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In this paper we present material specific calculations of superconductor–normal metal heterostructures
using density functional theory combined with a semiphenomenological parametrization of the electron-phonon
coupling. In particular, we calculate the quasiparticle spectrum of different normal metal overlayers on a Nb(100)
host. We find that the Andreev reflection leads to the formation of momentum dependent quasiparticle bands in
the normal metal. As a consequence, the spectrum has a strongly momentum dependent induced gap. We develop
a model to calculate the superconducting critical temperature from the thickness dependence of the induced
gap. In the case of Au/Nb(100) heterostructures we find very good agreement with experiments. Moreover,
predictions are made for similar heterostructures of other compounds.
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The experiments of Yamazaki et al. [1,2] pose a great chal-
lenge to the theory of superconductivity. In these experiments
they studied the critical temperature of a very thin layer of gold
grown on top of a thicker Nb host. While the thickness of the
Nb sample (288 Å) was in the order of the superconducting
coherence length (380 Å), the gold overlayer was only a couple
of atomic layers thick. It was found that the superconducting
transition temperature is significantly lowered in this compos-
ite compared to the bulk, and it decays monotonically as the
thickness of the gold overlayer increases. While this appears
to be a plausible consequence at first sight, it is surprising
that the entire composite is superconducting. The explanation
of these experimental findings based on the standard theory
of superconductivity is very difficult, because within the
BCS (Bardeen-Cooper-Schriffer) theory [3] it is not easy to
describe inhomogeneous systems. However, such systems can
be treated efficiently in terms of the Bogoliubov–de Gennes
(BdG) equations [4,5], especially when they are reformulated
within the framework of density functional theory [6–10]
leading to the so-called Kohn-Sham–Bogoliubov–de Gennes
(KS–BdG) equations. In principle these equations are able to
describe systems with inhomogeneities in the pairing potential.

In inhomogeneous systems, such as multilayers, it is
expected that the Andreev reflection [11,12] leads to the
formation of certain bound states, often referred to as Andreev
bound states. Our main aim in this paper is to calculate the
dispersion relation of Andreev states. We also verify that
this effect enables the transport of supercurrents through
nonsuperconducting materials, and is the key to predict the
superconducting transition temperature in the whole system.

In what follows we numerically solve the KS–BdG equa-
tions, as was described in Ref. [10], for an Au/Nb(100)
overlayer system. For varying Au thicknesses we calculate
the quasiparticle electronic structure and obtain the supercon-
ducting gap for each thickness. Finally a method is developed
to calculate the critical temperature from the gap and applied to
several overlayer systems with different material constituents.

The first step down this road is to construct a realistic
model of the interface lattice structure. Such a model can be
built up from two-dimensional translational invariant atomic

layers as follows. We divide the system into three regions:
(i) a semi-infinite bulk (Nb); (ii) the interface region that—in
our case—consists of six superconducting layers (Nb), various
numbers of normal metal layers and three layers of empty
spheres; and (iii) a semi-infinite vacuum. This division of space
is typical in screened Korringa-Kohn-Rostoker (KKR) [13]
calculations in overlayer systems. Since the setup described
in the experiment of Yamazaki et al. [1,2] is beyond our
computational capability, we model the effect of a thick
superconducting film by a semi-infinite bulk. Although the
thickness of the Nb layers in the experiment is not strictly
semi-infinite, it is thick enough to be approximated by a
semi-infinite bulk system. We use six Nb layers to mimic
the transition between the semi-infinite bulk and the overlayer.
The Nb has the body-centered cubic (bcc) crystal structure
with a lattice parameter of a = 3.3 Å. We assumed the
realistic face-centered cubic (fcc) crystal structure for the
gold overlayers, and the termination of the material layers
were modeled by a semi-infinite vacuum. We also neglected
imperfections at the interface, such as interlayer relaxations
and intermixing.

