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Field theoretical model of multilayered Josephson junction and dynamics of Josephson vortices
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Multilayered Josephson junctions are modeled in the context of a field theory, and dynamics of Josephson
vortices trapped inside insulators are studied. Starting from a theory consisting of complex and real scalar
fields coupled to a U(1) gauge field which admit parallel N − 1 domain-wall solutions, Josephson couplings are
introduced weakly between the complex scalar fields. The N − 1 domain walls behave as insulators separating
N superconductors, where one of the complex scalar fields has a gap. We construct the effective Lagrangian
on the domain walls, which reduces to a coupled sine-Gordon model for well-separated walls and contains
more interactions for walls at short distance. We then construct sine-Gordon solitons emerging in an effective
theory in which we identify Josephson vortices carrying singly quantized magnetic fluxes. When two neighboring
superconductors tend to have the same phase, the ground state does not change with the positions of domain
walls (the width of superconductors). On the other hand, when two neighboring superconductors tend to have
π -phase differences, the ground state has a phase transition depending on the positions of domain walls; when
the two walls are close to each other (one superconductor is thin), frustration occurs because of the coupling
between the two superconductors besides the thin superconductor. Focusing on the case of three superconductors
separated by two insulators, we find for the former case that the interaction between two Josephson vortices on
different insulators changes its nature, i.e., attractive or repulsive, depending on the positions of the domain walls.
In the latter case, there emerges fractional Josephson vortices when two degenerate ground states appear due to
spontaneous charge-symmetry breaking, and the number of the Josephson vortices varies with the position of the
domain walls. Our predictions should be verified in multilayered Josephson junctions.

DOI: 10.1103/PhysRevB.94.104504

I. INTRODUCTION

The Josephson effect is one of the most striking macro-
scopic quantum phenomena, which was theoretically pre-
dicted and experimentally confirmed in the 1960s [1–5].
The phenomenon is realized by a system consisting of two
superconductors which are shielded by a thin insulator and are
weakly interacted, called the Josephson junction. Due to the
phase difference of macroscopic wave functions of the two
superconductors, an electric current is induced even without
any voltage difference between the superconductors. Now the
effect became a basic ingredient in condensed matter physics
and is written in many standard textbooks (for example, see
Refs. [6,7]). Due to recent progress, the effect can be seen not
only in the standard Josephson junctions but also in various
weak links of superconductors consisting of new materials:
graphene [8] and topological insulators [9,10], for example.
The Josephson effect is also important for engineering science.
The superconducting quantum interference device (SQUID)
[11] and superconducting qubits [12] are the typical examples
of the application of the phenomenon.

When a magnetic field is applied parallel to a Josephson
junction made of type-II superconductors, vortices (magnetic
flux tubes) in the type-II superconductors are absorbed into the
insulator. Such magnetic vortices trapped inside an insulator
are called Josephson vortices or fluxoids [13]. The dynamics
of Josephson vortices can be described by the sine-Gordon
model [14–18]. On the other hand, studies of the vortices
in various complex setups are frequently done by using the
simulations of the Ginzburg-Landau (GL) model: 3D GL
calculation in anisotropic mesoscopic superconductors [19],
vortex-antivortex pair generation in the presence of applied

electric current [20], time-dependent calculation of the vortices
under an external source [21–24], and so on. The Josephson
vortex is not a mere conceptual object in theoretical physics,
but a detectable one: it is directly observed by using scanning
tunneling microscopy on the surface of Si(111)-(

√
7 × √

3)-In
[25] and in a lateral superconductor-normal-superconductor
(SNS) network of superconducting Pb nanocrystals linked
together by an atomically thin Pb wetting layer [26].

Some materials have structures similar to Josephson
junctions. Oxide high-Tc superconductors have a multilayer
structure of superconductors (planes of Cu2O) and insu-
lators (other atomic layers) [27]. The coupling between
the layered superconductors varies with the materials. The
coupling in BSCCO (Bi2Sr2CaCu2O8+δ) [28–31] is especially
weak, and it is known that these materials behave like
multilayered Josephson junctions, from the analysis of their
current-voltage characteristics and the specific property of
high-frequency electromagnetic waves: the terahertz laser
is produced continuously by BSCCO due to its Josephson
plasma oscillation [14,32–35], which is a collective motion
of Josephson vortices and superconducting electrons and very
important for applications in engineering [34,35]. Not only
the natural multilayered structure of Josephson junctions, but
the artificial multilayered superconductors and insulators are
also available with the development of precise processing
technology: artificial construction of high-Tc superconductors
started already in the last 1980s [36], and more recently, the
experiment of mesoscopic superconducting rings which make
a layered structure is performed [37], for example. These
developments enable us to test the theoretical prediction in
various experimental setups.
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In this study, we propose a simple field theoretical model
describing multilayered Josephson junctions and we study the
dynamics of Josephson vortices. The model for an N -layered
Josephson junction can be described by the CP N−1 model.
This is a multicomponent extension of the previous study of
two superconducting layers with one junction [38,39]. We start
from the U(1) gauge theory with one real and N complex
scalar fields, similarly to the Ginzburg-Landau theory for
a single superconductor. We consider the critical coupling,
which is known as the Bogomol’nyi-Prasado-Sommerfield
(BPS) limit in the field theory language. This assumption
technically simplifies the treatment but is not essential for
the dynamics of Josephson vortices. Taking the strong-
coupling limit of it, we obtain a massive CP N−1 model,
where N − 1 parallel domain walls are allowed behaving
as insulators. Then, Josephson terms are introduced between
superconductors perturbatively. We construct the low-energy
effective Lagrangian of the domain walls (insulating junctions)
and find that it reduces to a coupled sine-Gordon model
[40,41] in the limit of well-separated domain walls (thick
superconductors) while it contains more general interaction
for domain walls at short distances (thin superconductors).
The effective theory allows sine-Gordon solitons carrying
quantized magnetic fluxes, which we identify as Josephson
vortices. Focusing on the N = 3 case, where two domain
walls (three superconductors and two insulators) exist, we
investigate the dependence of the effective potential and the
sine-Gordon solitons on the distance of the domain walls (the
thickness of the middle superconductor). There are essentially
the two cases depending on the Josephson coupling: When
two neighboring superconductors tend to have the same
phase, the ground state does not depend on the positions
of domain walls (the width of the middle superconductor).
When two neighboring superconductors tend to have π -phase
differences, the ground state has a phase transition depending
on the positions of domain walls; when the two walls are
close to each other (the middle superconductor is thin),
frustration occurs because of the coupling between the two
superconductors besides the middle superconductor. We study
dynamics of Josephson vortices both as sine-Gordon solitons
in the effective theory and as full numerical configurations. In
the unfrustrated case, the interaction of Josephson vortices
at the two neighboring insulators changes its nature, i.e.,
the interaction is attractive when the two insulators are well
separated (the middle superconductor is thick), while the
interaction is repulsive when they are close to each other
(the middle superconductor is thin). In the frustrated case,
fractional sine-Gordon solitons emerge when two degenerate
ground states appear due to spontaneous charge-symmetry
breaking, depending on the distance of two domain walls.

