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We investigate the magnetization processes of a standard Ginzburg-Landau model for chiral p-wave
superconducting states in an applied magnetic field. We find that the phase diagram is dominated by triangular
lattices of doubly quantized vortices. Only in close vicinity to the upper critical field the lattice starts to dissociate
into a structure of single-quanta vortices. The degeneracy between states with opposite chirality is broken in
a nonzero field. If the magnetization starts with an energetically unfavorable chirality, the process of chirality
inversion induced by the external magnetic field results in the formation of a sequence of metastable states with
characteristic magnetic signatures that can be probed by standard experimental techniques.
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I. INTRODUCTION

The complex structure of the order parameter for chiral p-
wave superfluid and superconducting states has long attracted
interest in the physical properties of said states. Chiral p-wave
pairing is realized in the A-phase of superfluid 3He, where the
complex structure of the order parameter yields a rich variety of
topological defects [1–6]. In the context of superconductivity,
this interest is related to the discovery of Sr2RuO4 [7,8], which
is argued to have p-wave pairing [9–11], with Cooper pairs
having an effective internal orbital momentum [8,12].

Evidence supporting the existence of a chiral p-wave super-
conducting state in Sr2RuO4 has surfaced through a variety of
measurements. For instance, the superconducting critical tem-
perature (Tc) is completely suppressed by adding nonmagnetic
impurities [7,8]. Moreover, NMR Knight shift measurements
show no change in the spin susceptibility with temperature in
the superconducting phase [13,14]. Muon spin measurements
(μSR) [15] and the polar Kerr effect [16] suggest that
the superconducting state breaks time-reversal symmetry.
Also, phase-sensitive Josephson spectroscopy experiments
have shown some evidence of a dynamic domain structure
consistent with a chiral spin-triplet state [12,17]. Experiments
on toroidal mesoscopic samples reporting magnetization with
half-height steps suggest half-quantum vorticity [18], while
no half-quantum vortices were reported in a singly connected
geometry.

Nevertheless, the nature of the superconducting state of
Sr2RuO4 remains elusive, since a number of properties
predicted for chiral p-wave states have so far not been
observed. Spontaneous breaking of time-reversal symmetry
for a chiral p-wave state implies the existence of domain walls
(DW) that separate two different time-reversal symmetry-
broken (TRSB) ground states, i.e., different chiral states. As a
consequence of broken spatial symmetry, these domain walls
support spontaneous supercurrents that generate magnetic
fields [19–23]. Edge currents are also expected to flow at
the boundaries of samples, quite similarly to the currents at
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domain walls between domains of opposite chirality [21–24],
and these currents will have a magnetic field associated
with them. However, in Sr2RuO4, no indication of such a
field has so far been found in magnetic imaging microscopy
experiments [10,25–28]. Thus, the issue of identifying a
possible model of the superconducting state in this compound
is currently a matter of intense debate [24,29–35].

Vortex matter in Sr2RuO4 also shows rich physics that
can give insight into the nature of a superconducting state
in this material. The formation of chains of vortices has been
reported for magnetic fields with an ab-plane component [36],
consistent with the mechanism of vortex chain formation
in layered systems. Small-angle neutron scattering [37] and
muon-spin rotation measurements [38,39] have revealed vor-
tex lattices with square symmetry at high fields. A transition
to a triangular vortex lattice at lower fields has been reported
in [39,40]. Such transitions of the vortex lattice structure have
been regarded as being consistent with predictions based on
lowest-Landau-level calculations for chiral p-wave supercon-
ductivity in Sr2RuO4 [41–43]. However, they are inconsistent
with numerical studies of the energy of isolated topological
defects [44] that have predicted the formation of double-quanta
vortices in the Ginzburg-Landau model for a chiral p-wave
superconductor. Early experiments also demonstrated “zero
creep” that is not accompanied by a dramatic rise in critical
current [45]. This indicates that vortices form relatively mobile
clusters. The initial interpretation [45] of this experiment was
taken as evidence for a chiral p-wave state that allows the
formation of groups of type-2 vortices trapped by a closed
chiral domain wall. Within this scenario, the domain wall
would prevent vortex creep outside the sample. At the same
time, in contrast to the vortex pinning scenario, these groups
of vortices could be moved by an external current. This would
explain the absence of a dramatic rise in the critical current.
However, such a configuration would have characteristic
magnetic signatures (see Refs. [44,46] and the discussion
below). These signatures have not been seen so far in scanning
surface probes. Instead, experiments using magnetic surface
probes have reported observations of clusters of integer-flux
vortices [25,27,47]. Evidence of vortex clustering has also
been found in bulk measurements in field-cooled muon-spin
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rotation experiments [39]. The key observation there was that
vortex clusters contract as temperature is lowered well below
Tc, which is inconsistent with vortex pinning. Reference [39]
has attributed vortex coalescence to the competition between
multiple coherence lengths that may originate from multiband
effects or other multicomponent order parameters of various
origins (such a “type-1.5” scenario was hypothesized in an
earlier paper [27] in analogy with [48]).

