C(kin
+)

C(kout
− )

C(kout
+ )

⎞
⎟⎟⎟⎠ = 0.

From this, we obtain the following ABS energy equation at
given ky :

(αin
− − αout

− )(αin
+ − αout

+ )

(αin− − αout+ )(αin+ − αout− )
= S−+S+−

S−−S++
, (21)

where αin
± and αout

± are defined by Eqs. (17) and (19). Note that
Eqs. (20) and (21) are valid for any gap symmetry and band
structure, as long as the surface scattering is specular.

IV. S-WAVE PAIRING

In this section, we consider the pairing state described by
the following gap functions:

�̃−(k) = �−, �̃+(k) = �+eiχ , (22)

where �± � 0 are the gap magnitudes. Due to the momentum-
space isotropy it can be called the s-wave state. If the phase
difference between the bands is equal to 0 or π , as usually
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FIG. 3. The reflection angles at given ky , for N = 2.

assumed, then the superconducting state is TR invariant.
However, minimization of the phenomenological two-band
Ginzburg-Landau theory can yield an arbitrary value of χ ,
leading to the possibility of TR symmetry-breaking stable
states. For this reason, we consider the general case with
0 � χ � π . While the quasiparticle spectrum in the bulk is
fully gapped, there might exist the subgap surface states, whose
energy depends on χ . It is known [17] that such states are
present if χ = π [which corresponds to the dominant triplet
component in the spin representation (see the end of Sec. II)]
and are absent if χ = 0.

From this point on, we focus on the isotropic Rashba
model [Eq. (4)] in a half-plane, for which the S matrix can be
calculated explicitly (see Appendix A). At given momentum
along the surface, the directions of semiclassical trajectories
can be characterized by the angles of reflection θ− and θ+, as
shown in Fig. 3. We have

ky = kF,− sin θ− = kF,+ sin θ+, (23)

so that kin
λ = kF,λ(− cos θλ, sin θλ) and kout

λ = kF,λ(cos θλ,

sin θλ).

A. kF,+ < |ky| < kF,−

In this case, there is just one scattering channel, in the
majority (λ = −) band (see Fig. 1). The gap function �̃−(k)
has the same value �− on the incident and reflected legs of
the semiclassical trajectory and the only solution of Eq. (20) is
|E(ky)| = �−. Therefore, there is no subgap ABS, regardless
of the value of χ .

B. |ky| < kF,+

This momentum range corresponds to N = 2 (see Fig. 2),
and the ABS energy as a function of ky is obtained by solving
Eq. (21). The surface S matrix for the isotropic Rashba model
is given by

S−− = e−iθ− − eiθ+

eiθ− + eiθ+
,

S−+ = S+− = −2
√

cos θ− cos θ+
eiθ− + eiθ+

, (24)

S++ = −eiθ− − e−iθ+

eiθ− + eiθ+

-0.8 -0.4 0 0.4 0.8
k

y
 / k

F,-

-0.1

-0.05

0

0.05

0.1

E
/Δ

−

χ = π
0.8π
0.6π

FIG. 4. The surface ABS dispersion in the case of s-wave pairing,
for �+/�− = 0.1. The critical value of the phase difference is χc 

0.47π .

[see Eq. (A5)]. The ABS energy equation takes the form

(αin
− − αout

− )(αin
+ − αout

+ )

(αin− − αout+ )(αin+ − αout− )
= 1 − 1

ζ
, (25)

where

ζ (ky) = 1 − cos(θ− + θ+)

1 + cos(θ− − θ+)
, 0 � ζ � 1. (26)

Substituting here the gap functions (22), we arrive at the
following equation for E(ky):

E2 − �−�+ cos χ√
(�2− − E2)(�2+ − E2)

= R, (27)

where

R(ky) = 1 + ζ (ky)

1 − ζ (ky)
= k2

y + kF,−kF,+√
(k2

F,− − k2
y)(k2

F,+ − k2
y)

. (28)

The solution for the ABS energy has to be inside the bulk
gaps, i.e., |E| < min(�−,�+). Since Eq. (27) contains only
E2, there are two ABSs at each ky , with energies ±|E(ky)|.
Also, it is easy to see that the ABS spectrum is symmetric
with respect to the inversion of the momentum parallel to the
surface, i.e., E(ky) = E(−ky).