In such systems, where translational invariance is preserved
only parallel to the interface, the quasiparticle spectrum is
obtained as a function of a two-dimensional momentum vector
�k‖. To visualize this spectrum, it is customary to calculate
the Bloch spectral function (BSF). In two-dimensionally
translational invariant systems the BSF for layer I is defined as
AI

B(ε,�k‖) = − 1
π

ImGII(ε,�k‖), where GII is the layer projected
Green’s function (see Ref. [10]). Since the BSF is equivalent
to the quasiparticle spectrum, drawing a contour plot of the
BSF as a function of energy along specified directions of �k‖ is
a powerful tool to visualize the quasiparticle states. Evidently,
in a layered system this contour plot can be done for each layer.

In order to understand the quasiparticle spectrum in the
superconducting state better, first we performed first-principles
calculations just in the normal state, by simply solving the
screened KKR equations [13] for the Au/Nb(001) overlayer
system. In Fig. 1 we show the contour plot of the BSF for a
layer that we considered to be in the “middle” of the samples
of various Au layer thicknesses. The plots are restricted in
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FIG. 1. Contour plot of the spectral function of Au/Nb(001)
(normal state band structure) from the “middle” of the gold layers
for different thicknesses of the gold: three Au layers (a), six Au
layers (b), nine Au layers (c), and 24 Au layers (d).

energy to the range of [−0.05 Ry, 0.05 Ry] (later we will
choose �Nb, the superconducting gap to equal this value, and
solve the BdG equations within this energy range). It can be
seen from Fig. 1 that for energies where the density of states
(DOS) in the bulk Nb is low, the states in the Au are confined,
as they cannot scatter into the Nb, and on the other side the
system is limited by vacuum. In regions where the DOS is
high in the Nb, the states in the Au are smeared out, as here
the electrons can scatter more easily into the other side of the
interface. The confined states in the Au can be regarded as
quantum-well (QW) states.

Now let us consider the Nb in the superconducting state
and solve the first-principles BdG equations as described in
Ref. [10]. In this formalism each layer is characterized by an
additional, potential-like parameter, the superconducting gap
�. To solve the BdG equation we assumed that all Nb layers
show the same superconducting gap �Nb = 0.05 Ry. This is
a much larger value than the gap observed experimentally
[14], in order to make it easier to visualize the quasiparticle
spectrum. Later, when we will calculate the superconducting
transition temperature, we will repeat the calculation for a
more realistic �. We also assumed that the superconducting
gap is zero in the Au layers, namely, we set �Au = 0.0 Ry, as
Au is not superconducting at all in the bulk.

Based on the symmetry of the BdG equations [5] it is
known that in bulk superconductors the quasiparticle states can
be obtained from the electronic states by mirroring the band
structure of the normal state to the Fermi energy and opening
up a gap. In the case of the Au/Nb(100) overlayer system the
situation is entirely different, because the system is described
by an inhomogeneous � which, additionally, equals to zero in
some layers. Therefore the main question is how the niobium
host affects the quasiparticle spectrum of the gold overlayers.
In Fig. 2 we plot the BSF summed up for all Au layers in the
case of different total numbers of gold layers (right-hand side
of the figure). To illustrate the role of the crystal structure, on
the left-hand side of the figure we also show results of the same
calculations performed by assuming bcc Au layers throughout
the overlayer. This is not entirely unrealistic for very thin layers
but most likely artificial for thicker ones, where the Au layers

FIG. 2. Contour plot of the BSF summed up for all Au layers of
Au/Nb(001) in the case of different thicknesses of the Au: three bcc
Au layers (a1), nine bcc Au layers (b1), 24 bcc Au layers (c1), and
three fcc Au layers (a2), nine fcc Au layers (b2), 24 fcc Au layers
(c2). The momentum vector k is shown along the kx = ky line in the
2D Brillouin zone.

most certainly grow in an fcc structure. Unfortunately there
is very little known of the crystal structures of thin Au layers
on Nb.

