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We propose a model for the theoretical description of a weak-link Josephson junction, in which the weak
link is spin-polarized due to proximity to a ferromagnetic metal [S-(F|S)-S, where S is a superconductor and F
is a ferromagnetic metal]. Employing Usadel transport theory appropriate for diffusive systems, we show that
the weak link is described within the framework of Andreev circuit theory by an effective self-energy resulting
from the implementation of spin-dependent boundary conditions. This leads to a considerable simplification of
the model, and allows for an efficient numerical treatment. As an application of our model, we show numerical
calculations of important physical observables such as the local density of states, proximity-induced minigaps,
spin-magnetization, and the phase and temperature dependence of Josephson currents of the S-(F|S)-S system.
We discuss multivalued current-phase relationships at low temperatures as well as their crossover to sinusoidal
form at high temperatures. Additionally, we numerically treat (S-F-S) systems that exhibit a magnetic domain
wall in the F region and calculate the temperature-dependence of the critical currents.
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I. INTRODUCTION

The study of superconductivity in proximity with ferro-
magnetic materials has opened the path towards creation
and control of spin-polarized Cooper pairs and supercon-
ducting spin currents [1-10]. Recent developments show
that also energy currents can be managed by using spin-
polarized Cooper pairs [11-15]. A considerable amount
of work has concentrated on spin-polarized supercurrents
across ferromagnetic metals or insulators. Hybrid structures
in which superconductors are connected by a weak link of a
normal-metal/ferromagnet bilayer or a ferromagnet/normal-
metal/ferromagnet trilayer forming a bridge between the
superconducting banks have been studied to a lesser extend.
Theoretical proposals for such structures [16] have been
followed by experimental work on hybrid planar Al-(Cu|Fe)-
Al submicron bridges [17], and by further theoretical investi-
gations to optimize practical performance [18].

In the present work, we study the case of a weak link
consisting of a superconductor/ferromagnetic-metal bilayer,
where the superconducting material is the same as in the leads,
and where superconductivity is suppressed due to proximity
coupling to the ferromagnetic metal, e.g., as in an Al-(Al|Ni)-
Al structure [19]. A schematic illustration of the system is
depicted in Fig. 1; an experimental realisation can for example
feature Josephson junctions where a small ferromagnetic
island is placed directly on top of a superconductor [20,21] or
where a thin superconducting strip runs across a ferromagnetic
disk that can feature nontrivial magnetic textures [22]. In our
modeling, the structure consists in total of two blocks; the
superconductor and the ferromagnet, which are connected
by an interface over a length d; (dashed line in Fig. 1),
building the weak link. A superconductor in proximity
with a ferromagnet exhibits spin-polarized Cooper pairs,
which can be considered as a mixture between spin-singlet
and spin-triplet pairs. This in turn implies a spin-polarized
excitation spectrum, resulting in a spin-magnetization of the
superconductor in the region where it is proximity-coupled to
the ferromagnet [23-25] (see dashed-dotted line in Fig. 1). The
singlet superconducting order parameter is shown in Fig. 1 as
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full line, exhibiting the suppression in the proximity-coupled
region.

We employ a Green function technique for metals, itinerant
ferromagnets, and superconductors in the diffusive limit.
Within this theory, Green functions are described by transport
equations of the kind derived by Usadel [26], generalized
to spin-dependent phenomena within a Riccati representa-
tion [2,27,28]. The considered structure makes it necessary to
self-consistently calculate the pair potential with the spectrum
of excitations (as encoded by the Green functions). Due to
the presence of the ferromagnet, we supplement the trans-
port equations for the Green functions with spin-dependent
boundary conditions [29]. We propose a model in which
spin-dependent interface scattering phase shifts [24,30] lead
to a spin-polarization of Cooper pairs in the superconducting
regions of the weak link. Assuming the thickness of the
superconductor within the weak link much smaller than the
superconducting coherence length, we are able to cast the
boundary conditions in the form of an effective self-energy,
which enters a one-dimensional transport equation in direction
of the weak link. Our numerical study complements analytical
investigations that treat S/F interfaces in a Ginzburg-Landau
framework, see, e.g., Refs. [31] and [32].

In Sec. II, we present the theoretical framework to describe
our model. We supplement the Usadel equation by a self-
energy-like contribution that is derived in the framework of
an Andreev circuit theory to account for the spin-dependent
boundary conditions.

In Sec. III, we calculate characteristic observables such as
the local density of states, the spin magnetization of the sys-
tem, the superconducting order parameter, the characteristic
current-phase relationship, and the temperature-dependence of
the critical Josephson current. All calculations are performed
self-consistently. In Sec. IV, we explicitly show that our model
fulfills the requirement of charge conservation. In Sec. V, we
numerically investigate an S-F-S heterostructure that exhibits
a magnetic domain wall. We extend previous work [27] by a
self-consistent calculation of the pair-potential, and calculate
the local density of states, current-phase relations, and the
temperature-dependent critical current.

©2016 American Physical Society
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II. THEORETICAL DESCRIPTION

We employ for our theoretical treatment Usadel theory of
diffusive superconductors, [26,33] adapted for spin-polarized
systems (see, e.g., Ref. [9]). Usadel theory can be derived
from the theory of Eilenberger [34] and of Larkin and Ovchin-
nikov [35] in the diffusive limit. The equilibrium physics is
captured by the retarded Green function (or propagator) Gt =
(@(R,e), where R denotes the spatial coordinate, R = (x,y,z),
and € the energy. Current transport will be considered in x
direction, whereas z denotes the direction perpendicular to the
superconducting films. The propagator G(R,€) has a total of
16 complex-valued components and is build up of four 2 x 2
block spin matrices, two of which are related to the other two
by particle-hole conjugation symmetry. This matrix structure
arises from the internal degrees of freedom: the spin degree
of freedom and the particle-hole degree of freedom. The hat
accent denotes the 2 x 2 block matrix structure in particle-hole
(Nambu-Gor’kov) space:

A 6 F
Gy

where &, §, &, and § are 2 x 2 spin matrices, i.e., §op has
spin indices «,8 = {1,]}, etc. The off-diagonal elements §
and § quantify the superconducting pair correlations. The
propagator can be analytically continued from the real energy
axis into the upper complex half plane, ¢ — & with Im(e) > 0.
The symmetry relation (particle-hole conjugation) between the
block spin matrices is given by the “tilde” operation:

AR, &) = AR, —e*)*, 2)

where (*) denotes complex conjugation.

