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Electrodynamic duality and vortex unbinding in driven-dissipative condensates
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We investigate the superfluid properties of two-dimensional driven Bose liquids, such as polariton condensates,
using their long-wavelength description in terms of a compact Kardar-Parisi-Zhang (KPZ) equation for the phase
dynamics. We account for topological defects (vortices) in the phase field through a duality mapping between the
compact KPZ equation and a theory of nonlinear electrodynamics coupled to charges. Using the dual theory, we
derive renormalization group equations that describe vortex unbinding in these media. When the nonequilibirum
drive is turned off, the KPZ nonlinearity λ vanishes and the RG flow gives the usual Kosterlitz-Thouless (KT)
transition. On the other hand, with nonlinearity λ > 0 vortices always unbind, even if the same system with λ = 0
is superfluid. We predict the finite-size scaling behavior of the superfluid stiffness in the crossover governed by
vortex unbinding showing its clear distinction from the scaling associated with the KT transition.
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I. INTRODUCTION

Recent experiments involving strong coupling of matter
and light are advancing quantum optics to the domain
of many-body physics [1–6]. Motivated by this progress,
theoretical efforts are under way to understand emergent
phenomena in driven open quantum systems [7–18]. One
of the best studied model systems in this class are fluids of
exciton-polaritons in semiconductor microcavities, which have
shown condensationlike phenomena [19–24]. Because of their
photonic component, exciton-polaritons have a finite lifetime,
which necessitates continuous pumping with light in order to
maintain a steady state. A fundamental question we address
in this paper is whether a fluid subject to such nonequilibrium
conditions can be superfluid.

Aspects of superfluid behavior have been studied exten-
sively in microcavity polariton systems. Questions that have
been addressed theoretically are the proper generalization of
the Landau criterion to driven-dissipative condensates [25–28]
in which the linearly dispersing Bogoliubov sound mode is
replaced by a diffusive mode [29,30]; the superfluid and
normal fractions in a homogeneous driven open condensate
were calculated in Ref. [31], and Refs. [32,33] studied, on the
mean-field level, the influence of external potentials on these
quantities. Experimentally, features such as quantized vortices
[34], suppression of scattering off obstacles [35–39], and
metastability of persistent currents [40] have been observed.
These studies suggest that driven-dissipative condensates
support a superfluid phase as do their equilibrium counterparts.
This is corroborated by experimental [21,22,24] and numerical
[41] investigations of spatial coherence in such systems, which
found a transition from short-range to algebraic order as
the strength of external pumping is increased. Thus, at high
pump power, exciton-polariton systems show signatures of
quasi-long-range order and superfluidity analogous to the
Kosterlitz-Thouless (KT) phase realized in Bose liquids in
thermal equilibrium at low temperatures.

Recently, it has been noted [8,42–45] that the long-
wavelength fluctuations of a driven-dissipative condensate

map to a Kardar-Parisi-Zhang (KPZ) equation [46]

∂tθ = D∇2θ + λ

2
(∇θ )2 + η, (1)

where the condensate phase field θ (x,t) here plays the role
of the height field h(x,t) of the original interface growth
problem, and the nonlinearity λ is proportional to the deviation
from effective thermal equilibrium [8]. The renormalization
group (RG) analysis of the KPZ equation shows that the
nonlinear term is relevant in two dimensions, exhibiting a
flow to a strong-coupling fixed point [47–50] in which the
interface is “rough” or, more precisely, height correlations
increase as a power law of distance 〈[h(x,t) − h(0,t)]2〉 ∼
|x|2χ , where χ > 0 denotes the “roughness exponent.” For the
driven condensate problem the rough phase, corresponding to
strongly nonlinear fluctuations of the phase, is manifested by
a stretched exponential decay of the condensate correlations.
However, these correlations establish only beyond a large
emergent length scale L∗, while at shorter distances the
correlations can show algebraic decay as in equilibrium.
Thus, the algebraic order observed in exciton-polaritons can
only be a finite-size crossover phenomenon. This raises the
question as to whether the same is true for superfluidity: Can
a driven-dissipative condensate support a superfluid phase in
the thermodynamic limit or will it ultimately be destroyed by
diverging fluctuations?

There is a crucial difference between Eq. (1) and the
KPZ equation that is not taken into account by the above
considerations and is pertinent to the question of superfluidity.
Contrary to the height field, the phase θ is compact, defined
periodically on the interval [0,2π ), hence, the phase admits
topological defects that the conventional noncompact height
field does not. This difference also arises in “active smectics”
[51] and driven vortex lattices in disordered superconductors
[52]. Similarly, the dynamics of the phase of sliding density
waves [53,54] and arrays of coupled limit-cycle oscillators
[55,56] feature KPZ-type nonlinearities. It may be natural to
expect that the rapid (i.e., faster than power-law) decay of con-
densate correlations would lead to unbinding and proliferation
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of vortices rendering the strong-coupling fixed point unstable.
However, this expectation is based on our understanding of
the unbinding of vortices in the Kosterlitz-Thouless transition
[57–59], which is valid only in thermal equilibrium. On the
other hand, we show below by direct analysis of the strong-
coupling KPZ fixed point (i.e., neglecting vortices) that such a
state sustains a finite superfluid stiffness that may conceivably
protect from proliferation of unbound vortices even if they
were allowed. These seemingly conflicting considerations
concerning the stability of a superfluid steady state highlight
the need to account for the vortices within a comprehensive
theory of the nonequilibrium condensate fluctuations.

In this paper, we incorporate vortices into the framework by
establishing a duality between the compact KPZ equation (1)
and a nonlinear electrodynamics theory. Our heuristic deriva-
tion here is complemented by a more systematic approach with
the same result in Ref. [60]. The question of superfluidity is
thereby translated into the problem of screening of charges
(vortices) by the nonlinear medium. As in equilibrium, if
unbound charges proliferate, then they screen the electric field
(circulating persistent current) emanating from a test charge,
thus destroying the superfluid properties of the system.

We solve the nonlinear screening problem within a per-
turbative renormalization group scheme valid for low vortex
density and at length scales below the KPZ scale L∗, where the
nonlinearity λ can be considered small. In the equilibrium case
in which λ = 0, and if the number of particles is conserved,
our approach reproduces the standard linear electrodynamics
of vortices in superfluid films [61–64] exhibiting a Kosterlitz-
Thouless transition, while out of equilibrium it allows us to
systematically account for the effect of the nonlinearity on
the dynamics of vortices. The main effect of the nonlinearity
is to modify the force law between pairs of vortices so that
they always unbind at length scales larger than the emergent
scale Lv . The latter is exponentially large in the parameter
λ/D, which we assume to be small for simplicity. Note that
this length scale is different from the KPZ scale L∗, which is
exponentially large in g2 = λ2�/D3. In particular, the KPZ
scale L∗ depends on the noise strength, whereas Lv does
not.

Indeed, we note that the instability towards vortex unbind-
ing has already been discussed in Ref. [65] in the context of
the complex Ginzburg-Landau equation and in Ref. [52] for
the driven vortex lattice. This result was based on solving the
equations of motion of the vortices within the deterministic
(i.e., noiseless) nonlinear equations and in this way obtaining
their mutual interaction. In this paper, we come to this
conclusion from a different angle, through derivation of the
dual electrodynamic theory. This allows us not only to identify
the instability, but also to predict and characterize the different
crossover regimes using a renormalization group analysis.
In particular, we characterize the crossover from Kosterlitz-
Thouless equilibriumlike physics at intermediate scales to the
unbinding governed by the nonequilibrium physics occurring
at longer scales. Using the RG analysis, we can estimate the
regimes of parameters where the former physics would be
observed in experiment and where the new emergent effects
of the nonequilibrium fluctuations become dominant. This
crossover is seen in the finite-size phase diagram shown in
Fig. 1.

/

FIG. 1. Finite-size phase diagram for a 2D driven-dissipative
condensate. T is the “vortex temperature,” i.e., the strength of the
noise acting on topological defects, and L is the system size measured
here in units of a microscopic cutoff scale a. In thermal equilibrium
(blue, dashed line), close to the critical temperature Tc, the phase
boundary behaves as ln(L/a) ∼ 1/

√
Tc − T . Out of equilibrium (red,

solid line), algebraic order is destroyed at any noise strength in the
thermodynamic limit. For small values of T , the phase boundary
approaches a value on the order of the bare screening length Lv . The
phase boundaries are obtained by integrating the renormalization
group flow equations (52) up to y = 1, starting from an initial value
of y = 0.1.

II. SUPERFLUIDITY IN A VORTEX-FREE
DRIVEN-DISSIPATIVE SYSTEM

Before discussing the effect of vortices, it is interesting
to investigate the fate of superfluidity in a driven-dissipative
system without topological defects. That is, we ask whether a
system described by the KPZ equation (1) with a noncompact
phase field has a superfluid response to an external vector
potential. It is well known that within the standard analysis
of the KT transition in the equilibrium XY model the
superfluid stiffness is not renormalized in absence of vortices.
However, the KPZ equation provides an independent source
of nonlinearity that can potentially destroy superfluidity even
without vortices. This possibility is perhaps further suggested
by the fact that the nonlinearity does lead to destruction of
the condensate correlations, leading to (stretched) exponential
rather than power-law decay.

Below we show that this naive expectation is in fact
incorrect. In the absence of topological defects in the phase
field, the physics of a two-dimensional (2D) driven-dissipative
condensate is governed by the strong-coupling fixed point of
the noncompact KPZ equation. We show that this implies very
peculiar properties: while correlations of the condensate field
are short ranged, the response is superfluid. We stress again
that this is the outcome only if we neglect the generation and
possible proliferation of vortices.

In Ref. [31], the superfluid density of a 2D driven-
dissipative condensate was calculated using an expansion in
fluctuations around the mean-field stationary state. Such an
approach is valid when phase fluctuations remain small, i.e.,
when the nonlinear term in the KPZ equation is not dominant
as in finite systems below the KPZ scale L∗. Also in this case
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the response is superfluid, however, the mechanism leading to
this result is completely different from the one that yields the
finite superfluid density we obtain below. We defer a detailed
discussion of this point to Appendix B.

In the following, we work with the effective action that
generates the KPZ equation (1):

SKPZ =
∫

d2r dt θ̂

[
∂tθ − D∇2θ − λ

2
(∇θ )2 − �θ̂

]
. (2)

The fields θ and θ̂ are independent variables. In the Martin-
Siggia-Rose (MSR) framework [66–68], θ̂ is termed the
response field.