This paper is organized as follows. In Sec. II, we construct
the field theoretical model of a multilayered Josephson
junction. We derive the massive CP N−1 model in the strong
coupling limit of a U(1) gauge theory coupled with real and
complex scalar fields, and give the domain-wall solutions.
Then, the Josephson terms are introduced to the model and
the effective theory of domain walls is derived. In Sec. III,
multilayered Josephson junctions in the model are explained.
After a brief review of the N = 2 case, where there is one
domain wall, we study the case of two domain walls in

N = 3. In Sec. IV, we numerically investigate the properties
of Josephson vortices: the vacuum structure, the interaction
between the vortices, the profiles of sine-Gordon solitons,
energy densities, and fluxes are studied for various setups.
Section V is devoted to a summary and discussion. We make a
comment on the possibility of realization in superconductors
and discuss possible extensions such as supersymmetry and
non-Abelian (color) superconductors.

II. FIELD THEORETICAL MODEL OF A MULTILAYERED
JOSEPHSON JUNCTION

A. A model without Josephson interactions

We start with the following SU(N)-invariant Abelian-Higgs
system [42]:

LA,φ = − 1

4e2
FμνF

μν − (Dμφa)(Dμφa) − λ

4
(|φa|2 − v2)2,

Dμ ≡ ∂μ − iAμ, (1)

where φa (a = 1, . . . ,N) are charged scalar fields, Aμ are
Abelian gauge fields, and Fμν are their field strength. In
terms of the Ginzburg-Landau model, FμνF

μν = 2(B2 − E2),
where B is the magnetic field and E the electric field, φa

are the multicomponent superconductor order parameters, the
second term correspond to the kinetic term of them and their
couplings to E and B, and the third term corresponds to
their self-interaction. This Lagrangian has the global SU(N)
symmetry which rotates the complex scalar fields φa . The
scalar potential is minimized when the scalar fields φa have
vacuum expectation values (VEVs; i.e., condensations) such
that

|φa|2 = v2. (2)

As well as the U(1) gauge symmetry, the SU(N ) global
symmetry is spontaneously broken to SU(N − 1) × U(1) by
the nonzero VEVs of the charged scalar fields φa . Therefore,
the low-energy degrees of freedom are the Nambu-Goldstone
(NG) modes parametrizing the complex projective space

CP N−1 � SU(N )

SU(N − 1) × U(1)
. (3)

In other words, this system is described by the CP N−1

nonlinear sigma model when the energy scale is much smaller
than the masses ev and

√
λv of the massive photon and

massive scaler field, respectively. [(ev)−1 and (
√

λv)−1 are
the penetration depth and coherence length, respectively.]

Let us deform the model so that only one of φa can have
a nonzero VEV by introducing a neutral real scalar field �

and mass parameters ma (a = 1, . . . ,N). We then add the
following terms into the original Lagrangian:

L� = − 1

g2
∂μ� ∂μ� −

N∑
a=1

(ma − �)2|φa|2. (4)

The potential in the total Lagrangian L ≡ LA,φ + L� is
minimized when the scalar fields satisfy

N∑
a=1

(ma − �)2|φa|2 = 0,

N∑
a=1

|φa|2 = v2. (5)
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g → ∞

|φ1| |φ2| |φ3| |φ1| |φ2| |φ3|

FIG. 1. Schematic figure of the domain-wall structure of the
system for N = 3 for finite g (left) and the limit of infinite g (right,
thin-wall limit). The regions where finite VEVs (condensations) exist
can be viewed as bulk superconductors and in between where the
domain walls exist as insulators of Josephson junctions.

There are N degenerated ground states labeled by b ∈
{1,2, . . . ,N}, each of which is characterized by the following
VEVs of the scalar fields:

φa =
{
v for a = b,

0 for a �= b,
� = mb. (6)

In the following, we consider domain walls interpolating these
discrete generate vacua (see Fig. 1). It will turn out that
they have the role of insulating junctions in the following
discussions.