In zero field, both chiral (ground) states are degenerate
in energy, while this degeneracy is lifted by a magnetic
field. For a given orientation of the magnetic field, only
one of the chiral states is stable while the time-reversed
chiral state is energetically penalized. Hence, the dominant
component can form a vortex. Since the dominant component
is suppressed in the vicinity of the vortex core, the time-
reversed (subdominant) chiral component may be induced in
the vortex core [43,49]. The winding of the induced component
is not independent of that of the dominant component. It has a
4π winding of the relative phases that follows from the Cooper
pairs having nonzero internal orbital momentum [50]. Since
the magnetic field lifts the degeneracy between chiralities,
vortices with opposite phase winding have different physical
properties [44,49,51].

Apart from single-quanta vortices, there also exist stable
vortices carrying multiple quanta of magnetic flux. These are
essentially different from single-quanta vortices because as
they are coreless, they carry an additional topological charge,
and they are sometimes called skyrmions. As discussed in more
detail below, the component induced by a doubly quantized
vortex in the dominant component has zero winding [49,51].
The possible existence of lattices of double-quanta vortices
has been proposed earlier in the context of the heavy-fermion
compound UPt3 [52,53], which is believed to be described
by a similar type of model [54,55]. Based on self-consistent
calculations using Eilenberger theory for the chiral p-wave
state, it was recently argued that while lattices of single-quanta
vortices form for fields close to Hc1, lattices of double-
quanta vortices are favored in higher fields [56]. On the
other hand, within the Ginzburg-Landau theory for chiral
p-wave superconductors, double-quanta (coreless) vortices
have been shown to be energetically favored as compared to
two (isolated) single-quanta vortices [44], and they were also
found to appear in a mesoscopic sample [57]. The energetic
preference for double-quanta vortices does not exclude the
formation of lattices of single-quantum vortices, or more
complicated structures in a magnetization process. Interactions
can favor different vortex lattices, or different Bean-Livingston
barriers may result in the formation of metastable lattices for
vortices that are not the most energetically favorable. This
raises the question of the nature of magnetization processes
and what kind of lattices form when an external magnetic field
is applied.

In this paper, we investigate magnetization processes using
numerical simulations of the minimal Ginzburg-Landau theory
describing the chiral p-wave state in an external field directed
along the c axis. In Sec. II, we introduce the Ginzburg-Landau
theory used to describe the chiral p-wave state in an external
field, and we discuss various basic properties, such as ground
states and edge currents. Next, Sec. III is devoted to the
magnetization process that has minimal energy, i.e., when

the external field produces topological excitations with lowest
energy. In that case, we find that lattices of double-quanta
vortices are generically produced. Finally, Sec. IV investigates
the magnetization processes with a reversed magnetic field.
These states have higher energies and eventually lead to
chirality inversion via a subtle interplay between vortices and
domain walls.

II. GINZBURG-LANDAU MODEL

In the coordinate system in which the crystal anisotropy
axis is c ‖ z, the px + ipy state corresponds to the two-
dimensional representation �−

5 = (kxz,kyz) and the order
parameter is described by a two-dimensional complex vector
η = (ηx,ηy)/

√
2 [8,55,58]. Introducing the chiral order param-

eter basis η± = ηx ± iηy , the dimensionless Ginzburg-Landau
free energy reads (see, e.g., [41–43])

F = |∇ × A|2 + |Dη+|2 + |Dη−|2 (1a)

+ (ν + 1)Re[(Dxη+)∗Dxη− − (Dyη+)∗Dyη−] (1b)

+ (ν − 1)Im[(Dxη+)∗Dyη− + (Dyη+)∗Dxη−] (1c)

+ 2|η+η−|2 + ν Re(η∗2
+ η2

−) +
∑
a=±

−|ηa|2 + 1

2
|ηa|4. (1d)

Here η± = |η±|eiϕ± and we have used dimensionless
units where the free energy is normalized to the conden-
sation energy, and the lengths are given in units of ξ =
[α0(T − Tc)]−1/2. The magnetic field B = ∇ × A is given
in units of

√
2Bc = 	0/(2πλξ ). The dimensionless gauge

coupling g that appears in the covariant derivative D = ∇ +
ig A is used to parametrize the ratio of two length scales in this
Ginzburg-Landau model, g−1 := κ = λ/ξ . The anisotropy
parameter ν, which satisfies |ν| < 1, determines the anisotropy
in the xy plane. It measures the tetragonal distortions of the
Fermi surface, which has cylindrical geometry for ν = 0, and
it is defined as ν = (〈v4

x〉 − 3〈v2
xv

2
y〉)/(〈v4

x〉 + 〈v2
xv

2
y〉) (where

〈·〉 denotes the average over the Fermi surface). In the model
defined by Eq. (1), the dependence on the third coordinate is
not considered (i.e., assuming a two-dimensional system or
translational invariance along the z axis). Varying Eq. (1) with
respect to η± yields the Ginzburg-Landau equations given by

�x2+y2η± +
(

ν + 1

2
�x2−y2 ± ν − 1

2i
�xy

)
η∓ = ∂Fp

∂η∗±
with �x2±y2 = DxDx ± DyDy, �xy = {Dx,Dy}, (2)

where Fp is the potential term Eq. (1d) in the free energy, and
{·,·} stands for the anticommutator. Variation with respect to
the vector potential gives Ampère’s equation ∇ × B + J = 0,
where the total current is the sum of partial currents J± whose
components are

J±
x = g

2
Im

(
η∗

±

(
Dxη± + [D± + νD∓]

η∓
2

))
, (3a)

J±
y = g

2
Im

(
η∗

±

(
Dyη± ± i[D± − νD∓]

η∓
2

))
, (3b)

where D± = Dx ± iDy .
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The theory described by Eq. (1) has several symmetries.
First, Eq. (1) exhibits the usual U(1) gauge invariance under the
transformation η → eiζ (x)η and A → A − ∇ζ (x)/g. The the-
ory is also invariant under a discrete (Z2) operation T , which is

referred to as time-reversal symmetry, {η±,B} T−→ {η∗
∓, − B}.