In presence of U(1) symmetry,1 superfluidity can be defined
in the driven open system, even without particle-number
conservation, through the response of the flow to gauging the
U(1) symmetry with an external vector potential. Formally,
this is done through the usual replacement ∇θ → ∇θ − a;
physically, the vector potential a can be introduced, e.g., in
exciton-polaritons using the method described in Ref. [31].
Expanding the action to linear order in the applied vector
potential we get S[a] = SKPZ − ∫

d2r dt a · ĵ. The object
linearly coupled to the gauge field

ĵ = D∇θ̂ − λθ̂∇θ (3)

is the Noether current associated with the U(1) symmetry. It is
not the physical particle current because the symmetry is not
conjugate to particle-number conservation [18]. In absence
of particle-number conservation, it is more subtle to identify
the physical current j that responds to the applied force. This
can be done by noting that in the extended system including
also the bath degrees of freedom the number of particles is
conserved. Hence, one can define the total current density in
this enlarged system and decompose it into two components:
(i) the dissipative current flowing from the system into the
bath, and (ii) the nondissipative current which flows only in
the system [69,70]. In our case, the nondissipative current is
given by the standard expression j = D∇θ (see [10] for a
proposal of an experimental procedure to address this current
in microcavity polaritons by means of artificial gauge fields).
Now, the superfluid stiffness can be defined in terms of the
linear response of this current to the applied vector potential:

χij (x − x′,t − t ′) = δ〈ji(x,t)〉
δaj (x′,t ′)

∣∣∣∣
a=0

= 〈ji(x,t)ĵj (x′,t ′)〉. (4)

The response function can be decomposed into two contribu-
tions χ = χ (1) + χ (2), which are

χ
(1)
ij (x − x′,t − t ′) = D2〈∂iθ (x,t)∂j θ̂(x′,t ′)〉, (5)

χ
(2)
ij (x − x′,t − t ′) = Dλ〈∂iθ (x,t)∂j θ (x′,t ′)θ̂(x′,t ′)〉. (6)

The superfluid stiffness in an isotropic system is directly re-
lated to the difference between the longitudinal and transverse

1In the MSR framework, due to the “doubling” of degrees of
freedom, one has to distinguish two different types of phase rotation
transformations. Only one of them, corresponding to a shift of θ by a
constant, is a symmetry of the KPZ action (2), while the other one is
not a symmetry in the absence of particle-number conservation [18].

parts of the Fourier transform of the response function at
zero frequency in the long-wavelength limit [71–73]. (An
alternative definition of the superfluid stiffness in terms of
the oscillation frequency of the condensate was used in
Refs. [32,33]. We note that these works did not consider the
effect of fluctuations on the superfluid density.)

The contribution χ (1) to the response function looks like
the standard current-current response in equilibrium super-
fluids. Indeed, while χ (1) is scale invariant at the Gaussian
fixed point corresponding to an equilibrium superfluid, the
contribution χ (2) vanishes because it is the average of an
odd number of fields. However, in the driven-dissipative
case, the appropriate steady state (still ignoring vortices)
is governed by the strong-coupling fixed point of the KPZ
equation. As we show in Appendix B, at this fixed point the
contribution χ (1) has a negative scaling dimension of −χ ,
with χ being the roughness exponent of the strong-coupling
fixed point. Numerical simulations [74–86] and functional RG
[47–50] results find χ ≈ 0.4. Hence, the conventional part
of the current-current response function gives a vanishing
contribution to the superfluid stiffness. On the other hand,
χ (2) is scale invariant at the strong-coupling fixed point and
leads to a constant superfluid stiffness.

We conclude that in a driven-dissipative condensate gov-
erned by KPZ dynamics, the superfluid response is a non-
vanishing constant in spite of not having any long-range or
even algebraic order. However, as we mentioned before, this
result assumes that the phase field behaves as a noncompact
variable neglecting the existence and possible proliferation
of topological defects in it. Below we develop a theory
that incorporates the vortices into the general nonequilibrium
framework.

III. DUAL ELECTRODYNAMIC THEORY

The force between point vortices in conventional two-
dimensional superfluids falls off as the inverse distance, ex-
actly as the force between two-dimensional Coulomb charges.
Such a duality mapping between vortices and electrostatics
was famously exploited in the theory of the Kosterlitz-
Thouless transition [57,87–89]. The transition from the low-
temperature superfluid to the high-temperature normal state
is dual to a two-dimensional Coulomb gas undergoing a
transition from bound dipoles to a plasma of free charges.
The superfluid stiffness is, in the dual picture, given by the
inverse dielectric constant of the Coulomb gas, which in the
plasma phase falls to zero at long distances, due to effective
screening of the Coulomb forces.

To investigate the stability of a superfluid in nonequilibrium
conditions, we extend the duality to an electrodynamic theory
that takes into account the dynamics under the influence of
particle loss and external drive. In this paper, we provide a
simple heuristic derivation working with a continuum theory
throughout. A systematic derivation of the same dual theory
on a lattice is given in a parallel paper [60]. We note in passing
that in the context of zero-temperature superfluid-insulator
transitions, the vortex-charge duality has been extended to a
complete quantum-electrodynamics theory [90]. In the system
we consider, the nonequilibrium conditions of the condensate
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lead to a dual description in terms of classical electrodynamics
with crucial modifications.

A. Modified Maxwell equations with charges

The starting point of the duality mapping is the usual low-
frequency description of driven open Bose liquids, such as
exciton-polariton systems, the stochastic Gross-Pitaevski or
complex Landau-Ginzburg equation (CGLE) for the complex
scalar order parameter [91],

∂tψ(r,t) = −δHd

δψ∗ − i
δHc

δψ∗ + ζ (r,t). (7)

H� (� = c,d) are effective Hamiltonians, which generate
coherent and dissipative dynamics, respectively, and read as
for an isotropic situation

H� =
∫

d2r
[
r�|ψ |2 + K�|∇ψ |2 + 1

2
u�|ψ |4

]
. (8)

The term ζ (r,t) in Eq. (7) describes a Gaussian white
noise with short-ranged spatiotemporal correlations
〈ζ ∗(r,t)ζ (r′,t ′)〉 = 2σδ(r − r′)δ(t − t ′),〈ζ (r,t)ζ (r′,t ′)〉 = 0,
and zero mean. In the following, we set Kd = 0 for simplicity,
which also is a good approximation in exciton-polariton
systems [91]. It is straightforward to include this term and
verify that it does not lead to a different effective theory.

The complex field ψ(r,t) is conveniently split into two real
variables in terms of the phase-amplitude representation

ψ(r,t) =
√

ρ̄ + δρ(r,t)eiθ(r,t). (9)

Here, the total density under the square root can be expanded
in the fluctuations δρ(r,t) about the homogeneous background
density ρ̄ since density fluctuations are damped or gapped at
long wavelength. In contrast, the phase fluctuations describe
the Goldstone mode of the phase rotation symmetry at
sufficiently low noise level, and thus are gapless (cf., e.g., the
discussion in Ref. [8]). Therefore, in the coupled stochastic
equations of motion for phase and amplitude fluctuations, it
is possible to directly integrate out the density mode, which
leads to the KPZ equation (1), an effective long-wavelength
description for the phase mode, valid at scales well below the
damping gap of the amplitude fluctuations [8]. The parameters
appearing in the KPZ equation are related to those of the
CGLE as D = Kcuc/ud and λ = −2Kc, and the Gaussian
noise field η in Eq. (1) has white correlations with strength
� = σ (u2

c + u2
d )/(2udρ̄),

〈η(r,t)η(r′,t ′)〉 = 2�δ(r − r′)δ(t − t ′). (10)

For exciton-polaritons, a more microscopic description can be
formulated in terms of a generalized Gross-Pitaevskii equation
for lower polaritons coupled to an excitonic reservoir [92]. The
relations between the parameters entering this model and the
KPZ parameters are summarized in Ref. [8].

In the description of long-wavelength fluctuations of
driven-dissipative condensates in terms of the KPZ equation
(1), the compact nature of the phase variable is not manifest.
To make it explicit and to introduce the main qualitative
modification of the problem (the occurrence of vortices) in a
direct way, we take here a different route based on a noisy
electrodynamic theory dual to the description in terms of

density and phase. More precisely, we first make the usual
[62,90] identifications of the boson density fluctuations with
the magnetic field, and the phase gradient with the electric
field:

B = B ẑ = −δρ ẑ, E = −ẑ × ∇θ. (11)

The noisy hydrodynamic equations of the condensate can then
be written as equations of electrodynamics in the medium.
In particular, the noisy equation for the phase (density)
fluctuations translates into a modified Ampère (Faraday) law.
Most importantly, vortices are incorporated in this formulation
in a natural way as external charges and currents for the
electromagnetic fields.

We begin with Ampère’s law resulting from the equation
of motion of the phase. More generally speaking, it describes
Euler’s equations for the momentum balance in the fluid,

∇ × B − ε

c

∂E
∂t

= 2π

c
Jm. (12)

The source term Jm includes both the vortex current density
Jv (it turns out below that this term is not crucial, so we do
not discuss it in detail here) and a source associated with
the nonequilibrium drive that violates energy and momentum
conservation:

Jm ≡ Jv + 1

2π
ẑ × ∇

(
λ

2
E2 + η

)
. (13)

The speed of light takes the value c = uc. We have introduced
here a dielectric constant ε for consistency, whose physical
meaning is explained below Eq. (15).

Now, we turn to Faraday’s law, associated to the density
fluctuations. Indeed, in a conventional superfluid it stems from
the continuity equation for the particle density. In a driven
system with losses, however, we must add a source term to
the continuity equation leading to a corresponding change to
Faraday’s law as

∇ × E + 1

c

∂B
∂t

+ γ B = 0. (14)

Here, the dissipative coefficient γ must appear from symmetry
considerations. Below we relate it to the more microscopic
parameters of the CGLE model (7). For completeness we note
that the continuity equation derived from the CGLE of the
driven condensate [8] generically contains also a noise term.
We omit it here since ultimately it will just add to the noise
source already present in Eq. (12).

Two more equations are missing to complete the analogy
to Maxwell’s equations. The homogeneous Maxwell equation
∇ · B = 0 is trivial in the two-dimensional setting as B = B ẑ.
The condition of irrotational flow (in the absence of vortices)
translates to Gauss’ law for the electric field (as appropriate
for the 2D case, the numerical factor on the right-hand side is
2π instead of the usual 4π ),

∇ · E = 2π

ε
nv, (15)

where the vortex density nv(r) = ∑
i niδ(r − ri) acts as a

source of the electric field. In contrast to the vortex current
in Eq. (13), the vortex density will play a crucial role for
the understanding of the problem. Note the appearance of the
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dielectric constant ε as in the analysis of the KT transition.
It anticipates that upon coarse graining the electric field
emanating from a test charge will be screened by fluctuations
consisting of bound vortex pairs with separation smaller than
the running cutoff scale. At the microscopic scale, where the
above equations are formulated, it takes the value ε = 1, but
then will be substantially renormalized.