To discuss the property of the domain walls, it is convenient
to consider a limit in which the system is described by a
simplified model. Since the mass of the fluctuation of � is
gv, its dynamics is decoupled in the low-energy limit E �
gv. The parameters ma (a = 1, . . . ,N) explicitly break the
SU(N ) symmetry to the Cartan subgroup U(1)N−1 and hence
give masses to the CP N−1 NG modes. Therefore, in the low-
energy regime where E ≈ ma � ev,

√
λv, gv, the system is

described by the CP N−1 nonlinear sigma model with mass
terms. The corresponding action can be obtained by taking the
limit e, g, λ → ∞, and then eliminating the heavy degrees of
freedom Aμ and � by solving their equations of motion:

Aμ = i

2v2
(φ̄a∂μφa − φa∂μφ̄a), � = 1

v2

N∑
a=1

ma|φa|2,

(7)

where the charged scalar fields must satisfy the constraint
|φa|2 = v2. To write down the effective Lagrangian, it is
convenient to introduce the inhomogeneous coordinates of
CP N−1 defined by

(φ1, . . . ,φN−1,φN ) = v√
1 + |ui |2

(u1, . . . ,uN−1,1), (8)

where we have used the U(1) gauge transformation to fix the
overall phase so that arg φN = 0. Then, we can rewrite the
original Lagrangian in the limit e,g,λ → ∞ into the following
form:

L = −v2gij̄ (∂μui∂μūj + 	i	ju
iūj ), (9)

where 	i ≡ mi − mN and the Fubini-Study metric of CP N−1

is given by

gij̄ = ∂2

∂ui∂ūj
ln(1 + |uk|2). (10)

Figure 1 shows a domain-wall configuration for N = 3
before and after taking the limit. The regions with different

condensations are separated by the domain walls, whereas
there is no condensation inside the walls. Thus, the domain
walls can be regarded as the insulating junctions separating
each superconductor in terms of Josephson junctions in
condensed matter physics. The width of the wall can be
estimated as 	m/2g2v2 (for λ ≈ g2) and hence the sigma
model limit corresponds to a thin-wall limit.

B. Domain-wall solutions: Inserting insulators

Next, let us consider domain-wall solutions in the massive
CP N−1 nonlinear sigma model in Eq. (9) [45]. Suppose that
the fields ui depend only on one of the spatial coordinates x.
Then the energy of the system can be rewritten as

E = v2
∫

ddx

[
gij̄ (∂xu

i − 	iu
i)(∂xuj − 	iui)

+ ∂x

(
	i |ui |2

1 + |uk|2
)]

. (11)

Since the total derivative term is a constant for a fixed boundary
condition, the energy is minimized when ui satisfy

∂xu
i = 	iu

i. (12)

The domain-wall solution is given by

ui = exp (	ix + ξi + iθi), (13)

where ξi and θi are arbitrary parameters. Going back to the
original description in terms of φa , we can see that there
are domain walls interpolating the regions with different
condensations (see Fig. 1).

The parameters ξi are related to the domain-wall positions,
which can be read from the energy density of the configuration

E = v2

2
∂2
x ln(1 + |ui |2) = v2

2
∂2
x ln

(
1 +

N−1∑
i=1

e2(	ix+ξi )

)
.

(14)

This is small in the regions where only one of the terms in the
logarithm is large. Therefore, the domain walls are localized
where any two terms in the logarithm are of the same order
of magnitude. Suppose that the masses are ordered as m1 <

m2 < · · · < mN . Then we can determine their positions as [46]

Xi = − ξi − ξi+1

	i − 	i+1
(i = 1, . . . ,N − 1), (15)

where ξN = 0 and 	N = 0.
The parameters θi (i = 1, . . . ,N − 1) are related to the

phases of φa . In the regions where only one of φa is nonzero,
arg φa can be eliminated by gauge transformations. On the ith
domain wall (x = Xi), there is an overlap of φi and φi+1, so
that the relative phase arg φi − arg φi+1 cannot be eliminated.
Since those relative phases are rotated by the U(1)N−1 global
symmetry, θi can be viewed as the NG modes associated with
the U(1)N−1 symmetry broken by the domain walls.

Now let us derive the low-energy effective model describing
the dynamics of the degrees of freedom living on the
domain walls. To write down the effective Lagrangian, it
is convenient to introduce the complex moduli parameters
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ϕi(i = 1, . . . ,N − 1) defined by

ϕi = ξi + iθi . (16)

In the low-energy regime, we can assume that ϕi weakly
depends on time and the coordinates on the domain walls.
Then substituting the solution ui = e	ix+ϕi into the original
Lagrangian (9), we obtain the effective action of the form

Leff = −
N−1∑
i=1

Ti + Gij̄

(
∂ϕi

∂t

∂ϕj

∂t
− ∂ϕi

∂yα

∂ϕj

∂yα

)
, (17)

where yα are the spatial directions perpendicular to x. The
constants Ti = v2(mi+1 − mi) are the tensions (energy per unit
area) of the domain walls and the moduli space metric Gij̄ is
given by

Gij̄ = v2
∫

dx
∂2

∂ϕi∂ϕ̄j
ln

(
1 +

N−1∑
k=1

e2	kx+ϕk+ϕ̄k

)
. (18)

The effective theory in the nonrelativistic case can be found in
Ref. [43] for the CP 1 model.

In the following, we consider modifications to the domain-
wall effective Lagrangian in the presence of Josephson terms
and then study the solitons, assuming that the domain walls
are static and the Josephson terms are weak.

