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We present a comparative study of pair correlations and currents through superconducting-magnetic hybrid
systems with a particular emphasis on the tunable Bloch domain wall of an exchange spring. This study of the
Gor’kov functions contrasts magnetic systems with domain walls that change at discrete points in the magnetic
region with those that change continuously throughout. We present results for misaligned homogeneous magnetic
multilayers, including spin valves, for discrete domain walls, as well as exchange springs and helical domain
walls—such as Holmium—for the continuous case. Introducing a rotating basis to disentangle the role of singlet
and triplet correlations, we demonstrate that substantial amounts of (so-called short-range) singlet correlations
are generated throughout the magnetic system in a continuous domain wall via the cascade effect. We propose
a classification of 0-π transitions of the Josephson current into three types, according to the predominant pair
correlations symmetries involved in the current. Properties of exchange springs for an experimental study of the
proposed effects are discussed. The interplay between components of the Gor’kov function that are parallel and
perpendicular to the local magnetization lead to a novel prediction about their role in a proximity system with a
progressively twisting helix that is experimentally measurable.
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I. INTRODUCTION

There has been an accrued interest in nanoscale proximity
systems made of materials with competing ground states,
and in particular those involving superconductivity and mag-
netism. The interest is both fundamental and practical: the
behavior of conduction electrons in competing phases of
matter provides fertile ground for rich physics [1,2] and are
also candidates for new spintronics devices [3–7].

The interplay of superconductivity and magnetism is an
old topic. The first result related to the present work is the
Fulde, Ferrell, Larkin, and Ovchinnikov (FFLO) effect in
which Cooper pairs entering a magnetic field or material will
acquire an angular momentum and change the state of the
spin pairs [8,9]. Denoting |s,m〉 the spin state of the pair with
s = 0,1 the total spin and m = 0,±1 the projection of that
spin onto the quantization axis, the FFLO effect transforms
the singlet |0,0〉 state into a linear combination of both m = 0
states, |0,0〉 and |1,0〉. Of particular interest for technological
application is the generation of triplet pairs |1,±1〉 that have a
long propagation length scale. These pair correlations appear
in the presence of magnetic inhomogeneities. This was pointed
out by Bergeret, Volkov, and Efetov and shortly thereafter
for a different situation by Kadigrobov, Shekhter, and Jonson
[10,11]. Experimental verification of the theoretical predic-
tions showed that they play a crucial role in the detection of
superconducting properties in wide ferromagnets [12–20].

We discuss fundamental properties of pair correlations
in superconducting-magnetic hybrid systems in the diffusive
regime. Of interest is the behavior of spin pair-correlations
in various inhomogeneous magnetic heterostructures. The
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particularity of these systems is that the quantization axis
changes direction in the structure, thereby affecting pair
correlations at the nanoscale.

Prior theoretical works have discussed proximity effects
in misaligned homogeneous films [1,2,10,21–27] or rotating
magnetizations [1,2,10,28–41] in the clean or the diffusive
limit. The results strongly depend on the choice of materials
and the width of the layers.

On the experimental side, mostly misaligned homogeneous
films have been studied [14,20]. Some also considered conical
magnetization profiles such as those encountered in Holmium
(Ho) or an exchange spring [15,32–34,36,39,40,42,43].

This work provides a comparative study of pair correlations
in existing and proposed hybrid systems, including spin valves
and other multilayers of homogeneous Fs, helical magnetic
structures, and exchange springs (XS). Particular focus is
set on the latter that was proposed as a device to tune and
reverse the Josephson current in one single heterostructure
[41]. The insight provided by the study of pair correlations
allows understanding which linear combination of spin states
is dominant and under what circumstances. To this aim, we
focus on a discussion of the Gor’kov functions that describe
the superconducting pair correlations. These functions are
not usually presented in the literature, yet they provide for
a clear picture of the behavior of electron pairs in proximity
systems and Josephson junctions. We introduce a rotating basis
that follows the magnetization direction to disentangle the
behavior of either singlet and triplets, or m = 0 and m �= 0
pair correlations at each point in the magnetic structure.

The study of pair correlations in various structures leads
to two main insights. First, we are led to divide mag-
netic inhomogeneities into discrete domain walls (dDW)
and continuous domain walls (cDW), which refer to local
abrupt and continuous, smooth rotations of the magnetization,
respectively. Second, we classify all types of 0-π transitions
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of the Josephson current (the reversal of the current upon
variation of a parameter of the system) according to the
symmetry of the pairs correlations involved in the current
(summarized in Table I of Sec. V B).

The distinction between dDWand cDWs is rooted in the
fact that pair correlations propagate in fundamentally different
ways through these magnetic inhomogeneities. The most
dramatic effect is seen on the singlet component. The singlet
correlations are found to be present throughout the magnetic
material of a cDW despite their known short decay length.
This is due to the cascade effect, which is a remix of all
pair correlations when the magnetization changes direction
[26]. Also, despite their scalar (rotationally invariant) nature,
singlet correlations are shown to be affected by the magnetic
configuration of the hybrid structure and not only by the
magnitude of the magnetization in cDWs.

The symmetry of pair correlations is also determinant
for understanding how the 0-π transition of the Josephson
current comes about. We distinguish three classes of Josephson
current reversal. One relies on the m = 0 components and
was proposed by Buzdin, Bulaevskii and Panyukov [44].
Another class of 0-π transition involves only m �= 0 triplet
components and was presented by Houzet and Buzdin [22].
Finally, the third class of 0-π transitions involves a mixture
and competition of singlet and triplet correlations and was
discussed in Ref. [41]. Earlier indication of the existence of
the third class can be found in the work of Bergeret, Volkov,
and Efetov in Ref. [28], although the transition of that paper is a
blend of the Buzdin-Bulaevskii-Panyukov (but in the diffusive
regime) and the singlet-triplet 0-π transition discussed here.

Using our own numerical approach to solve the complete,
nonlinear Usadel equation for the wide limit in the diffusive
regime (described in Sec. II), we determine the pair correla-
tions and discuss the physics of various observed and predicted
effects on hand of the exchange spring (XS; Refs. [41,45])
pictured in Fig. 1. This magnetic bilayer proposed earlier
by the authors to vary the Josephson current [41] has the
advantage of being magnetically tunable, allowing to change
the relative weight of the pair correlations within the same
system. The other advantage is that it is experimentally
realizable and has been studied at length in the field of
magnetism [43,45]. After describing the pair correlations in
the XS (Sec. III), we compare in Sec. IV the XS and other
structures studied in the literature, such as helical cos(Qx)
type domain walls and misaligned homogeneous multilayers
F1F2 · · · . For concreteness, we compare the pair correlations of
our XS with that of the helical structure of Refs. [28,37–40],
and misaligned multilayers of Ref. [22]. We set particular
emphasis on identifying which pair correlations drive the
behavior of the proximity system.

In Secs. V A–V C, we consider how the behavior of the
Gor’kov functions in cDW and dDW hybrid structures differs
and affects the Josephson current. Table I summarizes the
results of this study and unambiguously differentiates the three
classes of transitions.

We discuss in Sec. V D materials properties that affect the
measurement of the Josephson current through an XS and
propose alternative experiments that discuss new effects in
superconducting-magnetic hybrid structures. We conclude in
Sec. VI.

FIG. 1. (a) A perspective of the S/XS/S hybrid system. The
exchange spring (XS) is made of two Fs with easy axes parallel to ẑ.
The hard F (hF) has a high anisotropy energy Kh as compared to the
soft F (sF) energy Ks [46]. (b) A schematic side representation of the
S/XS/S system. Shown in (a) are also the Cartesian coordinate system
{x̂,ŷ,ẑ}, and the rotating basis {êx ≡ x̂,ê⊥(x),ê‖(x)} where ⊥ (‖)
denote the vectors perpendicular (parallel) to the local magnetization
vector h(x).

II. SUPERCONDUCTING PROXIMITY EFFECTS:
THE MODEL

We consider proximity effects in which a singlet-pair super-
conductor is in contact with a magnetic material. The Cooper
pairs from the superconductor may tunnel into the adjacent
material, but the absence of a pairing mechanism will cause
the probability amplitude to attenuate with distance. In the
diffusive regime the length scale over which the exponential
decay occurs is the coherence length ξN = √

DN/2πT for
nonmagnetic metals (DN is the diffusion constant and T the
temperature) and ξF = √

DF /h for ferromagnetic materials (h
is the magnetization of the ferromagnet). Another coherence
length, ξc = √

DF /2πTc where Tc is the superconducting
critical temperature of the proximity system, is also introduced
as a length scale available when analyzing two ferromagnets
of different strengths [1,47]. In the wide limit considered in
this paper, the relation between the relevant energy scales
is typically h � ET > � � T ,Tc, where � is the BCS
superconducting gap, ET = �D/d2 is the Thouless energy
with D the diffusion constant of the material and d the width
of the multilayer.

A. Pair correlations and Josephson current

The standard Fermi surface and impurity averaged Green,
g, and Gor’kov, f , functions are used to analyze the state of
the system [1,2,48–60]. These satisfy the Usadel equations
in the semiclassical diffusive regime [61], where the elastic
scattering length is much smaller than the coherence length
of the superconducting pairs, effectively randomizing the
momentum of the electrons.

To describe the possible correlations of the pairs of spin
−1/2 particles one writes the Gor’kov function, f , in the
Lüders’ expansion to sufficient order f = f0 + v̂ · f + · · ·
[62], where v̂ is the unit vector along the Fermi velocity [61].
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The scalar term f0 corresponds to singlet pair correlations
while the vector function f describes triplet states. A similar
decomposition is performed for the Green’s function g [1,2].