Let us first consider the TR invariant states. For χ = 0, Eq.
(27) does not have any solutions because its left-hand side
is negative, while the right-hand side is positive. In contrast,
for χ = π there are subgap ABSs, whose energy vanishes at
ky = 0 according to

E(ky → 0) = ±kF,− + kF,+
kF,−kF,+

�−�+
�− + �+

|ky | (29)

(see Ref. [17]). This can be viewed as a pair of counterprop-
agating modes with linear dispersion (see the solid lines in
Figs. 4 and 5). From the topological point of view, the TR
invariant states in 2D can be classified by a Z2 invariant, which
is equal to the parity of the number of such pairs [12]. Thus,
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-0.8 -0.4 0 0.4 0.8
k

y
 / k

F,-

-1

-0.5

0

0.5

1

E
/Δ

−

χ = π
0.7π
0.3π

FIG. 5. The surface ABS dispersion in the case of s-wave pairing,
for �+/�− = 1.0. The critical value of the phase difference is χc = 0.

we have reproduced the known result that the χ = 0 state is
Z2 trivial and the χ = π state is Z2 nontrivial [10,17].

If the phase difference χ is neither 0 nor π , then the
TR symmetry is broken in the superconducting state and
the Z2 topological classification is no longer applicable.
The ABS energy equation (27) can be transformed into
a biquadratic equation for E, supplemented with the con-
straint �−�+ cos χ < E2 < min(�2

−,�2
+) [the first inequality

makes sure that the left-hand side of Eq. (27) is positive]. The
solution that satisfies the constraint has the following form:

E(ky) = ±√
�−�+F (ky), (30)

where

F = 1

2(R2 − 1)

[
r+R2 − 2 cos χ

−R

√
r2−R2 + 4(1 − r+ cos χ + cos2 χ )

]
,

with r± = (�2
− ± �2

+)/�−�+. In Figs. 4 and 5, the ABS
dispersion curves are plotted for different values of χ . In
all plots we used the same ratio of the Fermi-surface radii,
ρ = 0.8, as shown by the vertical dashed lines. Since the
expression (30) is invariant under the exchange of the gap
magnitudes �− ↔ �+, one can assume that �+ � �−.

We see that the Andreev surface modes survive the TR
symmetry breaking, but become gapped. The minimum of Eq.
(30) corresponds to ky = 0, so that the excitation gap is given
by

Egap ≡ |E(ky = 0)| =
√

�−�+

√
1 − cos2 χ

r+ − 2 cos χ
.

The gap is zero at χ = π and increases as χ decreases. One
can check that the ABSs exist only if the phase difference
between the bands satisfies the condition

χc < χ � π, (31)

where

χc = arccos

[
min

(
�−
�+

,
�+
�−

)]
.

At χ = χc the energy gap becomes equal to the lesser of
�−,�+, and the ABS merges into the continuum of bulk states.

V. CHIRAL D-WAVE PAIRING

Zero-energy fermionic boundary modes signaling a topo-
logically nontrivial state can also exist in an anisotropically
paired superconductor or superfluid with a nonzero phase
winding of the gap functions around the Fermi surface. Such
states necessarily break TR symmetry, an archetypal example
being the chiral p-wave state, which is realized in Sr2RuO4

(Ref. [31]) and in thin films of superfluid 3H −A (Ref. [32]). In
a 2D noncentrosymmetric superconductor, the gap functions
with the phase winding can be written as �̃λ(k) = �λe

iÑϕk .
The phase winding number Ñ has to be even because of the
condition (10). We focus on the lowest nontrivial case of
Ñ = 2, which corresponds to the chiral d-wave (or d + id)
state of the form k2

x − k2
y + 2ikxky . We further assume that

the gap magnitudes in both helicity bands are equal, i.e.,
�̃−(k) = �̃+(k) = �0e

2iϕk , with �0 > 0.

A. kF,+ < |ky| < kF,−

In this momentum range, we have N = 1 (see Fig. 1), and
the ABS energy equation (20) takes the form

E + i�

E − i�
= e−4iθ− , � =

√
�2

0 − E2.

Its solution is given by E = −�0 cos(2θ−) sgn sin(2θ−),
which can be represented, using Eq. (23), in terms of the
momentum parallel to the surface as follows:

E1(ky) = �0

(
2k2

y

k2
F,−

− 1

)
sgn (ky). (32)

The subscript in the energy function signifies the number of
the surface scattering channels. We see that the spectrum is
odd in ky , E1(ky) = −E1(−ky), and that there are two zero-
energy modes at ky = ±kF,−/

√
2, which propagate in the same

direction. These zeros are located inside the momentum range
kF,+ < |ky | < kF,− only if ρ < 1/

√
2 [see Eq. (7)], i.e., if the

minority Fermi surface is sufficiently small. In the single-band
limit, when the SO coupling is very strong and kF,+ → 0, the
results of Ref. [23] are recovered.