C. Introduction of Josephson interactions

In this subsection, we construct the effective Lagrangian
of the domain walls in the presence of Josephson terms. Let
us consider the following deformation term which breaks the
U(1)N−1 global symmetry:

VJ =
∑
(a,b)

βab φ̄aφb, (19)

where βab is a Hermitian matrix whose diagonal elements are
all equal to zero. This term induces a potential term in the
domain-wall effective action. For small βab, the leading order
effective potential can be obtained by simply substituting the
domain-wall solution Eq. (13) into VJ and integrating over x:

V eff
J =

∑
a<b

γab(ξ ) cos(θa − θb + arg βab),

γab(ξ ) = 2|βab|
∫

dx
e(	a+	b)x+ξa+ξb∑N

a=1 e2(	ax+ξa )
, (20)

where 	N = ξN = θN = 0.
The domain-wall effective action with this potential can

be regarded as multilayered Josephson junctions; when the
expectation values of φi are localized in different domains, they
can be viewed as bulk superconductors, and the domain walls
in between correspond to thin insulators as depicted in Fig. 1.
Since the essence of the model as the multilayered Josephson
junctions is summarized in the N = 3 case, we focus on
concrete calculations in the N = 3 case after reviewing the
case of N = 2.

III. MULTILAYERED JOSEPHSON JUNCTIONS

A. A single Josephson junction of two superconductors and a
Josephson vortex in it: A review

For N = 2 with −m1 = m2 = m/2, the domain-wall solu-
tion in the massive CP 1 model takes the form [47]

u = em(x−X)+iθ , (21)

where X and θ are arbitrary parameters corresponding to the
position and phase of the domain wall. In the case of N = 2,
we can always redefine the phase of φa so that the coupling
constant β in the Josephson term VJ = β φ̄1φ2 + c.c. is real
and positive. For small β, the effective action on the domain
wall is given by the sine-Gordon model [38]

Leff = −mv2 − v2

2m
[m2(∂μX)2 + (∂μθ )2 + 2πβ cos θ ].

(22)

The potential term has the minimum at θ = π (mod 2π ).
As is well known, the sine-Gordon model has kink solutions

which are characterized by a nontrivial winding of θ . The
equation describing static kink solutions can be found by
setting X = constant, assuming that θ depends only on a
spatial coordinate y and rewriting the energy density as

Eeff = mv2

(
1 − πβ

m2

)
+ v2

2m

[(
∂yθ ± 2

√
πβ cos

θ

2

)2

∓ 8
√

πβ ∂y sin
θ

2

]
. (23)

This is minimized when θ satisfies

∂yθ ± 2
√

πβ cos
θ

2
= 0, (24)

and the solution is given by

θ±(y) = 4 arctan exp[±
√

πβ(y − Y )] + π, (25)

where Y is an arbitrary parameter corresponding to the kink
position. The total derivative term in Eq. (23) gives the mass
of the kink:

Mkink = 4
√

πβv2

m

∫
dy ∂y sin

θ

2
= 8

√
πβv2

m
. (26)

This object has a quantized magnetic flux: using Eq. (7), we
find that∫

dxdy Fxy = −
∫

dxdy
m

2 cosh2 m(x − X)
∂yθ

± = ∓2π.

(27)

This is precisely a Josephson vortex, which is a magnetic
vortex trapped inside an insulator [13].

Figure 2 shows a numerical solution of the original model
without taking the sigma model limit. The domain wall is
localized along the line x = 0, on which the kink is localized
at y = 0.

In the case of N = 2, the phase of β can always be absorbed
into a constant shift of θ , i.e., a redefinition of the phases of φa .
As we will see, in the case of N = 3, one of arg βab cannot be
absorbed by shift of θa and the property of the kinks depends
on its value.
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FIG. 2. Energy density profile of a numerical solution for λ =
e = g = v = −m1 = m2 = β = 1.

B. Three-layered Josephson junctions

Next, let us consider the N = 3 case. In the following, we
set

(m1,m2,m3) = (−m,0,m), (28)

for simplicity. By the redefinition φa → eiαaφa , the phases of
βab are shifted as

βab → βabe
i(αa−αb). (29)

This implies that the phase of β12β23β31 does not change, and
hence there is a physical phase parameter which cannot be
eliminated by the redefinition. By appropriately choosing the
phases of φa , we can always set

arg β12 = arg β23 = arg β31 ≡ ϑ. (30)

When ϑ = 0 or ϑ = π , the Hermitian matrix βab becomes a
real symmetric matrix, so that the Josephson term preserves
the charge conjugation symmetry

φa → φ̄a. (31)

In the following, we focus on these two special cases: βab are
all positive (ϑ = 0) or negative (ϑ = π ).

To write down the effective action of the domain walls, it
is convenient to use the phase differences

θ12 ≡ θ1 − θ2, θ23 ≡ θ2. (32)

Note that θa = arg φa and we have set θ3 = 0 in Eq. (8) by
using the gauge transformation. In this setup, the domain-wall
solution is given by

u1 = e−2m(x− X1+X2
2 )+i(θ12+θ23),

(33)
u2 = e−m(x−X2)+iθ23 ,

where X1 and X2 are the positions of two domain walls (see
Fig. 3).

Here we consider the large-tension limit (m2 � β) in which
dynamics of X1 and X2 are negligible [48]. The phase part of
the effective Lagrangian takes the form

Leff = v2

2m
[(∂yθ12)2 + (∂yθ23)2]

+ v2

m
R(X) (∂yθ12 − ∂yθ23)2 + Veff,

R(X) ≡ 1

e2mX − 4

[
1 − mL(X)

]
, (34)

where X and L(X) are given by

X ≡ X2 − X1, L(X) ≡ 1

m

emX

√
e2mX − 4

cosh−1(emX/2).