Finally, to have a complete dynamical description we must
also supplement the equations for the fields (15), (12), and
(14) with dynamics for the charges (vortices) subject to those
fields. In principle, the charges are affected both by the electric
and magnetic forces. However, consistent with the assumption
of overdamped dynamics, we include only the electric forces
[62]

∂ri

∂t
= μniE(ri ,t) + ξ i , (16)

where the vortex mobility μ is a free parameter of the
theory, which in principle can be determined from numerical
simulations of the CGLE equation. Note, however, that in
reality the CGLE is not the full microscopic model of the
system, but only an intermediate scale effective theory. Hence,
it is better to treat μ as a new independent variable. Assuming
that the universal long-wavelength behavior does not depend
on the value of μ, below we consider the limit μ � D. Then,
the motion of vortices is slow as compared to the fluctuations
of the fields, which greatly simplifies the theoretical analysis
of the problem. ξ i is a random force field on the vortices, which
we take to be short range and time correlated:

〈ξiα(t)ξjβ(t ′)〉 = 2μT δij δαβδ(t − t ′). (17)

Microscopically, the effective temperature for the vortices
and the phase noise η should be closely related as they
have the same origin. However, upon rescaling they may
flow independently and therefore we keep them as different
quantities in the effective model. This is to be compared with
the equilibrium case where one must have T = �/D at all
scales. We further note that the dynamical equation (16) does
not allow for creation and annihilation of vortices, however,
we will introduce an effective fugacity y which tunes their
density in the steady state.

We can easily make contact to the KPZ equation (1). Since
we are interested in the low-frequency limit, we can neglect
Ḃ compared to B in Eq. (14): at long scales the density
fluctuations are overdamped. The magnetic field can thus be
eliminated from the equations using the overdamped Faraday
law B = −γ −1∇ × E. Plugging this as well as Gauss’ law
(15) into (12), we obtain a dynamical equation for the electric
field E alone,

ε
∂E
∂t

= D∇2E − ẑ × ∇
(

λ

2
E2 + η

)
− 2π

ε
D∇nv − 2πJv,

(18)

where D ≡ c/γ . Now, it is easily verified that by setting the
vortex current and density to zero and reexpressing the field in
terms of ∇θ , we recover Eq. (1).

B. Maxwell action with charges

In this section, we develop a functional integral formulation
of the generating functional for dynamic observables. We then
use this formulation to derive the effective interactions between
the charges mediated by the fluctuating electromagnetic fields
and study whether vortex-antivortex pairs tend to unbind.

As in usual electrodynamics it is convenient to write the
electric and magnetic fields in terms of gauge potentials which
automatically solve the homogeneous Maxwell equations. The
relation between the gauge potentials and the fields is, however,
altered due to the overdamped dynamics. We set

B = 1

γ
∇ × A, E = −∇φ − A, (19)

which differs from the usual relation, where ∂tA instead
of A appears in the definition of the electric field. The
dynamical equations are then invariant under the local gauge
transformation

A → A + ∇χ, φ → φ − χ (20)

(here, χ appears instead of the usual ∂tχ in the last relation).
Note that this local gauge freedom reflects the parametrization
of the electric and magnetic fields, and is not directly related
to the global U(1) invariance of the original phase degree
of freedom. For our purposes, it is sufficient to choose the
following gauge:

∂φ

∂t
+ D

ε
∇ · A = 0, (21)

corresponding to the usual Lorentz gauge in electrodynamics.
The gauge fields then obey the following equations:

∂φ

∂t
− D

ε
∇2φ = 2πD

ε2
nv, (22)

∂A
∂t

− D

ε
∇2A = 2π

ε
Jv + ẑ × ∇

ε

(
λ

2
E2 + η

)
. (23)

Using the standard MSR framework, we write a functional
integral which generates the stochastic equations for the gauge
fields (22) and (23) and N charges

Z(N ) =
∫

�φ̂�φ �Â�A �p̂�r e−S. (24)

Here, we have already integrated over the Gaussian noise fields
η and ξ . The hatted fields are the response fields conjugate
to those appearing in the equations of motion, which are
introduced along the MSR construction. The action is a sum
of the following contributions: S = S0 + Sλ + Sc + Sint. The
quadratic free-field action is given by

S0 = −1

2

∫
r,t

(Âμ, Aμ)

(
2�μν δμνL

+
δμνL

− 0

)(
Âν

Aν

)
,

(25)

where
∫

r,t = ∫
d2r dt , (Âμ,Aμ) = (φ̂,Â,φ,A), L± = ±∂t −

(D/ε)∇2, and

�μν = �(1 − δμ0)(1 − δν0)(∇2δμν − ∂μ∂ν). (26)
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The nonlinear contribution from the λ term in the KPZ
equation is given by

Sλ = − λ

2ε

∫
r,t

ẑ · (Â × ∇(E2)), (27)

where E2 ≡ (∇φ + A)2. The combined electromagnetic ac-
tion Sem = S0 + Sλ, without coupling to the charges, provides
an equivalent description of the standard noncompact KPZ
equation in two dimensions. This is evident by noting that
v = ẑ × E is equivalent to the vector field in Burgers’
equation [46].

The action of the charges is

Sc = −
N∑

i=1

∫
dt

(
p̂i · ∂tri + μT p̂2

i

)
, (28)

while the coupling of charges to the gauge fields is given by

Sint =
∫

r,t

(
2π

ε
JμÂμ − μ P̂μAμ

)
. (29)

In the above expression for the coupling action we have made
use of the following notations:

Jμ ≡
(

D

ε
nv,Jv

)
, (30)

P̂μ ≡ (−∇ · P̂,P̂), (31)

where

nv(r,t) =
∑

i

niδ[r − ri(t)], (32)

Jv(r,t) =
∑

i

ni∂triδ[r − ri(t)], (33)

P̂(r,t) =
∑

i

ni p̂iδ[r − ri(t)]. (34)

Having derived a complete action describing dissipative non-
linear electrodynamics (equivalent to KPZ dynamics) coupled
to charges (vortices) we can deduce the effective interactions
between the charges in certain limiting cases.

C. Charge interactions for weak nonlinearity

In the limit of small λ, we can integrate over the photon
fields perturbatively in the nonlinear coupling with respect to
the quadratic photon action S0. For λ = 0 the effective action
for the charges can be obtained exactly by direct integration
over the gauge fields

S
(0)
I = 1

2

∫
r,t ;r′,t ′

(2πJμ/ε, −μP̂μ)
r,t

×
(

0 δμνg
−

δμνg
+ −2g+�μνg

−

)
r,t ;r′,t ′

(
2πJν/ε

−μP̂ν

)
r′,t ′

,

(35)

where g± = (L±)−1.
Noting that vortices move very slowly in the μ/D → 0

limit, we find that the most relevant contribution comes from
the static J0P0 term, which is linear in μ, while all other

terms are of higher order. Let us denote the static-free Green’s
function as

G(r − r′) = −∇−2δ(r − r′)  − 1

2π
ln(|r − r′|/a). (36)

This gives

S
(0)
I  −

∫
t

∑
ij

p̂i(t) · μni∇iG(ri − rj )
2πnj

ε
, (37)

which, as expected, describes the 2D Coulomb gas interac-
tions. To see this, we note that the action for a Brownian particle
contains the term

∫
dt μp̂ · f0, where f0 is the force acting on

the particle. For further reference we note here that, when this
happens to be a conserving force, f0 = −∇V , the stationary
solution of the corresponding Fokker-Planck equation is just
the Gibbs distribution P (r) ∼ e−V (r)/T .

Our goal is to calculate the effective mutual forces between
two opposite charges, perturbatively in λ, in order to determine
the fate of the Kosterlitz-Thouless transition in the presence
of the nonlinear term. This task is greatly simplified in the
limit μ/D → 0 since the fields’ response is instantaneous on
the time scales of the vortices’ motion. Thus, there are two
stages in the calculation of the forces to a given order O(λm):
(i) calculation of the O(λm) terms in the effective charge action
S

(m)
I ; (ii) taking the limit μ/D → 0, and identifying the force

as the coefficient of p̂i linear in μ.
In what follows, we consider the interaction between a

vortex (n+ = 1) at r+ and an antivortex (n− = −1) at r−.
We begin by determining the correction to the Coulomb law
linear in λ. The correction to the action contains one term
(corresponding to a tree-level diagram):

S
(1)
I = 2π2λμẑ

ε3
·
∫

1234
P̂(r1,t1)g+(r1 − r2,t1 − t2)

×∇2[g+(r2 − r3,t2 − t3)Jμ(r3,t3)g+(r2 − r4,t2 − t4)

× Jμ(r4,t4)], (38)

where
∫

1...M
= ∏M

i=1

∫
ri ,ti

. Note that this term is second order
in Jμ, demonstrating the breakdown of force superposition for
λ �= 0. In the limit μ/D → 0, only static Jμ(r,t) = (J0(r),0)
configurations contribute to the MSR integral, giving

S
(1)
I  − ελ

4πD

∫
r,t

μp̂+ · [ẑ × f0(r+ − r)]|f0(r − r+)

− f0(r − r−)|2 − (+ ↔ −)

≡
∫

t

μp̂+ · f(1)(r+ − r−) − (+ ↔ −). (39)

For simplicity, we have denoted f0(r) ≡ (2π/ε)∇G(r) =
−r/(εr2). The O(λ) correction to the force for |r+ − r−|/a �
1 is given by (see Appendix A)

f(1)(R) = − λ

2Dε2

ẑ × R
R2

(
2 ln(R/a) − 1

2

)
. (40)

This force acts on the dipole in a direction perpendicular to
the segment R = r+ − r−. Hence, the first-order correction
does not affect the probability distribution of the vortex-dipole
sizes.
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We next calculate the O(λ2) correction to the force.
There are two types of corrections to the effective action
S

(2)
I at this order. The first involves fluctuation correlations

(corresponding to loop diagrams), and modifies the JμP̂ν and
P̂μP̂ν terms, which appear in the zeroth-order charge action
(35). These can be treated only within a renormalization group

framework, due to infrared divergences. Nevertheless, they
do not modify the effective force: the modified JμP̂ν term
vanishes in two dimensions [46], and the P̂μP̂ν term is of order
O(μ2), which we neglect in the μ/D → 0 limit. The second
type (corresponding to tree-level diagrams) is third order in
Jμ, which in the limit μ/D → 0 becomes

S
(2)
I ∼ − λ2ε2

16π2D2

∑
i,j,k=±

∫
r,r′,t

μp̂+ · [ẑ × f0(r+ − r)]nif0(r − ri) · [ẑ × f0(r − r′)]nj f0(r′ − rj ) · nkf0(r′ − rk) − (+ ↔ −)

≡
∫

dt μp̂+ · f(2)(r+ − r−) + (+ ↔ −). (41)

The correction to the force between two particles of opposite
charge and distance R � a is evaluated in Appendix A, with
the result

f(2)(R) = 1

8

(
λ

2D

)2 1

ε3

R
R2

[8 ln(R/a)2 + 4 ln(R/a) − 1].