B. |ky| < kF,+

In this momentum range, we have N = 2 (see Fig. 2), and
the ABS energy can be found from Eq. (25), with αin

± and αout
±

defined by Eqs. (17) and (19), respectively. It is convenient
to introduce the following parametrization: E = �0 cos �,
then � = �0 sin � � 0. In terms of �, the expressions (17)
and (19) take the form αin

λ = (αout
λ )∗ = e−i(2θλ+�). After some

straightforward algebra, we arrive at the following equation
for �(ky):

cos(2θ− + 2θ+ + 2�) = P, (33)
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FIG. 6. The surface ABS dispersion in the chiral d + id state, for
ρ = kF,+/kF,− = 0.8. The red and blue lines correspond to different
nondegenerate spectral branches (see the text).

where

P (ky) = 1 − 2ζ (ky) sin2(θ− − θ+)

and ζ is given by Eq. (26). One can easily show that the
ABS energy has to be an odd function of momentum. Indeed,
since P is even in ky and θ± are odd, we have �(−ky) =
−�(ky) + πn (n is an integer), and

E(−ky) = (−1)nE(ky), �(−ky) = (−1)n+1�(ky).

It follows from the second of these expressions that n has to
be odd, therefore, E(−ky) = −E(ky).

Focusing on ky � 0, we obtain two solutions of Eq. (33):

E
(1)
2 (ky) = −�0 cos

(
θ− + θ+ − 1

2 arccos P
)

(34)

and

E
(2)
2 (ky) = −�0 cos

(
θ− + θ+ + 1

2 arccos P
)
, (35)

where the reflection angles can be expressed in terms of
the momentum parallel to the surface using Eq. (23) and
the subscripts in the energy functions signify the number
of the surface scattering channels. The corresponding ABS
dispersion curves are shown in Figs. 6, 7, and 8. The E

(1)
2

branch (shown in red) varies between −�0 at ky = +0 and
(2ρ2 − 1)�0 at ky = kF,+, where, according to Eq. (32), it
connects with the E1 branch [33]. The E

(2)
2 branch (shown in

blue) varies between the bulk gap edges, −�0 at ky = +0 and
�0 at ky = kF,+, passing through zero in-between.

C. Summary

Numerical investigation of the solutions (32), (34), and (35)
reveals a picture of the ABS spectrum which essentially de-
pends on the SO coupling strength. The latter is characterized
by the ratio of the Fermi momenta kF,+ and kF,− [see Eq. (7)].
For most values of ρ, there are four symmetrically located
zero-energy modes, which propagate in the same (positive)
direction along the y axis, as determined by the slopes of the
dispersion functions. This is shown in Figs. 6, 7, and 8 for
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FIG. 7. The surface ABS dispersion in the chiral d + id state, for
ρ = kF,+/kF,− = 0.5. The red and blue lines correspond to different
nondegenerate spectral branches (see the text).

three different values of ρ. The blue lines correspond to the
E

(2)
2 branch, while the red lines denote both the E

(1)
2 branch,

at |ky | < kF,+, and the E1 branch, at kF,+ < |ky | < kF,−. The
vertical dashed lines at |ky | = kF,+ = ρkF,− show the size of
the minority Fermi surface. The ABS energy is odd in ky and
has a discontinuity at ky = 0. The latter is due to the fact that
there is no ABS for the normal incidence, when quasiparticles
of both helicities sense the same gap function �0 before and
after the surface reflection.

The ABS dispersion is not a monotonic function of ky ,
in general, and its slope is discontinuous at |ky | = kF,+
(Ref. [33]). As a consequence, there exists a narrow window
of the values of ρ close to 1/

√
2 
 0.71, in which the total

number of the ABS zero modes increases to eight, with three
pairs propagating in the positive y direction and one pair in
the negative y direction. As the SO band splitting increases,
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FIG. 8. The surface ABS dispersion in the chiral d + id state, for
ρ = kF,+/kF,− = 0.2. The red and blue lines correspond to different
nondegenerate spectral branches (see the text).
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FIG. 9. Evolution of the zero modes in the E
(1)
2 and E1 branches at

ρ close to 1/
√

2. The curves (a), (b), and (c) correspond to ρ = 1/
√

2,
1/

√
2 − 0.5δ, and 1/

√
2 − δ, respectively (δ 
 9.37 × 10−3).

i.e., ρ decreases and reaches 1/
√

2, two extra zeros appear
at |ky | = kF,+. These zeros first move apart and then, at
ρ = 1/

√
2 − δ (numerically, δ 
 9.37 × 10−3), one of them

merges with and “cancels” the other zero mode in the E
(1)
2

branch. This behavior is shown in Fig. 9. Both the emergence
of the additional zero modes and the numerical smallness of δ

are rather surprising, being most likely artifacts of the isotropic
Rashba model.