(35)

The function L(X) can be viewed as the relative distance
between the walls (see Appendix D of [49] for more details).
Since L(X) ≈ X for large X, the parameter X can be viewed
as the asymptotic relative distance as we have seen in the
previous section. For negative X, the function L(X) gives the
precise definition of the relative distance (see Fig. 4).

The effective potential Veff is given by

Veff = F (X)(β12 cos θ12 + β23 cos θ23)

+G(X)β13 cos(θ12 + θ23),

F (X) ≡ π√
1 + 2e−mX

, G(X) ≡ 2me−mXL(X). (36)

Since the potential depends only on mX, we set m = 1 in
the following. By the redefinition of the coupling constants
βab → v2βab, the parameter v2 becomes an overall constant
of the effective action, so that we can set v2 = 1 in the classical
discussion.

(a) −X1 = X2 = 5 (b) −X1 = X2 = 0 (c) −X1 = X2 = −10

φ2φ1 φ3

x

φ2

φ1 φ3

x

φ1 φ3

x

FIG. 3. Domain-wall configurations with m = 1. When X = X2 − X1 > 0, X1 and X2 can be viewed as the positions of the walls. As X

becomes smaller, the walls approach each other and they are almost overlapping around X ≈ 0. For X < 0, the condensation of φ2 starts to
decrease and disappears in the X → −∞ limit.
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�10 �5 5 10 X

2

4

6

8

10

L�X�

FIG. 4. The relative distance L(X) against X.

Figure 5 shows the plot of the functions F (X), G(X),
and R(X). Since G(X) and R(X) are small for large X, the
interaction between θ12 and θ23 (arg φ1 and arg φ3) is negligible
for well separated walls and hence the effective action reduces
to that for two independent walls. On the other hand, the
interaction terms become relevant when two walls approach
each other. Note that, for the limit X → −∞, the effective
Lagrangian is independent of θ12 − θ23 and reduces to that of
a single wall depending only on θ12 + θ23 = arg φ1 − arg φ3.

The structure of minima of Veff depends on the signs of
βab. In the following, we restrict ourselves to the case where
β12 = β23 = β31 ≡ β. Then, there are two cases: β > 0 and
β < 0. We study the potential, the vacuum structure, and the
properties of sine-Gordon solitons in each case.

To find solutions of equations of motion, we numerically
solve the gradient flow equations

∂θ12

∂t
= −δSeff

δθ12
,

∂θ23

∂t
= −δSeff

δθ23
, (37)

where t is a fictitious time and Seff is the effective action
corresponding to Eq. (34). Starting with an initial condition
with a nontrivial topological number, we can find a minimum
of Seff by taking the t → ∞ limit. Although we cannot take the
t → ∞ limit if there is no stable minimum in the topological
sector, quasistable configurations can be obtained by solving
the gradient flow equation for a sufficiently long time interval.

�10 �5 5 10
X

0.5

1.0

1.5

2.0

2.5

3.0

R
F
G

FIG. 5. R(X), F (X), and G(X) against X.

θ12

θ23

X=5

θ12

θ23

X=-5

FIG. 6. The potential Veff for X = 5 and −5 with β12 = β23 =
β31 = −1/10. Note that the points (θ12 + 2πn,θ23 + 2πm) with any
n,m ∈ Z are identified with (θ12,θ23).

IV. INTERACTION BETWEEN JOSEPHSON VORTICES

A. β < 0: The same phases

Here, we study the properties of sine-Gordon solitons in
the effective theory with β12 = β23 = β31 ≡ β < 0.

1. Ground state

In this case, the minimum of Veff is always located at θ12 =
θ23 = 0 (mod 2π ) irrespective of the distance between two
walls. Figure 6 shows effective potentials Veff at X = 5, −
5 and β = −1/10. Although the shapes of the potential are
different, the minima of the potential can be seen at θ12 =
θ23 = 0 (mod 2π ) in both cases.

2. (1,1): The vortex-vortex interaction

Figure 7 shows the sine-Gordon solitons on domain walls
with β12 = β23 = β31 = −1/10 and various values of X. We
call these solitons “(1,1) kinks,” since each phase degree of
freedom has a single winding number. As shown in the figure
with X = 5, the two solitons tend to merge with each other
for large X; i.e., there is an attractive force between them. The
leading order interaction potential for large X can be obtained
by substituting the two sine-Gordon kink configurations,

θ12 = 4 arctan exp[
√

π |β|(y − Y )],

θ23 = 4 arctan exp[
√

π |β|(y + Y )], (38)

into the domain-wall effective action, since this is a solution
of the equation of motion in the large-X limit. The interaction
between θ12 and θ23 gives the leading order term

Vint(Y ) = 2βmXe−mX

∫
dy cos(θ12 + θ23) + O(e−mX).

(39)

Since the phases θ12 and θ23 tend to align with each other, the
interaction potential is minimized when Y = 0 and hence there
is a attractive force for large X (see the left panel of Fig. 8 ).
Ignoring Y -independent terms, we find that

Vint(Y ) = 16mXe−mX

√
|β|
π

[
1 − 2

√
π |β|Y

sinh
(
2
√

π |β|Y )
]

× coth2(
√

π |β|Y ) + O(e−mX). (40)
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β < 0, kink-kink

X=5 X=1 X= X=-5

θ12

θ23

θ12

θ23

θ12

θ23

θ12

θ23

y y y y

y y y
y

θ12

θ23

FIG. 7. (1,1) configurations with β12 = β23 = β31 = −1/10. The distance between two domain walls is denoted in the upper part of the
figure (X = 5,1,0, − 5). The upper panels are the profiles of θ12 and θ23 against y, the middle panels are energy densities, and lower panels
are the contour plot of the effective potential Veff and soliton profiles in θ12-θ23 plane. It is clearly seen that the localized energy density around
y = 0 at X = 5 splits into two peaks and they repel each other at X = 1,0, and −5. Note that only θ12 + θ23 is physical in the small-X limit.