As discussed below, the chiral ground state spontaneously
breaks this symmetry.

The nontrivial behavior of the superconducting degrees
of freedom at the boundary of a sample is responsible for
the generation of spontaneous edge currents. Within the
Ginzburg-Landau theory, this behavior is accounted for by
adding relevant surface terms of the form [58]

Fsurf = [
χ1

(
n2

x + n2
y

) + χzn
2
z

]
[|η+|2 + |η−|2]

+ 2χ2
(
n2

x − n2
y

)
Re(η∗

+η−) − 4χ3nxnyIm(η∗
+η−), (4)

where ni ≡ n · ı̂ are the components of the normal vector to
the boundary. In our two-dimensional problem, χz = 0, and
for simplicity we can choose χ1 = χ2 = χ3 ≡ χ , imposing
specular reflection on the boundary. The magnetization pro-
cesses are thus described by the total (Gibbs) free energy over
a domain �,

G =
∫

�

F − 2B · H ẑ +
∫

∂�

Fsurf, (5)

together with the conditions that ∇ × A = H ẑ at the boundary
∂� of the domain. Here H denotes the strength of an external
field.

A. Details of the numerics

To numerically minimize Eq. (5), the physical degrees
of freedom η± and A are discretized using a finite-element
framework [59–61]. First we construct a mesh being a regular
partition of the spatial domain using a Deleaunay-Voronoi
triangulation algorithm. In other words, the spatial domain
is subdivided into a set of triangles (having similar area).
Then, η± and A are expressed in terms of second-order
Lagrange polynomials (polynomials of x,y up to second
order) on each triangle. This means that on a given triangle,
each of the six physical degrees of freedom of the problem
(η±, η∗

±, and A) is parametrized by the six coefficients of
the second-order interpolating polynomials (there are six
independent coefficients for a second-order polynomial in
two dimensions). The second-order Lagrange interpolation
defines the six coefficients at vertices and midedges, for a
total of 6 × 6 = 36 numerical degrees of freedom per triangle.
The overall accuracy of the construction is determined by the
number of triangles that constitute the mesh, as well as the
order of the interpolation method.

Now, within this finite-element framework, we use a
nonlinear conjugate-gradient algorithm (see, e.g., Ref. [62]),
which is iterated until the relative variations of the norm of the
functional gradient with respect to all degrees of freedom are
less than 10−8.

In this work, we investigate magnetization processes and
vortex structure formation due to an applied magnetic field on
domains of finite size. We focus on characteristic states that
appear during magnetization processes, and which should be
experimentally observable. We therefore do not specifically

focus on the question of which vortex lattice is a ground state
in a given field in the thermodynamic limit. Precise answers
to minimal energy structure in a thermodynamic limit would
require a different approach. There are intrinsic limitations
to characterize a lattice structure when working on finite do-
mains. First of all, realizing perfectly ordered lattices typically
requires a certain number of vortices given a certain area.
Unfortunately, during magnetization processes, the number of
vortices varies, and hence the appropriate number of vortices
may not be realized. Moreover, unlike in periodic domains,
the overall lattice structure is determined by more than just
intervortex forces. The existence of Meissner currents flowing
along boundaries can also alter the lattice structure. Although
such effects should tend to be less important in very large
domains, this explains why, in rather high fields, the structure
we find can be distorted or less ordered.

B. Ground state

The ground state that minimizes the potential energy,
Eq. (1d), is degenerate, and the solutions are (η+,η−) = (1,0)
and (0,1). With regard to symmetry, it spontaneously breaks
the U(1) × Z2 symmetry, where Z2 refers to time-reversal
operations. The spontaneous breakdown of the discrete Z2

symmetry dictates that the theory allows domain-wall so-
lutions that interpolate between regions in different ground
states. Such domain walls carry a magnetic field perpendicular
to the xy plane [21,22]. Aspects of the domain-wall physics
and their role in chirality switching are discussed later, in
Sec. IV.

The discrete (Z2) degeneracy of the ground state is lifted for
a nonzero applied field Hẑ. Consider, for example, a constant
magnetic field induced by the external field B = Bzẑ = Hẑ.
If Bz > 0, the ground state is (η+,η−) = (1,0), while when
Bz < 0, the lowest-energy state is (η+,η−) = (0,1). As the
η+ and η− components behave differently in an external
field, a complete study for a given ground state necessitates
considering both situations Bz > 0 and Bz < 0. Note that

due to the time-reversal symmetry of the theory {η±,B} T−→
{η∗

∓, − B}, this is equivalent to investigating only a fixed
direction of the magnetic field (say Bz > 0), however including
both chiral states. In the following, we choose to fix the
dominant component of the order parameter to be η− [i.e.,
the ground state is (η+,η−) = (0,1)], and thus we investigate
both positive and negative applied magnetic fields.