We are interested in the behavior of pair correlations in
magnetic systems where the magnetization h is confined to
the yz plane (the plane of the thin films) and may rotate in
that plane as a function of x (see Fig. 1). The rotationally
invariant singlet component, f0, is in principle only affected
by the magnitude h of the magnetization and not the direction,
while the vector function f is affected by both the magnitude
and direction of h. The equations governing the Gor’kov
functions in a magnetic system (see Sec. II C) reveal that
components of f parallel to h are affected by the magnetization
while the components perpendicular to it remain unaffected
[63]. Since we consider magnetic configurations in which the
magnetization vector h(x) rotates in the yz plane, we present
the Gor’kov vector f(x) either in the fixed Cartesian system or
in the rotating basis {x̂,e⊥(x),e‖(x)} (see Fig. 1), where the ⊥
(‖) index denotes the component perpendicular (parallel) to the
local direction of the magnetization h(x) in the yz plane. Thus
we write the vector Gor’kov function f = fy(x) ŷ + fz(x) ẑ
in the standard fixed Cartesian coordinate system {x̂,ŷ,ẑ}.
Introducing the angles γ (x) = ∠(h,f) and φ(x) = ∠(−ẑ,h),
we have

f(x) = −|f|(0, sin(φ − γ ), cos(φ − γ ))xyz (1)

= |f|(0, − sin γ, cos γ )x,⊥,‖ (2)

in the Cartesian and rotating basis, respectively. With the
magnetization confined to the yz plane we have(

f⊥(x)
f‖(x)

)
= −

(
cos φ(x) − sin φ(x)
sin φ(x) cos φ(x)

)(
fy(x)
fz(x)

)
. (3)

All calculations presented in this paper are performed in
the wide limit where effects within one coherence length
are smeared out [55,64,65]. This is a reasonable limit for
our comparative study of XSs and related systems because
they are tens of nanometers wide and the physics of interest
lies far from the SF interface. If one desires to remove this
approximation, a position dependent spinor must be included
in the Gor’kov function and different boundary conditions
enforced [21,55,64,65]. An example effect that is excluded in
this approach is the inverse FFLO (or inverse proximity) effect,
where pairing in the S region is reduced by the magnetization
in the adjacent F [57,66].

The wide-limit treatment of Usadel’s equation has the
advantage that it allows for a clear determination of what
is contributed from the left (L) and right (R) superconductors,
respectively, in a Josephson junction. Following Refs. [64] and
[65], we may thus write (α = 0,x,y,z)

fα(x) = eiϕ/2fα,L + e−iϕ/2fα,R, (4)

where ϕ = ϕL − ϕR is the superconducting phase difference.
In this work, we typically show the Gor’kov functions

for the first Mastubara frequency. This is beneficial for
studying pair correlations across the system. Higher Matsubara
frequencies see an overall decrease in the superconducting
order parameter amplitude which results in a decrease of
the Gor’kov function while slightly shifting some of its
features (e.g., dips, zeros, etc.) in space. When calculating the

Josephson current, one sums over all frequencies since all of
them count to determine the features of the Gor’kov functions.
Nevertheless, the Gor’kov functions for the first Matsubara
frequency can reveal much about the electronic state of the
system.

Once the Gor’kov functions have been calculated. We can
determine the Josephson critical current of a junction. All
effects discussed in this paper are found in the first harmonic.
The superconducting critical current is given by [1,22,67]

Ic(x) = πT

2eRN

∞∑
n=−∞

Im

(
f 	

−n

∂fn

∂x

)
, (5)

where the f 	 denotes the complex conjugate of f . This
expression may be rewritten as [68]

Ic(x) = πT

2eRN

∞∑
n=−∞

∑
α=0,x,y,z

Im

(
f ∗

−n,α

∂fn,α

∂x

)

= [Ic,0(x) + Ic,t (x)] sin ϕ. (6)

The current is sinusoidal in ϕ having neglected the inverse
FFLO effect due to opaque boundary conditions [65], though
others may be chosen [69].

In the first line, we have expressed Ic in terms of a sum over
each component 0,x,y,z of the Lüders decomposition. The
second line shows that the same current can be decomposed in
contributions from the singlet Ic,0 and from all triplets Ic,t =∑

α=x,y,z Ic,α . For magnetic configurations confined to the yz

plane, we also have Ic,t = ∑
α=⊥,‖ Ic,α .

B. Solution for the homogeneous magnetization

We point out a few particularities of the well-known
homogeneous case to set the stage of the theory and for later
comparison. The standard parametrization of the Green and
Gor’kov functions in a homogeneous F, g = cos θ,f = sin θ

with θ = θR + iθI , guarantees that ĝ = gσ̂z + f σ̂x (with Pauli
matrices σ̂ for the spin sector) automatically satisfies the
normalization condition, ĝ2 = 1̂ [1,70,71]. Usadel’s equation
in the wide limit and for homogeneous magnetization h = hẑ
then takes the form [21,26,64,65,69]

D∂2
x θ = 2(β + cos θ/τ ) sin θ, (7)

where β = ωn + isgn(ωn)h,D is the diffusion coefficient of
the medium (subscripted F for ferromagnet, S for super-
conductor) and τ is the spin-flip scattering time if magnetic
impurities are present. The nth fermionic Matsubara frequency
at temperature T is ωn = (2n + 1)πT . Equation (7) was solved
exactly analytically for arbitrary values of the parameters and
finite thicknesses in closed form in Ref. [26], for special
cases in Refs. [29,69,72] or by linearizing the equation near
the critical temperature [21,64,65,69]. Some expressions have
been shown to fit experimental data [72].

For a normal metal (h = 0), the solution of Eq. (7) is a
monotonous exponential decay, f0 ∝ exp (−|x|/ξN ), while in
a homogeneous F, an m = 0 triplet arises through the FFLO
effect [8,9], and the Gor’kov function has two components f0

and fz describing pair correlations corresponding to the states
|s,m〉 = |0,0〉 and |1,0〉 [3]. These components exponentially
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FIG. 2. Josephson current through an SFS junction with homoge-
neous F [26]. (a) Josephson current density Ic(x). The decay near the
left and right of the system comes from the wide-limit approximation
[64]. (b) Total current as a function of the F thickness dF . In both
figures, we decompose the current in singlet (dashed, blue) and triplet
(dotted, red) contributions. The total (observable) current is plotted
as a solid black line and is the sum of these contributions. Parameters
used are h = 3πTc,T = 0.5Tc,τ → ∞, and using the first twenty
Matsubara frequencies.

attenuate and oscillate in the F with a characteristic length
scale ξF ,f|s,0〉 ∝ exp (−|x|/ξF ) cos (x/ξF + sπ/2) (s = 0,1).

The Josephson critical current through a homogeneous F
is shown in Fig. 2(a). We use the decomposition of Eq. (6)
to demonstrate that even in the homogeneous case, the
contributions to the current originating from the singlet and
the m = 0 triplet components (α = 0,z) strongly depend on x,
while the sum of its components Ic(x) is very nearly constant
deep in the layer. The variation of the total current over a length
of order ξF near the interfaces to the S are due to the wide-limit
approximation.

To determine the Josephson current, one can either evaluate
the current in the middle of the layer (or anywhere, the current
density is constant) and multiply by the width of the layer,
or integrate the entire current density over the layer. These
options give very similar answers. The results of this paper
have been obtained through integration over the thickness of
the magnetic structure.

Figure 2(b) displays the calculated Josephson current for the
well studied case of homogeneous magnetic films of different
thicknesses using the full, nonlinear solution of Eq. (7) from
Ref. [26]. Here again we not only plot the total current (solid
line) usually presented but also separate the contributions to the
current from the singlet and triplet correlations. The interesting
feature is that the singlet Ic,0 and triplet Ic,t contributions to the
current change phase at slightly different thicknesses, implying
that even in homogeneous films the two contributions may
compete (for example, the contribution from the singlet may
be in a 0 phase while the triplet is in the π phase). We will
come back to this scenario to understand the 0-π transition in
the XS (Sec. V).

C. Usadel’s equation for inhomogeneous magnetizations

When the magnetization varies in space, superconducting
singlet pairs leaking into it will transform into a linear
combination of all possible singlet and triplet states |s,m〉.
In particular, whenever the magnetization changes direction,
long-range correlations involving |1,±1〉 states are generated
[10,11]. To include these correlations, it is convenient to
consider the Ivanov-Fominov parametrization of the Green

and Gor’kov functions [63,73]{
g0 = M0 cos ϑ,

f0 = M0 sin ϑ,
and

{
g = iM sin ϑ,

f = −iM cos ϑ,
(8)

Again, the subscripted “0” components relate to the singlet
while the vector components are triplet quantities. In the
Matsubara representation M0, M, and ϑ are real functions
of position. Note that the parametrizations in Eqs. (7) and (8)
involve different “angular functions,” θ = θR + iθI ∈ C and
ϑ ∈ R, respectively.

In the Ivanov-Fominov parametrization, the Usadel equa-
tions read (D = DF ,DS is the diffusion constant in the
F, S)

D

2
∇2ϑ − M0(ωn sin ϑ−� cos ϑ) − (h · M) cos ϑ = 0, (9)

D

2
(M∇2M0 − M0∇2M) + M(ωn cos ϑ + � sin ϑ)

−h M0 sin ϑ = 0, (10)

with the normalization condition

M2
0 − |M|2 = 1. (11)

The functions M0,M and θ are odd functions with respect to
the Matsubara frequencies ωn. This can, for example, be seen
by replacing ωn → −ωn in the above equations.

This form of the Usadel equations is not convenient for
a numerical treatment. To achieve that goal, we differentiate
Eq. (11) twice to obtain

0 = (∂xM0)2 + M0∂
2
xM0

−
∑

α={x,y,z}

[
(∂xMα)2 + Mj∂

2
xMα

]
, (12)

where differential operators are now written explicitly in one
dimension assuming that the magnetization only varies with x

across the magnetic structure and is constant in the yz plane.
Inserting into Eqs. (9) and (10) and dotting with M gives

∂2
xM0 = M0

⎡
⎣ ∑

α={x,y,z}
(∂xMα)2 − (∂xM0)2

⎤
⎦

−
∑

α={x,y,z}

2M2
α

DF

(ωn cos ϑ + � sin ϑ)

−
∑

α={x,y,z}

2M0Mα

DF

hα sin ϑ (13)

∂2
xMi = Mi

⎧⎨
⎩

⎡
⎣ ∑

α={x,y,z}
(∂xMα)2 − (∂xM0)2

⎤
⎦

−
∑

α={x,y,z}

2hα

DF

sin ϑ

⎫⎬
⎭+2MiM0

DF

(ωn cos ϑ+� sin ϑ)

− 2hi

DF

sin ϑ (14)

(i = x,y,z), where the normalization condition (11) has been
used to simplify some terms. In this form, the equations
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are suitable for the numerical relaxation method [74] thus
allowing to solve the full nonlinear Eqs. (9) and (10), without
further approximations. The additional advantage of this
parametrization is that the Gor’kov functions can be viewed
easily with Eqs. (8).

