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Spin transport at interfaces with spin-orbit coupling: Phenomenology
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This paper presents the boundary conditions needed for drift-diffusion models to treat interfaces with spin-
orbit coupling. Using these boundary conditions for heavy-metal/ferromagnet bilayers, solutions of the drift-
diffusion equations agree with solutions of the spin-dependent Boltzmann equation and allow for a much simpler
interpretation of the results. A key feature of these boundary conditions is their ability to capture the role that
in-plane electric fields have in the generation of spin currents that flow perpendicularly to the interface. The
generation of these spin currents is a direct consequence of the effect of interfacial spin-orbit coupling on
interfacial scattering. In heavy-metal/ferromagnet bilayers, these spin currents provide an important mechanism
for the creation of dampinglike and fieldlike torques; they also lead to possible reinterpretations of experiments
in which interfacial contributions to spin torques are thought to be suppressed.
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I. INTRODUCTION

In heavy-metal/ferromagnet bilayers, charge currents flow-
ing parallel to the interface can manipulate the magnetization
of the ferromagnetic layer [1–7]. The various mechanisms that
drive this process require spin-orbit coupling [8–11], which
couples the spin and orbital moments of carriers. In addition
to this coupling, the orbital moments of carriers are coupled to
the crystal lattice via the Coulomb interaction. Through this ex-
tended coupling, carriers receive angular momentum from the
atomic lattice and transfer it to the magnetization. This transfer
of angular momentum from carriers to the magnetization is
known as a spin-orbit torque [8,11–16]. Spin-orbit torques
provide a potentially energy-efficient mechanism to write
information to magnetic bits made of heavy-metal/ferromagnet
bilayers [5].

The torques in these bilayers can result from spin-orbit
coupling in the bulk and at the interface. The torques from
these two sources have been described in very different ways
[2–4,6,7,11]. The importance of each torque is unclear because
of the limited number of models that describe both effects
within the same framework [11]. Since clear phenomenologi-
cal models can describe the torques created by bulk spin-orbit
effects [11], incorporating interfacial spin-orbit effects into
those models will help to properly identify the important
mechanisms for spin-orbit torques. In a companion paper [17],
we introduce a complete phenomenological description of
interfacial spin-orbit effects. In this paper we use the important
parts of that description to develop a simple drift-diffusion
model for spin-orbit torques in bilayers.

Bulk spin-orbit coupling contributes to spin-orbit torques
in heavy-metal/ferromagnet bilayers in the following way. In
the heavy metal, bulk spin-orbit coupling causes carriers with
opposite spin polarization to scatter in opposite directions.
As a result, charge currents generate spin currents whose
polarization and flow directions are orthogonal to each other
and to the charge current. This process, known as the spin Hall
effect [18–24], allows for an electric field pointing along the
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interface to create a spin current that flows across the interface.
Take the interface normal to lie along ẑ and the electric field
to point along x̂. The spin currents that flow along ẑ then
generate a flux of angular momentum polarized along the
vector −x̂ × ẑ, as illustrated in Figs. 1(a)–1(c). Upon entering
the ferromagnet, this angular momentum is transferred to the
magnetization through the spin-transfer mechanism [12–16].
This process progressively orients the magnetization towards
the −x̂ × ẑ direction, as described by a torque pointing along
the direction m̂ × [m̂ × (−x̂ × ẑ)]. Here m̂ denotes the unit
vector aligned with the magnetization. Torques of this form
are typically referred to as dampinglike, since they drive the
magnetization towards a particular axis. In reality, this transfer
of angular momentum to the magnetization is not perfect
because there is a small component of the spins that rotate
when they reflect from the interface, giving rise to torques
perpendicular to the dampinglike direction [11].

At the interface between the heavy metal and the ferromag-
net, the breaking of inversion symmetry causes an enhanced
spin-orbit coupling [25] that leads to a second contribution to
spin-orbit torques. To understand this contribution, note that
carriers at the interface develop a net spin accumulation due to
a phenomenon known as the Rashba-Edelstein effect [25–30].
If this spin accumulation is misaligned with the magnetization
at the interface, it exerts a torque on the magnetization via
the exchange interaction [1,2,7–10]. In this geometry, the
spin accumulation points along the −x̂ × ẑ direction; thus the
resulting torque on the magnetization points along m̂ × (−x̂ ×
ẑ). Torques of this form are often referred to as fieldlike, since
they force the magnetization to precess around a particular
axis. Typical descriptions of this torque are based on strictly
two-dimensional models, which are unrealistic in bilayers
because carriers are not actually confined to the interface. We
expect that the spin torques driven by interfacial spin-orbit cou-
pling cannot be quantitatively described by two-dimensional
models, since carriers that scatter across the interface behave
differently than those that are confined to it. This suggests
that the interfacial contribution to spin-orbit torques requires
reexamination using three-dimensional models.

Three-dimensional solutions of the spin-dependent Boltz-
mann equation show that carriers can exhibit a net spin
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FIG. 1. Spin and particle currents created by in-plane electric fields in heavy-metal/ferromagnet bilayers. (a) illustrates some scattering
processes that give rise to spin currents in the bulk. (b) depicts these currents within the bilayer as they would be represented in a drift-diffusion
approach. White arrows represent particle currents while the colored arrows represent spin currents. The direction of these arrows indicates the
direction of flow while the color (blue/red) indicates the direction of spin polarization (positive/negative) along the y axis. (c) shows slices of
the nonequilibrium distribution functions that correspond to the currents in (b), as described by the Boltzmann equation. The k-space plots each
contain the Fermi surface (black circle) and the nonequilibrium distribution functions. Distortions of the distribution functions outside (inside)
the Fermi surface indicate an excess (deficit) of carriers at each k point. The width of the curves shows the degree of spin polarization and
the colors indicate the direction of spin polarization as before. For example, carriers in the heavy metal moving towards or away the interface
have opposite spin polarization; thus the spin Hall current represents a flux of angular momentum (spin current) but no net spin accumulation.
(d) illustrates scattering processes that give rise to spin currents near the interface due to interfacial spin-orbit coupling. (e) depicts those
currents analogously to (b), and shows that in-plane charge currents give rise to out-of-plane spin currents that are generated at the interface due
to interfacial spin-orbit coupling. (f) shows the nonequilibrium distribution function corresponding to these currents. The distribution functions
demonstrate that carriers carry a net spin current and exhibit a net spin accumulation (unlike the case with the spin Hall effect). The spin
accumulation exerts a torque on the magnetization at the interface via the exchange interaction, while the spin currents exert torques on the
neighboring ferromagnet layer via the spin-transfer mechanism.

polarization and carry a net spin current near interfaces
with spin-orbit coupling. We illustrate this phenomenon in
Figs. 1(d)–1(f). If the net spin polarization is misaligned with
the magnetization, it exerts a torque on the magnetization at
the interface. This captures the spin torque normally associated
with the Rashba-Edelstein effect. However, the spin currents
created by interfacial spin-orbit scattering can flow away
from the interface, and those that enter the ferromagnet exert
additional torques on the magnetization. These spin currents
generate torques via the spin-transfer mechanism, but are
driven by interfacial spin-orbit scattering rather than the bulk
spin Hall effect. This mechanism is not usually considered
when analyzing spin torques in bilayers, but can contribute
significantly to the total spin torque. It allows for spin
torques generated by the interface to have strong dampinglike
components, which are typically associated with the bulk spin
Hall effect. The spin polarization and flow directions of these
spin currents are not required to be orthogonal to each other or
to the electric field, unlike the spin currents generated by the
spin Hall effect in isotropic bulk systems.

In this three-dimensional picture, one could interpret the
net spin polarization as the Rashba-Edelstein effect and the net
spin current as an interface-generated spin Hall effect. First-
principles calculations support the existence of an interfacial
spin Hall effect [31,32] that could significantly exceed its
bulk counterpart [31]. Experimental evidence suggests that the
spin Hall angle becomes modified near the interface of Bi/Py

bilayers, which also alludes to a distinct interfacial contribution
to the spin Hall effect [33]. To assist the interpretation
of experiments, the phenomena discussed so far should be
incorporated into a simple phenomenological model.