In addition to the discreet internal degrees of freedom,
there are continuous external degrees of freedom, which are
described by the energy € and the spatial coordinate R. The
diffusive motion is described by a quantum kinetic transport
equation, in our case the Usadel equation [26], which for
the propagator within the superconductor, G, (R, ¢), takes the
form

A A D_ . A A
[ef3 — A, Gse(R, O] + = V(G5 (R,€)VGse(R,€)) = 0,
T

3

where [A,B] = AB — BA, the 4 x 4 matrix %5 is the direct
product between the third Pauli matrix in particle-hole space
and the spin unit matrix, Ois the 4 x 4 zero matrix, V = 9/9dR,
and D is the diffusion constant. This transport equation is
supplemented by the normalization condition

Gsc(R,€)* = —n?1, )

where 1 = 144 1s the 4 x 4 unit matrix.

For the system depicted in Fig. 1, we make a simplifying
ansatz that allows us to transform the Usadel equation into a
quasi-one dimensional differential equation, supplemented by
a self-energy-like contribution that accounts for the influence
of the ferromagnet on the superconductor. This ansatz is
motivated by assuming that the superconductor of thickness d
does not extend significantly in the z direction, meaning that
the spatial variations of the superconducting order parameter
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ds df ds

FIG. 1. Model of an S-(S | F)-S junction. The dashed line between
the superconductor (SC) and the ferromagnet (F) indicates a spin-
active interface. The structure is of length 2d, + d;, where d; is the
length of the superconducting banks on either side of the ferromagnet,
and dy is the length of the superconductor/ferromagnet proximity
block. The pair potential Ae’® (blue, solid) and the spin magnetization
m (green, dot-dashed) are shown schematically as a function of
spatial coordinate x. A supercurrent / is driven by a spatially varying
superconducting phase ®(x).

in the z direction are small. This is justified for example for
a superconducting strip whose lateral dimensions are much
bigger than its vertical extension. Our perturbative ansatz for
the Green function of the system depicted in Fig. 1 is thus

Gose(x,2,6) = Go(x,€) + Gy (x,€)(z — d)? )
with the normalization condition
Gse(x,2,6)* = (Go(x,€) + Gi(x,€)(z — d)*)

=721 Y(x,z,€). (6)

Up to linear order in (z — d) this means

Go(x,e)? = —721  V(x,e). (7

The surfaces at z =d border to an insulating (I) region.
The boundary conditions at the S// interface must satisfy
Nazarov’s boundary conditions [38] 8ZGSC(x,z =d,e)=0.
A linear contribution of the form (z —d) in Eq. (5) does
not satisfy this condition and therefore the ansatz for the
spatial variation in the z direction contains only a quadratic
contribution, proportional to (z — d)?.
To leading order in (z — d) the Usadel equation reads

A~ A D N ~
[ets — A, Go(x,€)] + ;3):[@0()6,6)3);@0()6,6)]
D . N A
+2_GO(X16)G1(~X!6) =0. (8)
e

The contribution Gl (x,€) will be determined from the bound-
ary conditions of the problem and will thus depend on the
structure of the ferromagnet. A detailed derivation of this
expression can be seen further below, in Eq. (42). Here we
note that we will show that the Usadel equation (8) can be cast
into the form

[et; — A — $(x,€),Go(x,6)]

D_ . A A
+ ;Bx[Go(x,é)axGo(x,G)] =0, ©))
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where ¥(x,€) formally appears like a self-energy contribution
to the system and captures the influence of the ferromagnet. It
is defined in Eq. (43) below.

A. Riccati parameterization

The Green functions can be described in the framework
of the spin-dependent Riccati parametrization [36]. This
parametrization allows to retain the full spin structure of the
Green function while automatically ensuring the normalization
condition. The power of this parametrization for diffusive
systems was exemplified, for example, by calculating the ef-
fects of the superconducting proximity effect through magnetic
domain walls [27]. Within this framework the retarded Green
function Go(x,€) is parameterized by

A (U +yP) 2y )
Gog=—in N . . , 10
0 < -2y = +7y) (1
where / is the spin unit matrix, and where
| 11—yt 0
A= (( 42) 0 1) (11
0 =7y

automatically ensures the normalization condition (7). The
coherence functions y and y are spin matrices, y,g witha, 8 =
{1.}}, where each element depends on the energy € and the
spatial coordinate x.

We now write the transport equations Eq. (9) in the
Riccati parametrization. The 4 x 4 matrix 3(x,e) is only
nonzero in the range where the proximity effect between the
superconductor and the ferromagnet is in action and can be
written in 2 x 2 block structure

Sro=(x 2 (12)
Xx,€) = & 4
With this definition, the Usadel equations for the coherence
functions y and y are written as [2,27]

dz)/ dy § dy . i .
T2t (5)5(5) = B[V(A +B)y — (el — Ay
—yel +A)— A —B], (13)

iy (dp\ § (dP\ _ i _ <
— + (d—x) — (d—x> = S IP(A+B)p + (el + W7

+7(el —A) — A* —B] (14)

N ] 0 A O; O A o 0 A
3 = 0 1) 0; = 0 U[* P —\A* 0)
(15)

where o; are the Pauli spin matrices with i = x,y,z. The
(temperature-dependent) spin-singlet superconducting order
parameter is given by

A(x) = AW)ioy = Ag(x)e' W ia, (16)

where Ag(x) is the modulus of the order parameter, and ®(x)
denotes a spatially dependent, real phase. The order parameter
A(x) = Aog(x)e!®™ must be determined self-consistently as
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FIG. 2. Tllustration of an Andreev circuit to calculate the Green
function G¢ of the central node C. It consists of a central node C
that is connected to a ferromagnetic terminal by a connector that is
characterized by a set of conductance parameters G, P, and G, (see
text). The leakage terminal is characterized by a Thouless energy ery,.
The arrows between the blocks indicate the flow of matrix currents
that obey a Kirchhoff rule, see Eq. (17).

described further below, to ensure current conservation across
the weak link. The Usadel equation must be supplemented by
appropriate boundary conditions. This will be addressed in the
next section.