D. Boundary conditions

The differential equations (9)–(11) [or (13) and (14)]
must be supplemented with boundary conditions. There are
three types of boundary conditions in the system under
consideration. The two first are required for obtaining the
Green and Gor’kov functions [75]: (1) relating the functions
in a S and its adjacent F and (2) relating the functions in
adjacent Fs. The third set of boundary conditions determines
the magnetic state of the system and is generally neglected
because the magnetic configuration is considered a given [25].

Transparent boundary conditions for the Green and Gor’kov
functions between all magnetic layers are sufficient to capture
the physics we consider. We will match derivatives and values
of all the functions at each interface between Fs. On the
other hand, the interface between the F and the S has low
transparency [9,65]. In this limit, the superconducting pair
potential � remains constant up to the boundary of the
superconductor in first approximation and the value of the
parameter ϑ at the SF boundary is set to θB = arctan(|�|/ωn).

In the wide limit of the hybrid system, it is possible to treat
SF and FS as independent subsystems. At both boundaries we
have (M0,M) = (1,0) and ϑ(SF) = ϑ(FS) = θB . The Green
and Gor’kov functions vanish at the other end, that is at the
right (left) edge of the SF (FS) part. Numerical evaluations
show that in the wide-limit setting the latter boundary value
of the functions or their derivatives to zero does not change
the observable quantities appreciably. As a result of these
boundary conditions, we can use Eq. (4).

The third set of boundary conditions determines the mag-
netic state h(x) and ensures its stability and these conditions are
completely independent from the choices for the correlation
functions discussed above. The effect of magnetic boundary
conditions are discussed in Ref. [25]. The main points are
that for the helix, ∂h(x)/∂x is different at both ends of the
magnetic layer except for the special case when the distance is
commensurate with the period of the helix. Thus, in this case,
the boundary values of the magnetic configuration depend
on the thickness of the layer. For the XS ∂h(x)/∂x = 0 at
both edges of the system, and this is true for any twist of the
magnetization and for any thickness of the XS. In addition,
the winding number (the number of times the magnetization
rotates by 2π ) of the helical structure is unbound and
determined by the thickness of the film, while the winding
number is less than 1/2 in all realized XS. The discrete domain
wall offers a situation that is intermediate between the two
cDWs since we trivially have ∂h(x)/∂x = 0 as in the XS
but the winding number has N/2 as upper bound, where N

is the number of layers of the magnetic multilayer. The
particular aim of a superconducting-spintronic device and the
knowledge provided in this paper about the pair correlations in
the different systems will determine which of these magnetic
boundary conditions is preferred.

E. The magnetic configuration

The magnetic profiles discussed in this paper pertain to the
two classes of inhomogeneities introduced in Sec. I: cDW or
dDW. Their distinguishing feature is that in dDW the “natural”
quantization axis (by “natural” we mean the quantization axis
along the magnetic field) changes at a discrete set of well
defined positions within the hybrid structure, while the cDW
is characterized by a continuous rotation of the quantization
axis within the magnetic material. The domain wall of the
exchange spring can be seen as the continuum limit of a
multilayer composed of an infinite number (N → ∞) of
misaligned homogeneous Fs of thickness �xF,i = dF /N , with
(i = 1, . . . ,N ). As will be seen in the next two sections, cDWs
and dDWs generate distinct mixtures of pair correlations,
and in particular a very different behavior of singlet pair
correlations (|s,m〉 = |0,0〉).

The XS, represented in Fig. 1, allows for a partial to full
Bloch domain wall. The magnetic configuration is written as

h = −h sin φ(x)ŷ − h cos φ(x)ẑ, (15)

with |h(x)| = h constant and where φ(x) is the angle at position
x between the magnetization vector and −ẑ (in the present
choice of coordinate system). The function φ(x) has been
obtained by minimizing the magnetic energy of the bilayer and
provides an excellent description of experimentally realized
XS domain walls [41,45]. In all figures involving a domain wall
we characterize, the twist of the magnetization by the relative
angle �φ = φ(SF) − φ(FS), which is the angle between the
magnetization vectors at the SF and FS interfaces. In the case
of the exchange spring the easy axis is along ẑ.

The angle φ(x) is depicted in Fig. 3 for the two XSs
considered in this work and was obtained for the following
parameters. The anisotropy energy ratios are Kh/Ks = 1000
(Ni-XS), and 625 (Co-XS). The thicknesses of the layers
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FIG. 3. Domain walls in two XSs denoted Ni-XS (top) and Co-XS
(bottom) represented by their angle φ(x), Eq. (15). The top figure is
for the weak magnetization XS Ni3Mn/Ni (hF/sF; see Fig. 1) while
the bottom is for the strong Co/Py. Unlike helical structures the XS
has flat edges for all twists near the ends of the DW. See text for the
parameters.
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FIG. 4. Comparative representation of the magnetization in cDW
and dDW structures studied in this paper. The long dashed black line
is for the XS of Fig. 1. The short dashed purple line is for the helix
(Fig. 8), and the solid blue lines are for the spin valve structure of
Fig. 10. We also show the magnetization profile of Hx/Co/Hx and
Co/Hx/Co structures where Hx is a helix described by Eq. (16) and
are similar to Ref. [15] except that Qξc � 1 is here much smaller than
the case of Ho (Qξc = 11). Parameters are those of the Ni-XS for the
XS, Qξc = 0.2 for the Hx, and φ = π/2 for the spin valve.

are dNi−XS = tNi
h + tNi

s = (2.65 + 5.29)ξc and dCo−XS = tCo
h +

tCo
s = (6.25 + 6.25)ξc. The strength of the magnetization

are hNi3Mn = 4.5πTc, hNi = 4πTc, hCo = 14πTc, and hPy =
8πTc, where Tc is the critical temperature of the Nb/XS
proximity system.

The dependence on x is highly nonlinear. Furthermore,
we note that ∂φ/∂x = 0 at the edges of the XS for arbitrary
twists and thicknesses. This implies that the XS domain wall
magnetization flattens near the edges of the XS, as seen in the
figure [25]; the largest twist remains a full Bloch domain wall
(�φ � π ). This contrasts with the helical magnetic structure,
φ(x) = Qx at fixed Q [28,37–40], where an increase of
thickness leads to an unaltered shape of the domain wall (the
curvature remains constant) and therefore increased winding,
even beyond a π rotation of the magnetization. It also contrasts
with a magnetic domain wall obtained for a F of infinite
thickness that was overlaid on the magnetic film of finite
thickness embedded into a finite size Josephson junction [76].
A full discussion is given in Ref. [25].

The different magnetic configurations considered in this
paper are depicted in Fig. 4. One recognizes the nonlinear
feature of the XS domain wall and how it is unique. Its features
have similarities with each of the other structures, but none
models the XS. In particular, the edges of the XS resemble the
misaligned homogeneous spin valve but clearly not the helical
structure. Conversely, the middle part of the XS resembles the
helical structure but is different from the middle layer of the
spin valve.

III. PAIR CORRELATIONS IN AN EXCHANGE SPRING

Using the formalism of the previous section, we now
undertake a comparative study of pair correlations in different
hybrid systems. The magnetic multilayers considered here

are very wide (several tens of ξF ). According to common
understanding the presence of “long-range” |s,m〉 = |s,0〉
components should thus only be visible near the SF and FS
interfaces. As shown here this is not the case for cDW systems
such as the XS.

In the next sections, we first consider triplet correlations
f then analyze the relation between m = 0 and m = ±1
components usually termed long- and long-range components.
We also first discuss cDW (XS, helixes, etc.) systems then
compare to the corresponding functions in dDW (spin valves
[22]) systems. The figures only display the pair correlations in
the magnetic material and assume that the S is located on the
left or the right of the figure; the left (right) boundary of the
figures thus coincide with the SF (FS) interface.

A. Triplet components

The components of the Gor’kov vector f(x) (triplets) for
different twists �φ of the exchange spring magnetization are
shown for the Ni3Mn/Ni exchange spring in Fig. 5 and for
the Co/Py exchange spring in Fig. 6. The scalar (singlet)
component f0 of these same systems is discussed in Sec. III C.
The Ni-based XS (henceforth referred to as the Ni-XS) is
made of materials with weak magnetization |h(x)| = h and
large magnetic energy anisotropy ratio while the Co-based XS
(or Co-XS) has strong magnetization and weaker anisotropy
ratio. The important distinction between these systems for the
purpose of this work is that the Ni-XS is a weaker pair breaker,
allowing pairs to diffuse farther into the magnetic structure.

Consider the Gor’kov functions of Fig. 5. For a homoge-
neous magnetization (�φ = 0) the m = 0 triplet component
(solid blue line) only appears along the ẑ direction; fy = 0.
This is expected for a singlet Cooper pair superconductor
placed on either side. The component displays the well-
known oscillations that are ultimately responsible for the
Buzdin-Bulaevskii-Panyukov 0-π transition of the Josephson
current (with a full discussion delayed until Sec. V). The
oscillatory fast decay with characteristic length ξF is identified
in the literature as the “short-range” component of the pair
correlations. Inducing a small twist, �φ � 0 (for example,
the dashed red line), the m �= 0 components appear (here as
an |fy | component) throughout the layer with a very long and
slow nonoscillatory decay, coined “long-range” correlations in
the literature. Increasing the twist (�φ = 0.24, 0.46, and 0.52
in Fig. 5) the two nodes in |fz(x)| that are closest to the SF
interface move towards each other and disappear, implying the
vanishing of the oscillatory behavior and leaving only a long-
range component. At the same time, the long-range behavior of
|fy(x)| gradually disappears and nodes (oscillations) appear.
Thus as one component (fz) transforms from a short- into
a long-range component the other component (fy) does the
opposite as �φ is increased.