(42)

Note that this is a central force that constitutes a repulsive
contribution to the attractive 1/R Coulomb law. The last term
merely renormalizes the bare value of the dielectric constant
ε. We omit it in the following.

The effective interactions computed above (see Ap-
pendix A) hold as long as the perturbation theory in λ is valid.
From this result it is clear that the second-order correction
becomes larger than the zeroth-order term beyond a separation
of

Lv = a e
2D
λ , (43)

where we took the bare value of ε to be 1.2 Furthermore,
perturbation theory in λ fails beyond the emergent KPZ
length scale L∗ = a exp[8πD3/(�λ2)]. Before proceeding,
we comment on how the corrections to the force, found
above, are related to the flow field around vortices. Consider
first a single vortex solution to the stationary KPZ equation
D∇ · v + (λ/2)v2 = 0, with v = ∇θ . It is easily seen that
the velocity field with a vortex in the azimuthal component
vϕ = 1/r produces a radial component vr (r) ∼ −(λ/2r) ln r

at large r . This structure of a vortex is well known in the
literature on complex Ginzburg-Landau equations, where it is
termed a Zhabotinsky spiral [93]. The first-order correction to
the Coulomb force is a direct result of this radial flow; recall
that the electric field is E = −ẑ × v. Hence, the azimuthal
flow vϕ leads to the usual Coulomb force, while the radial flow
leads to a force perpendicular to it.

2The bare screening length found in Ref. [52] from the solution of
a single vortex in the KPZ equation is Lv = a exp(πD/λ). It differs
from Eq. (43) in the numerical prefactor in the exponential. This is
not in conflict with our estimate that is taken from comparing only the
magnitude of the first and second terms in a perturbative expansion.
Defining the crossover where the ratio between these two terms is
(π/2)2 rather than 1 would lead to the different numerical factor in
the exponent.

The second-order correction is due to the interaction
between the flow fields of the two vortices. It cannot be
explained based on the flow around a single vortex because
the two flows (phases) do not superpose in this nonlinear flow
equation. Together with f0 and in contrast to f(1), it contributes
to the central part of the force between the vortex-antivortex
pair fc(r) = f0(r) + f(2)(r), where r is the relative coordinate
between the vortices. This force is again conservative, and we
have the effective potential Veff = −∇fc including an external
electric field

Veff(r,E) ≈ 1

ε
ln(r/a) − E · r

− λ2

12ε3D2
[ln(r/a)3 + c ln(r/a)2], (44)

where D is the diffusion coefficient from the original KPZ
equation. Anticipating independent renormalization of the
terms in the potential, we include a coefficient c with bare
value c0 = 3

4 . Because there is an effective potential, the
probability for finding the pair separated by r follows a Gibbs
distribution:

P (r,E) = y2e−Veff (r,E)/T . (45)

Here, we defined y2, the vortex fugacity, as the probability of
having a pair with a separation of the value of the the short-
distance cutoff a. The existence of a vortex “temperature” T

is due to the conservative nature of the force between them.
However, we emphasize again that due to the absence of global
detailed balance, this temperature does not have to coincide
with the noise level of the spin waves.

IV. VORTEX UNBINDING AT SMALL λ

Having obtained the effective interactions between vortices,
we are ready to address the central question of this paper
concerning the superfluid properties of the driven condensate.
A crucial observation pertinent to this issue is that the (inverse)
static dielectric constant defined in Eq. (15) is a direct measure
of the superfluid stiffness ρs , as defined in Eq. (B1). To see this,
note that fixing a vortex at the origin is equivalent to gauging
the flow with a transverse vector potential a = ẑ × r̂/R (this is
a vector potential that couples to the particle currents, not the
dual vector potential coupled to the vortex currents). With no
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other vortices present, the superfluid response, i.e., the trans-
verse current induced by the vector potential, can be deduced
directly from Gauss’ law. Noting the duality correspondence
∇θ = ẑ × E and its relation to the particle current j = D∇θ ,
we have j = Dẑ × E = Dẑ × r̂/εR = (D/ε)a ≡ ρsa, where
the electric field due to a vortex at the origin is E = r̂/εR. In the
presence of noise, on the other hand, more pairs of charges can
be generated and potentially screen the test charge placed at the
origin. This screening, leading to a renormalized reduced value
of ε−1, is the dual description of the renormalized superfluid
stiffness.

The question of superfluidity is thus mapped, as in the
conventional Kosterlitz-Thouless transition, to the problem of
screening in the Coulomb gas, albeit now with interactions
modified by the KPZ nonlinearity. We consider the limit of
zero vortex mobility μ/D → 0, where the vortex interactions
are described by a static effective potential, derived in Sec. III C
above in the limit of small λ. The dielectric constant is
computed in this regime using a renormalization group scheme
essentially identical to the one used to describe the KT
transition [87,88].

We begin by calculating the linear response of the
ensemble-averaged polarization density to an applied electric
field 〈�〉 = χE. It can be computed based on the effec-
tive Gibbs distribution for the vortex-antivortex potential
(45); to linear order in the external field E, it is given
by

〈�〉 = 1

L2

∫
d2R
a2

d2r
a2

rP (r,0)

(
1 + E · r

T

)

= πy2

T

∫ ∞

a

dr

a

(
r

a

)3− 1
εT

e
λ2

12ε3D2T
[ln(r/a)3+c ln(r/a)2]E

= χE. (46)

We have 1/L2 in front since we are considering the con-
tribution of one dipole to the polarization density. The two
area integrals with measure 1/a2 act as the sum over all
configuration of the single dipole, weighted by the probability
(45), and from which we read off the susceptibility:

χ = πy2

T

∫ ∞

a

dr

a

(
r

a

)3− 1
εT

e
λ2

12ε3D2T
[ln(r/a)3+c ln(r/a)2]

. (47)

The fully renormalized dielectric constant at the largest scales
is given by εR = ε + 2πχ . As in the conventional Coulomb
gas, this equation is solved using the renormalization group by
gradually increasing the short-distance cutoff at infinitesimal
steps from a to a(1 + d�). Separating the above integral into
two parts

∫ ∞

a

=
∫ a(1+d�)

a

+
∫ ∞

a(1+d�)
(48)

allows to define the dielectric constant at the new cutoff

ε′ = ε + 2π2y2

T
d�. (49)

A renormalization of the other couplings is required to bring
the expression for εR to its original form (47):

εR ≈ ε′ + 2π2y2

T

[
1 +

(
4 − 1

εT

)
d�

] ∫ ∞

a

dr

a

×
(

r

a

)3− 1
εT

(1− cλ2

6ε2D2 d�)

e
λ2

12ε3D2T
[ln(r/a)3+(c+3d�) ln(r/a)2]

= ε′ + 2π2y ′2

T ′

∫ ∞

a

dr

a

(
r

a

)3− 1
εT ′

e
λ2

12ε3D2T
[ln(r/a)3+c′ ln(r/a)2]

.

(50)

To obtain the last line, we have the following rescaling
constraints:

y ′2

T ′ = y2

T

[
1 +

(
4 − 1

εT

)
d�

]
,

1

T ′ = 1

T

(
1 − cλ2

6ε2D2
d�

)
, (51)

c′ = c + 3d�.

In these RG equations we neglect corrections of order y2 and
λ4 to the effective dipole energy. The differential RG equation
for c can be solved immediately and yields c = c0 + 3� with
the bare value c0 = 3

4 . Inserting this result in the flow equations
for the remaining couplings, we obtain

dε

d�
= 2π2y2

T
,

dy

d�
=

[
2 − 1

2εT
+ λ2

4ε2D2

(
1

4
+ �

)]
y, (52)

dT

d�
= λ2T

2ε2D2

(
1

4
+ �

)
.

Not surprisingly, these flow equations are very similar to the
KT scaling equations and collapse to the latter for λ = 0.
The effect of the nonlinearity is to always drive the system
to the high-temperature (plasma) phase in which charges are
perfectly screened. However, this screening is achieved only
at large length scales, bounded from below by the bare vortex
unbinding length Lv = a exp(2D/λ).

The RG flow projected onto the two-parameter space of
y versus εT is shown in Fig. 2. At a finite value of λ, the
flow is seen to initially closely follow the KT flow at λ = 0,
approaching the fixed line at y = 0, but ultimately departing
from it in a flow toward the high-temperature plasma phase.

Figure 3 shows the dependence of ε−1 (equal to the
superfluid stiffness) on the (bare) effective vortex temperature
T computed from the RG flow for different system sizes.
In practice, the bare effective temperature is related to the
noise appearing in the KPZ equation. It is varied by tuning
the pump power as described in Ref. [8], where increasing
pump power reduces this bare temperature. In an infinite
system at thermal equilibrium (i.e., λ = 0), the quantity 1/(εT )
undergoes a universal jump from zero to 1/(εT ) = 4 upon
crossing the KT transition temperature. This sharp feature
is of course smeared in finite-size systems, which are seen
to very slowly approach this step as their size is increased
[Fig. 3(a)]. In the driven system (λ �= 0), ε−1 always vanishes
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FIG. 2. RG flow lines as described by Eqs. (52). Dashed line:
λ = 0, KT flow; solid line: λ2/D2 = 0.4.

in the thermodynamic limit regardless of the bare temperature.
However, the finite-size scaling behavior is nontrivial. If λ is
not too small, the distinction from the KT scaling behavior
is already apparent at reasonable system sizes: rather than
converging to a universal step at a critical T , the step is seen
to be receding toward zero temperature.

Note that in Fig. 3 we are plotting the product of the
renormalized dielectric constant ε with the microscopic or bare
value of the effective vortex temperature T . In experiments,
the microscopic value of T will be known as it is directly
controlled by tuning the pump power as explained above. On
the other hand, the inverse dielectric constant corresponds to
the superfluid stiffness. A macroscopic measurement of the
stiffness can be implemented, as discussed above, by imposing
a vortex at the origin and measuring the decay of the physical
current at a long distance R from it. This will give the fully
renormalized value of ε−1.

In exciton-polariton condensates, vortices can be imprinted
both under conditions of coherent [40,94] and incoherent
pumping [95]. For a scheme to measure the current, see
Ref. [42]. From the current, the response function (4) and
hence the superfluid density can be reconstructed.