B. Andreev circuit theory

We wish to employ spin-dependent boundary conditions
to couple the ferromagnet to the superconductor. A crucial
quantity at a boundary between a strongly spin-polarized
ferromagnet and a superconductor is the spin-mixing param-
eter [24], or spin-mixing conductance Gy [11,29,30,37]. This
parameter is the crucial quantity leading to spin polarization of
Cooper pairs as well as to a spin-split local density of states at
the contact and results from spin-dependent scattering phase
shifts during reflection and transmission at a superconductor-
ferromagnet interface [24,30,37].

In order to implement boundary conditions, we utilize a
discretized (Andreev) quantum circuit theory [38,39] where
the system consists of terminals, nodes, and connectors, as
depicted in Figs. 2 and 3. Within the proximity region, at
each spatial point x the superconductor is tunnel-coupled to a
central node C. This coupling is characterized by a boundary

FIG. 3. The Green function G¢ of the central node has to be
calculated for every point x at the interface and for all energies.
The red blocks labeled C and F refer to the central node C and the
ferromagnet blocks discussed in Fig. 2.
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conductance Gg. The node itself is in contact to a ferromagnetic
metal via a spin-dependent coupling that is characterized by
its polarization P, its boundary conductance value G, and the
spin-mixing parameter G.

The loss of superconducting correlations is accounted for
by a leakage current that contains the Thouless energy ety
of the leakage terminal. The central node C is responsible
to model the behavior of the superconducting correlations in
the structure under the effect of leakages and spin-polarized
boundaries of the ferromagnet. As has been shown by
Nazarov [38], the following generalized Kirchhoff rule for
the so-called matrix current holds (see Fig. 2):

Isc+ 1 c+ e+ e =0, a7

where IAS,C is the matrix current from the superconductor to
the node C. The matrix currents from the ferromagnet into
the central node C are denoted by I, ¢ and I} ¢, whereas
Iicax is the matrix current from the leakage terminal going
into the central node. Equation (17) has to be applied at each
interface point (x,z) with z = 0 at the interface between the
superconductor and the ferromagnet (see Fig. 3).
The leakage current is given by

[eax(x,€) = %[(Gmak(e),@cu,e)], (18)

where Gpex(€) = —mets is an energy-dependent quantity
to account for a leakage of coherence. In the case of a
time-independent equilibrium scenario, which we consider, all
information about the leakage terminal is given by its Thouless
energy, €.

The matrix current between the terminals j and the central
node C in linear order in 7, (see below) can be written in the
form of the following commutator [11,13]:

lic= %[gO,j -G +Gp, - {#;,G)
+Gi,-k;Gijkj — Gy ;- £;,Gel,  (19)

where j € {1,],S} labels the terminal. The boundary condi-
tions are specified by the set of conductance parameters [11,13]

#Channels
Go=G, Y, T(l+/1-P2), (20)
#Channels
Gi=G, Y T(1—/1-P2), @1
! #Channels
Gr =G, Y, T.Pu (22)
#Cgannels
Go=2G, ) 8% (23)

Here, the spin-mixing parameter is described by §®,, the
spin polarization of the ferromagnet by P,, the spin-averaged
transmission probability for channel n is given by 7, and
G, = ‘;l—z is the quantum conductance.

For a strongly spin-polarized ferromagnet the transmission
and reflection channels at the interface are completely spin-
polarized (P, =1 and —1 for spin up and spin down,
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respectively), such that we obtain

#1 #|
1
Go=G1 =0, (an +y ) =G +6), 4
o 0 |
Gr =G, (ZTn - Zz) =3G1-9). @)

#1 #]
Gy =26, (Z 5P, — ZSd)n) =Gy —Gpyn  (26)

where #1 is the number of spin-up channels and #, the number
of spin-down channels.

We obtain the matrix current between the superconductor
and the central node C by setting G, s =Gp s =Gg5s =0
and defining Gy s = G for the superconductor. The expression
for the ferromagnetic contacts is simplified by [G jkj1=0;
thus, one can combine gmw) = QM(@ =+ QLM). Furthermore,
we simplify the notation by setting f; ¢ = I;. The various
matrix currents are then determined by the following boundary
conditions [9,11]:

~

Pyee) = 1[Gy Gh + Gpo - {f0nGr )

— G - RaGel(x,6)], 27)
Is(x.€) = 1Gs - [Go(x,€).Gc(x, )], (28)
where @ € {1,]}, and
Ry =—-R =R =, ®m-o0), (29)
Gy =G| = —inty=G". (30)

Here, @F is the solution to the Usadel equation (3) for a
nonsuperconducting material (A = 0). The direction of the
magnetization of the ferromagnet is described by the spin
matrix £, where m is the unit vector of magnetization of the
interface and o is the vector of spin Pauli matrices. ¥ is the unit
matrix in 2 x 2 Nambu-Gor’kov space. The Green function
Gg(x,e) is the Green function defined in Eq. (10) that solves
Egs. (13) and (14).
More compactly, we can write

fp(x,e) = 11 + IA¢
= GG  +Gp{#, 6"} — nGyk,Ge(x,0), (31

and the boundary of the ferromagnet to the superconductor is
characterized by the three parameters P, G, and Gy, see Fig. 2,

G=G,+G,. (32)

Gp=Gpr+Gp, = %(gT -G, = %gp, (33)
gr—G,

= NI 34

P 3,13, (34)

Gs =Gpr — Gp.y- (35)

Here, Gp and G refer to conductances given in terms of
spin-dependent boundary conductances G, ;. A spin-polarized
boundary necessarily leads to spin-dependent scattering
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N/N,

0.0
2

E/A

FIG. 4. Density of states (DOS) N(E) of the contact Green function @c in the central node C (see Fig. 2). N is the density of states in the
normal state at the Fermi energy. (Left) Dependence on G4 and on E /A, calculated for a homogeneous superconductor for A® = 0. (Right)
N /Ny at x = 6£ in the middle of the weak-link S-(S|F)-S structure for A® = 0.267. In addition, the spin-resolved DOS is shown, to illustrate

the spin splitting due to a nonzero G4. Parameters are as in Table I.

phases that are accounted for by a parameter G4, which is the
most relevant parameter to modify the superconducting corre-
lations. This modification appears in the pair amplitudes (F,§)
of the structure. This can be thought of as the ferromagnet
imprinting its magnetic correlations to the proximity coupled
superconductor in its immediate vicinity, which influences the
transport properties of the structure.