The behavior just described reflects the continuous rotation
of the quantization axis from ẑ towards ŷ, as demonstrated in
the bottom two rows of Fig. 5 where we plot the components
of the Gor’kov vector, |f⊥|,|f‖|, in the basis rotating with the
magnetization. The component perpendicular to the magneti-
zation has a nonoscillatory weak decay at all twists, contrasting
with the parallel component. We also note that for low
twists of the magnetization the m = 0 triplet component, |f‖|,
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FIG. 5. Components of the Gor’kov triplet vector function f in Ni3Mn/Ni, represented in the Cartesian basis {ey,ez} (first two rows)
and the rotating basis {e⊥,e‖} (two last rows; see Eq. (3) and text). The left (right) column depicts the Gor’kov functions for S located on
the left (right) of the XS. In each figure the curves are obtained by solving Eqs. (9) and (10) for the twists of Fig. 3. Oscillatory sections
(dips) of the functions denote regions where m = 0 triplet components dominate while longer decays are m �= 0 components. In the first two
rows, one observes the tuning in of the long-ranged components with increasing twist, recognizable with the characteristic long exponential
tail and concomitant disappearance of the oscillations. The last two rows represent the same Gor’kov vector function f in the rotating basis
displaying the clear separation of short, oscillating (f‖) and long- (f⊥) range components. Parameters: Kh/Ks = 1000, th ≈ 2.65ξc, ts ≈ 5.29ξc,

hh = 4.5πTc, hs = 4πTc, and T = 0.2Tc.

dominates while for stronger twists the m �= 0 components,
|f⊥|, dominate. This explains the growing Josephson current
observed with increasing �φ in Ref. [41]—the “long-ranged”
pair correlations are increasing in amplitude [10,11]. Some
change in the f‖ components appear far from the SF interface
(right column of Fig. 5) that is due to the cascade effect
[26] This will be revisited below when discussing the
Co-XS.

Observe in Fig. 3 that, with growing �φ, the curvature of
the magnetization twist increases near the edges. This leads to
a decrease of the width near the SF and FS interfaces where the
magnetization is approximately constant, approaching values
closer to ξF and thus allowing for the formation of a larger
m �= 0 component to develop. This is evidenced by the increase
of |fy | or |f⊥| with increased �φ. The increased twist is
expected to lead to a stronger current [25].

We note two more features seen in Fig. 5. The Gor’kov
functions are smooth across the magnetic bilayer, reflecting
the transparent interface conditions (located at x = −1.32ξc)
chosen for this study. Finally, we point out that the Gor’kov
functions calculated for the SF and the FS interfaces (left
versus right panels in Fig. 5) are not symmetric since the hard
and soft layers constituting the XS have different magnetic

properties; the XS is an asymmetric bilayer with a magnetic
interaction across the interface.

B. Mixing of m �= 0 and m = 0 triplet components

A major difference between the continuously rotating
magnetization of a domain wall (cDW) and misaligned
homogeneous Fs (dDW) is the behavior of m = 0 (usually
termed “short-range”) components deep in the magnetic
material [26]. Each rotation of the magnetization can be
interpreted as a rotation of the quantization axis, resulting
in a new linear combination of the states |s,m〉. This is
related to the effective boundary conditions introduced in
Ref. [26]. In the case of a dDW (see Sec. IV for more details),
this remix may only occur at the discrete set of interfaces,
between various magnetic layers. Away from these interfaces
the m = 0 contributions decay exponentially over the short-
range scale ξF . Contrastingly, in a cDW system, the remix
of components occurs at all points across the continuously
rotating magnetization. The redistribution of weight between
the various components |s,m〉 (the cascade effect of Ref. [26])
effectively reduces the decay of the singlet and m = 0 triplet
components in the magnetic material. While the abrupt rotation
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FIG. 6. Similar to Fig. 5 but for Co/Py. Upper two rows: Gor’kov functions fy,fz for the S/XS (left column) and XS/S (right column) with
different twists of the XS. Lower two rows: the same Gor’kov function f in the rotating basis, Eq. (3) (see text). The text discusses the marked
change from long-to long-range behavior of f‖ far away from the S/XS and XS/S interfaces. Parameters: Kh/Ks = 625, th = ts ≈ 6.25ξc,

hh = 14πTc, hs = 8πTc, and T = 0.2Tc.

of the magnetization in a dDW causes a sizable redistribution
of pair correlations as seen in Ref. [26], the cDW provides for
gentler effects.

Figure 6 explicitly shows the mixing of components with
the continuous rotation of the Co-XS. The figure displays the
same Gor’kov functions as in Fig. 5 but for the Co-XS with
stronger pair breaking and weaker anisotropy ratio. We observe
similar, though more dramatic changes of the Gor’kov function
f than in the Ni-XS.

The most dramatic feature of the cDW is best seen in the
rotating basis (bottom rows of Fig. 6). We note that deep
in the magnetic material the m = 0 triplet component (seen
in |f‖|) does not decay in an oscillatory exponential way
to zero but saturates. This component undergoes a marked
change of character far away from the SF (or FS) interface
(e.g., x ∈ [2,6]ξc in the left column bottom row of Fig. 6):
f‖ morphs into a long range component and is in addition to
the long-range component observed in f⊥. Even though the
value of this m = 0 component is 10 3 times smaller than the
m �= 0 component the saturation effect is unexpected and is
several orders of magnitude larger than the usually anticipated
behavior.

The slowly decaying feature (at x > 2ξc) in f‖ is understood
with the cascade effect in a continuous rotation of the
magnetization [26]. Noteworthy is that this effect is present
throughout the cDW but is only visible far enough from the
interface. The reason is that there are two contributions to the

Gor’kov function. One is due to the superconducting Cooper
pairs leaking into the magnetic material. The m = 0 singlet
and triplet components generated at the SF interface simply
oscillate and decay exponentially with length scale ξF . The
other part comes from the rotation of the magnetization and
the related cascade effect generating the m = ±1 components.
The magnitude of that part and its decay are much weaker
and the signal does not oscillate. Thus only when the first
component has died off, does the second component become
dominant. This heuristic interpretation is motivated by the
comparison of the Co-XS and Ni-XS and from the study of a
helical structure in Ref. [28]. Although the contribution to f‖ is
also present in Ni-XS, it is not seen in Fig. 5 because the XS has
weak magnetization, implying that ξF is larger and the cascade
effect remains buried hence giving only a small correction to
the known oscillatory behavior. That the contribution from the
superconducting singlet pairs leaking into the magnetic mate-
rial masks the cascading contribution close to the SF interface
means that the cascade effect is relatively weak in the cDW.

The behavior just described is also visible in the Cartesian
basis where both fy and fz show nonoscillatory long-range
features. One common feature between the Co-XS and the
Ni-XS systems is found in fy . This component contributed
from the left S undergoes a change of sign deep in the magnetic
layer at x ≈ 2ξc. This implies that the oscillation characteristic
of “short”-ranged behavior can appear far from the SF interface
[26].
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FIG. 7. Singlet Gor’kov function |f0| for various twists in a
weak XS, Ni3Mn/Ni (left column) and a strong XS, Co/Py (right
column). The first (second) row is for an SF (FS) system. Noteworthy
is the increase of the singlet component deep in the XS. This
behavior is reminiscent of a long-range behavior but results from the
cascade effect in a continuously rotating magnetization. The singlet
component acquires the same characteristic long-range appearance
as the m �= 0 component (see text). Parameters are identical to those
of Figs. 5 and 6, respectively. Note the different range of the ordinates
scale.

The outcome of this analysis is that although the decay
length of the m = 0 components is associated with ξF and
therefore short range, the cascade effect in a continuous
rotation of the magnetization fuel these components to mimic
an m �= 0 Gor’kov function with a long decay length. The
distinction between long and long-ranged components is
therefore not as clearly established in a continuously rotat-
ing magnetization (cDW) as in a multilayer of misaligned
homogeneous Fs (dDW).

C. Persistent singlet components

Having established the existence of notable contributions
of the m = 0 triplet components resulting from the cascade
effect in a cDW we analyze features of the singlet part. Figure 7
shows the Gor’kov function |f0(x)| for the Ni-XS (left column)
and the Co-XS (right column). The singlet component clearly
increases by several orders of magnitude and loses its oscil-
latory feature deep in the magnetic material when increasing
the twist of the domain wall, just as the f‖, m = 0 triplet
component did for the Co-XS. This behavior of the singlet
pair correlations is very unexpected. Singlet correlations are
determined by the scalar function f0 that should only be
sensitive to the magnitude of the magnetization and should not
depend on its direction! Only the triplet correlations described
by the vector f are expected to respond to the rotation of an
external field. Because the XS is very wide and the decay of
|f0| is reduced with increasing magnetic twist only far from
the SF or FS edge, it cannot be ascribed to the increase one
would expect from mimicking antiferromagnetism through
twisting the domain wall [77]. Rather, the cascade effect and its
related reverse FFLO effect are at work converting the m �= 0

components to m = 0 components and generating, at the same
time, a singlet component [26].

The effect is exacerbated in the stronger ferromagnet Co-XS
though the absolute value of the component is smaller. This
effect is indicative of a significant change in the physics of the
pair correlations as compared to that usually presented and that
is only observed in cDW materials. The rotating magnetization
provides a channel to generate singlet components and one
therefore finds singlets well beyond one coherence length. We
emphasize that this singlet component always involves the
concomitance of m = 0 and m �= 0 triplet components.