The drift-diffusion equations are a popular tool used
to model transport and analyze experimental results. They
directly relate charge and spin currents to gradients in charge
and spin accumulation, but do not describe the momentum
dependence of these quantities. To treat systems such as the
bilayers of interest here, the bulk drift-diffusion equations need
to be augmented by boundary conditions. Typically these are
taken from magnetoelectronic circuit theory. However, this
approach does not treat interfacial spin-orbit coupling or its
consequences. In the companion paper, we generalize magne-
toelectronic circuit theory to include these effects. Here, we
include only the most important changes to magnetoelectronic
circuit theory in our boundary conditions when computing
spin-orbit torques for a model system. To test this approach, we
compare the results to those found from Boltzmann equation
calculations for the same model.

The Boltzmann equation captures the contributions to
transport from carriers at each point in momentum space. Since
spin-orbit scattering is inherently momentum dependent, the
Boltzmann equation better describes spin transport in the pres-
ence of bulk or interfacial spin-orbit coupling. For example,
the three sources of spin current shown in Fig. 1 can be im-
plicitly captured by the Boltzmann equation [11]. Solving the
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Boltzmann equation requires more analytical and computa-
tional effort, and is more difficult to directly correlate to
experiments. Furthermore, it is particularly difficult to perform
Boltzmann equation calculations for realistic electronic struc-
tures. Thus, an important reason to generalize magneto-
electronic circuit theory is to clearly describe interfacial
spin-orbit effects from first-principles calculations. However,
the Boltzmann equation does provide a good test of the
boundary conditions used in drift-diffusion models, since we
can independently calculate the boundary conditions in both
models and directly compare the results.

In this paper, we present boundary conditions for drift-
diffusion calculations of spin-orbit torques that capture spin-
orbit scattering at interfaces. After introducing these boundary
conditions, we use them to solve the drift-diffusion equations
for a bilayer system. This approach gives an analytical model
that describes the spin-orbit torques caused by both the
spin-Hall and the interfacial Rashba-Edelstein effects. We
then demonstrate that this analytical model predicts spin-orbit
torques in quantitative agreement with those found by solving
the Boltzmann equation numerically, as long as both methods
use the same spin-dependent transmission and reflection
coefficients at the interface.

II. PHENOMENOLOGY

In the following we discuss the phenomenology of spin
torques in multilayer systems with and without interfacial
spin-orbit coupling. First, we consider spin transfer torques
in spin valves, and then discuss spin-orbit torques in heavy-
metal/ferromagnet bilayers. Throughout this paper we use two
coordinate systems: one oriented relative to the interface (to
describe electron flow) and the other oriented relative to the
magnetization (to describe spin orientation). In the interface
coordinate system, the x/y plane lies along the interface
and the z axis points perpendicular to it. The interface is
located at the z-axis origin, where z = 0− and z = 0+ describe
the regions just within the nonmagnet and ferromagnet
respectively. In the magnetization coordinate system, the
direction � lies along the magnetization (�̂ = m̂) while the
directions d and f are aligned perpendicular to �̂. Here we
choose that the directions d and f point along the vectors
d̂ ∝ m̂ × [m̂ × (−x̂ × ẑ)] and f̂ ∝ m̂ × (−x̂ × ẑ) respectively.
As before, we refer to the direction d as dampinglike and the
direction f as fieldlike. In general, the transverse directions
need only span the plane perpendicular to the magnetization.
The transverse directions defined here are merely convenient
for describing spin-orbit torques.

A. Spin transfer torque

We first discuss spin transfer torques in spin valves with
no spin-orbit coupling. Spin valves consist of a nonmagnetic
metallic spacer sandwiched between two ferromagnetic layers.
The magnetization of one ferromagnetic layer is often fixed
via coupling to a neighboring antiferromagnetic layer, while
the magnetization of the other layer remains free to change its
orientation. A spin current arises from passing charge current
through the fixed layer; this spin current then flows through the
nonmagnet and transfers angular momentum to the free layer.

When describing spin accumulations and spin currents in
these systems, it is useful to distinguish between those po-
larized along the magnetization direction and those polarized
transversely to it. At the interface between the nonmagnet
and the free layer, the spin current polarized along the
magnetization direction remains conserved. However, the
spin current with polarization transverse to the magnetization
dissipates entirely upon entering the ferromagnet [16]. The
interface absorbs part of the transverse spin current, while
the remaining portion quickly dissipates within the ferro-
magnet due to a precession-induced dephasing of spins. In
transition-metal ferromagnets and their alloys, this dephasing
happens over distances smaller than the spin diffusion length.
Thus we treat the spin accumulation in the ferromagnet as
vanishing arbitrarily close to the interface, as is done in
magnetoelectronic circuit theory [34,35]. The rapid dephasing
also allows us to neglect angular momentum transfer (via
spin-orbit coupling) to the bulk atomic lattice. Spin torques
can only change the direction of the magnetization, since the
magnetization’s vector magnitude is considered fixed. Thus,
in the following discussion we only consider spin currents
and spin accumulations with polarization transverse to the
magnetization.

We refer to the transverse spin current at z = 0− as j⊥(0−),
where the following expression

j⊥(0−) = GRμ⊥(0−), (1)

relates this current with the transverse spin accumulation
at z = 0− [given by μ⊥(0−)]. Here we express the spin
accumulation in units of voltage and the spin current in units
of number current density.1 Both the transverse spin current
and transverse spin accumulation are two-vectors; in the
magnetization reference frame they consist of the dampinglike
and fieldlike components of each quantity, i.e.,

j⊥(0−) =
(

jd (0−)

jf (0−)

)
, μ⊥(0−) =

(
μd (0−)
μf (0−)

)
. (2)

The conductance matrix GR is dependent on the complex-
valued spin mixing conductance G↑↓ in the following way:

GR =
(

Re[G↑↓] −Im[G↑↓]
Im[G↑↓] Re[G↑↓]

)
. (3)

The spin mixing conductance comes from magnetoelectronic
circuit theory and does not depend on the magnetization
direction.

To compute the total spin torque (τ tot),2 we note that both
the interface and the bulk ferromagnet contain magnetization.

1Multiplying spin currents by �/2 redefines them as the angular
momentum flux density. Multiplying by −gμB, where g is the
electron g factor, and μB, the Bohr magneton, converts them into
a magnetization flux density.

2In this paper, torques have units of number current density. To
convert them into a form that could be inserted into the Landau-
Lifshitz-Gilbert (LLG) equation, one must multiply them by −gμB/t ,
where t is the thickness of the ferromagnetic film. If the LLG equation
is written in terms of the magnetization direction, one should also
divide the torques by the saturation magnetization.
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Thus, the spin current at z = 0− equals the flux of angular mo-
mentum just outside the ferromagnetic part of the system. As
previously discussed, the interface and the bulk ferromagnet
absorb the transverse part of this spin current. Therefore the
total spin torque equals j⊥(0−), and we only require GR and
μ⊥(0−) to compute it.

In the ferromagnet, the dephasing processes rapidly destroy
the transverse spin accumulations and currents. This explains
why the spin current in Eq. (1) does not depend on μ⊥(0+), as
it is negligibly small. Even though the transverse spin current
j⊥(0+) also dephases, it is useful to identify it as the spin torque
on the bulk ferromagnet (τ FM). Thus we may write:

τ FM = j⊥(0+) = �FMμ⊥(0−). (4)

Here the torkance tensor �FM relates the spin torque in the bulk
ferromagnet to the transverse spin accumulation at z = 0−.
It has a structure similar to GR , though for now we avoid
specifying it. The spin torque at the interface (τ int) is then the
difference between τ tot and τ FM, which equals the change in
transverse spin current from z = 0− to z = 0+:

τ int = j⊥(0−) − j⊥(0+). (5)

Using Eqs. (1) and (4) we may then write

τ int = τmag = (GR − �FM)μ⊥(0−), (6)

where τmag represents the torque on the magnetization at the
interface. The distinction between τ int and τmag is irrelevant
in the absence of spin-orbit coupling, since all spin torques
in the spin valve are exerted entirely on the magnetization.
However, by introducing interfacial spin-orbit coupling, the
magnetization is not the only source of angular momentum
that couples to carriers; the lattice provides another source that
complicates this analysis and makes this distinction useful.