C. Determination of the Green function @c of the central node

The Green function G is calculated within Andreev circuit
theory and is used to evaluate the ferromagnetic influence on
the transport properties of the system through the supercon-
ductor via a self-energy contribution to the Usadel equation.
From the Kirchhoff rule, Eq. (17), the contact Green Function
Ge in the central node C is determined by solution of the
equation

[M(x,€),Ge(x,0)] =0, (36)
where M(x,e€) is given by
X A 1 A A
M6 = 22 G+ 26 6F + 1G5 - (.67
46Th 2
b4 o1 A
- qus -k + Egs - Go(x,e€). (37)

Equation (36) is supplemented by the normalization condition

A2 2
Gy =—-m

1, (38)
which means that (a) the matrix G¢ is diagonalizable and
(b) the only eigenvalues of Ge are +ir. Equation (36) then
ensures that if M is diagonalizable (which in our case holds
true), then M and G¢ can be diagonalized simultaneously
and have a common set of eigenvectors. Additionally, we
demand that the eigenvalues of the contact Green function be
continuously connected to those of the normal state [13,38].
With these constraints the Green function G is written as

Gelx,e) = inU;,lsgn[Im(DM)]UM 39)
with DM: Uy containing the eigenvalues and eigenvectors of
matrix M, respectively, and sgn denoting the sign function
applied to the imaginary part of each eigenvalue.

One can now calculate measurable quantities such as the
density of states, which depends on the set of parameters
G,P,Gs. The parameter G, has a similar effect on the density
of states as a ferromagnetic exchange field. A nonzero value
of Gy spin splits the density of states in the central node C,
see Fig. 4. On the left in this figure, we plot as an example the
density of states inside the central node C by taking the analytic
value for a homogeneous superconductor G(e) (independent
of spatial coordinate x). This result agrees with the one shown
in Ref. [11]. On the right-hand side in Fig. 4, we show a typical
example for the density of states inside the central node C at
coordinate x = 6 for the S-(F|S)-S system we consider, for
parameters shown in Table I.

D. Implementation of boundary conditions

In z direction, we have two interfaces, an S/F boundary
at z =0 and an S/I boundary at z = d (see Fig. 1), where
the Green function is subjected to boundary conditions. We
use Nazarov’s boundary condition for spin-active [11,30] and
spin-inactive interfaces [38,39] to define the matrix current I s
in the superconductor in the vicinity of the S/F and the S/I
interface:

A A d .
Is = F—Gs(x,2,6)—Gs(x,z,€) : (40)
Ps dz

z=0,(d)

where A is the contact area of the boundary and the parameter
ps denotes the resistivity of the S material and the minus (plus)
signrefers to z = 0(d). Atthe S/I boundary, the matrix current
Is has to vanish, which in linear order is automatically ensured
by the chosen parametrization,

Is = Go(x,6)2G 1 (x,6)(z — d)|_, = 0.

TABLE 1. If not explicitly stated otherwise, we calculate all
observables of our system for these parameters.

g psD/Ad Gy P
0.1 Gs 0.25 Gs

€rn/YGy d dy
051 Ag/Gs 508 20¢

0757 0.9
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At the S/F boundary at z = 0, the matrix current in linear
orderin (z — d) is

A

A . ~
IS — _IO_GO()C’Z,E)ZGI(-X’E)(Z - d)|z=0
S .

Ad_ A A
= —2Go(x,€)Gi(x,€). (4D
Ps
Matrix current conservation [38,39] requires this expression
to be equal to the one in Eq. (28), which leads to

Gsps
4Ad

Since the contact Green function G¢(x,€) is known from the
Kirchhoff rule (36) and Go(x,e) is known from the solution of
the Usadel equation, this equation determines the perturbation
that is defined in Eqgs. (9) and (8), as

Go(x,6)Gy(x,€) = — [Ge(x,€),Go(x,€)].

(42)

S(x,€) = %%QS - Ge(x,e).
We summarize the iterative procedure to self-consistently
calculate the pair potential A and the Green function G
below. (1) Numerically solve the Usadel equation (9) to
obtain @O(x,e) V(x,€). (2) Application of the Kirchhoff
rules ), I; =0 leads to the Green function (@C(x,e). 3)
Application of spin-conserving and spin-dependent boundary
conditions shows that the Green function GC determines a
self-energy contribution to the Usadel equation written as
$(x,€). (4) Solve the Usadel equation with the new self-energy
contribution 3 (x,€). (5) Calculate the order-parameter A(x) =
Ao(x)e®™ o, by solving the mean-field self-consistency
equation (48). (6) Repeat the iteration procedure until the order
parameter satisfies a convergence criterion.

Note that in the iteration cycle the self-energy 3 (x,€) as
well as the order parameter A(x,T’) vary simultaneously. The
self-consistent iteration cycle is repeated until both of them
have converged.