Following similar reasoning as in the previous section, the
results of Fig. 7 invite us to distinguish singlet pair correlations
due to the proximity effect (singlet Cooper pairs leaking into
the magnetic material) and singlet components due to the
cascade effect (generation of m = 0 component in the rotating
magnetization). As in Fig. 6, the two singlet components can be
identified in Fig. 7 through the change of functional behavior
of the Gor’kov function. The second contribution dominates
far from the interface, when the first decayed sufficiently.

Finally, we note that the long-ranged singlets suggested
to exist in nanowires are different from the effect discussed
here [78]. Our singlet component remains long-ranged—the
characteristic length of the decay is ξF —but reemerges as a
consequence of the cascading effect and the reverse FFLO
effect that sustains the production of m = 0 components in a
cDW.

The results presented here for the singlet Gor’kov function
confirm the statement made in the previous section, that
the distinction between so-called “short”- and “long”-ranged
components is somewhat ill-defined in cDW materials. In
continuously rotating magnetization it is more instructive to
categorize the components by their quantum numbers |s,m〉, as
we do in this work. The exchange spring represents an instance
of cDW systems where a cascade of components is present in
the magnetic material and has measurable consequences as
discussed in Ref. [41] and a later section.

IV. PAIR CORRELATIONS IN OTHER HYBRID SYSTEMS

In the previous section, we discussed pair correlations in
XSs by displaying all components of the Gor’kov functions,
fα , with α = 0,y,z,⊥,‖. We compare here these results with
the pair correlations found in other hybrid structures discussed
in the literature. In particular, we investigate whether the
features seen in the XS are also seen in other cDWs and how
they contrast with structures belonging to the dDW category.
To this aim, we show the Gor’kov functions for continuous
helical domain walls pertaining to the cDW category, and
multilayers of homogeneous, misaligned Fs of the dDW
category.

A. Helical domain walls

First, we examine the helical domain wall as it is closest to
our XS domain wall. For the helical magnetization we replace
the nonlinear function of position φ(x) of the XS in Eq. (15)
by a linear dependence on position φ(x) = π − Qx leading to
a magnetization of the form [28,37,39]

hhelical = −h sin(Qx)ŷ + h cos(Qx)ẑ. (16)
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FIG. 8. Pairing types in a helical domain wall. This represents for
example the yz projection of the Holmium magnetization (canted 10◦

towards x̂). Shown is the layer thickness for which the winding of the
domain wall is 2π , but often thicknesses are studied corresponding
only to partial domain walls.

Figure 8 depicts the case of a full rotation. This ex-
pression relates to the conical magnetization studied in
Refs. [28,37–40,79]. The results in these papers indicate that
for the physics discussed here there is little difference between
the cases α = 90◦ (with respect to the x axis) chosen here and
α = 80◦ found in the conical magnetic profile of Holmium.

Figure 9 displays the Gor’kov functions for the helical
structure of Eq. (16) with three examples that are close to the
configurations discussed in Refs. [28,39]. Note, however, that
Ref. [39] discusses the opposite, clean limit case. All panels
show three different curves for three different twists at fixed
thickness of the F. The Qξc = 0.001 and 0.01 twists are weak
while Qξc = π/16 corresponds to a full Bloch domain wall
over the F (�φ = π ).
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FIG. 9. Singlet and triplet Gor’kov functions for the helical
magnetic structure, Eq. (16), with Qξc = 0.001,0.01,π/16, for the
SF (left column) and FS (right column) system. The π/16 case cor-
responds to �φ/π = 1 (full Bloch domain wall). The figure and
its relation to the XS are discussed in the text. We emphasize that
in contrast to the XS of the previous figures the different values
of Q imply results for different materials. Parameters used are
T = 0.2Tc, h = 8πTc, and dF = 8ξc.

We point out similar trends but also notable differences
between the helical structure and the XS. We emphasize first
that the three curves shown in each panel of Fig. 9 can not
be found in the same material since a given system has a
fixed value of Q (for example, Holmium has Qξc ≈ 11).
Thus, in stark contrast to the XS Figs. 5–7 where all curves
are obtained with the same system, here we are compar-
ing the pair correlations for helical structures of different
materials.

The left (right) column shows the pair correlations when
the superconducting electrons leak into the helical F from
the left (right) of the figure. The lack of mirror symmetry
of the fy and fz curves with respect to a vertical plane parallel
to the layers has a different origin than in the XS. The XS
being made of two Fs with different magnetic properties the
electrons enter a different material when penetrating the XS
structure from the left or right which causes different decays
of the correlations. By contrast a helical F is composed of one
material but the magnetic boundary conditions (the curvature
in particular) change with Q [25]. The boundary condition
also changes at given twist when varying the thickness of the
material. While φ(x) flattens at both edges of the XS (leading to
an infinite curvature on both ends), the corresponding function
in the helical structure has different slopes at the right edge
as one varies either Qξc or the thickness [25]. Noteworthy
is that the parallel and perpendicular components, f‖,f⊥, are
symmetric, reflecting the linear form of the angle and the
constant curvature of the helical profile. The XS does not
possess this feature.

The uppermost row shows the singlet pair correlations |f0|.
We note, as in the XS, the presence of long-range singlet
correlations emerging with increasing twist Qξc resulting from
the cascade effect. The following two rows display features of
f that are similar to the XS: The presence of a twist (inho-
mogeneity) generates m �= 0 triplet components that increase
in magnitude as one increases the twist. The intermixture
of all components is most evident for the full domain wall
(Qξc = π/16) since the curves displays features from both;
the long decay tail is indicative of m �= 0 components and the
oscillations reflect the presence of m = 0 terms.

The two lower rows of Fig. 9 present the Gor’kov functions
in the rotating basis, Eq. (3). One observes the same general
behavior as for the XS case with substantial twist of the domain
wall. The increase seen in f‖ near the edge of the F opposite
to the interface with the S stems from the cascade effect;
some m = 0 components are regenerated by the continuously
rotating magnetization of the cDW. The main statement made
in the XS is confirmed: the cDW generates m �= 0 and m = 0
components throughout the cDW [28].

We note in fact that the m �= 0 components are stronger in
the helical structure when compared to the XS. This is also
related to the different magnetic profiles at the edges of the
systems.

Another difference between the XS and the helical structure
is observed very close to the SF or FS edge (see for example
the fourth row representing f⊥). We note a node and thus a
change of sign of the Gor’kov function very near the edge. In
contrast, the pair correlation of the XS has always the same
sign in this vicinity. This results from the nonlinearity of the
XS magnetic profile angle φ(x) [25].
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FIG. 10. Schematics of the S F1F2F3 S spin valve structure. Thick
arrows (green) denote the direction of magnetization in the three
F layers while paired spins (small arrows) denote the predominant
pairing types.

Finally, we point out that Holmium used in experimental
setups [15] has a very strong helical twist, corresponding to
large values of Q (Qξc ≈ 11 in our units). Thus Ho/Co/Ho or
Co/Ho/Co layers used in experiment are actually more related
to the class of dDW or to a spin active interface [3] than a
continuous cDW.

B. Discrete domain walls

The other inhomogeneity studied extensively in the litera-
ture is that of misaligned homogeneous ferromagnetic layers
where the magnetization changes direction at a discrete set of
points in the multilayer (at the interfaces) and thus belongs to
the dDW class of systems. Various combinations have been
studied and we consider here the case closest to the XS and
schematically depicted in Fig. 10, namely, three misaligned
homogeneous layers F1F2F3, as studied in Ref. [22].

Figure 11 explicitly shows the Gor’kov functions for
three layers of same saturated magnetization and thicknesses
satisfying the relations dF1 ,dF3 ∼ ξF � dF2 � ξS . We thus
show a system with very wide middle layer, in the spirit
of Ref. [22], to clearly view the behavior of the Gor’kov
functions.
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FIG. 11. Gor’kov functions for the spin valve (SF1F2F3S) of
Fig. 10 obtained for singlet Cooper pairs leaking from the left S
only. Solid lines are singlets (blue), dotted lines are m = 0 triplets
(red), and thick dashed lines are m = ±1 triplets (black). Parameters
used are hF1,F3 = 3πTc, hF2 = 14πTc, T = 0.4Tc, dF1F2F3 = 15ξc,
and dF1,F3 = ξc.

We emphasize that all Gor’kov components are continu-
ously differentiable functions in the entire multilayer. Contrary
to all other figures in this paper the dashed and dotted line
types (red and black color code) used in Fig. 11 denote the
m = 0 and m �= 0 pair correlations, respectively. For example,
fz is depicted as a dotted (red) line in F1 and F3 where it
describes m = 0 correlations (fz is the component parallel to
the magnetization in these layers), while this same component
fz is represented with a dashed (black) line in F2 to indicate
that it represents m �= 0 correlations in that layer (in the middle
layer fz is a component perpendicular to the magnetization).
The change of character of the correlations is due to the fact
that the middle layer F2 has a magnetization rotated by 90◦
with respect to the outer layers.

The analysis of the Gor’kov functions shows the effect
discussed in the previous section and establishes the important
different behavior of the multilayer (dDW) as compared to
the continuous rotation of the magnetization of a domain wall
such as in an XS (cDW systems). The essential point made
by Houzet and Buzdin is shown explicitly with the plot of
the Gor’kov functions in Fig. 11, which is that the m = 0
component play no role in the center layer if hF2 is strong
enough. The multilayer of Ref. [22] was chosen to suppress
the m = 0 components in the middle layer. In Fig. 11, the
singlet (solid blue line) and m = 0 triplet (dashed red line)
components indeed decay on a length scale ξF .

It is important to realize that the Gor’kov functions plotted
in Fig. 11 are obtained from singlet Cooper pairs leaking
from the left S only (a similar mirrored figure would result
from Cooper pairs leaking from the right S). Thus the m = 0
components found near the F2F3 interface are the result of
the cascade effect in the spin valve structure where m = 0
components are regenerated by the rotation of the magnetiza-
tion at that interface. This resurgence is the only signature of
the cascade effect in the dDW as can be seen by comparing
Fig. 11 and Figs. 6 and 7. The resurgence of the m = 0
correlations deep in the multilayer of misaligned homogeneous
Fs can be brought to light by measuring the current through a
pentalayer spin valve as detailed in Ref. [26]. An interesting
consequence of this difference in the behavior of m = 0
components between dDW and cDW was pointed out in
Ref. [41], namely, the occurrence of a 0-π transition of a
new kind, and is discussed in the next section.