Another signature of the unbinding of vortices is the
suppression of algebraic order on scales beyond the phase
boundary of the finite-size phase diagram in Fig. 1. On larger
scales, we expect correlations to decay rapidly due to the
dephasing that is caused by vortices. In thermal equilibrium,
the decay of correlations in the high-temperature phase above
the KT transition can be shown to be exponential by means of
a high-temperature expansion [96] which, however, cannot be
generalized straightforwardly to the strong noise limit under
nonequilibrium conditions. Still, it is reasonable to assume
that the form of the decay of correlations due to vortices is
still exponential for finite values of λ. The main challenge for
observing the suppression of algebraic order experimentally
with exciton-polaritons is due to the large length scale at
which it is expected to occur; note, however, that generically
the phase boundary in the finite-size phase diagram Fig. 1 is
well below L∗, making the observation of the destruction of
order more promising than originally anticipated based on a
treatment that neglected vortices [8]. The precise location of

=

=

( )

/(
)

=

=

( )

/(
)

FIG. 3. Renormalized dilectric constant in a finite-size system,
obtained by integrating the RG flow equations (52). (a) 2D superfluid
in thermal equilibrium, i.e., with λ = 0. From top to bottom, the lines
correspond to increasing system sizes. l = 2,3, . . . ,8,∞ denotes
the logarithmic system size l = ln(L/a). In the thermodynamic
limit, the dielectric constant undergoes a discontinuous jump at the
critical temperature from zero to the universal value 1/(εT ) = 4.
(b) Nonequilibrium RG flow with λ2/D2 = 0.15. The qualitative
behavior of 1/(εT ) closely resembles the equilibrium one of panel
(a) up to moderate system sizes. For small values of λ/D, the
agreement is even quantitative, and in finite-size systems equilibrium
and driven-dissipative cases are practically indistinguishable. The
nonequilibrium character of the underlying dynamics becomes man-
ifest only in the thermodynamic limit, when 1/(εT ) is renormalized
to zero. In both panels, T is the bare value of the temperature, while
ε is the renormalized dielectric constant.

the phase boundary is controlled by the parameter lambda.
As discussed in Ref. [8], in incoherently pumped systems
this parameter is typically small, which was also assumed
in our treatment. Quite intuitively, for this parameter to
become sizable, one should use a cavity of lower quality, thus
making polaritons short-lived and hindering thermalization.
We can obtain a rough estimate of the location of the phase
boundary based on the relations between the parameters in
a more microscopic model of lower polaritons coupled to a
high-energy near excitonic reservoir [92] and the parameters
of the KPZ equation derived in Ref. [8]. These relations lead
to the following expressions for the (absolute value of) λ/D
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( )

/

( )

/

FIG. 4. Finite-size phase diagram as a function of (a) the dimen-
sionless pumping strength x and (b) the vortex fugacity y. In both
panels, the red, solid line denotes the boundary between disordered
and algebraic order phases for γ̄ = 0.1 and ū = 0.14, the green,
dotted-dashed line denotes the same boundary with γ̄ = 0.5, and the
blue, dashed line is the KT phase boundary. In exciton-polaritons, the
microscopic scale a can be estimated as the healing length, which is
typically a ≈ 1 μm, while typical system sizes are on the order of
L ≈ 100 μm.

and the vortex temperature T :

λ

D
= 2γ̄

1 + x
, (53)

T = �

D
= ūγ̄ 2

2x(1 + x)

[
1 + (1 + x)2

γ̄ 2

]
. (54)

Here, x is the dimensionless pumping strength, and γ̄ and
ū are dimensionless parameters which, for the experimental
parameters reported in Ref. [34], take the values γ̄ ≈ 0.1 and
ū ≈ 0.14 [8]. The mean-field condensation threshold is at x =
0 where T diverges. Note that also the KPZ nonlinearity λ

depends on the pumping strength.
Figure 4 shows the finite-size phase diagram for inco-

herently pumped exciton-polaritons. The phase boundaries
between algebraically ordered (shaded regions) and disordered
phases are plotted against the pumping strength x in Fig. 4(a)
and the fugacity in Fig. 4(b). In both panels, the red, solid

line corresponds to the values of γ̄ and ū given above.
For comparison, the blue dashed line is obtained from the
equilibrium KT flow. The small values of λ/D (for x in the
range from 0.8 to 1.8 as shown in the figure λ/D takes values
from 0.07 to 0.11) lead to a phase boundary that follows very
closely the equilibrium result. Above the equilibrium critical
pump strength xKT ≈ 1.30, the phase boundary is beyond
any reasonable system size (note the logarithmic scale). A
significant decrease of the phase boundary can be achieved
by increasing the value of λ/D which, according to Eq. (53),
necessitates a higher value of γ̄ . Already an increase of γ̄ by
a factor of 5 (corresponding to an increase of the cavity loss
rate by the same factor) leads to a substantial decrease of the
phase boundary (see the green, dotted-dashed line in Fig. 4).

The estimates of the phase boundary presented in Fig. 4(a)
are obtained by integrating the RG flow equations (52) from
the ad hoc chosen microscopic value y = 0.1 up to y = 1.
The dependence of these estimates on the microscopic value
of the fugacity is shown in Fig. 4(b) of the same figure. Here,
x is set to the critical value of Fig. 4(a). Note that when y

is below its critical value in equilibrium, the phase boundary
for the increased valued of γ̄ (green, dotted-dashed line) stays
on a plateau for a wide range of values of y, indicating that
at least in this parameter regime our estimate of the phase
boundary is not very sensitive to the unknown microscopic
value of y. In order to determine y experimentally, it would
be necessary to be able to obtain the distribution of vortices in
single-shot experiments, which is at present not possible with
exciton-polaritons.

V. OBSERVABILITY OF KPZ SCALING

We have seen that vortices are always relevant, and
ultimately unbind in a driven condensate. Moreover, this
occurs on a length scale Lv that is generally much smaller than
the scale L∗ on which the strong-coupling KPZ physics would
emerge in absence of topological defects. Hence, one might
be tempted to conclude that the physics of the strong-coupling
KPZ fixed point is preempted by vortex proliferation and
therefore irrelevant for two-dimensional driven condensates.
However, our discussion so far has addressed only static
properties, such as superfluid stiffness and spatial correlations
strictly at steady state. In order to assess if KPZ scaling can be
seen in experiments (or numerics based on evolving stochastic
equations for the polariton amplitude, cf. e.g. [41]) measuring
time-dependent quantities, we must consider the dynamics of
vortex unbinding.

As an example of a dynamical measurement, we consider a
quench experiment similar to that discussed in Ref. [45]. The
system is first pumped coherently to prepare a condensate with
an imprinted phase pattern. Hence, the system is initialized as
an almost perfect condensate with no free topological defects
aside from those that are imprinted externally. A useful initial
configuration, at least for a Gedankenexperiment, has a vortex
in a hole in the middle of the sample. From time t = 0 onward,
the coherent pumping (i.e., phase imprinting) stops, leaving
only the incoherent drive. The experiment then monitors the
development of the spatial correlations as a function of time.

We need to consider two important time scales: (i) the
time τv it takes for vortices to unbind and proliferate (or to
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nucleate at the boundary), leading to a decay of the superfluid
current, should be compared with (ii) the time scale τ∗ for
development of the KPZ correlations. The characteristic time
on which strong-coupling KPZ scaling emerges in a system
with no topological defects is related to the length scale L∗ by
simple diffusive scaling

τ∗ = D−1L2
∗ ≈ a2D−1e

16πD3

�λ2 ≡ a2D−1e16π/g2
, (55)

where a is the microscopic length scale and g2 ≡ λ2�/D3 is
the dimensionless bare coupling constant of the KPZ equation
[46]. When the time evolution begins, vortices are absent or
tightly bound in pairs on a microscopic scale. The time scale
τv on which vortices unbind can be estimated based on the
stochastic equation (16) for the relative coordinate of a vortex
pair moving in the effective potential (44) with no external E
field. Hence, τv is estimated by the thermal Boltzmann factor
associated with overcoming the potential barrier to separate
the pair by a distance Lv:

τv = L2
v

μy2
e−β ln(Lv/a) ≈ a2

μy2
(Lv/a)2+β ≈ a2

μy2
e

D
λ

(2+β),

(56)

where β ≡ 1/T ≈ D/�. To have superfluidity at least on
some intermediate scales we should demand that T � 1.
Hence, we can neglect the 2 with respect to β above. The
estimate for the ratio between the two characteristic times is
then

τ∗/τv ≈ y2 μ

D
exp

[
1

g2

(
16π − λ

D

)]
. (57)

Recall that λ/D was the small parameter in the perturbative
expansion for the forces between the vortices. If λ/D is taken
to be of order one, then Lv approaches the microscopic scale
a [cf. Eq. (43)]. Hence, in the natural regime we discuss here
16π − λ/D > 0 and the exponential factor in Eq. (57) above
is large. Nonetheless, at least in principle the ratio τ∗/τv can
be small if the vortex fugacity y and relative mobility μ/D are
sufficiently small. In this limit we would be able to observe
strong-coupling KPZ physics on intermediate time scales
τv � τ � τ∗.

We note, however, that this is not natural within the
framework of the complex GPE since it is not possible
to independently tune the bare values of y and of μ/D

and they are not likely to be extremely small. Hence, in
normal situations we expect vortex proliferation to preempt the
strong-coupling KPZ physics even in dynamic measurements.

VI. CONCLUSIONS AND OUTLOOK

We have developed a dual dynamical description of a
driven-dissipative Bose fluid in terms of the superfluid vortices.
This was achieved by extending the well-known duality
between a Bose fluid and a Coulomb gas, which has been useful
in describing the KT transition [57,87–89] and the transport
in superfluid films near equilibrium [61–63], to the case of a
driven-dissipative system.

The electrodynamic theory obtained in the driven-
dissipative system is, however, unusual. First, it describes
dissipative nonrelativistic photons, leading to dynamics that is

gauge invariant, but with a modified U(1) gauge transformation
A → A + ∇χ and φ → φ − χ . The second peculiarity is that
the photon dynamics alone, even without charges, is nonlinear.
Indeed, the nonlinear photons constitute an equivalent dual
description of the standard nonlinear KPZ equation. The
coupling to charges extends the theory to a complete long-
wavelength description of the compact KPZ equation.