In the limit of vanishing SO band splitting, we have kF,− =
kF,+ = kF . The E1 branch disappears and the E2 branches
merge, producing two pairs of degenerate zero-energy modes
at ky = ±kF /

√
2. Thus, we recover the result of Ref. [34]

for the chiral d-wave state in a superconductor without SO
coupling.

D. Topological analysis

For all values of ρ, the difference between the number
of ABS modes moving in the positive y direction and the
number of modes moving in the negative y direction is
equal to four, which is a manifestation of the bulk-boundary
correspondence [11]. The latter stipulates that the number
of zero-energy surface modes is determined by a topological
invariant characterizing the superconducting state in the bulk.
To identify the topological invariant appropriate for the chiral
d-wave state, we begin by introducing the Bogoliubov–de
Gennes (BdG) Hamiltonian associated with Eq. (9):

HBdG(k) =
∑
λ=±

�̂λ(k) ⊗ ĥλ(k), (36)

where �̂λ(k) = |k,λ〉〈k,λ| is the projector onto the λth helicity
band

ĥλ(k) =
(

ξλ(k) �λ(k)

�∗
λ(k) −ξλ(k)

)
= νλ(k)τ̂ (37)

and

νλ(k) =

⎛
⎜⎝

Re �λ(k)

−Im �λ(k)

ξλ(k)

⎞
⎟⎠.

The BdG Hamiltonian is represented by a 4 × 4 matrix in the
helicity × electron-hole (Nambu) space, and τ̂ are the Pauli
matrices in the Nambu space. It is easy to see that τ̂2ĥλ(k)τ̂2 =
−ĥ∗

λ(k), which leads to the electron-hole symmetry of the
spectrum: the eigenstates of HBdG(k) come in pairs ±Eλ(k),
where

Eλ(k) = |νλ(k)| =
√

ξ 2
λ (k) + |�λ(k)|2

is the energy of the Bogoliubov excitations in the λth band.
Next, we introduce an auxiliary real variable k0 (“fre-

quency”) and define the BdG Green’s function as follows:
G(k,k0) = [ik0 − HBdG(k)]−1. The topological invariant is
constructed in the following way [11,35]:

N2+1 = − 1

24π2

∫
Tr (GdG−1)3, (38)

where “Tr” stands for 4 × 4 matrix trace and combined matrix
and exterior multiplication is implied inside the trace. The
integration is performed over a closed (2 + 1)-dimensional
manifold with coordinates kx,ky,k0, which is topologically
equivalent to a 3D torus (the frequency variable runs over
the real axis, which is assumed to be closed into a circle).
Calculating the trace and integrating over k0, we arrive at the
following expression [23]:

N2+1 = 1

8π

∑
λ

∫
BZ

ν̂λ(d ν̂λ × d ν̂λ), (39)

where ν̂λ = νλ/|νλ|. Note that the integrand is nonzero only
inside the BCS momentum shells near the Fermi surfaces since
ν̂λ = ẑ sgn ξλ(k) outside the BCS shells.

Writing the gap functions in the form

�λ(k) = |�λ(k)|ei�λ(k), (40)

assuming a fully gapped superconducting state, and integrating
over ξλ, we finally obtain

N2+1 =
∑

λ

Nλ, (41)

where

Nλ = 1

2π

∮
FSλ

d�λ

is the winding number of the gap phase �λ(k) along the λth
Fermi surface. For the chiral d-wave state considered here, we
have N− = N+ = 2 and N2+1 = 4.
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VI. NONCHIRAL D-WAVE PAIRING

In this section, we consider the TR invariant d-wave states
of the form �̃λ(k) ∝ kxky or k2

x − k2
y , referred to as dxy or

dx2−y2 states, respectively. For simplicity, we assume the same
gap magnitudes in both helicity bands. Then, we have

�̃−(k) = �̃+(k) = �0 sin(2ϕk) (42)

or

�̃−(k) = �̃+(k) = �0 cos(2ϕk), (43)

where �0 > 0 and ϕk = tan−1(ky/kx) is the angle between k
and the positive x axis.