V. EXPERIMENTAL CONSEQUENCES OF PAIR
CORRELATION MIXING: THE JOSEPHSON CURRENT

The previous sections presented an analysis of the Gor’kov
functions in exchange springs, helical structures (cDW class)
and misaligned homogeneous multilayers (dDW class). We
showed that there are important differences in the diffusion
of pair correlations through continuous and discrete rotating
magnetizations. In this section and the next, we discuss how
these differences affect the Josephson critical current and
propose a general classification of 0-π transitions (Josephson
current reversals; see Table I).

To calculate the Josephson critical current in first harmonic
(∝ sin ϕ), we use Eq. (6), which involves sums over all
Matsubara frequencies. In previous sections, we showed pair
correlations for ωn=0 only. The other frequencies display same

104518-11



BAKER, RICHIE-HALFORD, AND BILL PHYSICAL REVIEW B 94, 104518 (2016)

features albeit slightly shifted or reduced in magnitude and are
taken into account in the following.

A. General properties of cDW and dDW
for the Josephson current

The behavior of the Gork’ov functions presented in the
previous section leads to four observations on how they impact
the Josephson current. First, the difference between discrete
(dDW) and continuously (cDW) rotating magnetic structures
is in the m = 0 components. Although both types of magnetic
structures generate m �= 0 components that dominate correla-
tions well beyond one coherence length ξF and contribute to the
Josephson current, the m = 0 correlations are only generated
throughout in a cDW; the dDW generally studied is designed
to isolate either m = 0 or m �= 0 components [22,26]. In a
cDW, the m = 0 components affect the Josephson current and
in particular the 0-π transition [41]. This is a consequence of
the cascade effect [26].

Second, the presence of m �= 0 pair correlations in a
proximity system with a singlet pair superconductor is largest
if there is a homogeneous magnetization region of thickness
∼ξF near the SF interface [14,22,80]. This thin homogeneous
region allows the m = 0 triplet component to develop to
its maximal value (the middle of a “hump” of the Gor’kov
function) before being transformed into the m �= 0 components
by a subsequent rotation of the magnetization. This is the
reason for choosing F1,3 with thicknesses dF1 ∼ dF3 ∼ ξF in
the spin valve structure of Fig. 11. The same feature appears
in cDW such as the XS where flat regions with φ(x) nearly
constant are found near the edges of Fig. 3 [25]. Helixes
described by Eq. (16) can simulate such flat SF edges as well,
but the width of this region is determined by the value of Q

and is thus of order ξF only for specific systems [25].
Third, the XS is a bilayer, yet we observe a Josephson

current in the first harmonic. As pointed out in Ref. [41], our
result refines the statements made in Ref. [35] (and Ref. [81])
about the existence of a Josephson current through a magnetic
bilayer. In the XS, the two layers are coupled magnetically,
which results in the formation of a domain wall rather than two
misaligned homogeneous layers. The conclusions of Ref. [35]
applies to the latter, not the former. The XS is also not
equivalent to the Nb/Ho/Co/Ho/Nb case of Ref. [15] based
on the behavior of the Gor’kov functions and the profiles in
Fig. 3. In this latter system, the magnetization of Ho rotates
over a very short distance, of the order of a few nanometers.
As stated in the previous section, this type of helical layer is
thus more akin to a spin active interfaces than a multilayer of
misaligned homogeneous Fs.

Fourth, the results on the XS show that a Josephson
current can be observed in the presence of an asymmetric
magnetic structure. There is no physical reason imposing the
symmetric choice, as long as the magnetic structure allows for
the generation of the m �= 0 components at both SF and FS
interfaces.

B. Classification of 0-π transitions of the Josephson current

In Table I, we classify 0-π transitions of the Josephson
current according to the symmetry of pair correlations involved

in the generation of the current. In the experimental observa-
tion of this effect, one measures the Josephson current as a
function of some external parameter (thickness of the magnetic
layer, twist of the magnetization, temperature, etc.). Keeping
constant all but that one parameter, it is observed that the
current changes sign as the parameter value is increased. The
experiment does not reveal the reason for the change in current
direction. This insight is provided by the Gor’kov functions
and leads us to distinguish three types of 0-π transitions (see
Table I): one involving only m = 0 correlations, one involving
only m �= 0 components and one involving both m = 0 and
m �= 0 correlations.

As we now discuss, the physical mechanism behind an
experimentally observed 0-π transition is quite different de-
pending on the structure of the magnetic multilayer embedded
into the Josephson junction. The 0-π transition phenomenon
has first been predicted by Buzdin, Bulaevskii and Panyukov
in Ref. [44] (see also Ref. [82]) to occur in a junction where a
homogeneous F is sandwiched between two singlet pair super-
conductors S [Fig. 2(b)]. They pointed out that the oscillation
of the m = 0 (singlet and triplet) pair correlations in F may
lead to a reversal in direction of the Josephson current as one
increases the thickness dF of the F under otherwise identical
experimental conditions. The effect was later observed in
Refs. [72,83–85]. The reason for this transition is the change
of relative sign between the left and the right contributions of
the m = 0 Gor’kov functions. As one increases the thickness
an extra node appears in the Gor’kov functions that causes
terms like f ∗

−n∂xfn to change sign in Eq. (5) [see Fig. 2(a)].
This results in the familiar jc ∝ cos(dF /ξF ) dependence [1,2].
The relevant length scale that determines the physics of the
Buzdin-Bulaevskii-Panyukov 0-π transition seen in Fig. 2(b)
is ξF , which is typically of the order of a few nanometers.
This transition solely involves m = 0 singlets and triplets pair
correlations.

A different type of 0-π transition of the Josephson current
has been predicted by Houzet and Buzdin in Ref. [22]. The
generic magnetic structure for that novel type of 0-π transition
is the spin valve structure of Fig. 10, which we remind belongs
to the dDW class. The corresponding Gor’kov functions are
shown in Fig. 11. This structure was chosen with a thickness
of the middle layer F2 large enough to supress the m = 0
components completely (dF2 � ξF ), which implies that no
Buzdin-Bulaevskii-Panyukov 0-π transition of the current will
be observed. Instead, only m �= 0 components are long range
enough and dominate pair correlations across the layer F2.
Starting with the configuration of Figs. 10 and 11 where the
magnetization is oriented along the ẑ axis in F1,3 we rotate for
example F3. The 0-π transition occurs when the components
of the magnetization along ẑ in F1 and F3 are opposite in
sign; since F1 has magnetization along φ1 = π the transition
occurs when φ3 � π/2 [22]. We emphasize that in this scenario
the m = 0 plays no role since the structure was designed to
suppress these components. The Houzet-Buzdin 0-π transition
is thus conceptually different from the Buzdin-Bulaevskii-
Panyukov current reversal.

Finally, a third, distinct mechanism for the 0-π transition
was proposed in Ref. [41] and involves both m = 0 and m �= 0
components. Because the reversal of the current is due to the
competition of singlet and triplet contributions it is termed
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TABLE I. Classification of 0-π transitions of the Josephson current in the first harmonic, according to the pair correlations symmetries
involved (column 1). The second column indicates what physical quantities can be tuned experimentally to observe the transition. Column 3
and 4 indicate the contribution of singlet and triplet pair correlations to the current. Column 5 lists the class of magnetic systems studied in
this paper where the effect was or can be observed. dF is the thickness of the F, T the temperature, and �φ the angle difference between the
magnetization direction on either side of the magnetic layer.

Determinant Variable
correlations parameter Singlet (Ic,0) Triplets (Ic,t ) System

Singleta dF or T Ic,0(dF ) changes sign with dF Ic,t = 0 SFS (dDW)
Tripletb �φ Ic,0 = 0 Ic,t (�φ) changes sign with �φ

Singlet-tripletc �φ or T Ic,0(�φ) > 0 (Fig.14a) Ic,t (�φ) increases with �φ and XS, helix (cDW)
Ic,0 opposite to Ic,t (determined by dF and ϕ) has definite sign (negative).

aBuzdin–Bulaevskii–Panyukov in Ref. [44].
bHouzet–Buzdin in Ref. [22].
cReference [41] and mixed with type a in Ref. [28]. These two references describe different transitions (see text).

a singlet-triplet 0-π transition. This class of 0-π transition is
here observed in cDWs. The defining features of this transition
are not readily seen in the figures of the previous section
where only the magnitudes |fj | (j = 0,y,z) are displayed.
Rather, we need to consider the different contributions to the
expression of the current, Eq. (6), as discussed in more detail
below. In absence of a domain wall (homogeneous case), the
critical current is due to m = 0 components, Ic(�φ = 0) =
Ic,0. The direction (sign) of the current is determined by the
phase difference ϕ between the two superconductors and the
thickness of the magnetic layer [1,44]. The inhomogeneous
case is different in that also the relative sign of the components
Ic,0 and Ic,α (with α = x,y,z or α = ⊥,‖) matters for the
direction of the Josephson critical current and the observation
of a 0-π transition.

The key ingredient for making a singlet-triplet 0-π transi-
tion is to choose the thickness of the magnetic structure so that
the singlet contribution to the current is opposite to that of the
m �= 0 contributions (the sign of each contribution is a matter
of convention). In the examples discussed below, the singlet
contribution Ic,0 will be chosen positive (i.e., the untwisted XS
is in the middle of a 0-phase dome of the oscillatory m = 0
component—see for example the solid blue line in Fig. 11). In
this situation, the sign of the m �= 0 contribution to the current,
Ic,t , is always negative. The m = 0 and m �= 0 contributions
to the current vary at different rates when increasing the twist
�φ of the magnetization, they compete. In certain instances the
current contribution from the m �= 0 correlations overcomes
that of the singlet, leading to a change of direction of the total
current. This case is discussed in more detail next.