By comparing Figs. 1(a), 1(c), 1(d) and Figs. 2(a2), 2(b2),
2(c2), we can immediately conclude that the proximity of
a superconductor in the studied heterostructures induces the
expected mirroring of the electronic bands within the energy
range of the Nb gap, and additionally opens up a smaller gap
at each band crossing. Although it is quite trivial, it is much
easier to see the effect first in the case of the bcc Au, fully
described in [10]. One can also see from the figure that the
size of the induced gaps in the gold is strongly �k‖ dependent,
however—around the Fermi energy—it is the same for all
layers, and it decreases as a function of the overall thickness
of the gold overlayers. It should be noted as well that those
regions of the spectrum which were more or less smeared out
in the normal state (visualized in the figure by weaker lines)
now sharpened up. This is the consequence of the opening of
the superconducting gap in the Nb: the states where scattering
into—on the other side of the interface—was allowed before,
now disappeared because of the gap. We can also conclude
from the figure that the quantum-well states, which we found
to exist in the normal state band structure calculations, become
bound Andreev states originating from the Andreev scattering
at the interface. Finally, since Fig. 2 was obtained by summing
up AI

B(ε,�k‖), and this sum does not show any significant
broadening, it is clear that the quasiparticle spectrum is
virtually identical in every interfacial layer. In Fig. 2 one can
also observe changes in the quasiparticle spectrum owing to
different lattice structures. In particular, more “oscillations”
can be seen in fcc gold overlayers compared to the bcc ones,
which is the consequence of more bands of the fcc gold in the
normal state.

We are now ready to calculate the superconducting tran-
sition temperature Tc. In the strong-coupling limit (e.g.,
in the case of Nb) the Tc is given by the McMillan
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formula [15,16]

Tc = �D

1.45
exp

(
− 1.04(1 + λeff)

λeff − μ∗(1 + 0.62λeff)

)
, (1)

where �D is the Debye temperature, and μ∗ is the dimen-
sionless Coulomb pseudopotential which describes the effect
of the Coulomb repulsion. For these two parameters we
may assume the bulk values [1], justified by the fact that
the niobium host is rather thick. The parameter λeff is an
effective coupling parameter for the whole system. Following
the argument of de Gennes [2,17] the simplest way to define
such an effective interaction parameter in an inhomogeneous
system is described by an averaging process in the following
way. Let us interpret DAu(εF )tAu/[DNb(εF )tNb + DAu(εF )tAu]
as a probability of finding an electron in the normal metal
layers (Au) and DNb(εF )tNb/[DNb(εF )tNb + DAu(εF )tAu] in
the superconducting Nb layers. Then the effective coupling
λeff can be defined as

λeff = λNbDNb(εF )tNb + λAuDAu(εF )tAu

DNb(εF )tNb + DAu(εF )tAu
, (2)

where tNb and tAu are the thickness of the Nb and Au
layers, respectively, λNb is the electron-phonon coupling in the
niobium, and D(εF ) is the density of states at the Fermi level.
While the density of states for the Nb can be approximated
by the bulk value, the density of states in the gold should be
defined as a layer average, DAu(εF ) = 1/N

∑N
I=1 DI

Au(εF ),
where N is the number of the gold overlayers. Since the
whole niobium–gold system is superconducting (a common
Tc obtained experimentally in Refs. [1,2]), Cooper pairs must
exist throughout the whole system. Therefore, the existence
of the superconducting gap in the Au layers can be viewed
in a way that the proximity of the superconductor induces
an effective coupling (λAu) in the gold, which in turn can be
obtained from the induced gap �′

Au according to the BCS gap
equation:

λAu = − 1

log
( �′

Au

2�ωNb
D

) . (3)

This induced gap �′
Au can be read off from the quasiparticle

spectrum, for which the whole calculation of the quasiparticle
spectrum needs to be repeated with a more realistic value for
�Nb, as we mentioned earlier. (For better visualization we used
an artificially large �Nb in Fig. 2.) While the BCS theory is
adequate only in the weak-coupling limit, nevertheless we still
argue that the BCS gap equation may be applied here to the
gold layers, since the induced gap is much smaller than the gap
in the Nb. Although the BCS theory is valid for bulk systems,
its applicability in the gold is motivated by the similarity
of the layer resolved quasiparticle spectrums and the layer
independent feature of the induced gap for a given thickness.
To obtain the induced gap, we always take the maximum
of the induced gap around the Fermi energy (as a function
of �k‖) in the two-dimensional (2D) Brillouin zone because
it is the most characteristic of the strength of the induced
interaction in the gold. In summary, the �′