A. dx y state

Generally, the ABS formation is only possible when the gap
function is not constant along the quasiparticle’s trajectory. As
seen from Figs. 1 and 2, the gap functions (42) have opposite
signs on the incident and reflected trajectories, regardless of
the helicity and the value of ky :

�
(
kout

λ

) = −�
(
kin

λ

) = �0 sin(2θλ) ≡ �λ(ky). (44)

Therefore, one can expect the presence of the ABS zero-
energy modes, similar to those in centrosymmetric d-wave
superconductors [13,14]. Below, this is confirmed by a direct
calculation.

At kF,+ < |ky | < kF,−, we obtain from Eq. (20)

E + i

√
�2− − E2

E − i

√
�2− − E2

= −1. (45)

At |ky | < kF,+, the ABS energy equation has the form (25),
which can be reduced to√

(�2− − E2)(�2+ − E2) − �−�+

E2
= R, (46)

where R(ky) is the same as in Eq. (28). It follows from Eq.
(44) that �−(ky)�+(ky) � 0, from which one concludes that
the only solution of Eqs. (45) and (46) is

E(ky) = 0, (47)

at all ky , regardless of the SO coupling strength. Thus, we have
reproduced the dispersionless ABS spectrum in the dxy state
found previously in Ref. [36]. The ABS energy is shown by
the solid red line in Fig. 10, along with the anisotropic bulk
gap edge �b(ky). The latter is given by

�b(ky) = |�−(ky)| (48)

at kF,+ < |ky | < kF,−, and

�b(ky) = min{|�−(ky)|,|�+(ky)|} (49)

at |ky | < kF,+. These zero-energy states have a topological
origin, as shown in Ref. [37] and also discussed in Sec. VI C
below.
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FIG. 10. The surface ABS dispersion in the dxy state, for ρ =
0.8. The vertical dashed lines at ky = ±ρkF,− show the size of the
minority Fermi surface. The dotted lines denote the bulk gap edge
�b(ky). The zero-energy states are doubly degenerate at |ky | < kF,+
and nondegenerate at kF,+ < |ky | < kF,− [see Eq. (59)].

B. dx2− y2 state

The expressions (43) take the following values on the
incident and reflected trajectories:

�
(
kout

λ

) = �
(
kin

λ

) = �0 cos(2θλ) ≡ �λ(ky). (50)

The gap function remains unchanged after the surface reflec-
tion into the same helicity band, therefore, there are no subgap
ABSs for N = 1, i.e., at kF,+ < |ky | < kF,−. However, if the
quasiparticle is reflected into the opposite-helicity band at
N = 2, then the gap functions before and after the surface
reflection can differ, leading to the possibility of a subgap
ABS at |ky | < kF,+.

From Eq. (25) we obtain

E2 − �−�+√
(�2− − E2)(�2+ − E2)

= R, (51)

where �±(ky) are defined in Eq. (50) and R(ky) is given
by Eq. (28). The last equation has a subgap solution only
if �−(ky)�+(ky) < 0, which is realized at

ρ√
2

<
|ky |
kF,−

< min

{
ρ,

1√
2

}
. (52)

In this momentum range, �−(ky) > 0, but �+(ky) < 0, and
the ABS energy has the following form:

E(ky) = ±√
�(ky), (53)

where

� = 1

2(R2 − 1)

[
R2(�2

− + �2
+) − 2�−�+

− R(�− − �+)
√

R2(�− + �+)2 − 4�−�+)
]
.

We have plotted the dispersion curves (shown by the solid red
lines) in Figs. 11 and 12, along with the anisotropic bulk gap
edge �b(ky), defined in Eqs. (48) and (49). The subgap ABS
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FIG. 11. The surface ABS dispersion in the dx2−y2 state, for ρ =
0.5. The vertical dashed lines at ky = ±ρkF,− show the size of the
minority Fermi surface. The dotted lines denote the bulk gap edge
�b(ky).

modes are present only in a rather narrow window of momenta
along the surface, satisfying the condition (52).

C. Topological analysis

The presence of the zero-energy ABSs in the dxy state and
their absence in the dx2−y2 state can also be understood using
topological arguments [37]. In a TR invariant superconducting
state, the gap functions are real and we have τ̂2ĥλ(k)τ̂2 =
−ĥλ(k). Therefore, the BdG Hamiltonian (36) has the “chiral”
symmetry

{C,HBdG(k)} = 0, C = 1̂ ⊗ τ̂2. (54)

Note that ĥλ(k) = ĥλ(−k), due to Eq. (10).
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FIG. 12. The surface ABS dispersion in the dx2−y2 state, for ρ =
0.8. The vertical dashed lines at ky = ±ρkF,− show the size of the
minority Fermi surface. The dotted lines denote the bulk gap edge
�b(ky).