C. The singlet-triplet 0-π transition in cDWs

We examine the singlet-triplet 0-π transition of the Joseph-
son current in the cDWs to elucidate the conditions under
which it can be observed. The different pair-correlation
contributions to the current are presented in Fig. 12 for the
Ni- and Co-XS and in Fig. 13 for different helixes.

We observe first that both the XS and helical domain walls
can exhibit the singlet-triplet 0-π transition, though the effect is
easier to realize experimentally in the XS with current methods
since it is tunable. In the XS systems of the previous section,
we note that only the Ni-XS displays the 0-π transition.
Due to its strong magnetization the Co-XS has a vanishingly

small singlet contribution in the homogeneous case; the small
contribution seen in Fig. 12 is only generated through the
cascade effect for a sufficient twist of the magnetization.
Hence, the Co-XS does not allow for a singlet-triplet 0-π
transition. Note that it is also possible to eliminate the 0-π
transition in Ni-XS by simply changing the thickness of the
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FIG. 12. Signed contributions Ic,0 (singlet) and Ic,t = Ic,‖ + Ic,⊥
(triplet) to the total Josephson current Ic(�φ). (Top) Ni-XS. (Bottom)
Co-XS. Only the total current Ic(�φ) = Ic,0 + Ic,t is measurable. The
sign and weight of the different contributions to the current obtained
from the Gor’kov functions allow understanding why Ni-XS displays
a singlet-triplet 0-π transition and why Co-XS does not.
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FIG. 13. Signed singlet and triplet contributions to the total
current for a helix of varying Q. The same linestyle applies as in
Fig. 12. Note that changing Q on the horizontal axis is equivalent to
changing the magnetic material in the system. The current saturates to
≈ − 203 mV for Q → ∞, which is the value of the current through a
normal metal (h = 0, singlet components only), implying the triplet
correlations decay to zero. Parameters: df = 7ξc, h = 8πTc, and
T = 0.4Tc.

XS, which changes the sign of Ic,0 and removes the competition
between singlet and triplet contributions [41].

In the instance of the Ni-XS (see Ref. [41]), we picked
a thickness of the magnetic system such that the singlet
contribution to the current is positive [44,82]. It is seen in
Fig. 12 that this contribution remains a positive, weakly
varying function of the twist, while the m �= 0 components
also contribute negatively to the current and grow with �φ

at a higher rate. Hence the twist of the magnetization can
be increased until the current contribution of the m �= 0
components counter-balances the singlet contribution at which
point the current vanishes and produces the node of the 0-π
transition. As one continues increasing the twist, the current
changes sign. This explains how the 0-π transition of Ref. [41]
is different from other transitions presented in the literature
and grouped in the two first rows of Table I. We note that the
relative weight of the competing contributions is essential and
differentiates the strong ferromagnet Co-XS from the weak
ferromagnet Ni-XS.

Figure 13 displays the contributions of pair correlations to
the current for helixes as a function of Q. In contrast to the
XS, the singlet contribution changes sign with the tuning of
the inhomogeneity through the change of Qξc. On the other
hand, Ic,⊥ and Ic,‖ oscillate with Q and leads to a feature that
is common with the XS case: the oscillations of Ic,⊥ and Ic,‖
are out of phase, leading to a much smoother current Ic,t . This
reminds of the simplest SFS case of Fig. 2(a). Finally, as noted
in Ref. [28] and seen in Fig. 13 for Qξc � 0.2, at fixed low
temperature the critical current undergoes a 0-π transition as
one increases the value of Qξc. Note that this transition is more
difficult to realize experimentally since Q is not tunable with
an external perturbation.

The progressive twisting of the helix in Fig. 13 conveys
a novel experimental result. The interplay between f⊥ and
f‖ causes a minimum in the value of the signed Josephson
current Ic, at Qξc ≈ 0.6. This is a local minimum as a function

of Q since a steady increase of the singlet component is
expected as Q → ∞, which approaches an antiferromagnet
and is modeled effectively as a normal metal, h = 0, with a
current entirely due to the singlet contributions.

As previously remarked on for example in
Refs. [22,28,41,44,72,83], the 0-π transition can be induced
by varying temperature, keeping all other parameters fixed.
We note that there is a competing effect between temperature
and twist of the magnetization. An increase in temperature
reduces the superconducting condensate. Concomitantly, an
increased twist leads to stronger triplet correlations in the
magnetic system. In the XS, the nodes of the 0-π transition in
Ic(T ) are shifted to lower temperatures as one increases the
twist �φ/π of the magnetization [41].

Bergeret and co-workers calculated in Ref. [28] the critical
current as a function of temperature through a helical structure,
choosing a thickness such that for the homogeneous case
the current is close to the 0-π Buzdin-Bulaevskii-Panyukov
transition. They considered a weak rotation of the magneti-
zation, Qξc � 0.2 and observe a 0-π transition. The results
of Ref. [28] are qualitatively different from the singlet-triplet
transition discussed here and in Ref. [41]. To see this, note
first that Ref. [28] has tuned the thickness of their F layer so
it is close to the Buzdin-Bulaevskii-Panyukov 0-π transition,
which could be induced by varying T . If the thickness of the
homogeneous F is chosen away from that particular case, then
the system does not undergo a 0-π transition with T . With
this choice of F thickness, the m �= 0 components can perturb
the Buzdin-Bulaevskii-Panyukov type transition. This special
situation is evidence for the singlet-triplet 0-π transition since
it shows that the m = 0 and m �= 0 correlations can affect
one another. On the other hand, it does not show that the
triplet components can overcome the singlet contribution
on their own. That is demonstrated in the XS layers from
Ref. [41].

One could be tempted to state that the singlet-triplet
0-π transition is a particular limit of the Houzet-Buzdin
transition when the magnetization in the sample is weak.
This is, however, not the case. Reducing the magnetization
in the central F2 layer of the spin valve structure leads to
an increase of the m = 0 components, thereby coming close
in magnitude to the triplet component near the interfaces.
However, since the layer has homogeneous magnetization
these m = 0 correlations still decay on the lengthscale ξF and
oscillate, changing sign in the layer. This contrasts with the
situation encountered in the singlet-triplet transition where
a sustained generation of same sign m = 0 correlations is
obtained by the continuously rotating magnetization. We thus
emphasize that the singlet-triplet 0-π transition is not a simple
sum of the Buzdin-Bulaevskii-Panyukov and Houzet-Buzdin
effects. It relies on a more subtle balance between m = 0 and
m �= 0 pair correlations and is found in a continuously rotating
magnetization while the two other transitions are found in a
discrete rotating magnetization.

We note that there are situations where a singlet-triplet
transition may be observable in dDW heterostructures. These
are more complicated than those studied here and are out of
the scope of this paper.

We also point out that the magnitude of the calculated
currents in the singlet-triplet 0-π transition are not small
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compared to other 0-π transitions of Table I. For example,
the current amplitude through the Ni-XS of Ref. [41] is of
the same order as the currents calculated in Ref. [22] when
converted to the same units.

Finally, the results of this and the previous section confirm
the statement made earlier that the distinctions between short-
and long-ranged components are most meaningful in discrete
magnetization rotation configurations. The distinction is less
useful for the class of continuously rotating magnetizations.

D. Possible scenarios for observing Josephson
currents through an XS

In this section, we make a few general comments on the
properties of materials and the structure of the XS that may
serve as suggestions for the experimental study of magnetic
Josephson junctions with an XS.

1. Experimental realization of S/XS/S junctions

Reference [41] proposes several practical ways to imple-
ment the theoretically proposed S/XS/S structure and how
to observe the studied effects, in particular the singlet-triplet
0-π transition of the Josephson current. The work done by
Gu et al. in Ref. [43] should be extended to generate a
Josephson junction and an improved clean magnetic structure.
Reference [26] also suggests an experiment where the m = 0
components can be shown to exist deep in the magnetic
material and matter for the Josephson current. Next to these
suggestions we propose here another possible candidate to
measure these effects: a robust BCS superconductor such
as MgB2 [86,87] and a highly anisotropic exchange spring
GdFe/TbFe [88] together with a thin metallic film to tune the
interface coupling (see below). Though this exchange spring
has an extra anisotropy axis and will not be described by the
model in the formulation presented here, the principles of our
work still apply. This material may also allow one to place
two exchange springs sandwiching a normal metal region or,
if feasible, a ferromagnet to show that the tunneling occurs
over very long lengths [89].

To observe the singlet-triplet Josephson current reversal one
needs an XS with high anisotropy ratio between the hard and
soft F, small width but large enough for the XS to generate
a domain wall, and relatively weak magnetization strength.
The thinner the layers, the higher anisotropy ratio Kh/Ks is
needed to allow a fuller domain wall (and more dramatic twist)
to appear with a smaller applied magnetic field. Altering these
parameters may help or harm an experimental investigation of
the effects we consider.

In this and previous work, we consider an XS made of hard
and soft ferromagnetic layers of fixed, constant thickness. It
would be of interest to extend the study to other types of XSs.
For example, one could imagine that both layers have wedge
form, keeping the total thickness of the bilayer constant; for
example, the hard (soft) F would have maximal (minimal)
thickness at top of the bilayer and vice versa at the bottom.
One could conceive an XS where the hard layer has constant
thickness while the soft layer is a wedge. Or an XS where
both layers have wedge form with minimal thickness on the
same end. The study of these alternative systems goes beyond
the present work, but they are expected to display a richer

inhomogeneity of the magnetization and new features of the
pair correlations and Josephson current.

2. Magnetization strength

The magnetization strength h plays an important role since
for example ξF ∝ h−1/2 in the diffusive regime. As stated
earlier, ξF is the approximate width of homogeneous magnetic
material required at the SF interface to obtain maximal m = 0
triplet correlations [80]. Effectively, one needs an edge with
weak curvature of φ(x) so as to ensure that the singlets
have ample opportunity to transition to the m �= 0 component
through the m = 0 triplet. The beauty of the exchange spring
magnetic domain wall is that it naturally provides for a region
at the interface where the magnetization is weakly rotating
(Fig. 4), and is a result of the magnetic boundary conditions that
the XS satisfies [25]. The width of this nearly homogeneous
ferromagnetic region is tunable through an appropriate choice
of the XS’s magnetic anisotropy ratio.