B. Spin-orbit torque

The need for a fixed ferromagnetic layer is bypassed in
heavy-metal/ferromagnetic bilayers, where the spin current
is generated by the spin Hall effect in the heavy metal. The
spin Hall effect creates spin currents by diverting carriers of
charge current with opposite spin in opposite directions. The
spin polarization and flow directions of these spin currents
are orthogonal both to each other and to the charge current.
Because carriers flowing in opposite directions carry opposite
spin polarization, they contribute to a net spin current but do
not exhibit a net spin polarization. As seen in Figs. 1(a)–1(c),
the electric field that induces the charge current is typically
aligned with the interface plane, thus generating a spin current
that flows normal to the interface. The spin torque then arises as
it does in spin valves, where the spin current transfers angular
momentum to the free layer.

However, spin-orbit scattering near the interface creates
spin currents in addition to those caused by the spin Hall
effect. This occurs because individual carriers subject to an
in-plane electric field still move in all directions; only their
net velocity points in-plane. As a result, carriers scatter off of
the interface in a spin-dependent way (due to interfacial spin-
orbit coupling) and thus become spin polarized. As depicted
in Figs. 1(d)–1(f), the net spin polarization for all carriers
does not vanish if the electric field perturbs the occupancy of

states differently on each side of the interface. A difference in
the occupancy of states for reflected and transmitted carriers
can arise from differing conductivities, degrees of polarization
in the ferromagnet, or band structures in each layer. Unlike
the spin Hall effect, carriers subject to interfacial spin-orbit
scattering not only carry a net spin current, but also develop a
net spin polarization. This gives carriers two ways to exert a
spin torque on the system.

First, we consider the spin currents generated by interfacial
spin-orbit scattering. With the addition of these spin currents,
Eq. (1) becomes

j⊥(0−) = GRμ⊥(0−) + jE
⊥(0−). (7)

The new spin current jE
⊥(0−) may be written as follows:

jE
⊥(0−) = σ (m̂)Ẽ, (8)

where the conductivity tensor σ (m̂) vanishes in the absence
of interfacial spin-orbit coupling and depends on the mag-
netization direction m̂. The scalar Ẽ ≡ −E/e denotes the
in-plane electric field, but is scaled such that the conductivity
vector has the same units as the bulk conductivities. Here
we assume that the electric field points along the x axis
without loss of generality. This makes the conductivity
tensor a two-vector, although in general the conductivity
tensor couples both in-plane electric field components with
all spin currents that result from spin-orbit scattering. We
remind the reader that the two-vector jE

⊥(0−) describes spin
currents that are polarized transversely to the magnetization
and flow perpendicular to the interface plane. However, these
spin currents arise from electric fields that point along the
interface plane.

We note that the conductance tensor GR is derived in the
spirit of magnetoelectronic circuit theory, which means that it
does not account for spin-flip scattering at the interface. Since
interfacial spin-orbit coupling leads to spin-flip scattering,
the conductance matrix becomes modified as well; however
we do not consider such modifications in this paper. For
a simple model of spin-orbit coupling, we show in the
companion paper that such modifications only negligibly alter
the conductance tensor.

The transverse spin current at z = 0+ becomes modified by
interfacial spin-orbit scattering as well:

j⊥(0+) = �FMμ⊥(0−) + jE
⊥(0+). (9)

The new term is given by

jE
⊥(0+) = γ FM(m̂)Ẽ, (10)

where the torkivity tensor γ FM(m̂) represents the analog of
the conductivity tensor just defined. As long as the relation
τ FM = j⊥(0+) still holds, the spin current given by Eq. (10)
now provides an additional contribution to the spin torque on
the bulk ferromagnet.

Second, we consider the spin polarization that arises
from interfacial spin-orbit scattering. This spin polarization
couples to the magnetization at the interface via the exchange
interaction. This coupling causes carriers to exert an additional
spin torque on the magnetization; as a result Eq. (6) becomes

τmag = (GR − �FM)μ⊥(0−) + τE, (11)
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where τE equals the contribution from interfacial spin-orbit
scattering. We may express this contribution as

τE = γ mag(m̂)Ẽ, (12)

where γ mag(m̂) denotes an additional torkivity tensor. It
describes the torque on the magnetization at the interface
(z = 0), in contrast to the spin current that forms just within the
ferromagnet (at z = 0+). Like all spin currents considered in
this paper, these torques have units of number current densities.

To summarize the results so far, the tensors defined by
Eqs. (8), (10), and (12) describe the modifications to spin
transport brought upon by interfacial spin-orbit coupling. The
tensors σ (m̂) and γ FM(m̂) describe the spin currents that arise
from spin-orbit scattering near the interface, while γ mag(m̂)
describes an additional contribution to the spin torque at the
interface. Each of these tensors may be computed in terms
of the spin-dependent reflection and transmission amplitudes
at the interface; we provide the necessary expressions in
Appendix B. We now discuss how these tensors alter the
various spin torques in the bilayer.

We first remind the reader that τ int equals the total change
in transverse spin polarization across the interface, while τmag

equals the portion of τ int given to the magnetization. In the case
of the spin valve these torques are identical, as Eq. (6) suggests.
However, in heavy-metal/ferromagnet bilayers, the interfacial
spin-orbit interaction couples carriers to an additional angular
momentum bath that is separate from the magnetization. This
suggests that τ int equals the sum of two torques: one on the
magnetization (τmag) and the other on the atomic lattice (τ latt).
Thus, the interfacial torque now becomes,

τ int ≡ j⊥(0−) − j⊥(0+)

= τmag + τ latt, (13)

where the lattice torque

τ latt = τ int − τmag

= j⊥(0−) − j⊥(0+) − (GR − �FM)μ⊥(0−) − τE

= jE
⊥(0−) − jE

⊥(0+) − τE

= [σ (m̂) − γ FM(m̂) − γ mag(m̂)]Ẽ (14)

represents a parasitic contribution to the magnetization torque.
Thus, not only does τmag change in the presence of interfacial
spin-orbit coupling [according to Eq. (11)], it only partially
contributes to the spin torque that carriers exert on the interface
(τ int).

The total spin torque on the magnetization may now be
expressed in terms of its interfacial and bulk ferromagnet
contributions,

τ tot = τmag + τ FM,

= τmag + j⊥(0+), (15)

or by subtracting the lattice torque from the incident flux of
angular momentum (i.e., the spin current at z = 0−):

τ tot = j⊥(0−) − τ latt. (16)

Equations (15) and (16) represent two separate breakdowns
of the total spin-orbit torque, and help to clarify the thick-
ness dependencies of heavy-metal/ferromagnet systems. The

spin current in any region vanishes as the layer thickness
approaches zero. Thus, as the ferromagnet thickness vanishes,
the total spin-orbit torque approaches the spin torque on the
magnetization at the interface (τmag). As the heavy-metal
thickness vanishes, it approaches the opposite of the lattice
torque (−τ latt) instead.

Equations (7), (9), and (11) capture the phenomenology
of interfacial spin orbit coupling and in-plane electric fields.
When used as boundary conditions for the drift-diffusion
equations, they allow for quantitative comparison with results
from the Boltzmann equation.

III. DRIFT-DIFFUSION AND BOLTZMANN SOLUTIONS

We now demonstrate that one may accurately model the
interfacial Rashba interaction through the inclusion of the
conductivity/torkivity tensors and the mixing conductance.
To study the importance of these parameters we solve
the drift-diffusion and Boltzmann equations for a heavy-
metal/ferromagnet bilayer, using material parameters for a
Pt/Co system given in Ref. [11]. We provide some of these
parameters here.3 That paper presented a solution to the
drift-diffusion equations, but only in the absence of interfacial
spin-orbit coupling. Here, we extend that solution to include
interfacial spin-orbit coupling, enabling the calculation of
Rashba-based spin-orbit torques.