Superconducting states in the bulk can be classified into
different universality classes, according to the topology of
the mapping k → HBdG(k). These universality classes are
characterized by topological invariants obtained by integrating
certain differential forms constructed from HBdG over closed
manifolds in momentum space. For the TR invariant states, the
relevant topological invariant has the following form:

NTRI
1 = 1

4πi

∮
Tr

(
CH−1

BdGdHBdG
)
, (55)

where the integration is performed over a closed 1D contour in
the momentum space. One can show that this last expression
remains unchanged under any small variation of the system
parameters which respects the symmetry (54) (see, e.g., Ref.
[23]).

A straightforward calculation yields

H−1
BdGdHBdG =

∑
λ1λ2

�̂λ1d�̂λ2 ⊗ P̂λ1λ2 +
∑

λ

�̂λ ⊗ Q̂λ,

where

P̂λ1λ2 = Eλ2

Eλ1

[
(ν̂λ1 ν̂λ2 )τ̂0 + i(ν̂λ1 × ν̂λ2 )τ̂

]
,

Q̂λ = dEλ

Eλ

τ̂0 + i(ν̂λ × d ν̂λ)τ̂

are Nambu matrix-valued 0- and 1-forms, respectively. Insert-
ing these expressions in Eq. (55) and calculating the traces, we
obtain

NTRI
1 = 1

2π

∑
λ

∮
ξλd�λ − �λdξλ

E2
λ

= 1

2π

∑
λ

∮
d�̃λ, (56)

where �̃λ(k) is the phase of the complex number ξλ(k) +
i�λ(k). The last integral vanishes unless the integration
contour encloses one or more points where �̃λ is not defined,
i.e., the gap nodes on the Fermi surface, where ξλ(k) =
�λ(k) = 0.

According to Ref. [37], in order to count the zero-energy
ABS modes at given momentum along the surface, one should
integrate in Eq. (56) along a straight line running from to kx =
−∞ to +∞ (or between the opposite edges of the BZ). Then,
the number of the zero-energy ABSs is equal to |NTRI

1 (ky)|.
One can now use Stokes’ theorem to contract the integration
contour by deforming it through the BZ without crossing any
gap nodes (see Figs. 13 and 14), and show that

NTRI
1 =

∑
λ,i

qλ,i . (57)

Here, the sum is taken only over the gap nodes enclosed by
the contour,

qλ,i = 1

2π

∮
cλ,i

d�̃λ (58)

has the meaning of the topological charge of the ith gap node
in the λth band, and cλ,i is an infinitesimally small circular
contour wrapping counterclockwise around the node.
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FIG. 13. The integration contour in Eq. (56) for the dxy state. The
filled (empty) dots correspond to the gap nodes with the topological
charge +1 (−1).

The gap nodes in the dxy state are located at kx = 0,|ky | =
kF,λ and at ky = 0,|kx | = kF,λ, while in the dx2−y2 state they are
located at |kx | = |ky | = kF,λ/

√
2. Their topological charges

are equal to either +1 or −1, as shown in Figs. 13 and 14 by
the filled or empty dots, respectively. From Eq. (57), we finally
obtain

|NTRI
1 (ky)| =

{
2, at |ky | < kF,+
1, at kF,+ < |ky | < kF,−

(59)

in the dxy state, and∣∣NTRI
1 (ky)

∣∣ = 0, at all ky (60)

in the dx2−y2 state. Thus, the zero-energy ABSs in the dxy state
are topologically protected, while one should generally not
expect the zero modes in the dx2−y2 state.

FIG. 14. The integration contour in Eq. (56) for the dx2−y2

state. The filled (empty) dots correspond to the gap nodes with the
topological charge +1 (−1).

VII. CONCLUSIONS

We have developed a theory of fermionic boundary modes
in 2D superconductors without inversion symmetry, in the
presence of a strong SO coupling. Due to the band splitting
being much greater than the energy scales associated with
superconductivity, the Cooper pairing occurs only between
the time-reversed states of the same helicity. The boundary
modes appear as the subgap bound states in the semiclassical,
or Andreev, equations for the quasiparticle wave function.
The boundary conditions for the Andreev equations are
expressed in terms of the surface S matrix. The advantage
of the S-matrix formalism is that it can be extended, at
least phenomenologically, to describe more complicated band
structures and other types of the surface scattering, e.g.,
nonspecular and/or TR symmetry breaking.