C. Edge currents

Spontaneous currents are expected to appear at the bound-
aries of chiral p-wave superconducting samples. However,
scanning Hall [25] and scanning SQUID microscopy [26,27]
experiments in Sr2RuO4 have not detected such predicted
edge currents, which in general should affect magnetization
processes of chiral p-wave superconductors. If such edge
currents are strong enough, the physics of vortex entry into
the system can be substantially modified compared to that
in ordinary superconductors. Indeed, as discussed in detail
below, the edge current can affect the Bean-Livingston barrier
and hence the processes of vortex entry. For example, it can
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FIG. 1. Properties of the edge currents due to the surface term (4)
for χ1 = χ2 = χ3 = 1. The left panel shows the behavior of the
components |η±| and the magnetic field as a function of the distance
from a straight edge boundary along the y axis. The right panel
shows the circulating edge current and the induced magnetic field
near a corner.

either facilitate or suppress vortex entry near Hc1, a fact that
will affect the chirality inversion process.

The spontaneous magnetic field due to edge currents is
found by minimizing Eq. (5) in zero external field (H = 0).
Figure 1 shows that the spontaneous currents at the edges
(here circulating counterclockwise) induce a magnetic field
that is screened in the bulk by superconducting currents (here
circulating clockwise). The calculation clearly shows that the
magnetic field in the corner is enhanced as compared to a
straight edge.

Note that the orientation of the edge currents is specified
by the chirality of the superconducting state. For example,
in Fig. 1 the dominant component is η− and the currents
circulate counterclockwise. In the case in which the dominant
component is η+, the currents circulate clockwise. In principle,
the surface term, Eq. (4), responsible for the edge currents
should not affect the bulk properties, such as, for example,
vortex lattices. However, as discussed below, since the surface
term modifies the boundary behavior, it can strongly influence
vortex entry during a magnetization process and thus lead to
qualitatively new features. In general, the boundary terms are
important at low fields and have less of an influence at high
fields.

III. LATTICES OF DOUBLE-QUANTA VORTICES

As stated above, the discrete degeneracy of the chiral
ground state is lifted by an external field. This implies that
given a ground state [which we take to be (η+,η−) = (0,1)],
the magnetization processes will be different whether the
applied field is parallel or antiparallel to the c axis. Similarly,
vortices with counterclockwise winding have different energy
than vortices with clockwise winding. After briefly reviewing
the elementary properties of vortex matter in the theory of a
chiral p-wave superconducting state, Eq. (1), we investigate
the magnetization processes when H < 0, i.e., the case when
an applied field excites vortices that have the least energy. This
magnetization process is that of least energy, and it exhibits
the formation of a triangular lattice of double-quanta vortices,

which dissociates into a lattice of single-quanta vortices in the
vicinity of the upper critical field Hc2.

A. Isolated vortices and skyrmions

The asymptotic vorticity of the dominant component η−
determines the sign of Bz, as well as the vorticity of the
subdominant component η+ [43], according to

η− ∝ ein−θ , η+ ∝ ein+θ , and n+ = n− + 2 ∈ Z. (6)

The relative phase ϕ−-ϕ+ between the components η+ and
η−, which corresponds to a difference �l = 2 of the order
parameters’ angular momentum, originates with the structure
of mixed gradients, Eqs. (1b) and (1c). Note that since the
subdominant component, η+, vanishes asymptotically (i.e., it
recovers its ground-state value η+ = 0 in the bulk phase), the
winding n+ can be located only in the close vicinity of a vortex
core. Hence, the number of flux quanta is determined only by
the winding number n− of the dominant component. Equa-
tion (6) implies that the two possible single-quanta vortices
are (n−,n+) = (+1,+3) and (n−,n+) = (−1,+1). Having
different winding numbers of the subdominant component,
these will have different core structures, and it is thus natural
to expect that they will have different energies as well.

In agreement with the naive expectation, since it has a sim-
pler core structure, the (n−,n+) = (−1,+1) vortex can have a
lower energy than the (n−,n+) = (+1,+3) vortex [44,51]. As
a result, the vortex with the lowest energy carries a magnetic
field antiparallel to the c axis (for the case in which the
dominant component is η+, the lowest-energy vortex carries
a magnetic field parallel to the c axis). The preference for
the (n−,n+) = (−1,+1) vortex, featuring the simpler core
structure, occurs in the whole (ν,g) parameter space [at least
within the Ginzburg-Landau model, Eq. (1)] [44]. It also
follows that (n−,n+) = (−1,+1) and (n−,n+) = (+1,+3)
have different lower critical fields, H

(−1)
c1 < H

(+1)
c1 . In other

words, given a dominant component in the ground state, the
first vortex entry occurs at different values of the applied
field, according to whether it is parallel or antiparallel to the c
axis [63,64].

The winding number n− of the dominant component η−
specifies the topological sector. In infinite domains, different
topological sectors are separated by an infinite energy barrier,
which becomes finite (but still very high) in finite spatial
domains. This implies a “topological protection” because
no continuous finite-energy transformation can change the
topological sector. As a result, a minimization algorithm that
continuously deforms the field configurations to reduce the
energy cannot change the number of flux quanta.1 More
precisely, starting with a configuration having a given winding
n−, the specifics of the minimization algorithm can affect
core structures, but the asymptotic behavior of the vortices
after convergence of the algorithm will, regardless of the
algorithmic details, naturally behave as expected from Eq. (6).