A. Drift-diffusion solution

The drift-diffusion equations directly relate spin and charge
accumulations with spin and charge current densities, and do
not explicitly treat k-dependent scattering. In the following
we describe the three-component spin accumulation and spin
current density as μs and js respectively. While the spin current
is generally a tensor, here we only consider motion normal to
the interface; thus we treat the spin current as a vector in spin
space. The charge accumulation and charge current density are
given by μc and jc. The latter is a scalar because (as with the
spin current) we only consider the out-of-plane current flow. In
this approach (for a spatially homogenous magnetization m̂)
we write the spin current density in the ferromagnet (z > 0) as

js(z) = σ FM

e
P m̂

∂μc(z)

∂z
− σ FM

e

∂μs(z)

∂z
, (17)

which obeys the following spin continuity equation:

1

eNFM
s

∂js(z)

∂z
= − 1

τ FM
sf

μs(z) − 1

τex
μs(z) × m̂

− 1

τdp
m̂ × μs(z) × m̂. (18)

The spin polarization of the current P , given by

P = (σ FM
↑ − σ FM

↓ )/σ FM (19)

3The following parameters are inputs for the drift diffusion solution:
lsf = 2.57 nm, σ HM = 0.005 nm−1 �−1, σsH = 0.0003 nm−1 �−1,
|E| = 106 V/m, τNM = 1.12579 fs, τ FM = 6.00881 fs,
u0 = 0.42645, and kF = 16 nm−1.
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arises because majority and minority carriers have different
bulk conductivities. The right-hand side of Eq. (18) describes
the relaxation due to spin-flip scattering, collective spin
precession about the magnetization, and dephasing of the
ensemble average of spin, with each mechanism characterized
by the time intervals τ FM

sf , τex, and τdp respectively. The
quantity NFM

s is the density of states per unit volume in the
ferromagnet.

The corresponding equations for the heavy metal (z < 0)
contain no magnetization-dependent terms, but include a spin
current density source jsH

s = σsHE × ẑ to model the spin Hall
effect:

js(z) = −σ HM

e

∂μs(z)

∂z
+ jsH

s (20)

1

eNHM
s

∂js(z)

∂z
= − 1

τHM
sf

μs(z). (21)

Here NHM
s gives the density of states per unit volume and

τHM
sf equals the spin-flip relaxation time in the heavy metal. To

compute spin-orbit torques, we only need the spin components
of all quantities that are transverse to the magnetization. The
drift-diffusion equations that describe these components alone
still have the same form as Eqs. (20) and (21) in the heavy
metal.

According to Eq. (16), the total spin-orbit torque may be
expressed in terms of j⊥(0−) and τ latt. To compute τ latt we
must calculate the conductivity and torkivity matrices given
by Eqs. (B20)–(B22). To compute j⊥(0−) we must solve
the drift-diffusion equations using the appropriate boundary
conditions. The drift-diffusion equations solved here, as well
as the parameters describing the bulk regions, are identical
to those used in Ref. [11]. However, to capture interfacial
spin-orbit effects, we use Eq. (7) as boundary conditions
at z = 0− instead of magnetoelectronic circuit theory alone.
We also assume that the spin currents vanish at the outer
boundaries of both materials.

At z = 0+ we make the approximation that the transverse
spin accumulations and currents vanish due to dephasing.
However, our discussion of the total spin-orbit torque in
Sec. II B assumes that the transverse spin current j⊥(0+)
does not vanish. This was necessary so that we analyze the
phenomenology of interfacial spin-orbit coupling on both sides
of the interface. Here we only assume that j⊥(0+) = 0 in
order to simplify the analytical drift-diffusion solution. We
then compute τ FM indirectly by subtracting τmag from τ tot.
Later, we test all of these approximations by comparison to
results from the Boltzmann equation.

In terms of the normal metal thickness t , the solution of
j⊥(0−) is given by

j⊥(0−) = g(t)jE
⊥(0−) + h(t)j sH

d . (22)

Note that the spin Hall current contains no fieldlike component,
so only its dampinglike component j sH

d enters this solution.
The matrix g(t) and the two-vector h(t) have the following
structure:

g(t) =
(

g1(t) g2(t)
g2(t) g1(t)

)
h(t) =

(
g1(t)h1(t)
g2(t)h2(t)

)
. (23)

The unitless functions g1, g2, h1, and h2 all vanish for zero
thickness and converge to finite values for infinite thickness. To
express these functions we define a scaled mixing conductance

GR ≡ Re[G↑↓]
2lsf

σ HM
(24)

GI ≡ Im[G↑↓]
2lsf

σ HM
, (25)

using the bulk conductivity σ HM and the spin diffusion length
lsf of the heavy metal. Then, G1 and G2 are

g1(t) = tanh2(t/ lsf) − GR tanh(t/ lsf)

[GR − tanh(t/ lsf)]2 + (GI )2
(26)

g2(t) = GI tanh(t/ lsf)

[GR − tanh(t/ lsf)]2 + (GI )2
, (27)

which vary monotonically with Re[G↑↓] and Im[G↑↓] respec-
tively. The functions h1 and h2

h1(t) = h2(t)
1 + g1(t)

g1(t)
(28)

h2(t) = − (1 − e−t/ lsf )2

1 + e−2t/ lsf
, (29)

capture extra thickness-dependent terms associated with the
spin Hall effect only, as seen in Eqs. (22) and (23).

According to Eqs. (16) and (22), the total spin torque equals:

τ tot = g(t)jE
⊥(0−) + h(t)j sH

d − τ latt. (30)

Without interfacial spin-orbit coupling, the spin current jE
⊥(0−)

and the lattice torque τ latt vanish. With interfacial spin-orbit
coupling, the former contributes to the spin torque thickness
dependence while the latter gives the opposite of the zero-
thickness intercept. In particular, jE

d (0−) and jE
f (0−) may be

useful fitting parameters for experiments, as they represent
the new information required to characterize the thickness
dependence of spin-orbit torques.

To compute all boundary parameters we use a scattering
potential localized at the interface [11], based on the Rashba
model of spin-orbit coupling:

V (r) = �
2kF

m
δ(z)(u0 + uexσ · m̂ + uRσ · (k̂ × ẑ)). (31)

Here u0 represents a spin-independent barrier, uex governs the
interfacial exchange interaction, and uR denotes the Rashba
interaction strength. Plane waves comprise the scattering wave
functions in both regions. By deriving reflection and transmis-
sion coefficients for majority/minority carriers subject to this
interfacial potential, one may compute the conductivity and
torkivity tensors using the expressions found in Appendixes A
and B. From this we may obtain the parameters jE

⊥(0±) and τE,
which capture the dominant effects of the interfacial spin-orbit
interaction.

Figure 2 shows the total spin torque versus the heavy-metal
thickness, as caused by the spin Hall and interfacial Rashba
effects separately. As expected, the spin Hall torque shows a
mostly dampinglike character, while the Rashba torque shows
a mostly fieldlike character. However, each torque contains
both a dampinglike and fieldlike component. For the spin
Hall torque, the ratio between the real and imaginary parts
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FIG. 2. Dampinglike (τ tot
d ) and fieldlike (τ tot

f ) total spin torques
plotted versus the heavy-metal thickness (t). Here lsf = 2.57 nm
as in Ref. [11]. The spin torques shown originate from either the
bulk spin Hall effect or the interfacial Rashba effect. The ratio of
the dampinglike and fieldlike components of the spin Hall torque
roughly match the ratio between the real and imaginary parts of the
mixing conductance. Additionally, the spin Hall torque saturates at
thicknesses roughly twice that of the Rashba torque. This thickness-
related suppression provides one possible mechanism for Rashba
torques to surpass spin Hall torques in thin bilayer systems.

of the spin mixing conductance G↑↓ roughly determines the
ratio between the dampinglike and fieldlike components. For
the Rashba torque, the current sources jE

⊥(0±) and the lattice
torque τ latt mostly determine this ratio instead. Interestingly,
due to the terms h1(t) and h2(t), the spin Hall torque saturates
at thicknesses roughly twice that of the Rashba torque. This
thickness-related suppression provides one possible mecha-
nism for Rashba torques to surpass spin Hall torques in thin
bilayer systems.