(43)

III. OBSERVABLES

If not explicitly stated otherwise, we calculate all observ-
ables of our system for the parameters that are given in Table I.
We apply a finite phase difference A® = &(x = L) — O(x =
0) to the outer superconducting electrodes, which gives rise to

1.01
0.8}
g 0.6 \ 3 ! I”’l 764
3 —T=010 T Moo/ T
0.4+¢ “\ /'.' g
—-T=030Te o, 3
0.2 -~ T=0.58 T¢, 4070204 06 08 10
---T=0.70 T, T /T
‘ e SoxfE

0.0 : : :
0 2 4 6 8 10 12

#
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a Josephson current through the weak link. Formally, this is
introduced by the substitution:

A(x,T) — Ag(x,T)e'®™, d(x) e R, (44)
AD

®(x = left border) = — 45)
. AD

®(x = right border) = - (46)

A. Pair potential and phase evolution

The pair potential A(x,T) is calculated by solving a
self-consistency equation. Here, we are concerned with the
following 4 x 4 matrix structure arising from particle-hole
and spin degrees of freedom:

AGeT) = 0 Ax,T) @7
U=\ 0 )
where A(x,T) = Ax,T)ioy.
The self-consistency equation reads
s [ detanh(e/2T)§(x,€,T)
A(x,T) = lim - (48)

oo [ 4 tanh(e/2T) + In(T/T.) |

The equation is numerically evaluated with a sufficiently
large, temperature-independent, energy cut-off €.. Apart from
the usual suppression of superconductivity with increasing
temperature, the pair potential is strongly suppressed in the
region of the ferromagnet, see on the left hand side of Fig. 5.
When applying a fixed phase difference AP to the outer
superconducting electrodes, the spatial evolution of the phase
is determined by the self-consistency equation Eq. (48). The
self-consistent evolution of the phase across the system is
shown on the right-hand side of Fig. 5. In the numerical
iteration process, we fix the phase difference as well as
the absolute value of the pair potential at the left- and the
right-hand sides of our structure. The latter is given by
the well-known temperature-dependence of a homogeneous
BCS-type superconductor (see inset, Fig. 5)

1. N
0.75 — A®=0.147 o
0.57 ==A0=044r | "7 o oo

0251 - A@=0.74r Slo——-mmm-
0

~0.257-7TIT0IT -

- = AP=0.987
~0.55 s ‘

______ o Ad=1.287
-0.75 ~ 2/t

-1.

~_ - -

P[]

0 2 4 6 8 10 12

FIG. 5. (Left) Self-consistently calculated pair potential with Eq. (48) for various temperatures with small external phase difference
A® = 0.26r. Each plot has been normalized to the homogeneous value Ay(7) such that all curves are normalized. The pair potential is
suppressed in the ferromagnetic region that is located at x € (5,7)&. (Inset) Temperature dependence of the pair potential for a homogeneous
BCS-superconductor. (Right) Phase evolution across the system for different applied phase differences at a temperature of T = 0.587¢.
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FIG. 6. Density of states as a function of energy E and spatial
coordinate x. The (S|F) weak link extends from x = 5¢ to 7¢. The
DOS is calculated for A® = 0.26r,at T = 0.17¢.

B. (Local) Density of states

The local density of states for the system is given by

N(x,e) = —iv—;lm{Trz[Qj(x,e)]}. (49)
In Fig. 6, the spatial variation of the local density of states is
shown. It can be seen that the DOS retains its characteristic
structure far from the (S|F) weak link. In the (S|F) weak-
link region, additional subgap Andreev bound states appear.
These are present also in the superconducting electrodes within
a coherence length from the weak-link region, in particular
below the gap edges of the bulk density of states.

The local density of states at x = 6§ (the middle of
the structure) is shown in Fig. 7. In the middle of the
investigated structure, the local density of states for the system
shows a proximity induced narrowing in its spectrum that is
reminiscent of proximity induced minigaps in S-N-S systems.
This narrowing is induced by a spin-split DOS as can be seen
in Fig. 7. The presence of the ferromagnet, which is encoded
in a nonvanishing spin-mixing parameter G, shifts spin-up and
spin-down contributions to the density of states energetically
apart. An additionally applied phase difference to the outer
superconducting electrodes leads to a gradual reduction of
the gap size. This is due to additional subgap Andreev bound
states [41], which are shifted in the presence of a superflow,

1.5¢
o 10 ''''''''''
=
Z,
0.5
- = T=0.16 T 1
T T=058 T N — T=0.16 T¢ !
0.00 - TR
-2 -1 0 1 2

E/A
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see Fig. 7 right. A zero-bias peak appears for sufficiently large
phase differences.

C. Spin magnetization

We make use of the usual notation to express the normal
and anomalous pair amplitudes & and 3§, respectively,

6 =Gol+G- o, (50)

3= (Fol +F -0)io,. (51)

A general feature of SF-proximity influenced systems is that
the presence of nonzero triplet amplitudes F entails the
presence of a nonzero G [40]. This means that through a
nonzero G, the spin-up and spin-down contributions to the
local density of state are not degenerate any more. Thus, due
to proximity to the ferromagnet, the superconductor develops a
spin magnetization in the vicinity of the S|F interface [23-25].
The induced spin magnetization m(x) can be calculated in the
following way [9]:

* de ) €+1i6
m(x) = 2NOT/ 4— |:G(X,€ + l(S) tanh( T )

—oo Ami

—(G(x,e +i8)) tanh (%)}

(52)

where Nj is the density of states at the Fermi energy.

A plot of m,(x) can be seen in Fig. 8. A nonzero spin
magnetization is induced in the superconducting material that
sits on top of the ferromagnetic material, i.e., at x € (5,7)&.
Due to the inverse proximity effect, a nonzero magnetization
can penetrate into the adjacent superconducting blocks as it is
indicated in Fig. 8. The calculations show that the ferromagnet
imprints its magnetic structure onto the superconductor.

D. Weak-link current-phase relationships

A finite phase difference A® # 0 gives rise to a Joseph-
son current through the system. The Josephson currents
themselves are spatially conserved, d,J(x) = 0, only if the
system fulfills the self-consistency equations for the pair
potential, see Eq. (48). The current conservation in the

1.5F T=0.58 Tg
- 10
=
= — AP=0.14 7
0.5 —A®=0.50 7 =t AP=1.04 7
- = A®=0.80 7
0.0~ ' ' ‘ '
-1.0  -05 0.0 0.5 1.0

E/A

FIG. 7. (Left) Local density of states at x = 6¢ in the middle of the weak-link S-(S|F)-S structure. The LDOS is spin split into a spin-up
and a spin-down contributions due to a nonzero G, component. The lines corresponding to temperatures T¢ 4, refer to the local spin density of
states Ny /Ny, N, /Ny, respectively, with the total density of states defined as N = N; + N, and N, as the density of states at the Fermi energy
in the normal state. (Right) Variation of the density of states at x = 6§ in the middle of the weak-link S-(S|F)-S structure with an applied phase

difference A®.
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FIG. 8. Induced spin magnetization by a nonzero G component.
It can be seen that the system obtains a finite spin magnetization
that is restricted to the contact region of the ferromagnet and
the superconductor. Due to the inverse proximity effect and the
penetration of the triplet amplitudes in the superconducting region,
there is a finite magnetization for x > 7& and for x < 5£. The applied
phase difference is AP = 0.267.