The dual electrodynamic theory offers a convenient frame-
work from which to analyze the scaling behavior of the
system and the fate of the superfluid properties at long scales.
Here, we derived RG equations analogous to the equilibrium
KT flow for the vortex fugacity. For weak nonlinearity and
low noise, the initial flow is similar to the equilibrium case,
with the system appearing as a superfluid up to rather long
scales. Indeed, experiments [22,24] and numerics3 [41] done
with limited system sizes have seen indications of the KT
physics. However, our analysis predicts that beyond a scale
Lv = a exp(2D/λ), the vortex fugacity inevitably becomes
relevant and leads to unbinding for arbitrarily low noise. In fact,
within our approximation this scale is independent of the noise
level. This reflects the fact that the present vortex unbinding
mechanism relates to the deterministic forces becoming
repulsive at large distances, in contrast to the entropy-driven
unbinding in a purely attractive potential in the equilibrium KT
problem. In the natural parameter regime of these systems, this
vortex proliferation preempts the establishment of correlations
characterizing the strong-coupling KPZ fixed point, hence, we
do not expect the latter to be observable.

We note that previous work has already pointed out the
screening of the Coulomb interactions between vortices by
the nonlinear medium beyond the characteristic scale Lv =
a exp(2D/λ) [52,97]. This work has used a direct asymptotic
solution of the two-vortex problem at large separations. Our
description in terms of an effective electrodynamic field theory
facilitates a detailed description of the universal crossovers
between the different regimes on scales below Lv where
perturbation theory is valid, allowing, for example, calculation
of measurable quantities such as the finite-size scaling of the
superfluid stiffness (see Fig. 3). The same framework allows
one to compute dynamical response functions of the driven
fluid as has been done for equilibrium superfluids [61–63].

While we find that the isotropic Bose fluid inevitably
loses its superfluid properties at long scales, an intriguing
question for future research is whether a true superfluid can
exist under different driving conditions. For example, we
have noted previously [8] that with a suitable anisotropy, the
KPZ nonlinearity becomes irrelevant, at least when the vortex
dynamics is neglected. Such an anisotropy could potentially be
realized in coherently driven systems in the optical parametric
oscillator regime. The framework developed here should allow
one to address this problem systematically, accounting both
for the anisotropic nonlinear phase fluctuations together with
the dynamics of the topological defects in this anisotropic
medium.

3We note that the numerical analysis of Ref. [41] was performed
assuming pumping in the optical parametric oscillator regime in
which some amount of spatial anisotropy is imprinted by the pump
wave vector.
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APPENDIX A: INTERACTION OF A
VORTEX-ANTIVORTEX PAIR

In this Appendix, we calculate the tree-level corrections
to the interaction between a vortex (n+ = 1) at r+ and an
antivortex (n− = −1) at r−, given by Eqs. (39) and (41). To
zeroth order in λ, the force between between a vortex and an
antivortex at a distance R = |R|, where R = r+ − r−, which
is larger than the short-distance cutoff a, is given by

f0(R) = 2π

ε
∇G(R) = − R

εR2
, (A1)

where G(R) is (minus) the inverse of the Laplacian in 2D [see
Eq. (36)]. At distances shorter than the cutoff a, we set the
force to zero. The corrections to the zeroth-order force f0(R)
are given in terms of integrals which are in part divergent in the
limit a/R → 0. The long-distance behavior of the interaction
is determined by the leading terms in an asymptotic expansion
of the integrals for a/R → 0 which we calculate below.

1. First-order correction

For future convenience, we write the first-order correction
as f(1)(r+ − r−) = −g(r+). The quantity g(r) appears also in
the calculation of the second-order correction in Appendix A 2
below, and as can be seen in Eq. (39) it is given by

g(r) = ελ

4πD

∫
r′

ẑ × f0(r′ − r)|f0(r′ − r+) − f0(r′ − r−)|2

= λ

2Dε2
ẑ × a(r). (A2)

In the last equality, we introduced another auxiliary quantity
a(r), which can be decomposed as

a(r) = a+(r) − 2a+−(r) + a−(r), (A3)

where

a±(r) = ε3

2π

∫
r′

f0(r′ − r)|f0(r′ − r±)|2, (A4)

a+−(r) = ε3

2π

∫
r′

f0(r′ − r)[f0(r′ − r+) · f0(r′ − r−)]. (A5)

Instead of calculating a(r) for arbitrary values of r, we first
focus on the relevant case for the first-order correction, i.e.,

r = r+. Let us start with the contribution a+(r+) defined
in Eq. (A4). To make progress with this integral, we shift
the integration variable r′ → r′ + r+ and drop the dash, i.e.,
relabel r′ → r. After these manipulations, it can readily be
seen that a+(r+) vanishes due to the rotational symmetry of
the integrand

a+(r+) = ε3

2π

∫
r

f0(r)|f0(r)|2 = − 1

2π

∫
r

r
r4

= 0. (A6)

(Note that the divergence at r = 0 is regularized by the short-
distance cutoff a.) Next, we consider a−(r+), which requires us
to do some actual work. Shifting r′ → r′ + r− and renaming
r′ → r as above, and moreover denoting the relative coordinate
as R = r+ − r−, we have

a−(r+) = ε3

2π

∫
r

f0(r − R)|f0(r)|2 = − 1

2π

∫
r

r − R
|r − R|2

1

r2
.

(A7)

As we will show minutely below, the pole at r = 0 gives
a logarithmic contribution, while the apparent divergence at
r = R is lifted by the angular integration as in Eq. (A6). This
can be seen by simplifying the integrand in the vicinity of
the pole, i.e., by replacing 1/r2 → 1/R2, and shifting the
integration variable back to r → r + R, thus moving the pole
to r = 0. Then, as above,

∫
r (r/r2) = 0. Hence, there is no

need to keep a finite short-distance cutoff a at this pole if we
agree to perform the angular integration before the radial one.
In order to carry out the integral explicitly, we parametrize r
and R in polar coordinates as

r = r

(
cos(θ + θR)
sin(θ + θR)

)
, R = R

(
cos(θR)
sin(θR)

)
. (A8)

In this representation, the scalar product between r and R is
just r · R = rR cos(θ ), and the integral takes the form

a−(r+) = − 1

2π

∫ ∞

a

dr

r

∫ 2π

0
dθ

1

r2 + R2 − 2rR cos(θ )

×
[
r

(
cos(θ ) cos(θR) − sin(θ ) sin(θR)
sin(θ ) cos(θR) + cos(θ ) sin(θR)

)
− R

]
.

(A9)

Due to their rotational symmetry, the terms involving sin(θ )
vanish. The remaining integrals can easily be performed with
the aid of Ref. [98], leading to, for R > a,

a−(r+) = R
R2

ln(R/a), (A10)

and a−(r+) = 0 for R < a. We move on to calculate a+−(r+),
which is defined in Eq. (A5). Here, the by now familiar shift
of integration variables leads us to

a+−(r+) = ε3

2π

∫
r

f0(r)[f0(r) · f0(r + R)]

= − 1

2π

∫
r

r
r4

r · (r + R)

|r + R|2 , (A11)
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and using the same polar coordinate representation (A8) as
above we find

a+−(r+) = − R
2R2

(
ln(R/a) − 1

2

)
, (A12)

where we again assume R > a. Adding the contributions from
Eqs. (A6), (A10), and (A11), we find

a(r+) = R
R2

(
2 ln(R/a) − 1

2

)
, (A13)

which upon insertion in Eq. (A2) yields the first-order
correction to the interaction in Eq. (40).

2. Second-order correction

The second-order correction to the force, given by Eq. (41),
can be written as

f(2)(R) = − ελ

4πD

∫
r

ẑ × f0(r)

×{[f0(r) − f0(r + R)] · g(r + r+)}, (A14)

which shows that we are now required to evaluate g(r)
[and hence a(r)] for arbitrary values of r (in particular, for
values different from r = r+). To facilitate the rather tedious
calculation of the second-order correction, we break the latter
up into several contributions. To wit, we decompose g(r) in
Eq. (A14) according to g(r) = g1(r) + g2(r), where

g1(r) = λ

2Dε2
ẑ × [a+(r) + a−(r)], (A15)

g2(r) = − λ

Dε2
ẑ × a+−(r). (A16)

a±(r) and a+−(r) are defined in Eqs. (A4) and (A5), re-
spectively, and the are related to g(r) by Eq. (A2). The
decomposition of g(r) entails a corresponding one of the
second-order correction as f(2)(R) = f(2)

1 (R) + f(2)
2 (R).

First, we consider the first term, i.e., f(2)
1 (R). According

to Eq. (A15), we have to calculate a±(r). This calculation

proceeds along the lines of the one of a−(r+) presented above,
resulting in

a±(r) = R±
R2±

ln(R±/a) = −εf0(R±) ln(R±/a), (A17)

where we defined R± = r − r±. As in Eq. (A10), this
expression is cut off at distances R± < a. Inserting Eq. (A17)
in Eq. (A15), and the latter in Eq. (A14), we obtain

f(2)
1 (R) = λ2

8πD2

∫
r

ẑ × f0(r)([f0(r) − f0(r + R)]

· {ẑ × [f0(r) ln(r/a) + f0(r + R) ln(|r + R|/a)]})

= − 1

2π

(
λ

2D

)2 ∫
r

ln(r|r + R|/a2)ẑ

× f0(r){ẑ · [f0(r) × f0(r + R)]}. (A18)

In order to single out the parts of this integral which diverge
for a/R → 0, we rewrite the logarithm in the integrand as the
sum of two terms

ln(r|r + R|/a2) = ln(rR/a2) + ln(|r + R|/R), (A19)

and introduce some more auxiliary quantities

b1(R) = ε3

2π

∫
r

ln(rR/a2)f0(r){ẑ · [f0(r) × f0(r + R)]}
(A20)

and

b2(R) = ε3

2π

∫
r

ln(|r + R|/R)

× f0(r){ẑ · [f0(r) × f0(r + R)]}, (A21)

such that

f(2)
1 (R) = −

(
λ

2D

)2 1

ε3
ẑ × [b1(R) + b2(R)]. (A22)

As always, we start with b1(R). Using the polar representation
introduced in Eq. (A8) we find ẑ · (r × R) = −rR sin(θ ),
which we use in Eq. (A20) to rewrite the latter as

b1(R) = − 1

2π

∫
r

ln(rR/a2)
r
r4

ẑ · (r × R)

|r + R|2

= R

2π

∫ ∞

a

dr

r
ln(rR/a2)

∫ 2π

0
dθ

sin(θ )

r2 + R2 + 2rR cos(θ )

(
cos(θ ) cos(θR) − sin(θ ) sin(θR)
sin(θ ) cos(θR) + cos(θ ) sin(θR)

)
. (A23)

Due to the sine function sin(θ ) in the numerator, in the polar representation of r, only the terms involving a sine as well have to
be kept. The others just have the wrong behavior under θ → −θ . Using(− sin(θR)

cos(θR)

)
= ẑ × R̂ (A24)

and Ref. [98], we find

b1(R) = ẑ × R
8R2

[6 ln(R/a)2 + 4 ln(R/a) + 1]. (A25)

The logarithms are due to the pole of the integrand at r = 0, whereas the apparent pole at r = R is lifted after performing the
angular integration as we have already seen several times above.