1Note that this is rigorously true in infinite domains, while in finite
domains there is the possibility to change the topological sector by
entering/exiting topological defects (vortices) through the boundary
of the domain.
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FIG. 2. Vortex states for the model defined in Eqs. (1) and (4)
with parameters g = 0.3 and ν = 0.2. The first line shows the
magnetic field B, while the second and third lines display η− and
η+, respectively. The fourth line shows the relative phase ϕ−-ϕ+
between η+ and η−. Winding the relative phase indicates the position
of the cores of η+ and η−. The first two columns show single- and
double-quanta vortices, respectively, with Bz > 0, while the third
and fourth columns display single- and double-quanta vortices with
Bz < 0.

The heuristic argument of the simplicity of the core structure
of the vortices also implies the rather unusual situation that
double-quanta vortices could be favored compared to two
isolated single-quanta vortices [44,49,51,56,57]. Indeed, the
double-quanta (n−,n+) = (−2,0) vortex, as it has a simple
core structure, is always energetically favored compared to
two isolated single-quanta (n−,n+) = (−1,+1) vortices [44].
Thus, one may expect the double-quanta vortices to form in
an external field, at least close to Hc1. However, as they carry
more flux, their entry through the boundary could be unlikely
because they experience a different Bean-Livingston barrier.

Figure 2 illustrates the richness of the core structure of
vortices. It is evident that vortices with opposite winding of
the dominant component n− = ±1 have different structures.
In particular, the position and number of cores of the
different components can be extracted from the last row,
which shows the relative phase ϕ−-ϕ+. Far from the cores,
the components reach their asymptotic values ϕ± = n±θ

given by Eq. (6). Thus, the relative phase ϕ−-ϕ+ shows
the expected 4π winding at large distances. Figure 2 also
displays the two possible configurations carrying two flux
quanta. Clearly, these also have different core structures.
The (n−,n+) = (−2,0) vortices are always less energetic than
two isolated single-quanta vortices with (n−,n+) = (−1,+1)
(see Ref. [44] for a detailed analysis). Note that there also
exist (n−,n+) = (+2,+4) vortices. Their energy, compared
to that of isolated (n−,n+) = (+1,+3) vortices, can either
be larger or smaller depending on the parameters (ν,g). In
the regimes investigated here, the double-quanta (n−,n+) =
(+2,+4) vortices have higher energy than isolated ones. Thus,
they are only metastable. Alternatively, the vortices discussed

above can be understood as bound states of half-quantum
vortices in term of the components (ηx,ηy) of the order
parameter (see the corresponding discussion in Appendix).
These (coreless) vortices carrying multiple flux-quanta can be
characterized by additional topological invariants, motivating
the alternate terminology of skyrmions [44].

B. Magnetization process—Lattices of double-quanta vortices

The physics of isolated vortices strongly suggests that
double-quanta vortices should form in an external field. Here,
we investigate the magnetization processes, starting from the
Meissner state and ramping-up the applied field antiparallel
to the c axis (H < 0). The solution in zero field is chosen
to be the (η+,η−) = (0,1) ground state. The external field is
then sequentially increased (in steps of 4 × 10−3), and the
energy is minimized at each step. Figure 3 shows the outcome
of such a magnetization process. This procedure corresponds
to an applied field that, in the sense that it produces the less
energetic defects, is optimally directed. As expected from the
properties of the isolated vortices, the initial vortex entry comes
in the form of double-quanta vortices. In our simulation, Fig. 3,
the initial entry occurs at |H | � 0.46. As the applied field
increases, more double-quanta vortices enter and they arrange
themselves in a regular lattice of double-quanta skyrmions.
This lattice state is robust and persists for all applied fields.
The preference for lattices of double-quanta vortices, in the
case of an antiparallel external field, is a robust feature. We
observed this behavior for all the parameters of the model we
considered.

Since the strength of the edge currents depends on χ ,
the Bean-Livingston barrier for vortex entry is affected as
well. We find that the entry of skyrmions occurs for a wide
range of values of the parameter χ that parametrizes the edge
properties. The value of the field for initial entry depends on the
interplay with the edge currents. Nonetheless, bulk properties
are essentially unaffected such that lattices of double-quanta
vortices are always realized.

As stated earlier in more detail in Sec. II A, characterizing
the lattice structure within our framework of working on a
finite-size domain can be difficult. Due to uncontrollable vor-
tex entry during the magnetization process and the interaction
between vortices and Meissner currents flowing along the
edge of the domain, perfect lattice structures are in practice
never realized. Nonetheless, at least in rather low fields, it is
quite clear that hexagonal lattices of two-quanta vortices are
realized. In higher fields, the coexistence of a few single-quanta
vortices distorts the overall structure, but the tendency to form
a hexagonal lattice is nevertheless quite robust.