B. Comparison of the drift-diffusion
and Boltzmann approaches

To check the validity of the approximations made above we
solve the steady-state linearized Boltzmann equation, using
the methods described in Refs. [11,36,37]. However, we do so
in the absence of the spin Hall effect, so as to focus on the
interfacial Rashba interaction alone.

Figures 3(a)–3(d) show the total spin torque versus the inter-
facial exchange interaction (uex) for strong (uR/u0 = 0.5) and
weak (uR/u0 = 0.05) interfacial spin-orbit coupling. For all
cases, the drift-diffusion (circles) and Boltzmann (solid lines)
approaches produce quantitatively similar results. We achieve
this agreement by using Eqs. (7), (9), and (11) as boundary
conditions for the drift-diffusion equations, thus capturing the
effects of interfacial spin-orbit scattering. The conductivity
and torkivity tensors that these boundary conditions depend
on are derived by approximating the Boltzmann distribution at
the interface, as seen in Appendix B. We also present results
from an additional drift-diffusion approach (dashed lines) that
uses boundary conditions based on a more sophisticated ansatz
of the interfacial Boltzmann distribution. Appendix D outlines
the details of this method. Interestingly, both drift-diffusion
approaches agree well with the Boltzmann approach. For thin
layers this agreement may change, since the more sophisticated
ansatz of the interfacial Boltzmann distribution takes the outer
boundaries into consideration.

FIG. 3. Spin torques in a Co/Pt bilayer plotted versus the
interfacial exchange strength uex (with no spin Hall effect). The solid
curves give the Boltzmann solution, while the dashed curves and the
circles give the drift-diffusion/generalized circuit theory solution. The
circles are based on the conductivity and torkivity tensors computed in
Appendix B, while the dashed curves use more accurately computed
tensors outlined in Appendix D. (a)–(d) The dampinglike (d) and
fieldlike (f ) components of the total spin torque, shown for various
uR. As uex increases, the total spin torque becomes mostly fieldlike.
(e)–(f) Breakdown of the total spin torque into its interfacial (red)
and bulk (blue) parts. For weak uex the bulk spin torque dominates,
while for strong uex the interfacial spin torque dominates. The spin
current density jE

d (0+) (which causes a spin torque by flowing into
the ferromagnet) significantly contributes to the total dampinglike
spin torque for weak uex. However, as uex increases the interfacial
spin torque must increase as well; eventually its fieldlike component
exceeds all other contributions.

Figures 3(e)–3(f) show the interfacial (red) and
bulk ferromagnet (blue) contributions to the total spin
torque as a function of the strength of the interfacial exchange
potential. The interfacial torque is always fieldlike, while
the bulk ferromagnet torque contains significant damping-
like contributions as well. This occurs because the spin
current jE

d (0+) surpasses the spin torque given by τE
f for weak

uex. Ordinarily, a dampinglike spin torque arises from the spin
Hall effect, which does not exist in these results. However, as
uex increases, the dampinglike and fieldlike components of the
interfacial spin torque also increase; eventually the fieldlike
component dominates all other spin torque contributions. This
implies that the proximity effect, which could be modeled by
uex, might change the direction of spin-orbit torques.

104420-7



V. P. AMIN AND M. D. STILES PHYSICAL REVIEW B 94, 104420 (2016)

FIG. 4. Comparison of the Boltzmann approach (solid curves) and drift-diffusion/generalized circuit theory approach (circles), with the
latter using the boundary parameters computed in Appendix B. The panels display spin torques in a Co/Pt bilayer in the absence of the spin
Hall effect, plotted versus Rashba parameter (uR) for various exchange parameter values (uex). (a) and (b) represent the total spin torque, while
(c)/(d) and (e)/(f) represent the interfacial and bulk contributions respectively. Both approaches quantitatively agree on the parametrization
of the each spin torque, although the drift-diffusion/circuit theory approach slightly underestimates the value of the dampinglike spin torque.
The conductivity (σ ) and torkivity (γ ) parameters enable the drift-diffusion equations to describe Rashba spin-orbit torques by capturing the
k-dependent spin-orbit scattering present in the Boltzmann equation. Without the inclusion of these parameters, no such drift-diffusion solution
exists.

Figure 4 compares the Boltzmann approach (solid curves)
and the simpler drift-diffusion approach (circles) as a function
of the strength of the interfacial spin-orbit coupling. The
drift-diffusion solution provides excellent agreement with the
Boltzmann solution for all quantities plotted. This agreement
suggests that the conductivity and torkivity tensors would
work well as fitting parameters to characterize the impact of
interfacial spin-orbit coupling on experimental results.

Figures 3 and 4 demonstrate that the boundary conditions
given by Eqs. (7), (9), and (11) enable the drift-diffusion
approach to reproduce results from the Boltzmann approach
in the presence of interfacial spin-orbit coupling, despite the
fact that the former approach retains no k-space information.
The conductivity and torkivity parameters capture interfacial
spin-orbit scattering and drive the spin dynamics of spin-
diffusive systems; without them the drift-diffusion equations
cannot simulate interfacial spin-orbit coupling. Furthermore,
the analytical drift-diffusion solution matches the numerical
Boltzmann solution quite well, suggesting that the conductiv-
ity and torkivity tensors furnish important parameters when
modeling spin-orbit torques.

IV. OUTLOOK

The conductivity and torkivity tensors capture the physics
of interfacial spin-orbit scattering and in-plane electric fields.
In particular, we showed that these tensors strongly influence
the potential for a system to produce dampinglike and/or
fieldlike torques. As a result, calculating these tensors for a
realistically modeled system should provide direct insight into
its spin transport behavior. Even so, treating the elements of
these tensors as phenomenological parameters should benefit
the analysis of a variety of experiments.

Attempts to suppress the Rashba torque in heavy-
metal/ferromagnet multilayers often involve inserting a

metallic spacer between films. Although this prevents the
formation of a single interface with both spin-orbit coupling
and an exchange interaction, it creates two interfaces that
possess mostly one property or the other. Fan et al. [4] measure
spin torques in both CoFeB/Pt and CoFeB/Cu/Pt multilayers
in order to isolate the spin torque contributions from the
heavy metal and from the interface. To see this, consider the
latter system, and note that the Cu spacer prevents the spin
polarization at the Cu/Pt interface from directly exerting a
torque on the CoFeB layer. As a result, the spin torque in
that system was attributed to the heavy metal, which creates
a spin current (via the spin Hall effect) that can pass through
the Cu spacer with negligible spin relaxation [4]. However, in
the interpretation presented here, spin-orbit scattering at the
Cu/Pt interface also creates a spin current. In analogy with the
spin Hall effect, this spin current can flow into a neighboring
ferromagnetic layer and exert a spin torque. In general, the
polarization direction of this spin current can differ from that
generated by the spin Hall effect. The resulting spin torque
is both dampinglike and fieldlike with respect to the field
direction −E × ẑ, but is solely dampinglike with respect to
the polarization direction of the spin current. Thus, interfaces
with spin-orbit coupling could play an active role in generating
spin-orbit torques, even when separated from ferromagnetic
layers by metallic spacers.

Allen et al. [6] measure the Ta thickness dependence for a
CoFeB/Ta bilayer and project a nonzero fieldlike interfacial
torque. The model that they use attributes the thickness
dependence only to the spin Hall effect and treats the Rashba
torque as an interfacial parameter. The drift-diffusion solution
presented in Sec. III A provides a generalization of this analysis
in the presence of Rashba spin orbit coupling and a possible
explanation of the zero-thickness intercept.