Our decomposition of the logarithm in Eq. (A19) ensures that there are no additional logarithmic contributions in b2(R). This
can be seen by noting that the expansion of the logarithm in the integrand in Eq. (A21) for r → 0 yields an additional factor of
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r , and that the integrand is thus regular at r = 0. To calculate b2(R) explicitly, we first shift the integration variable according to
r → r − R and then switch to polar coordinates as in Eq. (A8). The resulting integrals are similar to the ones we have already
become acquainted with, and a straightforward evaluation yields b2(R) = 0. Inserting this result and Eq. (A25) in Eq. (A22), we
obtain

f(2)
1 (R) = 1

8

(
λ

2D

)2 1

ε3

R
R2

[6 ln(R/a)2 + 4 ln(R/a) + 1].

(A26)
It remains to calculate f(2)

2 (R), which is obtained by inserting Eq. (A5) in Eq. (A16) and the latter in Eq. (A14):

f(2)
2 (R) =

(
λ

2D

)2
ε2

2π2

∫
r,r′

ẑ × f0(r){[f0(r) − f0(r + R)] · [ẑ × f0(r′ − r)]}[f0(r′) · f0(r′ + R)]. (A27)

The reader will not be surprised to see that we also break up this part into two contributions f(2)
2 (R) = f(2)

2,1(R) + f(2)
2,2(R),

where

f(2)
2,1(R) = −

(
λ

2D

)2
ε2

2π2

∫
r,r′

ẑ × f0(r){f0(r) · [ẑ × f0(r − r′)]}[f0(r′) · f0(r′ + R)]

=
(

λ

2D

)2 1

πε

∫
r′

ẑ × c(r′)[f0(r′) · f0(r′ + R)], (A28)

with

c(r′) = ε3

2π

∫
r

f0(r){ẑ · [f0(r) × f0(r − r′)]} (A29)

and

f(2)
2,2(R) =

(
λ

2D

)2
ε2

2π2

∫
r,r′

ẑ × f0(r){f0(r + R) · [ẑ × f0(r − r′)]}[f0(r′) · f0(r′ + R)] =
(

λ

2D

)2 1

ε3
ẑ × d(R), (A30)

where

d(R) = ε5

2π2

∫
r,r′

f0(r){ẑ · [f0(r − r′) × f0(r + R)]}[f0(r′) · f0(r′ + R)]. (A31)

The integral in Eq. (A29) can be evaluated using the same techniques as before. We find the result

c(r′) = − ẑ × r′

4r ′2 [2 ln(r ′/a) + 1]. (A32)

Plugging this into Eq. (A28) and omitting details of the further evaluation which is similar to the ones presented above, we almost
immediately obtain

f(2)
2,1(R) = 1

4

(
λ

2D

)2 1

ε3

R
R2

[ln(R/a)2 − 1]. (A33)

Finally, we turn our attention to the single missing piece d(R) defined in Eq. (A31). This integral turns out to be convergent
for a/R → 0 and equal to zero in this limit. If one is clever enough, one might be able to see this by carefully considering
symmetries of the integrand. We did the full calculation instead.

This undertaking is greatly facilitated by using the following Fourier-cosine series:

1

|r − r′|2 = 1

|r2 − r ′2|
∞∑

n=0

(2 − δn,0)

(
r<

r>

)n

cos[n(θ − θ ′)], (A34)

where r< and r> are the lesser and greater, respectively, of r and r ′. The angles θ and θ ′ in the polar coordinate representation of
r and r′ are measured with respect to θR as in Eq. (A8). Inserting the above expansion in Eq. (A31) yields

d(R) = − 1

2π2

∞∑
n=0

(2 − δn,0)
∫ ∞

0
dr

1

r2 + R2

∫ ∞

0
dr ′ 1

r ′2 + R2

1

|r2 − r ′2|
(

r<

r>

)n

×
∫ 2π

0
dθ

∫ 2π

0
dθ ′ −rR sin(θ ) + r ′R sin(θ ′) − rr ′ sin(θ − θ ′)

1 + s cos(θ )

r ′ + R cos(θ ′)
1 + s ′ cos(θ ′)

(
cos(θ + θR)
sin(θ + θR)

)
cos[n(θ − θ ′)], (A35)
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where s = −2rR/(r2 + R2) and s ′ is defined correspondingly
with r replaced by r ′. The next rather tedious steps, which can
conveniently be carried out in Mathematica, are to symmetrize
the integrand with respect to θ → −θ and θ ′ → −θ ′, and to
rearrange the trigonometric functions in the numerator such
that the angular integrals can be performed using the relation
[98]∫ 2π

0
dθ

cos(nθ )

1 + s cos(θ )
= 2π√

1 − s2

(√
1 − s2 − 1

s

)n

, (A36)

which holds for s2 < 1 and n � 0. In the resulting expression,
the summation over n can be carried out, and finally, after
performing the integrals over r and r ′, magical cancellations
lead to the result d(R) = 0. Putting together Eqs. (A26) and
(A33), we finally obtain the second-order correction to the
force in Eq. (42).

APPENDIX B: SUPERFLUID DENSITY AT THE
STRONG-COUPLING KPZ FIXED POINT

In this Appendix, we explicitly evaluate the current-current
response function defined in Eq. (4) assuming that the
fluctuations of the phase field are governed by the strong-
coupling fixed point of the noncompact KPZ equation, and
hence ignoring the possible presence of topological defects.
The superfluid density is defined as the difference between
the longitudinal and transverse components of the current-
current response function in the static limit, i.e., for vanishing
frequency [71–73],

ρs = lim
q→0

[χl(q,0) − χt (q,0)]. (B1)

These components are defined in terms of the following
decomposition of the current-current response function, which
is always possible in isotropic systems:

χij (q,ω) = χl(q,ω)
qiqj

q2
+ χt (q,ω)

(
δij − qiqj

q2

)
. (B2)

Therefore, the superfluid density is just the coefficient of
qiqj /q

2 in the static current-current response function in the
limit q → 0.

First, we consider the contribution (5) to the current-current
response function, which after Fourier transformation becomes

χ
(1)
ij (Q) = D2

0qiqjG(Q). (B3)

Here, we denote the bare coefficient by D0 in order to
emphasize the distinction from the renormalized one D. To
keep the notation compact, we denote Q = (q,ω); G(Q) is the
retarded response function

G(Q)δ(Q + Q′) = 〈θ (Q)θ̂(Q′)〉. (B4)

Similarly, Fourier transformation of the second contribution to
the current-current response function given in Eq. (6), which
involves the three-point function, yields

χ
(2)
ij (Q) = −D0λqi

∫
Q′

q ′
jG112(Q,Q′), (B5)

where we set
∫
Q

= ∫
d2q

(2π)2
dω
2π

. Note that we omit the subscript
λ0 for the KPZ nonlinearity: as explained in detail below, it

is protected from renormalization by symmetries of the KPZ
equation. Our notation, which we choose for later convenience,
indicates that G112 is the average value of a product of fields
involving twice the phase field θ1 = θ and once the response
field θ2 = θ̂ . Moreover, as in Eq. (B4), we single out a δ

function that expresses invariance under spatial and temporal
translations and hence fixes the third argument in the Fourier
transform of G112:

G112(Q1,Q2)δ(Q1 + Q2 + Q3) = 〈θ (Q1)θ (Q2)θ̂(Q3)〉.
(B6)

As mentioned above, the superfluid density is determined
by the contribution to the current-current response function
which is proportional to qiqj /q

2, whereas the coefficient
of δij encodes the normal density. Thus, by inspection of
the momentum dependence in Eqs. (B3) and (B5), we see
that both χ (1) and χ (2) give contributions to the superfluid
density, and the normal density vanishes at the present level of
approximation. In fact, the present approach in which density
fluctuations are treated at lowest order is analogous to keeping
only the zero-loop diagram in Fig. 1 of Ref. [31], which still
gives a nontrivial result due to the nonequilibrium fluctuations
of the phase at the strong-coupling fixed point of the KPZ
equation. The leading contribution to the normal density,
however, is encoded in diagrams involving fluctuations of the
density at one-loop order.

As also mentioned in the main text, at the Gaussian
fixed point corresponding to a condensate in thermodynamic
equilibrium, the contribution (B5) to the current-current
response function evaluates to zero because all odd moments
of Gaussian distributed variables vanish; on the other hand,
the retarded response function in Eq. (B3) reduces to its bare
value

G0(Q) = i

ω + iD0q2
. (B7)

With Eq. (B1), we find the superfluid density in the Gaussian
approximation ρs,0 = D0 as expected. As pointed out in
Ref. [31], the crucial point leading to a finite value of the
superfluid density in the Gaussian approximation is the scaling
of the bare retarded response function with momentum as
G0(q,0) ∼ 1/q2, which should be contrasted with the KPZ
result G(q,0) ∼ 1/q2−χ , obtained from the scaling analysis
described below around Eq. (B8), or from the explicit expres-
sion (B16) upon identifying the smallest possible momentum
with the inverse system size q ∼ 1/L. Interestingly, if the
expectation values in Eqs. (B3) and (B5) are evaluated at the
strong-coupling fixed point of the KPZ equation as we do in
the following, it turns out that the mechanism leading to a
nonvanishing superfluid density in the thermodynamic limit
in Eq. (B28) below is an entirely different one: in fact, the
contribution from the response function in Eq. (B3) vanishes
for L → ∞, while the three-point function in Eq. (B5) can be
related to the nonlinear term in the KPZ equation (1), which
is already hinted at by the observation that both have exactly
the same structure of derivatives and fields. The coupling λ

of the nonlinear vertex in the KPZ action (2) is protected
from renormalization by symmetries of the KPZ equation
[47–49,66,68,99,100]. Then, the precise combination of λ with
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powers of the renormalized values of the diffusion constant
D and the noise strength � that appear in the evaluation
of Eq. (B5) gives just the dimensionless KPZ coupling g =
λ2�/D3, which takes a universal value g∗ at the strong-
coupling fixed point [47–50], leading to the contribution to
the superfluid density (B28), which remains finite even in the
thermodynamic limit. In other words, whereas in the Gaussian
approximation the contribution to the superfluid density due to
Eq. (B3) is finite while the one from the three-point function
in Eq. (B5) vanishes for L → ∞, nonequilibrium fluctuations
at the strong-coupling fixed point of the KPZ equation lead to
exactly the opposite conclusion.