3. Interface between hard and soft Fs

The boundary conditions for the Gor’kov functions at the
interface between the two magnetic films of the XS described
earlier are common in the literature: perfect transparency with
equal values and derivatives of the functions at the interface.
We discuss here instead the magnetic coupling at the interface
between the hard and the soft Fs. This interaction is an essential
component and notable distinction between the XS and other
hybrid systems [25,41]. For example, this coupling leads to
the domain wall profile instead of simple misalignment of
homogeneous Fs and to the presence of a Josephson current
in first harmonic, even in bilayer structures. It is known that
the interface magnetic coupling can be tuned by using the
properties of the RKKY interaction; inserting a thin metallic
layer between the Fs allows to tune the interaction and even to
choose between ferromagnetic and antiferromagnetic coupling
between neighbor layers [90]. This was used in recent exper-
iments [6]. For the XS the tuning of the magnetic coupling
between hard and soft Fs leads to a discontinuity of the rotating
magnetization at the interface between hard and soft Fs.

Experimentally, the exchange interaction constant is very
nearly equal for all ferromagnets composing an XS [91].
Hence, throughout this work we assumed that the exchange
interaction is the same in the hard and soft F. We point out that
any other choice would induce a kink in the domain wall profile
at the interface between ferromagnets (Fig. 3). If the exchange
interaction constants do differ it would aid the appearance of
m �= 0 components by increasing the curvature of the domain
wall at the interface. The interface magnetic interaction and the
exchange interaction within each material are knobs available
to experimentalists and material scientists to shape the domain
wall in a variety of ways by inducing discontinuities in h(x)
and dh(x)/dx.

The features enumerated in this section are expected to
lead to further rich physics by allowing the tuning of the
magnetic profile from smooth, continuous (partial) domain
wall to a misaligned homogeneous bilayer with a variety of
magnetic configurations in between. Changing the interlayer
coupling with a metallic layer of different thicknesses is one
way available to achieve that goal.
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VI. CONCLUSION

We provided a comparative study of singlet and triplet pair
correlations in magnetic proximity systems and Josephson
junctions with a variety of magnetic configurations of the
Bloch-type. We were led to two major conclusions.

The first conclusion is based on the analysis of the Gor’kov
functions that represent the pair correlations. We are led to
distinguish two classes of magnetic systems: discrete domain
walls (dDW) which are composed of a stack of layers with
homogeneous but misaligned magnetization, and continuous
domain wall (cDW) that display a continuous rotation of the
magnetization. Spin valves are examples pertaining to the
first class and were the most widely studied in the literature.
Examples of the second, cDW class are XSs and helixes (such
as Ho).

We showed that pair correlations are different in the dDW
and cDW classes. While in the dDW m = 0 correlations (the
singlet and triplet usually termed long-range components)
are only generated at the interfaces between misaligned Fs,
and decay over the length ξF away of these interfaces, the
continuous rotation of the magnetization in cDW implies a
continuous generation of all components (m = 0,±1) through-
out the system due to the cascade effect [26]. In particular,
singlet pair correlations can be found deep in the magnetic
material of a cDW. Further, the Gor’kov function f0 of singlet
pair correlations is affected by the magnetization profile,
via a cascade effect from m �= 0 components, even though
that function is a scalar and should only be affected by the
amplitude of the magnetization.

The second main result is to propose a classification into
three types of 0-π transitions of the Josephson critical current
(current reversal upon variation of one parameter of the sys-
tem) and is summarized in Table I. The classification is made
according to the pair correlations symmetries involved in the
Josephson current and its reversal. The first transition proposed
by Buzdin, Bulaevskii, and Panyukov [44] involves only
m = 0 pair correlations. The second transition discussed by

Houzet and Buzdin [22] involves only m �= 0 pair correlations.
Finally, the third type of 0-π transition proposed in Ref. [41]
involves a competition of m = 0 and m �= 0 correlations. The
analysis of this paper clearly shows that while the two first
types of transitions can be found in a dDW, the latter transition
is of a different kind that can be found in cDWs. The XS is a
system of choice in observing that type of 0-π transition.

The paper focused on the properties of the XS proposed
in Ref. [41] to generate a Josephson junction with tunable
and reversible current. The XS is an attractive component
for superconducting spintronics applications as it allows for
a tunable magnetic inhomogeneity in form of a partial to
full Bloch domain wall in the system by applying a small
external magnetic field that does not affect the superconducting
properties of the system appreciably. The parameters and
thicknesses of the XS necessary to observe the correlations
and new 0-π transition in wide junctions in the diffusive
regime are not arbitrary and our theoretical study of XSs with
different parameters (such as the strength of the magnetization
in the bilayer) invites for an experimental realization of these
hybrid structures. Our study also leads to several experimental
suggestions that we encourage to test.

The work shows that misaligned homogeneous Fs, helical
structures and XSs are clearly distinct in the way superconduct-
ing pair correlations transform and spread into the magnetic
material. The exchange spring provides a unique experimental
tool to probe the rich physics that magnetic Josephson
junctions with inhomogeneous magnetization can display.
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[31] M. Eschrig, T. Löfwander, T. Champel, J. Cuevas, J. Kopu, and

G. Schön, J. Low Temp. Phys. 147, 457 (2007).
[32] J. Linder, T. Yokoyama, and A. Sudbø, Phys. Rev. B 79, 054523

(2009).
[33] M. Alidoust, J. Linder, G. Rashedi, T. Yokoyama, and A. Sudbø,

Phys. Rev. B 81, 014512 (2010).
[34] M. Alidoust and J. Linder, Phys. Rev. B 82, 224504 (2010).
[35] C. Richard, M. Houzet, and J. S. Meyer, Phys. Rev. Lett. 110,

217004 (2013).
[36] L. Y. Zhu, Y. Liu, F. S. Bergeret, J. E. Pearson, S. G. E. te

Velthuis, S. D. Bader, and J. S. Jiang, Phys. Rev. Lett. 110,
177001 (2013).

[37] C.-T. Wu, O. T. Valls, and K. Halterman, Phys. Rev. Lett. 108,
117005 (2012).

[38] C.-T. Wu, O. T. Valls, and K. Halterman, Phys. Rev. B 86,
014523 (2012).

[39] D. Fritsch and J. F. Annett, New J. Phys. 16, 055005 (2014).
[40] D. Fritsch and J. F. Annett, J. Phys.: Condens. Matter 26, 274212

(2014).
[41] T. E. Baker, A. Richie-Halford, and A. Bill, New J. Phys. 16,

093048 (2014).
[42] I. Sosnin, H. Cho, V. T. Petrashov, and A. F. Volkov, Phys. Rev.

Lett. 96, 157002 (2006).
[43] J. Y. Gu, J. Kusnadi, and C.-Y. You, Phys. Rev. B 81, 214435

(2010).
[44] A. I. Buzdin, L. N. Bulaevskii, and S. V. Panyukov, Pis’ma Zh.

Eksp. Teor. Fiz. 35, 147 (1982) [JETP Lett. 35, 178 (1982)].
[45] A. Bill and H. Braun, J. Magn. Magn. Mater. 272, 1266

(2004).
[46] S. Chikazumi and S. H. Charap, Physics of Magnetism

(RE Krieger, Huntington, NY, 1978).
[47] A. Bill, J. de Rojas, T. E. Baker, and A. Richie-Halford,

J. Supercond. Novel Magn. 25, 2177 (2012).
[48] A. Abrikosov, L. Gorkov, and I. Dzialoshinskii, Quantum Field

Theoretical Methods in Statistical Physics (Pergamon Press,
New York, 1965), Vol. 4.

[49] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108,
1175 (1957).

[50] L. P. Gor’kov, J. Exptl. Theoret. Phys (USSR) 36, 1918 (1959)
[Sov. Phys. JETP 36, 1364 (1959)].

[51] G. Eilenberger, Z. Phys. 214, 195 (1968).
[52] V. Chandrasekhar, in Superconductivity (Springer, Berlin, 2008),

pp. 279–313.

[53] K.-H. Bennemann and J. B. Ketterson, Superconductivity:
Volume 1: Conventional and Unconventional Superconductors
Vol. 2: Novel Superconductors (Springer, Berlin, 2008).

[54] N. B. Kopnin, Theory of Nonequilibrium Superconductivity
(Oxford University Press, Oxford, UK, 2009).

[55] W. Belzig, F. K. Wilhelm, C. Bruder, G. Schön, and A. D. Zaikin,
Superlattices Microstruct. 25, 1251 (1999).

[56] E. A. Demler, G. B. Arnold, and M. R. Beasley, Phys. Rev. B
55, 15174 (1997).

[57] A. Golubov, M. Y. Kupriyanov, and E. Il’Ichev, Rev. Mod. Phys.
76, 411 (2004).

[58] G. Deutscher and P. G. de Gennes, in Superconductivity,
edited by R. D. Parks (Marcel Dekker, New York, 1969),
pp. 1005–1033.

[59] A. Richie-Halford, Master’s Thesis, California State University,
Long Beach, 2010.

[60] T. E. Baker, Master’s Thesis, California State University, Long
Beach, 2012.

[61] K. D. Usadel, Phys. Rev. Lett. 25, 507 (1970).
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[67] T. Champel, T. Löfwander, and M. Eschrig, Phys. Rev. Lett.
100, 077003 (2008).

[68] Notice that if we place Eq. (4) into Eq. (5), we obtain 2eRN

πT

Ic(x) = sin ϕ
∑∞

n=−∞
∑

α=0,y,z(f
	
−n,α,L

∂fn,α,R

∂x
− f 	

−n,α,R

∂fn,α,L

∂x
).
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