presence of the self-energy correction to the Usadel equation
can be shown analytically (see Sec. IV). The total current
through the superconducting leads is denoted as J(x) and is
evaluated as

400
J:_eNO/ d_eg%(A3Re[GoaxGo])tanh% (53)

oo 2WM T
oN +0o0 o B .
=5 deTr[Re({I —yP) oy —Vy) . 7}+
€ J_co
_ - - €
—{U =y 'ard —yP) l,y}+)]tanhﬁ, (54)

where oy = ¢?NyD is the conductivity in a normal metal with
diffusion coefficient D and the density of states at the Fermi
level Ny. Here, {A,B}+ = AB + BA, and in the last line, we
have written the current in terms of the Riccati amplitudes.

The critical current is the maximum current that is realized
in the system as function of phase differences A,

J(T) = maxpo[J(AD,T)]. (55)
14fe — dF1¢
1.2} smm- dE2%
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FIG. 9. Crossover from a multivalued to a sinusoidal current as
the temperature is increased. As indicated by the arrows, the graphs
from the upper half are calculated for an increasing phase difference,
the graphs from the lower half for a decreasing phase difference. The
dotted lines are schematic and indicate the most likely continuation
of the current-phase relationship, as the current-phase relationship
becomes unstable shortly after the maximum is reached as multiple
solutions for the current become possible. We show here only the
stable, converged solutions.

The phase dependence for the weak-link structure (S-(F|S)-S)
in general strongly deviates from a sinusoidal relation at
low temperatures. In particular, it can become multivalued
in certain ranges of the phase difference A® [3]. If the
current-phase relation is single-valued, then for symmetry
reasons J(A® = ) = 0. In the case of a multivalued current-
phase relation, it is however possible that the current reaches
its maximum value for phases A® > m, before the current
jumps to its negative branch at a critical value of A®. When
the Josephson currents are multivalued, all other observables
(spectrum of the Andreev bound states, the order parameter)
are multivalued as well. This means that differentiating
energies of Andreev bound states with respect to phase
differences to obtain their contributions to the Josephson
current still is well defined. Typical current-phase relationships
are depicted in Fig. 9. At low temperatures, shortly after the

2.0f
d=1&

7'15' _____ —
= d=2¢
~
SLOE TN T - A3
g

0.5}

0.0 ‘ SiEema .

00 02 04 06 08 1.0

T/Tc

FIG. 10. (Left) Dots represent the superconducting phase difference at which the maximal (critical) current occurs as function of temperature.
At high temperatures the critical current appears at a value of 7 /2 (approximately sinusoidal current-phase relationship), whereas for low
temperatures the current-phase relationship is nonsinusoidal. The shaded area indicates the range where the critical current is achieved for
A® > . The error bars indicate the numerical uncertainty in determining the extrema in the current-phase relationship. (Right) Critical current
for different system sizes. The current is determined by the maximum of the current-phase relationship (55). In both plots, lines are guides to

the eye.
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current reaches its maximum value, the system can occupy two
different Josephson states that only slightly differ in energy.
For the numerical calculation it means that the system can
oscillate between the two solutions which makes it numerically
difficult to converge to a solution. Stable, converged solutions
are therefore shown as symbols, whereas dotted lines show
the most likely continuation for the unstable branches. For
increasing temperature, the current-phase relation approaches
a sinusoidal form. The maximum of the current is shifted
to lower values of A® as the temperature is increased until
they reach a value of A® = 0.57. We track numerically the
temperature dependence of the phase y (J;) where the critical
current is reached, and depict the result in Fig. 10 (left), where
it can be seen that for all three lengths of the ferromagnet,
critical currents are reached for phase differences A® > r at
low temperatures. A temperature dependence of the critical
currents for different lengths of the ferromagnetic block is
shown in Fig. 10 (right). As expected, we observe that shorter
weak links generally increase the critical currents.

IV. CURRENT CONSERVATION

The Usadel equation entails a spatial conservation law
for the Josephson currents. Here, we review that the current
is spatially conserved in the presence of the effective self-
energy contribution ¥(x,€). For this we introduce Keldysh
matrices

AR AK K K

3 G ¢ R &

Go=[2 ) Gy={ « %K, (56)
o G -5 -8

where R, A, and K refer to retarded, advanced, and Keldysh
components, respectively. Similarly, we have

x _ (A 0\ «_ (=R %K
A:(O A)’ 2:(0 2/4)- (57)

We also define ¥3 = 1,4, ® 3. The Usadel equation reads
v N D M o v
[ets — A — X,Gol + —03:[Gpd:Gol =0, (58)
T

where 0 is an 8 x 8 zero matrix. Furthermore, the normaliza-
tion condition generalizes to

Ge = —n21, (59)

where | = gy is the 8 x 8 unit matrix. This condition is very
powerful, as it means that the Keldysh matrix G in Eq. (56)
is diagonalizable and its only eigenvalues are +-i.

To derive a current conservation law from the Usadel
equation, one has to express the physical current in terms
of the Green functions,

T de D Tr,
J(x) = —eNy / 1 = (BB ed Golx. o).