C. Lattice dissociation near Hc2

The results in Fig. 3 show the magnetization process from
low to rather high fields when H < 0 is optimally directed. It is
important to further understand the behavior in high fields near
the second critical field Hc2. From the energetics of isolated
vortices and from the magnetization processes, one would
conclude that the double-quanta vortices are always favored
for the model we consider. This would contradict earlier
calculations using the lowest Landau-levels-based approach
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FIG. 3. Simulation in an external field H < 0 for the parameters g = 0.3, ν = 0.3, and χ = 0.1. The different lines display Bz, |η−|, and
|η+|, respectively. Here, the orientation of the external field is such that it will produce less energetic topological defects (skyrmions). The
panel corresponding to the lower field show half-quanta vortices stabilized near boundary. Increasing the field past Hc1 produces entry of
double-quanta vortices that arrange themselves into a hexagonal lattice. Note that in higher fields, both single- and double-quanta vortices enter
the system. The single-quanta vortices will eventually merge into double-quanta skyrmions.

predicting that a square lattice of single-quanta vortices is the
solution near Hc2 [41,42].

To investigate the properties near Hc2, we need to slightly
modify our parametrization of the theory, formulating it in a
manner that is more convenient for numerical purposes.2 The
idea is that instead of approaching the upper critical field by
varying H at fixed T in the (H,T )-phase diagram, the physics
near Hc2 can be found by varying T at fixed H . In mean-field
theory, Eq. (1), the temperature dependence is absorbed by
setting the scales of the problem (here temperature refers to
the temperature parameter of the nonfluctuating mean-field
theory). We restore the parametrization of the temperature
dependence by having the prefactor of the quadratic terms
in Eq. (1): α(T̃ ) = 1 − T̃ . Thus T̃ = 1 corresponds to the
destruction of the superconducting state in zero field. De-
creasing the value of the parameter α will thus decrease the
superconducting density and push the system toward Hc2.

Starting in the Meissner state with α = 1, the external field
is gradually increased. The resulting magnetization process,
similar to that displayed in Fig. 3, produces a lattice of double-
quanta vortices. Once the lattice is established, the applied field
is fixed and the parameter α is sequentially decreased from 1
to 0 (in steps of 2.5 × 10−2), and the energy is minimized
at each step. Figure 4 shows the evolution of a vortex lattice
when decreasing α toward Hc2. The system exhibits a lattice of
double-quanta vortices for a rather wide range of temperatures.

2Approaching Hc2 requires large fields, which can make numer-
ical investigations difficult. Indeed, when applying higher fields,
the domain is populated by more and more vortices. As a result,
the complex fields have a larger and larger winding number at the
boundary. Thus, in order to preserve reasonable accuracy (number of
boundary points per winding number), one would need to refine the
mesh, which would result in a dramatic slowdown of the numerics.
Instead, horizontal displacement in the (H,T )-phase diagram allows
us to approach Hc2 without the special need to refine the mesh.

When getting closer to Hc2, the lattice starts to deform and
the double-quanta vortices split into single-quanta vortices.
Eventually, the entire lattice of double-quanta vortices has
dissociated into a structure of single-quanta vortices. Because
finite-size effects become important together with a longer
equilibration time, it becomes very difficult to form a fully
ordered state. Thus, it is difficult to rigorously characterize
such a lattice structure (see the discussion in Sec. II A).
However, we can infer that our results, together with the earlier
results based on lowest Landau-level calculations [41,42],
point toward a transition to a lattice of a single-quanta vortices.
Structures obtained by lowest Landau-level calculations near
Hc2 are square lattices of the single-quanta vortices [41,42].

The difference with the previously discussed scenario is
that our results indicate that square lattices of single-quanta
vortices should transform into a hexagonal lattice of double-
quanta vortices. The latter is robust and survives to large
negative values of H < 0. Only in close vicinity to the upper
critical field Hc2 will double-quanta vortices dissociate. Note
also that in the crossover region, single- and double-quanta
vortices coexist, and there is a tendency to form vortex stripes.

IV. CHIRALITY INVERSION AND THE ROLE OF
DOMAIN WALLS

The discrete degeneracy of the chiral ground state is lifted
by an external field, and thus the magnetization processes
should be different from that previously discussed when the
applied field is parallel to the c axis. Magnetization processes
when H > 0 imply that the system can be in metastable states
that are not energetically optimal. Indeed, the Meissner state
with an initial chirality that does not correspond to the optimal
direction of the applied field is not the one with the lowest
energy. Domain walls are natural topological excitations that
interpolate between two ground states. In general, they are
expected to form via a Kibble-Zurek-like mechanism [23], but
they could also play a role in the magnetization process where
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FIG. 4. Simulation in an external field H < 0 for the parameters g = 0.3, ν = 0.3, and χ = 0.1. The different lines display Bz, |η−|, and
|η+|, respectively. Here, the external field is fixed and the prefactor of the quadratic term is varied, while other coefficients are kept fixed. This
is equivalent to varying the temperature and getting closer to Hc2. The first panel corresponds to the last panel of Fig. 3. Decreasing α/α0

decreases the total density. Close enough to Hc2, the double-quanta vortices start to break apart. Eventually, very close to Hc2 only single-quanta
vortices subsist, and they arrange themselves in a square lattice.

the starting state is not the optimal one in an external field. Var-
ious aspects of domain-wall properties during magnetization
processes have been studied in [63,64]. After briefly reviewing
their elementary properties, we investigate the magnetization
processes when H > 0. This magnetization process is actually
much richer than that taking place when the starting state is an
optimal one in a given external field. Indeed, for nonoptimal
starting states, we will discover that the magnetization process
involves chirality inversion processes, the details of which will
be sensitive to the parameters of the theory.