In the helicity band representation, the gap functions
�̃−(k) and �̃+(k) are necessarily even in momentum. We
have studied in detail various s- and d-wave pairing states,
both TR symmetry breaking and TR invariant, and found
qualitatively different ABS spectra. We hope that our results
will be useful for the identification of the gap symmetry in 2D
interface superconductors. The boundary modes contribute to
the quasiparticle density of states and can therefore be probed
in tunneling experiments, which has been successfully done in
other unconventional superconductors, for instance, in high-Tc

cuprates (Ref. [38]) and Sr2RuO4 (Ref. [39]).
The isotropically gapped s-wave state is described by �̃− =

�− and �̃+ = �+eiχ , with the phase difference 0 � χ � π .
At χ = π , there are two counterpropagating zero-energy ABS
modes, which corresponds to a Z2-nontrivial topological class.
At χ < π , the TR symmetry is broken and the ABS spectrum
develops a gap. There exists a critical value of the phase
difference, 0 � χc < π , at which the ABSs disappear, merging
into the continuum of the bulk states.

In the TR symmetry-breaking d-wave state of the form
�̃± ∝ k2

x − k2
y + 2ikxky , the ABS spectrum consists of four

nondegenerate chiral branches, with a nonmonotonic depen-
dence on the momentum parallel to the surface. These modes
can carry a charge current along the boundary of the 2D
superconductor. While the total number of the zero-energy
modes depends on the SO band splitting, their algebraic
number (which takes into account the direction of propagation)
is a topological invariant equal to the sum of the gap phase
winding numbers in the helicity bands.

In the TR invariant d-wave state �̃± ∝ kxky , the ABS
modes of zero energy are present at all momenta along the
surface. This can be attributed to the fact that the gap function
sensed by a quasiparticle along its semiclassical trajectory
always changes sign upon the surface reflection. In contrast,
in the state �̃± ∝ k2

x − k2
y the ABS “pockets” exist only in a

certain momentum range, where there is a nonzero probability
of the gap function changing sign due to the helicity flip during
the surface scattering.
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APPENDIX A: S-MATRIX FOR THE RASHBA MODEL

The surface scattering matrix is an electron-hole scalar and
can therefore be calculated in the normal state [26]. Let us first
consider the case of two scattering channels. The quasiparticle
wave function in the bulk at given ky , satisfying |ky | < kF,+,
is a superposition of two incident and two reflected waves:

�(r) = A−〈r|kin
−〉 + A+〈r|kin

+〉 + B−〈r|kout
− 〉 + B+〈r|kout

+ 〉.
(A1)

All four states here are located at the Fermi level: ξλ(kin
λ ) =

ξλ(kout
λ ) = 0. Using the eigenstates of the Rashba model [see

Eq. (8)], we have

〈r|kin
λ 〉 = 1√

2|vλ,x

(
kin

λ

)|
(

1

iλe−iθλ

)
eikin

λ r ,

〈r|kout
λ 〉 = 1√

2|vλ,x

(
kout

λ

)|
(

1

−iλeiθλ

)
eikout

λ r , (A2)

where the angles of reflection θ± are defined in Fig. 3.
We use the normalization in which the magnitude of the
probability current carried in the x direction by each of the
plane-wave states (A2) is equal to one. It follows from Eq.
(6) that |vλ,x(kin

λ )| = |vλ,x(kout
λ )| = vF cos θλ. The complex

amplitudes A± and B± satisfy the condition

|A−|2 + |A+|2 = |B−|2 + |B+|2, (A3)

which expresses the particle-number conservation in terms of
the equality of the incident and reflected currents.

From the microscopic boundary condition for the wave
function at an infinitely high wall,

�(x = 0,y) = 0, (A4)

we obtain two linear relations between the four coefficients
A± and B±. These relations can be written in the matrix form
as follows: (

B−
B+

)
= Ŝ

(
A−
A+

)
,

where

Ŝ = − 1

eiθ− + eiθ+

×
(

eiθ+ − e−iθ− 2
√

cos θ− cos θ+
2
√

cos θ− cos θ+ eiθ− − e−iθ+

)
(A5)

(see also Ref. [40]). The diagonal and off-diagonal elements of
the S matrix are related to the probabilities of different surface
scattering processes. For the helicity-conserving transitions
kin

− → kout
− and kin

+ → kout
+ , the probabilities are given by

|S−−|2 and |S++|2, respectively, while for the helicity-flip
transitions kin

− → kout
+ and kin

+ → kout
− the probability is given

by |S−+|2 = |S+−|2. The S matrix is unitary, in agreement
with the particle-number conservation condition (A3). As
shown in Appendix B, it also satisfies an additional con-
straint imposed by TR invariance, which relates Ŝ(ky) and
Ŝ(−ky).