Finally, Garello et al. [3] measure strongly anisotropic
dampinglike and fieldlike torques that depend heavily on
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growth techniques and material composition. We note that the
scattering amplitudes considered depend on magnetization di-
rection and interfacial disorder, which lead to such anisotropy
within the boundary parameters. Further work is required to
characterize this anisotropy.

We expect that the most useful approach for interpreting
experiments as above is to treat the new transport parameters as
fitting parameters. In the future, this approach can be checked
by calculating the parameters from first principles [38,39]
as has been done for magnetoelectronic circuit theory. In
the companion paper we generalize the expressions given by
Eqs. (B20)–(B22) for the case of realistic electronic structures.
Such calculations would provide a useful bridge between direct
first-principles calculations of spin torques [32,40–42] and
drift-diffusion calculations done to analyze experiments.

To conclude, we present boundary conditions that capture
the phenomenology of interfacial spin-orbit scattering when
driven by in-plane electric fields, which was previously
inaccessible to the drift-diffusion equations. Using these
boundary conditions we solve the drift-diffusion equations for
a bilayer system, and obtain an analytical model of spin-orbit
torques caused by both the spin Hall and Rashba-Edelstein
effects. We then compare the spin-orbit torques predicted by
this drift-diffusion approach with those obtained by solving
the spin-dependent Boltzmann equation. We find quantitative
agreement between both approaches over a large parameter
space, which includes both strong and weak interfacial spin-
orbit coupling. Most importantly, we find that the spin currents
created by interfacial spin-orbit scattering must be considered
to achieve agreement between these approaches. Finally, we
discuss the interpretation of current experiments, and describe
in particular how an interface can exert a spin torque on a
nearby ferromagnetic layer without being directly connected
to it.
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APPENDIX A: DERIVATION OF REFLECTION
AND TRANSMISSION MATRICES

Interfacial spin-orbit coupling causes both momentum
and spin-dependent scattering at interfaces. If the incident
distribution of carriers depends on momentum and/or spin,
outgoing carriers may become spin-polarized via interfacial
spin-orbit scattering. This gives rise to nonvanishing spin
accumulations, spin currents, and spin torques, which are
related by Eqs. (7), (9), and (11). In order to derive the tensors
introduced in those expressions, we must first describe how an
ensemble of spins scatters at an interface.

One may relate the spinors describing carriers incident (χ )
and scattered away from (ξ ) an interface by the following

relation,

ξ = rχ (A1)

subject to the 2 × 2 reflection matrix for majority/minority
spin states:

r =
(

r↑ r↑↓

r↓↑ r↓

)
. (A2)

For now we omit the transmission of carriers from the opposite
side of the interface. Given the density matrix associated with
an ensemble of incident carriers,

ρ in =
∑

n

pnχnχ
†
n, (A3)

where pn denotes the probability of occupying the spin state
χn, the density matrix for outgoing carriers becomes

ρout =
∑

n

pnξnξ
†
n = rρ inr†. (A4)

Since density matrices are Hermitian one may expand them as
follows:

ρ = gcσc + gsσs. (A5)

where σs denote the Pauli matrices (s ∈ [x,y,z]) and σc =
I2×2. One may show that the coefficients gs equal the ensemble
average of spin in direction s, while gc gives the total
probability of occupation. The outgoing density matrix then
becomes

ρout = gout
α σα = gin

β rσβr†, (A6)

where the α ∈ [x,y,z,c]. By obtaining the matrix Rαβ such
that

gout
α = Rαβgin

β , (A7)

one characterizes the scattering of an ensemble of spins in
the semiclassical limit (in terms of scattering amplitudes for
minority/majority carriers alone). Using the identity

tr[σασβ] = 2δαβI2×2 (A8)

one may show that the Rαβ becomes

Rαβ = 1
2 tr[r†σαrσβ]. (A9)

The matrix that describes transmission (Tαβ) may be obtained
in a similar fashion. If the scattering amplitudes couple
additional channels (such as in-plane momentum or orbital
quantum number) we may write

SXY
mn,αβ =

{
RX

mn,αβ for X = Y

T XY
mn,αβ for X �= Y.

(A10)

for

RX
mn,αβ = 1

2 tr
[(

rX
mn

)†
σαrX

mnσβ

]
(A11)

T XY
mn,αβ = 1

2 tr
[(

tXY
mn

)†
σαtXY

mn σβ

]
, (A12)

instead, where m/n label the additional channels and X,Y ∈
[+,−] label the sides of the interface. These scattering matri-
ces comprise boundary conditions suitable for semiclassical
models such as the Boltzmann equation.
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APPENDIX B: DERIVATION OF THE CONDUCTIVITY
AND TORKIVITY PARAMETERS

We now derive expressions for the conductivity and
torkivity parameters introduced in Eqs. (8), (10), and (12),
which can be expressed in terms of scattering amplitudes. To
do so we use the nonequilibrium distribution function gα(r,k),
which describes a perturbation of the equilibrium Fermi-Dirac
distribution feq(εk) and depends on the position, momentum,
and spin of carrier wave packets:

fα(r,k) = feq(εk)δαc + ∂feq

∂εk
gα(r,k). (B1)

The representation that we use includes four distributions (α ∈
[d,f,�,c]), where the first three refer to spins polarized along
each axes and the last one refers to the total population. Note
that in the following we refer to α as a spin/charge index. We
approximate the portion of gα(r,k) incident to the interface in
the nonmagnet as follows:

gin
α (0−,k||) = e2ẼτNMvx(k||)δαc. (B2)

Note that k|| denotes the in-plane momentum vector, τNM gives
the momentum relaxation time in the nonmagnet, and Ẽ =
−E/e equals the scaled in-plane electric field. Without loss
of generality we assume that the electric field points along the
x axis. This distribution function weights the occupancy of
carriers such that those moving in the direction opposite to the
electric field outnumber those moving in the same direction.
Therefore, Eq. (B2) captures the charge current that arises from
an electric field. In a ferromagnet, an electric field creates
both a charge and spin current, captured by the following
distribution function instead:

gin
α (0+,k||) = e2Ẽτ FMvx(k||)(δαc − Pδασ m̂σ ). (B3)

Here the index σ ∈ [d,f,�] runs over only the spin compo-
nents. The quantity τ FM gives the momentum relaxation time
in the ferromagnet, while

P = (σ FM
↑ − σ FM

↓ )/σ FM (B4)

equals the polarization in the ferromagnet, given in terms of
the bulk conductivities for majority and minority carriers.

Equations (B2) and (B3) give the anisotropic contributions
to the nonequilibrium distribution function caused by an
in-plane electric field. They are derived from the particular
solution of the Boltzmann equation in the relaxation time
approximation. Here, for numerical simplicity, we assume
the same spherical Fermi surface describes both regions [43]
and both spins in the ferromagnet. The spin-dependent
conductivity in the ferromagnetic material is captured by
different scattering times for majority and minority carriers. In
Appendix D, we generalize the expressions presented in this
Appendix to describe nontrivial electronic structures.

The momentum relaxation times used in Eqs. (B2) and (B3)
are renormalized by bulk spin-flip scattering in the nonmagnet
and account for differing majority and minority relaxation
times in the ferromagnet:

(τNM)−1 = (
τNM

mf

)−1 + (
τNM

sf

)−1
(B5)

(τ FM)−1 = 2
(
τ

FM↑
mf + τ

FM↑
mf

)−1
. (B6)

For the nonmagnet, τNM
mf denotes the mean-free scattering

time while τNM
sf denotes the spin-flip scattering time. For the

ferromagnet, τ
FM↑
mf and τ

FM↓
mf denote the mean-free scattering

times for majority and minority carriers respectively. We
may better approximate Eqs. (B2) and (B3) by forcing
the distribution function to obey outer boundary conditions
as well. In Appendix D we present a more sophisticated
approximation for Eqs. (B2) and (B3) that accomplishes this
by incorporating solutions to the homogeneous Boltzmann
equation.

The outgoing distribution at z = 0− is specified by the
incoming distributions of both sides and interfacial scattering
coefficients:

gout
α (0−,k||) = R−

αβ(k||)gin
β (0−,k||) + T −+

αβ (k||)gin
β (0+,k||).