On the other hand, as X becomes smaller, the two kinks
start to depart from each other, as can be seen in the figure
with X = 1,0, and −5 in Fig. 7. Thus, the interaction becomes
repulsive for small X. In the X → −∞ limit, this configuration
is reduced to two sine-Gordon kinks in the single-wall effective
action and their interaction is known to be repulsive. Note
that configurations in Fig. 7 are quasistable, implying that the
distance between the kinks becomes larger as the fictitious
time goes by.

3. (1, − 1): The vortex-antivortex interaction

Figure 9 shows configurations of “(1, − 1) kink.” In this
case, the asymptotic interaction potential between the kink
and antikink takes the form

Vint = 16mXe−mX

√
|β|
π

[
1 + 2

√
π |β|Y

sinh
(
2
√

π |β|Y )
]

× tanh2(
√

π |β|Y ) + O(e−mX). (41)

Veff

Y Y

Veff

FIG. 8. Interaction potentials for (1,1) kink (left) and (1, − 1) kink (right) with m = 1, β = −1/10, X = 5.
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X=5 X=1 X=-5

y y y y

y y y
y

θ12

θ23

β < 0, kink-antikink

θ12

θ23

X=

FIG. 9. (1, − 1) solitons for X = 5,1,0, − 5 with β12 = β23 = β31 = −1/10. The composition of the figure is the same as that in Fig. 7.
Note that the soliton profiles at X = 5,1 are quasistable and there is a weak repulsive force between them.

As can be seen from Fig. 8, the asymptotic interaction for large
X is repulsive for large Y and attractive for small Y . Actually,
for X = 5, we have checked by numerical calculations that
the interaction is repulsive for large Y and attractive for small
Y . The interaction changes its sign around Y = 3.06. These
results are consistent with the expectations from the potential
of Eq. (41).

As two domain walls approach each other, the repulsive
force at large Y changes to an attractive one suddenly at X �
0.144, implying the attraction for all range of Y .

At X = −5, the potential is almost constant along θ12 +
θ23 = constant and there is almost no localized energy. This

means that the kink on a domain wall and antikink on the other
domain wall annihilate each other.

B. β > 0: π phases and frustration

Next, we study the properties of sine-Gordon solitons for
β12 = β23 = β31 ≡ β > 0.

1. Ground state

In this case, the ground state structure changes depend-
ing on the distance of two walls. Figure 10 shows the
effective potential Veff at β = 1/10. For large X, the term

FIG. 10. The effective potential Veff for X = 5, 0.512 (critical value), −1, and −5 with β12 = β23 = β31 = 1/10.
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β > 0, kink-kink

X=5 .512 X=-1 X=-5

y y

y y y θ12

θ23

y

y y

θ23

θ12

X=

FIG. 11. (1,1) solitons for X = 5,0.512 (critical value), − 1, − 5 with β12 = β23 = β31 = 1/10. The upper panels show y dependence of
solitons, the middle panels are the energy densities, and the lower panels are the contour plots of Veff and the soliton profiles in θ12-θ23 plane.
The distance between two domain walls is denoted in the upper part of the figures. Note that X = 0.512 is the critical value Xc, at which the
two vacua emerge.

F (X)(β12 cos θ12 + β23 cos θ23) is dominant in Veff and its
minimum is located at θ12 = θ23 = π (mod 2π ). On the other
hand, as X becomes smaller, the term G(X)β31 cos(θ12 + θ23),
which has minima at θ12 + θ23 = π (mod 2π ), becomes
relevant. The two conditions, θ12 = θ23 = π and θ12 + θ23 =
π , cannot be satisfied simultaneously and hence there is a
frustration for small X.

We can easily see that θ12 = θ23 = π is a stationary point
of Veff :

dVeff

∣∣
θ12=θ23=π

= 0. (42)

At this point, the charge conjugation symmetry φa → φ̄a

is preserved. The Hessian (the determinant of the second
derivatives) of Veff around the stationary point θ12 = θ23 = π

is given by

H = πβ2

1 + 2e−mX
[1 − f (X)], f (X) ≡ 4

π
e−mX

cosh−1 emX

2√
1 − 2e−mX

.

(43)

Here f (X) is a monotonically decreasing function such that
f (X → −∞) = +∞ and f (X → ∞) = 0 and hence there is
a critical value Xc at which H changes its sign. Since H > 0

FIG. 12. The magnetic flux distribution in the x-y plane. The dashed vertical lines show the positions of the domain walls.
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for large X, the point θ12 = θ23 = π is a stable minimum
when two domain walls are well separated. On the other hand,
for X < Xc, the minimum splits into a pair of points which
are exchanged by the charge conjugation. Thus, Xc is the
critical value at which the charge conjugation symmetry is
spontaneously broken. For β12 = β23 = β31, the critical value
is

mXc � 0.512. (44)

2. (1,1): The vortex-vortex interaction

Figure 11 shows the configurations of (1,1) solitons with
X = 5, 0.512, − 1, − 5. At X = 5, the two solitons weakly
repel each other. The asymptotic interaction potential between
them takes the same form as Eq. (40) with the opposite sign.
At X = Xc = 0.512, the minimum of the potential splits into
the pair of vacua and there emerges another kink connecting
them. For small X, solitons connect the two vacua (θ12,θ23) =
(−π/2, − π/2), (π/2,π/2) as shown in the right figures in
Fig. 11. Although it appears that there are three kinks (see
X = −1 case in Fig. 11), two of them have very small energy
since θ12 − θ23 becomes unphysical as X → −∞. Thus, only
one kink is left in the small-X limit.