Au induced gap can
be read off from the calculated quasiparticle spectrum as the
function of the thickness of the gold overlayers (see Fig. 3
inset), and the critical temperature can be calculated from the
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FIG. 3. The critical temperature as a function of the thickness of
the gold obtained from the McMillan formula. The points with the
error bars are the experimental results from Ref. [2]. The inset plot
shows the induced gap on the gold layers as a function of the thickness
of the gold.

McMillan formula given by Eq. (1). Figure 3 shows the critical
temperature as a function of the thickness of the Au overlayers
obtained from the procedure described above together with
the experimental results taken from the papers [1,2]. One
can clearly see that our theoretical results are in very good
agreement with the experimental findings; all points are within
the experimental errors. Moreover, the slow decrease of the
critical temperature as a function of the Au overlayer thickness
is well reproduced. We should emphasize that our theory
contains only one parameter, namely, the critical temperature
for the thick niobium slab. While in principle this quantity
can be calculated [18], it is quite cumbersome. Therefore, for
simplicity, here we take its experimental value. Consequently
our calculation is not entirely first principles.

The theory presented in this paper so far can be applied
without changes to other overlayer systems such as NbAg,
NbIr, NbAl, and NbMo. Nevertheless, it should be mentioned,
that many of the properties of the quasiparticle spectrum we
studied above are connected to the fact that QW states form
in the Au in the normal state. The formation of QW states,
however, cannot be regarded as a universal feature of every
overlayer on Nb. This is illustrated in Fig. 4, where we show

FIG. 4. Contour plot of the spectral function from the “middle” of
the three overlayers: (a) Al/Nb(001) (normal state band structure) and
(b) Al/Nb(001) (quasiparticle spectrum); (c) Mo/Nb(001) (normal
state band structure) and (d) Mo/Nb(001) (quasiparticle spectrum).
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FIG. 5. The critical temperature as a function of the thickness in
the case of different metal overlayers.

the normal state band structure and also the corresponding
quasiparticle spectrum of Al and Mo overlayers on the Nb
host. While there may be some quantum confinement present in
these materials in the normal state, it is not as clearly exhibited
as in the case of Au overlayers. It is clearly seen, that quantum
confinement is still present in the superconducting state. It is
important to notice as well, that in these systems it is hard to
recognize how the quasiparticle spectrum could be obtained
from the normal state band structure, as we mentioned before,
based on the symmetry properties of the BdG equations. The
most important feature of these plots is that in the supercon-
ducting state the induced gap around the Fermi level can still be
observed, therefore the superconducting transition temperature
can be predicted similarly to the NbAu heterostructure. This
is shown in Fig. 5 for several overlayer systems.

It can be seen that it is a general trend that the super-
conducting transition temperature decays as the normal metal
thickness increases, only the rate of the decay depends on
the material of the overlayer. This behavior is a consequence
of the size of the induced gap in the normal metal and also
the change of the density of states at the Fermi level which
enters the McMillan formula through the effective coupling
parameter. This is most pronounced for the case of iridium
overlayers, where the decay of the transition temperature is
the fastest, mostly due to the much higher density of states
at the Fermi level. We also found that our procedure to
calculate the critical temperatures are rather robust regarding
errors in the niobium’s superconducting gap. Changes in
�Nb less than 10%, causes changes in the critical temper-
ature, which are definitely smaller than the experimental
error [1].

In summary, we have investigated the quasiparticle spec-
trum, and the superconducting transition temperature of
superconductor–normal metal heterostructures. We have de-
veloped a semiphenomenological method to predict the
transition temperature of such heterostructures based on
the solution of the KS–BdG equations. In the case of the
Nb/Au(100) system we obtained very good agreement with
the experimental findings. The theory was also applied for
different metallic overlayers on a Nb host to predict the
superconducting transition temperature.
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