(B7)

Note that the scattering coefficients depend on magnetization
in general. Likewise, the outgoing distribution at z = 0+ is
expressed as follows:

gout
α (0+,k||) = R+

αβ(k||)gin
β (0+,k||) + T +−

αβ (k||)gin
β (0−,k||).

(B8)

To calculate nonequilibrium quantities on either side of the
interface, we must compute integrals of the distribution
function over the Fermi surface (FS). In terms of the incoming
and outgoing distribution functions, the spin current densities
jE
σ (σ ∈ [d,f,�]) on each side of the interface are

jE
σ (0−) = − c

evF

∫
FS∈in

d2kvz

[
(R−

σβ − δσβ)gin
β (0−)

+ T −+
σβ gin

β (0+)
]

(B9)

jE
σ (0+) = − c

evF

∫
FS∈in

d2kvz

[
(R+

σβ − δσβ)gin
β (0+)

+ T +−
σβ gin

β (0−)
]
, (B10)

where the constant c is given by

c = − e

�

1

(2π )3
. (B11)

Here we write jE
σ in units of number current density. The

phase-coherent spin densities on each side of the interface are

〈
sE
σ (0−)

〉 = − c

evF

∫
FS∈in

d2kT +−
σα gin

α (0−) (B12)

〈
sE
σ (0+)

〉 = − c

evF

∫
FS∈in

d2kT −+
σα gin

α (0+). (B13)

We write these spin densities in units of number density. The
total spin density 〈sE〉 equals the sum of the contributions from
both sides:

〈sE〉 = 〈sE(0−)〉 + 〈sE(0+)〉. (B14)

The spin torque on the magnetization at the interface is given
by

τE = −Jex

�
〈sE〉 × m̂, (B15)
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where Jex equals the exchange energy at the interface. For the
scattering potential given by Eq. (31), Jex becomes

Jex = −�kF uex

m
. (B16)

It is convenient to write the spin current density and spin torque
in terms of the conductivity σσ and torkivity γσ parameters:

jE
σ (0−) = σσ Ẽ (B17)

jE
σ (0+) = γ FM

σ Ẽ (B18)

τE
σ = γ mag

σ Ẽ. (B19)

Using Eqs (B2), (B3), (B7), and (B8) to evaluate Eqs. (B9)–
(B14), one may express these tensors in terms of the
magnetization-dependent scattering coefficients:

σσ (0−) = − ec

vF

∫
FS∈in

d2kvzvx[τNM(R−
σc − δσc)

+ τ FM(T −+
σc − PT −+

σσ ′ m̂σ ′)], (B20)

γ FM
σ = − ec

vF

∫
FS∈in

d2kvzvx[τNMT +−
σc

+ τ FM(R+
σc − δσc − P (R+

σσ ′ − δσσ ′)m̂σ ′)], (B21)

γ mag
σ = −uexec

∫
FS∈in

d2kvxεσσ ′σ ′′m̂σ ′[τNMT +−
σ ′′c

+ τ FM(T −+
σ ′′c − PT −+

σ ′′σ m̂σ )]. (B22)

For σ ∈ [d,f ] we produce the tensors introduced in Sec. II B.
In the same spirit as magnetoelectronic circuit theory, these
tensors represent moments of the scattering coefficients
weighted by velocities. Note that for P = 0 the tensors
describing spin currents do not vanish, so long as the mo-
mentum relaxation times of each region differ and carriers are
subject to interfacial spin-orbit scattering. This suggests that
nonmagnetic interfaces with spin-orbit coupling still behave
as sources of spin current.

APPENDIX C: DISCRETIZED BOLTZMANN EQUATION

The spin-dependent Boltzmann equation is given by

∂fα
∂t

+ ∂r
∂t

∂fα
∂r

+ ∂k
∂t

∂fα
∂k

+ γ εαβγ H ex
β fγ = ∂fα

∂t coll
, (C1)

where Greek letters label spin/charge indices (α,β ∈
[d,f,�,c]) and are implicitly summed over unless otherwise
stated. The fourth term, however, describes spin precession
in a ferromagnet and excludes the charge distribution from
the implicit sums. One may use the semiclassical equations of
motion to determine the following time derivatives

∂r
∂t

= v(k) (C2)

∂k
∂t

= −eE, (C3)

where v denotes the electron velocity and E equals the electric
field. In the limit that the distribution functions are small

perturbations of the Fermi function, i.e.,

fα(k) → feq(εk)δαc + ∂feq
∂εk

gα(r,k) (C4)

we obtain the linearized Boltzmann equation (in steady state)

vz(k)
∂gα(k)

∂z
− eE · vx(k)δαc + γ εαβγ H ex

β gγ (k)

= −Rαα′ (k)gα′(k) +
∫

FS

dk′Pαα′ (k,k′)gα′(k′) (C5)

assuming that any position dependence is restricted to the z

axis. The latter assumption applies to systems with transla-
tional invariance in the x/y plane. Note that all k vectors are
limited to the Fermi surface.

We now treat the Fermi surface as a mesh of NK discrete
vectors, labeled by some index i. Using the following
prescription

k → i (C6)

gα(k) → giα (C7)

Rαα′ (ki) → Ri,αα′ (C8)

Pαα′ (ki,kj ) → Pij,αα′ (C9)

∫
FS

hα(k)dk =
Nk∑
i=1

wih
α
i (C10)

we may write Eq. (C5) as

∂giα

∂z
+

∑
j

Bij,αα′gjα′ = eEδαc

vx,i

vz,i

, (C11)

where

Bij,αα′ ≡ 1

vz,i

[
γ εαβα′Hex

β δij + Ri,αα′δij − wjPij,αα′
]
.

(C12)

Here we assume that E = Ex̂. Note that wi , which transforms
any sum into a Fermi surface integral, depends on the mesh
choice. Combining the indices i and α into a single index, we
may write Eq. (C11) in vector form

∂g

∂z
+ Bg = Ev∗

x (C13)

using the definition

[v∗
x ]iα ≡ e

vx,i

vz,i

δαc, (C14)

where both g and v∗
x contain NT ≡ 4 × NK elements, making

B an NT × NT matrix. The full solution then becomes

g = gP + gH , (C15)

which satisfies

BgP = Ev∗
x (C16)

and

gH =
∑

n

cne
λnzḡn, (C17)
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where λn and ḡn are respectively the NT eigenvalues and eigen-
vectors of the B matrix. The particular solution gP describes
the direct response to an external electric field, whereas gH

represents a linear combination of the NT solutions to the
homogenous Boltzmann equation. Both boundary conditions
and the external electric field determine the coefficients cn.4

Equation (C17) implies that all solutions to the homogenous
equation vary exponentially over position, but may possess
some complicated spin-dependent distribution over k space.

We may also write Eq. (C17) as

gH = Z�(z)c, (C18)

where Z is an NT × NT matrix defined by the column vectors
ḡn,

Z = (ḡ1 ḡ2 · · · ḡNT
) (C19)

�(z) describes the position dependence,

�(z) =

⎛
⎜⎜⎜⎝

eλ1z 0 · · · 0
0 eλ2z · · · 0
...

...
. . .