Distribution of magnetic fluxes in the Josephson junction
gives the important information of Josephson vortices, and is
one of the main subjects of studies of the Josephson effect
[19–24]. For the vortex-vortex interaction in the frustrated

�4 �2 2 4
X

0.8

1.0

1.2

1.4

1.6

1.8

2.0
Tlump�2

FIG. 13. The magnetic flux of solitons corresponding to Fig. 11.

case, a remarkable consequence of the change of vacuum
structure can be seen in the magnetic flux:

1

2π

∫
dxdy Fxy = 1

2π

∮
dxμ i

2
[φ̄a∂μφa − (∂μφ̄a)φa]

= 1

2π
[θ12 + θ23]y=+∞

y=−∞. (45)

Figures 12 and 13 show the magnetic flux distribution
and the total flux of the solitons in Fig. 11, respectively. For
X > Xc = 0.512, there are two units of magnetic flux. On the
other hand, for X < Xc, the flux begins to decrease due to the

β > 0, kink-antikink

X=5 .512 X=-1 X=-5

y y y θ12

θ23

y

yyyy

θ23

θ12

X=

FIG. 14. One-kink/one-antikink solitons for X = 5,0.512 (critical value), − 1, − 5 with β12 = β23 = β31 = 1/10. The composition of the
figure is the same as that in Fig. 7. Note that the solitons are quasistable for X = −5.
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β > 0, two-kinks-two-kinks

X=5 .512 X=-1 X=-5

y y y
θ12

θ23y

y y y y

θ23

θ12

X=

FIG. 15. Two-kinks/Two-kinks solitons for X = 5,0.512 (critical value), − 1, − 5 with β12 = β23 = β31 = 1/10. The composition of the
figure is the same as that in Fig. 7. Note that the solitons are quasistable.

emergence of two vacua: each soliton becomes a “fractional
soliton,” which connects a pair of inequivalent vacua. The
configuration in the small-X limit has one unit of magnetic
flux since the solitons connect (θ12,θ23) = (−π/2, − π/2) and
(π/2,π/2).

3. (1, − 1): The vortex-antivortex interaction

Figure 14 shows the configurations of (1, − 1) solitons. At
X = 5, both the kink and antikink are located around y ≈
0. The asymptotic interaction potential between them takes
the same form as Eq. (41) with the opposite sign. Since the
minimum is located at Y �= 0, the kink and antikink keep
a small distance between them. As X becomes smaller, the
solitons change their form and their masses gradually decrease
due to the change of the potential. Finally, no localized energy
is left at X = −5 since only the relative phase θ12 − θ23 has
kinks and it becomes unphysical in the small-X limit. Note
that flux is always zero in this case.

4. (2,2): The vortex-vortex interaction

Finally, we show the (2,2) solitons in Figs. 15 and 16. We
can see similar behaviors to those in the (1,1) case shown
in Fig. 11. As shown in Fig. 16, the magnetic flux, which
is initially four at X = 5, begins to decrease at X = Xc in
Eq. (44), and then reduces to three in the small-X limit.

V. SUMMARY AND DISCUSSION

We have proposed the CP N−1 model as a model to describe
an N -layered Josephson junction. To illustrate use, we have
studied dynamics of Josephson vortices by studying the sine-
Gordon solitons on multiple domain walls. For N = 3, we have
investigated the two cases in which the charge conjugation
symmetry is preserved. When the coupling constants βab are
all positive, the vacuum structure on the domain walls is
independent of their relative distance, whereas the structure
changes at a critical distance X = Xc when βab are all
negative.

�4 �2 2 4
X

2.8

3.0

3.2

3.4

3.6

3.8

4.0
Tlump�2

FIG. 16. The flux of solitons corresponding to Fig. 15.
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In the former case, the interaction between Josephson
vortices on different domain walls changes with the distance
X between two domain walls. For (1,1) solitons (kink-kink
configuration), the interaction is attractive at large X and
repulsive at small X. In the case of the (1, − 1) solitons (kink-
antikink configuration), the interaction is repulsive at large
Y > 3.06 and attractive at small Y < 3.06 for X > 0.144,
while it becomes attractive for all ranges of Y for X < 0.144.

In the latter case, the properties of the Josephson vortices
change depending on the distance between the domain walls.
There is a critical value X = Xc at which the charge conjuga-
tion symmetry is spontaneously broken on the domain walls.
For X > Xc, the total magnetic flux is constant, whereas for
X < Xc, the flux gradually decreases as X becomes smaller
and hence there emerge fractional sine-Gordon solitons.