1. Scaling analysis

Before going into the details of the calculation of the
superfluid density, let us show that this conclusion can
already be drawn from a simple scaling analysis for the two
contributions χ (1) and χ (2) to the current-current response
function. We count momentum dimensions, i.e., [q] = 1,
and for the integration measures of time and space we find
[dt] = −z with the dynamical exponent z and [ddr] = −d in
d spatial dimensions. The scaling dimension of the phase field
is the roughness exponent [θ (X)] = −χ , and we denote the
scaling dimension of the response field as [θ̂ (X)] = −χ̂ . Then,
the Fourier transform of the contribution to the current-current
response function in Eq. (5) scales as[

χ
(1)
ij (q,0)

] = −z − d + 2 − χ − χ̂ = χ, (B8)

where we used that [∂/∂x] = [q] = 1, and the second equality
follows from the scaling relations d + χ + χ̂ = 0 and χ +
z = 2 [66] which in turn follow from symmetries of the KPZ
equation. Therefore, χ (1) yields a contribution to the superfluid
density that scales as ρ(1)

s ∼ L−χ [note that [L] = [1/q] = −1
so that Eq. (B8) indeed implies χ

(1)
ij (q,0) ∼ L−χ ]. In the same

way, we can see that the second contribution to the current-
current response function, given in Eq. (6), has a vanishing
scaling dimension[

χ
(2)
ij (q,0)

] = −z − d + 2 − 2χ − χ̂ = 0. (B9)

Here, we used the same scaling relations as above. These
considerations show that a driven-dissipative condensate that
is described by the KPZ equation indeed should be expected
to have a finite superfluid density if vortices are not taken
into account. However, to obtain an explicit expression for
the superfluid density, we have to evaluate the correlation
functions4 in Eqs. (B3) and (B5).

2. Evaluation of ρs at the strong-coupling fixed point

Our strategy is to first express these response functions
in terms of irreducible vertex functions [101] and then
approximate the latter by their low-frequency and momentum
expansions, the form of which is strongly restricted by the
Ward identities associated with the various symmetries of the
KPZ equation.

4Response functions are correlation functions involving response
fields.

Here and in the following, we denote the two-point response
and correlation functions by G and C, respectively, and we
denote X = (r,t),

G(X − X′) = G12(X,X′) = 〈θ1(X)θ2(X′)〉
= 〈θ (X)θ̂(X′)〉,

C(X − X′) = G11(X,X′) = 〈θ1(X)θ1(X′)〉
= 〈θ (X)θ (X′)〉. (B10)

Note that G22 vanishes due to causality [66,67]. In terms of
vertex functions, i.e., derivatives of the effective action � [101],
the response and correlation functions can be expressed as

G(Q) = 1/�12(−Q),

C(Q) = −�22(Q)/[�12(Q)�12(−Q)]. (B11)

For the vertex functions we are using the notation

�i1,i2,i3,...(X1,X2,X3, . . .)

= δn�

δϕi1 (X1)δϕi2 (X2)δϕi3 (X3) . . .
, (B12)

where ϕi(r,t) = 〈θi(r,t)〉. After Fourier transformation, we
single out a frequency- and momentum-conserving δ function
as described below Eq. (B5).

From Eq. (B11) we obtain approximate expressions for the
response and correlation functions by inserting for the vertex
functions the respective low-frequency and low-momentum
expansions. In the case of �12(Q), the form of this expansion
is restricted by the Ward identity associated with the shift-
gauged symmetry of the KPZ equation [48,49,99]: indeed,
this symmetry entails that the coefficient of the term

∫
X

θ̂∂t θ

in the KPZ action (2) is not renormalized [100]. Hence, we
have for arbitrary frequencies and at zero momentum the exact
relation

�12(0,ω) = iω. (B13)

For finite momentum, rotational invariance implies that the
lowest-order contribution to an expansion in powers of q is
proportional to q2. This leads to

�12(Q) = iω + Dq2 + O(ωq2,q4). (B14)

At the strong-coupling fixed point, the coefficient D obeys the
finite-size scaling D ∼ D∗Lχ [66], where D∗ is a nonuniversal
constant. For the �22 vertex, there is no restriction from the
shift-gauged symmetry and, therefore, its leading contribution
in the limit of vanishing frequency and momentum is just a
constant

�22(Q) = −2� + O(ω,q2), (B15)

which scales with system size as � ∼ �∗L3χ+d−2 [66].
Plugging Eqs. (B14) and (B15) into Eq. (B11) yields the low-
frequency and low-momentum scaling forms of the response
and correlation functions

G(Q) = i

ω + iDq2
,

C(Q) = 2�|G(Q)|2 = 2�

ω2 + D2q4
. (B16)
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For the three-point function appearing in the current-current
response function (B5), the relation corresponding to Eq. (B11)
reads as

G112(Q,Q′)

= −[�122(−Q − Q′,Q)G(Q)G(Q′)

+�112(−Q − Q′,Q)C(Q)G(Q′)

+�112(Q′,−Q − Q′)C(Q′)G(Q)]G(Q + Q′). (B17)

In order to make progress with Eq. (B17), we have to specify
the vertex functions. As above, we restrict ourselves to the
lowest order in frequency and momentum and consider the
following ansatz:

�112(Q,Q′) = γ1 + γ2(ω + ω′) + γ3q · q′ + γ4(q2 + q ′2),

(B18)

which incorporates rotational invariance and symmetry of
�112(Q,Q′) under exchange of its arguments, as follows from
the commutativity of the functional derivatives with respect
to ϕ(Q) and ϕ(Q′). The shift-gauged symmetry of the KPZ
action implies [48,49,99]

�112(0,ω,q′,ω′) = γ1 + γ2(ω + ω′) + γ4q
′2 = 0, (B19)

leading to γ1 = γ2 = γ4 = 0. We are left with a single
parameter γ3, which is in fact determined by another symmetry
of the KPZ action: the ansatz (B18) leads to the first equality
in

γ3 = 1

d
∇q · ∇q′�112(Q,Q′)|Q=Q′=0

= −iλ
∂

∂ω
�12(0,ω)|ω=0 = λ, (B20)

whereas in the second one we used the Ward identity associated
with the Galilean symmetry of the KPZ equation [48,49,99] in
order to express the derivatives with respect to momenta of the
vertex �112 in terms of a derivative with respect to frequency of
the lower-order vertex function �12, for which we then inserted
Eq. (B13). Thus, we have

�112(q,ω,q′,ω′) = λq · q′, (B21)

which is again just the bare vertex already present in the KPZ
action (2). Renormalization of this vertex might occur only
at higher orders in an expansion in powers of frequency and
momentum.

In analogy to Eq. (B18), for the vertex �122(Q,Q′) we start
with the following ansatz, taking into account that it has to be
symmetric under the exchange of Q′ by −Q − Q′:

�122(Q,Q′) = κ0 + κ1ω + κ2q
2 + κ3(q + q′) · q′. (B22)

Note that a term linear in ω′ is forbidden by the above-
mentioned symmetry. From the shift-gauged symmetry it
follows that κ0 = κ1 = κ3 = 0. However, the presence of a
term ∝q2 with an unknown coefficient κ2 cannot be excluded.

With the expressions for the response, correlation, and
vertex functions, we proceed to evaluate the two contributions
to the current-current response function [Eqs. (B3) and (B5)]

at vanishing frequency. We find

χ
(1)
ij (q,0) = D2

0

D

qiqj

q2
, (B23)

leading to a contribution to the superfluid density

ρ(1)
s = D2

0

D
∼ D2

0

D∗
L−χ , (B24)

which vanishes in the thermodynamic limit L → ∞. Note that
precisely this contribution involving the two-point response
function remains finite in a Gaussian approximation in which
G0(q,0) ∼ 1/q2. Let us turn now to the evaluation of Eq. (B5),
which can be rewritten as

χ
(2)
ij (q,0) = D0λqi

∫
Q′

q ′
j [κ2|q − q′|2G(q,0)G(q′,ω′)

− λ(q + q′) · [qC(q,0)G(q′,ω′)

+ q′G(q,0)C(q′,ω′)]]G(q + q′,ω′). (B25)

The integral over ω′ of the product G(q′,ω′)G(q + q′,ω′)
vanishes since the integrand has poles only in the lower
half-plane; hence, there is no contribution ∝ κ2 and also
the first term ∝λ does not contribute to the current-current
response function. For the remaining integral over frequency
we find

∫
ω′

C(q′,ω′)G(q + q′,ω′) = �

D2q ′2
1

q ′2 + |q + q′|2 . (B26)

The integral over the momentum q′ can be carried out exactly
in 2D and we obtain

χ
(2)
ij (q,0) = − ln 2

8π

D0λ
2�

D3

qiqj

q2
, (B27)

which yields the contribution to the superfluid density

ρ(2)
s = − ln 2

8π

D0λ
2�

D3
∼ ln 2

8π
D0g∗, (B28)

where g∗ is the value of the dimensionless KPZ coupling
g = λ2�/D3 at the strong-coupling fixed point [47–49,66].
Quantitatively, this result must be considered as a rough
estimate, as it is based on the low frequency and momentum
form of the correlation function (B16), and there can be
corrections resulting from the deviation of these forms at
higher frequencies and momenta. However, the calculation
demonstrates explicitly the finiteness of the superfluid stiff-
ness: possible quantitative corrections would be nonuniversal
(not dependent on the fixed-point coupling) and thus are not
expected to cancel the finite contribution that we identified.
The sum of Eqs. (B24) and (B28) yields the final result for the
superfluid density in the absence of topological defects within
our approximation:

ρs = ρ(1)
s + ρ(2)

s = D2
0

D∗
L−χ + ln 2

8π
D0g∗. (B29)
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Phase Transition in a Two-Dimensional Driven Open Quantum
System, Phys. Rev. X 5, 041028 (2015).

[42] J. Keeling, L. M. Sieberer, E. Altman, L. Chen, S. Diehl,
and J. Toner, Superfluidity and Phase Correlations of Driven
Dissipative Condensates, arXiv:1601.04495.

[43] V. N. Gladilin, K. Ji, and M. Wouters, Spatial coherence of
weakly interacting one-dimensional nonequilibrium bosonic
quantum fluids, Phys. Rev. A 90, 023615 (2014).

[44] K. Ji, V. N. Gladilin, and M. Wouters, Temporal coherence of
one-dimensional nonequilibrium quantum fluids, Phys. Rev. B
91, 045301 (2015).

[45] L. He, L. M. Sieberer, E. Altman, and S. Diehl, Scaling
properties of one-dimensional driven-dissipative condensates,
Phys. Rev. B 92, 155307 (2015).

[46] M. Kardar, G. Parisi, and Y.-C. Zhang, Dynamic Scaling of
Growing Interfaces, Phys. Rev. Lett. 56, 889 (1986).
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