A. Domain walls

A domain wall is a field configuration that interpolates,
for example, between (|η+|,|η−|) = (1,0) and (|η+|,|η−|) =
(0,1). Note that there are two inequivalent ways of having such
a configuration, with differing corresponding domain walls.
The two inequivalent ways may be illustrated by

DWI : (−1,0) ←− (η+,η−) −→ (0,1), (7a)

DWII : ( 1,0) ←− (η+,η−) −→ (0,1). (7b)

It is easily realized that the two domain-wall configurations
cannot be transformed into each other by gauge transforma-
tions, from which they are physically distinguishable. Note that
the energy cost of a domain wall also depends on its relative
orientation with respect to the crystal axis. Depending on the
orientation of the domain wall, one of the two possible domain
walls is favored. This was discussed in detail in Ref. [65].

Figure 5 displays the typical domain-wall solution in chiral
p-wave superconductors. The magnetic signatures of the two
types of domain walls [Eq. (7)] are different, and they have
different energies. Due to partial currents in different chiral-
ities, the domain walls have longitudinal currents associated
with them, and hence they carry a magnetic field, as can be
seen from Fig. 5. Conversely, since the domain walls support
longitudinal currents, an external applied field will produce a

Lorentz force that should induce motion of the domain wall.
In other words, when the degeneracy between ground states
is lifted by an external field, the domain wall should move to
increase the region of optimal ground state. Thus, we expect
domain walls to be involved in the magnetization processes
when the external field is not optimally oriented.

B. Chirality inversion in an external field

Domain walls are the topological excitations that are
involved in processes that revert the chirality. For an applied

FIG. 5. The two possible kinds of domain walls interpolating
between (|η+|,|η−|) = (1,0) and (|η+|,|η−|) = (0,1) for the parame-
ters g = 0.3 and ν = −0.5. Panels (a) and (b) show DWI and DWII

domain walls, respectively. Their density profiles are very similar,
but they differ from their real and imaginary parts and they cannot be
transformed into each other. Although the density profiles are quite
close to each other, the two domain walls have different energies
and also different magnetic field due to the difference in the relative
phases.
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field parallel to the c axis (H > 0), the ground state (η+,η−) =
(0,1) is not the optimal one. Thus, two isolated single-quanta
vortices have lower energy than a double-quantum vortex. That
is, (n+,n−) = (+3,+1) vortices have a smaller lower critical
field than the double-quanta (n+,n−) = (+4,+2) vortices, i.e.,
H

(n−=+1)
c1 < H

(n−=+2)
c1 . The top panel in Fig. 6 illustrates this,

and only single-quanta vortices enter and organize as a lattice.
Note that the field for the first vortex entry in this case is higher
than for an antiparallel field, since H

(n−=+1)
c1 > H

(n−=−1)
c1 .

Therefore, single-quanta vortices enter and arrange themselves
as a lattice in a low field. An interesting process occurs in
higher fields. Since the ground state (η+,η−) = (0,1) is not
optimal for that direction of the external field, the optimal
case would thus actually be to have the opposite chirality. For
rather large fields, we see that the system starts to “reverse” its
chirality. By nucleating a domain wall that propagates from the
boundaries, the system is able to switch to optimal chirality,
given the orientation of the external field. While the domain

wall propagates in the bulk, it “absorbs” the single-quanta
vortices and “converts” them into double-quanta vortices in the
optimal chirality. Eventually, mostly double-quanta skyrmions
occupy the domain and should turn into a lattice of skyrmions.

During the process of chirality inversion, various kinds
of vortices carrying different numbers of flux quanta can
coexist. For instance, there are a few single-quanta vortices
that are trapped between double-quanta vortices. They cannot
always pair with other single-quanta vortices, as this would
imply moving through the background of other double-quanta
vortices. Such trajectories can be energetically unfavored.
Similarly, skyrmions carrying more than two flux quanta are
also formed and persist since these are metastable solutions.
Their decay into double-quanta vortices can be triggered
by the pressure that is exerted by the surrounding double-
quanta skyrmions. We find that the skyrmions carrying high
magnetic flux are eventually destroyed by an increasing
field.