(60)
where Try is a trace over particle-hole and spin space, e = —|e|

the charge of the electron, and Ny the density of states per spin
at the Fermi level in the normal state. The Usadel equation (58)
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then leads to

oo de TI'4
—eNy ——(1'3[6‘[3
oo 4m 2

A —3%,Gol*) + 9.7 =0.
(61)
Under cyclic invariance of the trace, the term involving €73
vanishes immediately:
Try o L o .
e~ (Gotw.e) = HGow.BI) =0, (62)

The second term, involving A, vanishes only when A fulfills
the self-consistency equation

fe” de F¥(x,e,T)

— 1 47”
AlT) = egnoof . 4< tanh(e/2T) + In(T/T.) ©9

The corresponding contribution in Eq. (61) then reads

—+00 d T
f 46 ([ A,Golx.0)
JT

—0Q
e de Try

ym ({SKA}+{A3})—0 (64)
—e, 4m

= lim
€.—>00

where Tr; is a trace over spin, and Eq. (63) was substituted for
A and A*, as well as

5 (e ) = GXx,

used. Due to the cyclic invariance of the trace, the third
contribution from the commutator in Eq. (61) vanishes as well:

—6,1)" = —(F*(x,e, 7))  (65)

T de Tr

| e SteEre. bl =0, ©)
—oo 47

To prove this, we note that the self-energy 3 is proportional

to @C, see Eq. (43), and that in generalization of Eq. (36),

[M(x,€).Gc(x,6)] =0, (67)
where [see Eq. (37)]

. 9 1. 1 9
M(x,e) = <&GLeak(€) +-GG" + =Gpk,G")
46Th 2 2
T _ . 1
- qu}K + EQSGO(-xse) ) (68)

where GLeak =1, ® @Leak’ GF =1 ® GF, and K =
1,42 ® &, which all three commute with ¥3. We will assume
that M has distinct eigenvalues (if not, we can always add an
infinitesimal term to make them distinct; in fact, it suffices that
each characteristic value occurs in only one Jordan block in
the Jordan normal form of the matrix). Then, a well-known
mathematical theorem ascertains that Gc can be written
uniquely as a polynomial in M of at most degree 7 (for 8 x 8
matrices). Consequently, we can expand G in the following
way:

Ge=al+uM+vM?> + pM> +--- . (69)

As M is of the form M = D +OlG0 where D commutes
with 73, and because of the condition (59), any power
of M will only have terms that are of the form D" or
D"GoD™ + D" GyD" or > Plnmk] D"GoD"GyDF etc. (up to
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maximally terms containing four Go’s), where P[nmk] means
a permutation of [nmk], and n, m, and k are integers >0. The
cyclic property of the trace together with condition (59) then
leads to vanishing contributions for each term in Eq. (69) when
introduced into Eq. (66) using Eq. (68). For example,

By S (DG Gl - Gy — Gy - Gy Gy DY)
Plnmk]

turns, when using cyclic permutation under the trace and
commutation between D and 73, into

By 3 (DGl Gy DA Gy — DG ol G,
Plnmk]

and as [knm] is a permutation of [nmk], the two terms
cancel when summing over all permutations (we use [73 AKX =
HIA]C = 545),

Consequently, collecting all results together, it follows that
for our theory,

9 J(x) =0, (70)

which is the (stationary) charge conservation law.

V. S-F-S STRUCTURE WITH A MAGNETIC
DOMAIN WALL

We numerically investigate an S-F-S structure that exhibits
a magnetic domain wall, see Fig. 11. Such a structure was
treated previously in the Ref. [27], and later in Ref. [42]. We
extend the results in Ref. [27] by (a) calculating the pair poten-
tial self-consistently, and by (b) calculating the current-phase
relationships as well as the temperature-dependence of the
critical currents. In addition, we chose a different, normalized,
domain wall parametrization, such that the magnetization
vector J at the start (end) of the ferromagnetic block is always
fully polarized in the +(—) x direction. We keep |J| constant
and spatially vary the orientation, J — J(x), by using the
following domain wall parametrization:
b4
> ) (71

t X—Xo
Jy = Jcos (arc an(( o )
[ arctan (xdu 0) T
J. = Jsin (TE) (72)

arctan
arctan

— A(w)eiq)(x)
S

F S
—
| I ;x

ds dy o d,

FIG. 11. Illustration of the SES structure. The ferromagnetic

block exhibits a nontrivial magnetic domain wall structure. The solid

line shows a typical variation of the pair potential within the structure.
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where d,, is the domain wall width, J, =0.0 and xo =
dy +dy/2 denotes the middle of the S-F-S structure. The
ferromagnetic region extends from x = d; tox = d; +ds. We
point out that the domain-wall parametrization in Ref. [27] had
a fixed rotation pitch given by the domain wall thickness, but
independent of the thickness of the ferromagnet layer [43].
Therefore, for higher domain-wall widths, the magnetization
was already tilted at the interfaces between the ferromagnetic
block and the superconductors. Here, we chose a different
parametrization by normalizing the argument in the expres-
sions (71) and (72) for the magnetization. This is appropriate
for the case that the direction of the magnetic moment at the
interfaces is determined by magnetic shape anisotropy.

The transport equation is given by Eq. (3) with the replace-
ment € — (¢ — J - @) to account for the spatial variation of
the magnetization. In the Riccati parametrization, see Egs. (10)
and (11), the equations read

d*y dy\ § (dy i
-7 Y2 (20 - A%y —
dx? +(dx>i7r (dx) D[y 4

—yl+J-0")— Al (73)

L. ) .
7 (ﬂ’)i(ﬂ’) - 31[7A7 + (el +J - 0)p

—im \dx

el —J - o)y

+y€l—J -0)—A*]. (74

At the S/F interfaces (xis,xf ), we connect the y,y by
continuity conditions [27]:

v (%)) = v (), (75)
d_sy_ 4 F
o) = v (). (76)

The pair potential A(T,x) is calculated self-consistently
according to Eq. (48). This takes into account the suppression
of the order parameter close to the ferromagnetic material
(inverse proximity effect). In Fig. 12, we show the typical

1.0
0.8
§O 0.6 Initial
}{.\ -—T=0.1 TC
2 04 —T=0.3T,
< -=-T=0.5T¢
0.2 — T=0.7T¢
0.0 : : :

o 2 4 6 8 10 12
x /&

FIG. 12. Suppression of the pair potential for several tempera-
tures illustrated for an S-F-S structure without phase gradients. The
solid line (initial) is the steplike pair potential without a self-consistent
calculation, depicted for comparison.
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FIG. 13. Self-consistent LDOS, Ny, as a function of energy E,
normalized to its normal state value N, for several domain wall
widths d,, calculated in the middle of the F region in an S-F-S
structure. The case of an S-N-S structure (J = 0) is shown for
comparison as a solid line. (Inset) N,y at the chemical potential
(E = 0) as function of domain wall width d, for self-consistent
pair potential (full line) and for non-self-consistent (steplike) pair
potential (dashed lines).

behavior of the order parameter as the temperature of the
system is varied for a ferromagnet that hosts a domain wall.