Here we comment on the related studies with our frustrated
multiband superconductors. In Ref. [50], the system of two-
band superconductors is discussed and the collective excitation
with respect to the fluctuations of the relative phases of two
condensates is found, which is a kind of Josephson effect.
The excitation, the Leggett mode, is actually observed in
experiments on Mg-B2 [51,52]. Theoretically, the excitation
with fractional flux quanta is discussed in several works
[37,53–57]. In the stream of the studies, the system with
three or more condensations and frustration between them
has recently been given attention. In Ref. [58], the system was
studied in which three superconductor bands are connected
via repulsive pair-scattering terms, where a time-reversal-
symmetry-breaking (TRSB) state emerges. The Ginzburg-
Landau theory is derived from the multiband BCS Hamiltonian
in the general case in Ref. [59]. In Refs. [60,61], Josephson
junctions between chiral and regular superconductors were
considered: the asymmetric critical currents, subharmonic
Shapiro steps, symmetric Fraunhofer patterns [60], and the
fractional flux and its plateau in magnetization curve [61,62]
are studied by using Bogoliubov–de Gennes and the time-
dependent Ginzburg-Landau equation. Also, in Ref. [63], the
phase diagram of the system was investigated in the H -T
plane.

Here we address several discussions. In this system, the
plasma oscillations occur. Due to the change of vacuum struc-
ture, the properties of plasma oscillations, such as dispersion
relations, vary with the positions of domain walls. This is a
peculiar property for the multilayered Josephson junctions.
The analysis will be reported elsewhere.

It is curious as to whether there is a real system described by
the model. The system constructed of three superconductors
and two thin insulators in between may be described by the
model. If the strength of the couplings can be changed and the
distance between the two insulators can be controlled, we can
see the change of the interaction between the solitons, and the
emergence of the fractional sine-Gordon solitons.

We consider another possible experimental setup than
the normal layers, which is pictorially shown in Fig. 17.
Superconductors 1 (sc1), 2 (sc2), and 3 (sc3) are divided
by thin insulators (black lines). The sc2 has the form of an
acute-angled triangle. In this setup, the pairwise coupling of
sc1 and sc3 is dominant in the upper part. On the other hand,
the couplings between sc1 and sc2, and sc2 and sc3, become
dominant in the lower part. There occurs frustration around

SC1

SC2

SC3

Insulator

FIG. 17. A possible experimental setup for our study.

the node of the insulators, and we could see the fractional
vortices on the thin insulators. The distance of sc1 and sc3
is spatially and moderately dependent on the position of the
vertical direction of Fig. 17. We may realize the situation that
we want somewhere in the vertical direction. If we can make
the setup artificially or accidentally in experiment, and make
many vortices on the insulators especially around the node,
we may observe a fractional vortex by manipulating a vortex
using the scanning tunneling microscope and by placing it on
the node.

An appropriate setup might be also realized in Bose-
Einstein condensates (BECs) of ultracold-atomic gases. Mix-
ture of two or more condensates of hyperfine states of a single
atom provide multicomponent BECs. When they are repulsive
a phase separation occurs to form domain walls. We can
introduce Rabi oscillations to provide Josephson couplings.
In this case, in principle, one might consider both unfrustrated
[64] and frustrated [65] cases.

In this paper, we have regarded the domain walls as in-
finitely heavy and analyze the sine-Gordon kinks by fixing the
positions of the domain walls. Without such an assumption, the
domain walls can move giving flexible Josephson junctions.
The analysis of full dynamics of the system, i.e., the time
and space dependence of domain walls and the sine-Gordon
solitons on the walls, should be interesting, as in Ref. [66] for
the two-component case.

The model admits a Y junction of domain walls which
meet at a junction point [67], if we introduce complex masses
m for φa . More generally, the model admits a network of
junctions. The effective action of such a network was obtained
in Ref. [68]. This can be applied to a Y -shaped insulator of
Josephson junctions of three superconductors if we introduce
Josephson interactions. Introducing Josephson interaction to
this case is an interesting problem.

In this paper, we applied magnetic field in parallel with
insulators so that vortices are absorbed along the insulators
to become Josephson vortices. If we apply magnetic field
orthogonal to the insulators, magnetic vortices end up with
the insulators, where two magnetic vortices in neighboring
superconductors are connected by pancake vortices [27]. The
same configurations without the Josephson interaction is a
D-brane soliton [69,70]. In particular, the most general analytic
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solutions in the CP N−1 model (relevant for layered Josephson
junctions) was obtained in Ref. [70]. The effective action
and dynamics of such a system were studied in Ref. [49]
without the Josephson interaction. Introducing the Josephson
interactions in this system should be interesting for the study
of pancake vortices in field theory.

If we consider a quadratic Josephson term |φ̄aφb|2 instead
of the linear Josephson term φ̄aφb considered in this paper,
the system can be made supersymmetric by appropriately
adding fermions as was shown for the CP 1 case [71]. In this
case, the minimum Josephson vortices carry half fluxes, and
the total configurations are 1/4 BPS preserving a quarter of
supersymmetry. The situation should be the same for the case
of the multilayered Josephson junction studied in this paper.

Domain-wall solutions in non-Abelian gauge theory were
constructed in Refs. [46,72]. A non-Abelian generalization
of Josephson junctions was proposed in Refs. [73] in which
a junction of two non-Abelian U(N) (color) superconductors
was discussed. The low-energy effective action of the non-
Abelian domain wall (insulator) can be described by a U(N)
chiral Lagrangian [74] with a pion mass term (non-Abelian
sine-Gordon model) [75], admitting a non-Abelian sine-

Gordon soliton [75,76] which corresponds to a non-Abelian
Josephson vortex [73]. A multilayered non-Abelian Josephson
junction is one of the possible future directions.
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[58] V. Stanev and Z. Tešanović, Three-band superconductivity and
the order parameter that breaks time-reversal symmetry, Phys.
Rev. B 81, 134522 (2010).

[59] N. V. Orlova, A. A. Shanenko, M. V. Milošević, F. M.
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