FIG. 6. Simulations in an external field H > 0 for the parameters g = 0.3 and ν = 0.15. The different lines display Bz, |η−|, and |η+|,
respectively. Here the orientation of the external field is such that it produces topological defects with higher energy: single-quanta (singular)
vortices are favored over skyrmions. Given the direction of the applied field, the initial chirality is nonoptimal. The parameters of the edge
currents χ are χ = 1 for the top panel and χ = 10 for the lower one. In the top panel, upon increasing the external field, single-quantum
vortices enter and organize as a lattice. At elevated fields, a domain wall starts entering and “reverting” the chirality. In the lower panel, the
domain wall starts entering the domain and switching the chirality before any vortex entry. The domain walls here also carry vorticity, as it
becomes energetically beneficial to place vortices there. In both cases, behind the domain wall, the optimal chirality double-quanta skyrmions
are the lowest-energy excitation. Eventually, mostly double-quanta skyrmions occupy the domain and should turn into a lattice of skyrmions.
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Another possible scenario for the magnetization process
with an external field parallel to the c axis is displayed in
the lower panel of Fig. 6. Typically for small geometries, or
for a strong barrier to vortex entries, it may be beneficial to
produce a domain wall at a field below the lower critical field,
and thus switch to the optimal chirality prior to any vortex
entry. In addition to the domain wall, the optimal chirality
double-quanta skyrmions are the lowest-energy excitations.
The created domain walls are not the bare domain walls
discussed above in Sec. IV A, but rather domain walls
“decorated” by vortices, such that they carry vorticity. As a
result of the vorticity that is trapped on the domain walls,
they cannot easily annihilate (with an anti-DW), so they
create skyrmions with a large number of flux quanta (see the
details of the mechanism of stabilization of domain walls by
vortex decoration in [44,46]). At elevated fields, however, these
decorated domain walls eventually decay when the system is
compressed enough, leaving a lattice of double-quanta vortices
(in addition to a few isolated single quanta); the optimal
chirality has been restored. From now on, the behavior of
the double-quanta vortex lattice is the same as that discussed
in Sec. III. That is, further increasing the external field will
drive the structural transition into a single-quanta square
lattice close to Hc2, accompanied by a density halving of the
lattice.

We have found that a magnetic field antialigned with
chirality should trigger a chirality inversion process by
propagation of domain walls “decorated” with vortices inside
the domain. We report two possibilities for such an inversion
process, namely that domain-wall penetration occurs either
before or after penetration of single-quanta vortices. Weak
edge currents promote early entry of single-quanta vortices
prior to the domain-wall penetration and chirality inversion
process. Strong edge currents, on the other hand, delay entry
of single-quanta vortices compared to the domain wall. In that
case, the restoration of the optimal chiral state is much faster.
Note that which of the two scenarios is realized depends not
only on the strength of the edge currents, but also on the size
and shape of the domain that is considered.

V. CONCLUSION

In this paper, we have considered the problem of magneti-
zation of a finite superconducting sample in the framework
of a standard Ginzburg-Landau model for chiral p-wave
superconductors that is often invoked to describe Sr2RuO4.
At magnetic fields close to Hc2, there is a tendency towards
formation of a square lattice of single-quantum vortices, in
agreement with earlier calculations [41,42] and experimental
observations [37–39]. However, we find that, at least at
mean-field level in the Ginzburg-Landau model, the square
lattice exists only very close to Hc2 and transforms into a
hexagonal lattice of double-quanta vortices slightly below
Hc2. This double-quanta hexagonal vortex lattice dominates
the phase diagram of the model in question. In contrast to
the Eilenberger theory-based calculations in Ref. [56], in our
calculations the double-quanta vortex lattice persists down to
the lowest fields. Double-quanta vortex formation has also
been reported in simulations of mesoscopic samples in external
fields [57].

Different chiralities are known to have different lower
critical fields Hc1. For the chirality with larger Hc1, we
have found metastable hexagonal vortex lattices of single-
quanta vortices in low magnetic fields. The metastable single-
quanta vortex lattices transform into a stable double-quanta
vortex lattice at elevated fields via a set of complicated
metastable states that involve the creation and growth of
domain walls decorated by vortices. These metastable con-
figurations have characteristic magnetic-field signatures that
should be detectable by scanning SQUID and Hall probes or
decoration.

Although our results are inconsistent with the current
experimental data on Sr2RuO4 [25,27,39], they do not rule
out p-wave superconductivity in this material. Rather, our
results present evidence against a class of minimal models.
This magnetization picture can be used as a “smoking gun”
hallmark of chiral p-wave superconductivity that is searched
for in other materials.

ACKNOWLEDGMENTS

We acknowledge fruitful discussions with Mihail Silaev.
The work of J.G. and E.B. was supported by the Swedish
Research Council Grant No. 642-2013-7837 and the Goran
Gustafsson Foundation. The work of A.S. was supported by
the Research Council of Norway Grants No. 205591/V20 and
No. 216700/F20, as well as European Science Foundation
COST Action MPI1201. The computations were performed
on resources provided by the Swedish National Infrastructure
for Computing (SNIC) at the National Supercomputer Center
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FIG. 7. Vortex states for the parameters g = 0.3 and ν = 0.2. The
first row shows the magnetic field B, while the second and third row
display ηy and ηx , respectively. The fourth line shows the relative
phase ϕy-ϕx between ηx and ηy . The first two columns show single-
and double-quanta vortices, respectively, with Bz > 0, while the third
and fourth columns display single- and double-quanta vortices with
Bz < 0.
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APPENDIX: VORTICES IN TERMS OF ηx, y COMPONENTS

It is instructive to consider the configurations displayed in
Fig. 2 in the (ηx,ηy) order parameter basis, as is done in Fig. 7.
There, the two inequivalent ground states have equal density
and are distinguished by the relative phase ϕy-ϕx (between ηx

and ηy) being ±π/2. Again it is quite clear that opposite vortic-
ities give different structures of the cores. The parametrization

in terms of (ηx,ηy) sheds new light on how to interpret the
double-quanta vortices. Since in this parametrization both ηx

and ηy have nonzero ground-state density, both components
can have nonzero (asymptotic) winding and thus contribute
equally to screening of the magnetic field. A vortex within
each component can be attributed half of a flux quantum, and
a bound state of a half-quantum vortex in each component
constitutes a single quantum vortex.
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