The effect of the domain wall on the local density of states
in the system can be seen in Fig. 13. In comparison to the
normal metal (J = 0), the minigap is populated with additional
Andreev bound states that stem from spin-triplet correlations
that are sensitive to the direction of the magnetization.
Nonzero J, and J, components convert singlet into triplet
amplitudes [7]. A nonvanishing J, induces spin flips and
breaks up a spin-singlet Cooper pair and converts it into an
unequal spin-triplet state ~(|11) — || | )) whereas J, induces
equal spin-triplet pairings ~(|1{) + [{1)). In the case of
increasing domain wall widths, the magnetic domain wall
encourages such spin-flip processes and thus creates new
Andreev bound states. As the domain wall width increases,
spectral weight from the shoulders fills up the minigap, as
illustrated in Fig. 13. The inset of Fig. 13 shows the value of the
local density of states at the chemical potential as function of
domain wall width. There is a characteristic value d;;, at which
a steplike feature occurs in this plot. In comparison to the case
of a non-self-consistent pair potential [27], shown as dashed
line, this characteristic value &} is shifted upwards. When the
magnetic domain wall extends over the whole ferromagnetic
region, J varies slowly with x. This case is similar to the case
for a fully polarized ferromagnet. The minigap thus vanishes
and local minima appear at approximately +J/A. The same
effect can be observed for the (S-(F|S)-S) structure, where the
local density of states is spin split, see Fig. 7.

For a given domain wall width, we investigate the depen-
dence of the local density of states on the applied phase
gradient, see Fig. 14. When a finite phase difference is
present at the outer elements, supercurrents can flow in the
S-F-S-structure. A finite phase difference A® modifies the
local density of states as it adds to the phase that is picked
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FIG. 14. Self-consistent LDOS, N (E), in an S-F-S structure
with domain wall as a function of energy for several phase differences
A® between the superconductors, calculated in the middle of the
F region, and normalized to the normal state value N,. (Left
inset) current-phase relationship. (Right inset) Ny, at the chemical
potential, £ = 0. Full line for self-consistent pair potential. The
dashed line shows for comparison the result for a non-self-consistent
pair potential.

up by the quasiparticles during the diffusive motion through
the ferromagnet. In particular, the zero-energy density of
states is influenced strongly by the applied phase difference,
as it can be seen in the right inset of Fig. 14. It increases
smoothly until a maximum value for A® < 7 is reached. The
plot is mirror symmetric around A® = 7 (only values for
A® < 7 are shown). For comparison, we also reproduce the
non-self-consistent result of Ref. [27] as a dashed line in the
inset. We observe that self-consistency of the order parameter
gives pronounced corrections to the local density of states, in
particular its value at the chemical potential. Experimentally,
tunnel current measurements provide access to the zero-energy
density of states.

We also present here self-consistent supercurrents in the S-
F-S structure. Supercurrents have not been studied in Ref. [27].
In Fig. 15, we plot the temperature-dependence of the critical
currents for both a S-N-S structure (full lines) and a S-F-S
structure that hosts a domain wall (dashed lines). Additionally,
we numerically track the temperature-dependence of the phase
difference that leads to the critical current, see inset in Fig. 15.
The critical currents in the S-F-S structure are lowered by
a magnetic domain wall in comparison to the case when
a magnetic structure is missing, such as is the case in a
S-N-S structure. The current-phase relationship in both cases
becomes sinusoidal at high temperatures, where the maximum
current is reached at a phase difference A® = /2. This is
reflected in the critical currents as well, as the curves for
the S-N-S and the S-F-S structure collapse onto each other
approximately when for both cases a sinusoidal current-phase
relationship is established. In the low-temperature regime, the
critical currents in the S-N-S structure are offset to higher
values than in the case for the S-F-S structure with a domain
wall. In both structures, however, the maximum current is
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FIG. 15. Critical Josephson currents for the parameters d; =
5.0¢, dy = 2.0&, and a domain-wall of length d,, = 0.3£. The inset
shows the phases for which the maximal (critical) current is reached.
The error bars indicate the numerical uncertainty in determining the
extrema in the current-phase relationship. Lines are guides to the eye.

achieved for phase gradients A® < 7, see the inset of Fig. 15.
This should be compared to the S-(F|S)-S structure where
critical currents are reached for phase differences A® > 7.

VI. CONCLUSION

Using the model for an S-(S|F)-S Josephson junction
depicted in Fig. 1, we have transformed spin-dependent
boundary conditions within the (S | F) bilayer into an effective
self-energy that enters the Usadel transport equation. This
allows for a numerically very effective handling of the
transport equation. We have used our model to calculate
important measurable quantities such as the density of states,
spin magnetizations, the pair potential, and the critical Joseph-
son currents through the system. We also proved that our

PHYSICAL REVIEW B 94, 104502 (2016)

theory explicitly fulfills the continuity equation, expressing
charge conservation, provided self-consistently determined
order parameter profiles are used.

We have in particular studied the weak-link behavior of
such an S-(S|F)-S Josephson junction, showing the char-
acteristic hysteretic current-phase relation [3], as indicated
by a multivalued solution. In our case, the suppression of
superconducting order in the weak-link region is achieved via
proximity coupling to a strongly spin-polarized ferromagnet.
We study long weak-link structures with a length comparable
or larger than the superconducting coherence length. We
present a detailed quantitative solution for this problem. We
find that self-consistency of the order parameter profile across
the weak link is necessary in order to be able to determine the
Josephson current in a sensible way.

We also consider a second geometry, an S-F-S junction
in which a magnetic domain wall is situated in the center of
the F region. We have extended previous work [27,44-51]
by studying in particular the effect of self-consistency of the
order parameter in the superconducting leads. We find that
self-consistency of the order parameter leads to pronounced
modification of the results, in particular the functional depen-
dence of the density of states on domain wall width. We also
calculated the critical Josephson current and find that it is
considerably reduced at low temperatures by the presence of
a domain wall.
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