...
0 0 · · · eλNT

z

⎞
⎟⎟⎟⎠ (C20)

and c is a vector containing the coefficients of expansion for
the homogeneous solutions:

c = (c1 c2 · · · cNT
). (C21)

At z = 0, � yields the identity matrix and Eq. (C15) becomes

g = gP + Zc. (C22)

APPENDIX D: EXACT MODIFICATION OF THE
BOLTZMANN DISTRIBUTION AT INTERFACES

DUE TO AN ELECTRIC FIELD

The previous section describes how to solve the linearized
Boltzmann equation in some bulk region. The total solution
consists of the particular solution and a linear combination
of the homogeneous solutions. The electric field fixes the
strength of the particular solution, while boundary conditions
additionally determine the coefficients of expansion for the
homogeneous solutions (given by cn). For bilayer systems,
the scattering coefficients introduced in Appendix A provide
the appropriate boundary conditions at the interface. They
relate the incoming and outgoing parts of the distribution
functions. However, the incoming and outgoing parts of the
particular solution do not obey these boundary conditions.
Thus, one must construct the correct linear combination
of homogeneous solutions (which form a complete set) to
guarantee that the total distribution function satisfies interfacial
boundary conditions. The total solution changes if the electric
field changes, in part because the electric field modifies

4The eigenvectors ḡn come in pairs with eigenvalues of same
magnitude but opposite sign, except in the case of a vanishing
eigenvalue. Those solutions are paired instead with ḡ0′ = zḡ0 − ḡ0′′ ,
where ḡ0 denotes any solution with zero eigenvalue, ḡ0′ gives its pair
solution, and Bḡ0′′ = ḡ0. Vanishing eigenvalues occur, for instance,
within the relaxation time approximation because the matrix B is
singular.

the particular solution. However, to continue satisfying the
boundary conditions at the interface, the coefficients of
expansion must change as well. Thus, for bilayer systems,
an external electric field modifies both the particular solution
and the coefficients of expansion.

In Appendix B we derive the conductivity and torkivity
tensors by approximating the nonequilibrium distribution
function at the interface. There we assumed that the particular
solution sufficiently described the nonequilibrium distribution
function that results from an external electric field. By
determining how the coefficients of expansion change in
the presence of an external electric field, we obtain a more
sophisticated ansatz of that distribution function. Using the
same procedure presented in Appendix B, but replacing
the particular solution with this more sophisticated ansatz,
one may obtain conductivity and torkivity tensors that better
reproduce the physics of the Boltzmann equation. We empha-
size that this approach does not require one to completely
solve the Boltzmann equation for the bilayer, but is far
more computationally intensive than the approach outlined
in Appendix B.

In the following we consider two regions separated by
an interface, and extract the exact portion of the Boltzmann
distribution modified by an external electric field. For a
given layer, g∗

P and Z characterize the general Boltzmann
distribution. The electric field E and the coefficients of
expansion cn remain undetermined. Here we require that the
k-space mesh of both regions contain NT points. Thus, one
may split any function defined on either Fermi surface into
incoming and outgoing pieces, each of which contain NT /2
elements.

In general, one can model interfacial scattering in terms of
an S matrix, defined by(

gout(0−)
gout(0+)

)
= S

(
gin(0−)
gin(0+)

)
, (D1)

where gin(0±) and gout(0±) denote vectors with dimension NT

2 ,
and describe the incoming and outgoing distribution functions
on each side of the interface. The NT × NT S matrix

S =
(

S−− S−+
S+− S++

)
. (D2)

is defined as follows:

[S−−]ij,αβ = R−
ij,αβ (D3)

[S−+]ij,αβ = T −+
ij,αβ (D4)

[S+−]ij,αβ = T +−
ij,αβ (D5)

[S++]ij,αβ = R+
ij,αβ . (D6)

Here T ±∓
ij,αβ and R±

ij,αβ give components of the S matrix. They
equal the reflection and transmission matrices introduced in
Appendix A.

Since the distribution function includes no quantum phase
information, one cannot assume its continuity at the interface
[i.e. g(0−) �= g(0+)]. In order to obtain the solution of
Eq. (C13), we must solve for the coefficients of expansion in
each region such that the total solution satisfies the scattering
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matrix. To accomplish this we write Eq. (C22) for both regions
in terms of the incoming and outgoing parts:(

gin(0−)
gin(0+)

)
=

(
gin

P (0−)
gin

P (0+)

)

+
(

Zin(0−) 0
0 Zin(0+)

)(
c(0−)
c(0+)

)
, (D7)

(
gout(0−)
gout(0+)

)
=

(
gout

P (0−)

gout
P (0+)

)

+
(

Zout(0−) 0
0 Zout(0+)

)(
c(0−)
c(0+)

)
. (D8)

The vectors c(0±) contain the coefficients of expansion
corresponding to the distribution functions at z = 0±. Notice
that the same coefficients appear in both the incoming and
outgoing equations. In analogy to Eqs. (C19) and (C21), both
Zin(0±) and Zout(0±) denote NT

2 × NT matrices constructed
from the column vectors ḡin(0±) and ḡout(0±), respectively.

Invoking the following convention for any vector h and
matrix H

h =
(

h(0−)
h(0+)

)
H =

(
H (0−) 0

0 H (0+)

)
(D9)

we may write Eqs. (D1), (D7), and (D8) more compactly as

gout − Sgin = 0 (D10)

gin = gin
P + Zinc (D11)

gout = gout
P + Zoutc. (D12)

Note that Zin and Zout are NT × 2NT matrices. Together,
Eqs. (D10)–(D12) provide us with a system of NT equations
to solve for c. However, c contains 2NT coefficients. Without
knowing the outer boundary conditions, one can only solve for
half of the coefficients in terms of the other half. We therefore
separate c into the set of determined cD and undetermined cU

coefficients, which gives:

gin = gin
P + Zin

DcD + Zin
UcU (D13)

gout = gout
P + Zout

D cD + Zout
U cU . (D14)

The matrices Z
in/out
U/D contain column vectors describing either

the determined or undetermined solutions only. As a result,
they represent NT × NT matrices. According to the convention
established in Eq. (D9), both cD and cU are given by

cD =
(

cD(0−)
cD(0+)

)
cU =

(
cU (0−)
cU (0+)

)
, (D15)

and contain coefficients from each region. Finally we define
the vector

bA = gout
A − Sgout

A , (D16)

which quantifies the extent to which the distribution gA

satisfies the S matrix. For example, the b vector corresponding
to the total distribution must vanish, since it satisfies the S

matrix. One may equivalently write Eq. (D16) in terms of

coefficients, i.e.,

bA = PAcA, (D17)

where

PA ≡ Zout
A − SZin

A . (D18)

Using this notation we may rewrite Eq. (D1) as

gout − Sgin = bP + bU + bD. (D19)

= bP + PUcU + PDcD. (D20)

= 0. (D21)

Solving for cD , we have:

cD = T cU + cP , (D22)

where

T ≡ −[PD]−1PU (D23)

cP ≡ −[PD]−1bP . (D24)

Equation (D22) implies the following: if one knows half of
the coefficients, the remaining coefficients are related by the
matrix T (given that PD is invertible), in addition to a piece cP

caused solely by the electric field. The coefficients contained
within cP give the desired modifications to the coefficients of
expansion that are caused by an external electric field.

The portion of the incoming Boltzmann distribution caused
by an external electric field then become

gin
E = gin

P + Zin
DcP . (D25)

Recalling the convention set by Eq. (D9), the vector gin
E

includes distribution functions from both sides of the interface:

gin
E =

(
gin

E (0−)

gin
E (0+)

)
. (D26)

The remaining portion of the incoming Boltzmann distribution
(independent of an external electric field) is given by

gin
Q = [

Zin
U + Zin

DT
]
cU . (D27)

The external electric field E and the undetermined coefficients
[cU ]n serve as input parameters to the full Boltzmann distribu-
tion; the remaining quantities in Eqs. (D25) and (D27) depend
on material properties of the bulk regions and the interface.
In other words, E and [cU ]n now furnish the only degrees of
freedom remaining in the interfacial Boltzmann distributions.

We now discuss how to use this result to improve the
conductivity and torkivity tensors. We remind the reader that
in order to derive those tensors, one must approximate the
nonequilibrium distribution function gin

α (0±,k||) caused by
an external electric field. In Appendix B we approximate
gin

α (0±,k||) using analytical expressions for the particular
solutions, which were given by Eqs. (B2) and (B3). However,
the vectors gin

E (0±) derived here are discrete representations
(over momentum space) of the exact distribution functions
caused by an external electric field. Thus, one could obtain
gin

α (0±,k||) numerically by computing gin
E , rather than using

the particular solutions alone. This more sophisticated ansatz
can be used in place of Eqs. (B2) and (B3) when computing
the conductivity and torkivity tensors.
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