In the case of normal incidence, when θ− = θ+− = 0, the S

matrix takes a particularly simple form Ŝ = −σ̂x . The absence

of the diagonal matrix elements can be easily understood: at
ky = 0 the direction of momentum is reversed upon reflection,
but the spin is unchanged, which means that the normal
scattering flips the sign of helicity. The phase shift of π

between the incident and reflected waves makes sure that the
wave function vanishes at the surface.

The case of one scattering channel is realized at kF,+ <

|ky | < kF,−, when the waves corresponding to the minority
band become evanescent in the bulk. Although the positive
helicity states do not participate in the superconducting
pairing, one has to take them into account when calculating the
normal-state surface scattering matrix, in order to satisfy the
boundary condition. The quasiparticle wave function at given
ky , with the energy at the Fermi level, now has the form

�(r) = A−〈r|kin
−〉 + B−〈r|kout

− 〉 + ψ̃+(r). (A6)

The first two terms are the propagating wave states in the
majority band [see Eq. (A2)] and the last term is the minority-
band evanescent state given by

ψ̃+(r) = C

⎛
⎝ky − κ

kF,+
1

⎞
⎠e−κxeikyy,

where κ =
√

k2
y − k2

F,+ and C is a coefficient. From the
boundary condition (A4) we obtain the following expression
for the only element of the S matrix:

S−− = B−
A−

= −kF,+ + i(ky − κ)e−iθ−

kF,+ − i(ky − κ)eiθ−
. (A7)

It is easy to see that |S−−| = 1, in agreement with the particle-
number conservation, which requires |B−|2 = |A−|2.

APPENDIX B: TR SYMMETRY OF THE S-MATRIX

We assume that there are N surface scattering channels and
introduce the shorthand notations |σ 〉 ≡ |k,λ〉 and |σ̄ 〉 ≡ | −
k,λ〉. These two states have the same energy and are connected
by the time-reversal operation K|σ 〉 = t(σ )|σ̄ 〉, where t(σ ) ≡
tλ(k) = −tλ(−k) = −t(σ̄ ) is a phase factor [see Eq. (3)]. The
general wave function in the bulk has the following form [cf.
Eq. (A1)]:

|�〉 =
N∑

i=1

(Ai |σi〉 + Bi |σ ′
i 〉), (B1)

where the A’s are the amplitudes of the incident states |σ 〉 and
the B’s the amplitudes of the reflected states |σ ′〉. The surface
scattering matrix is defined by the equations

Bi =
N∑

j=1

S(σ ′
i ,σj )Aj . (B2)

Applying the TR operation to the wave function (B1), we
obtain

K|�〉 =
N∑

i=1

[A∗
i t(σi)|σ̄i〉 + B∗

i t(σ ′
i )|σ̄ ′

i 〉]. (B3)

Here, the states |σ̄ 〉 correspond to reflected waves, while the
states |σ̄ ′〉 correspond to incident waves.

104523-12



FERMIONIC BOUNDARY MODES IN TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 94, 104523 (2016)

If the bulk Hamiltonian and the surface scattering are both
TR invariant, then one can expect the same S-matrix relations
between the incident and reflected states in |�〉 and K|�〉,
therefore,

A∗
i t(σi) =

N∑
j=1

S(σ̄i ,σ̄
′
j )B∗

j t(σ ′
j ). (B4)

Comparing Eqs. (B2) and (B4) and taking into account the
unitarity of the S matrix, expressed as

N∑
k=1

S(σ ′
i ,σk)S∗(σ ′

j ,σk) = δij ,

we arrive at the following constraints imposed by TR symme-
try: S(σ̄j ,σ̄

′
i ) = t∗(σ ′

i )S(σ ′
i ,σj )t(σj ) or, more explicitly,

Sλλ′(−k, − k′) = t∗λ′(k′)Sλ′λ(k′,k)tλ(k).

In particular, in the Rashba model the phase factor is given
by tλ(k) = iλe−iϕk and, if the momentum along the surface is
conserved, we obtain

Sλλ′(−ky) = −λλ′ei(θλ+θλ′ )Sλ′λ(ky).

It is straightforward to check that the S matrices (A5) and (A7)
satisfy this last condition.
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