
PHYSICAL REVIEW B 94, 104419 (2016)

Spin transport at interfaces with spin-orbit coupling: Formalism
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We generalize magnetoelectronic circuit theory to account for spin transfer to and from the atomic lattice
via interfacial spin-orbit coupling. This enables a proper treatment of spin transport at interfaces between a
ferromagnet and a heavy-metal nonmagnet. This generalized approach describes spin transport in terms of drops
in spin and charge accumulations across the interface (as in the standard approach), but additionally includes the
responses from in-plane electric fields and offsets in spin accumulations. A key finding is that in-plane electric
fields give rise to spin accumulations and spin currents that can be polarized in any direction, generalizing the
Rashba-Edelstein and spin Hall effects. The spin accumulations exert torques on the magnetization at the interface
when they are misaligned from the magnetization. The additional out-of-plane spin currents exert torques via
the spin-transfer mechanism on the ferromagnetic layer. To account for these phenomena we also describe spin
torques within the generalized circuit theory. The additional effects included in this generalized circuit theory
suggest modifications in the interpretations of experiments involving spin-orbit torques, spin pumping, spin
memory loss, the Rashba-Edelstein effect, and the spin Hall magnetoresistance.
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I. INTRODUCTION

The spin-orbit interaction couples the spin and momentum
of carriers, leading to a variety of important effects in
spintronic devices. It enables the conversion between charge
and spin currents [1,2], allows for the transfer of angular
momentum between populations of spins [3–9], couples
charge transport and thermal transport with magnetization ori-
entation [10–17], and results in magnetocrystalline anisotropy
[18–20]. Many of these effects already facilitate technological
applications. The development of such applications can be
assisted by both predictive (yet complicated) first-principles
calculations and clear phenomenological models, which would
aid the interpretation of experiments and help to predict device
behavior.

In multilayer systems, bulk spin-orbit coupling plays a
crucial role in spin transport but the role of interfacial spin-orbit
coupling remains largely unknown. This uncertainty derives
from the uncharacterized transfer of angular momentum
between carriers and the atomic lattice while scattering from
interfaces with spin-orbit coupling. This transfer of angular
momentum occurs because a carrier’s spin is coupled via
spin-orbit coupling to its orbital moment, which is coupled via
the Coulomb interaction to the crystal lattice. Such interfaces
behave as either a sink or a source of spin polarization
for carriers in a way that does not yet have an accurate
phenomenological description. In this paper we develop a
formal generalization of magnetoelectronic circuit theory to
treat interfaces with spin-orbit coupling. In a companion paper
[21], we extract the most important consequences of this
generalization and show that they capture the dominant effects
found in more complicated Boltzmann equation calculations.

To understand the impact of interfacial spin-orbit cou-
pling we consider a heavy-metal/ferromagnet bilayer, where
in-plane currents generate torques on the magnetization
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through various mechanisms that involve spin-orbit coupling
[6,7,22–25]. For example, bulk spin-orbit coupling converts
charge currents in the heavy metal into orthogonally flowing
spin currents, through a process known as the spin Hall effect
[26–32]. Upon entering the ferromagnetic layer these spin
currents transfer angular momentum to the magnetization
through spin-transfer torques [33–37]. Both the spin Hall
effect and spin-transfer torques have been extensively studied,
but additional sources contribute to the total spin torque.
These remaining contributions arise from interfacial spin-orbit
coupling, which enables carriers of the in-plane charge current
to develop a net spin polarization at the interface [38–43]. In
systems with broken inversion symmetry (such as interfaces)
the generation of such spin polarization is known as the
Rashba-Edelstein effect. This spin polarization can exert a
torque on any magnetization at the interface via the exchange
interaction [7,44]. A recent experiment suggests that this
mechanism can induce magnetization switching alone, without
relying on the bulk spin Hall effect [25].

The spin torque driven by the Rashba-Edelstein effect is
typically studied by confining transport to the two-dimensional
interface. Semiclassical models can capture the direct and
inverse Rashba-Edelstein effects [45–48] in this scenario.
However, such models are not realistic descriptions of bilayers,
in which carriers scatter both along and across the interface.
Since spin transport across the interface is affected by the trans-
fer of angular momentum to the atomic lattice, the resulting
spin torques are modified in ways that two-dimensional models
cannot capture. The various contributions to spin torques in
bilayers remain difficult to distinguish experimentally [23,24]
in part because of the lack of models that accurately capture
interfacial spin-orbit coupling [44].

Interfacial spin-orbit coupling may play an important role in
other phenomena. Spin pumping is one example; it describes
the process in which a precessing magnetization generates
a spin current [8]. In heavy-metal/ferromagnet bilayers, the
pumped spin current flows from the ferromagnet into the
heavy metal, where the inverse spin Hall effect generates
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FIG. 1. (a) A heavy-metal/ferromagnet bilayer subject to an in-plane electric field. The axes directly below the bilayer is used to describe
electron flow, where the z axis points normal to the interface plane. The other axes are used to describe spin orientation, where the direction
� points along the magnetization while the directions d and f span the plane transverse to �. (b) Depiction of the physics described by the
spin mixing conductance. Spins incident from the heavy metal briefly precess around the magnetization when reflecting off of the interface.
The imaginary part of the spin mixing conductance describes the extent of this precession. Interfacial spin-orbit coupling changes the effective
magnetic field seen by carriers during this process in a momentum-dependent way; this alters the precession axis for each carrier and thus
modifies the spin mixing conductance. (c) Depiction of the loss of spin polarization that carriers experience while crossing interfaces with
spin-orbit coupling. Without interfacial spin-orbit coupling, carriers retain the portion of their spin polarization aligned with the magnetization,
but lose the portion polarized transversely to the magnetization due to dephasing processes just within the ferromagnet. With interfacial
spin-orbit coupling, carriers trade angular momentum with the atomic lattice; this leads to changes in all components of the spin polarization.
This phenomenon, known as spin memory loss, affects each component differently. The panel illustrates only the loss in spin polarization
aligned with magnetization. (d) Depiction of interfacial spin-orbit scattering in the presence of an in-plane electric field. Interfacial spin-orbit
coupling allows for spins aligned with the magnetization to become misaligned upon reflection and transmission. For the scattering potential
discussed in Sec. IV, the spin of a single reflected carrier cancels the spin of a single carrier transmitted from the other side of the interface.
However, a net cancellation of spin is prevented if the total number of incoming carriers differs between sides, as can happen in the presence of
in-plane current flow. This occurs because an in-plane electric field drives two different charge currents within each layer; this forces the number
of carriers with a given in-plane momentum to differ on each side of the interface. The scattered carriers then carry a net spin polarization and
a net spin current.

an orthogonal charge current [49–53]. However, because
interfacial spin-orbit coupling transfers spin polarization to
the atomic lattice, it modifies the pumped spin current as it
flows across the interface. This transfer of spin polarization
remains uncharacterized in many systems, thus contributing
to inconsistencies in the quantitative interpretation of exper-
iments [9,54–56]. Another example, known as the spin Hall
magnetoresistance, describes the magnetization-dependent in-
plane resistance of heavy-metal/ferromagnet bilayers [57–63].
Currently this effect is attributed to magnetization-dependent
scattering at the interface, but may also contain a contribution
from interfacial spin-orbit scattering. The impact of interfacial
spin-orbit coupling on these effects remains unclear due to the
absence of appropriate models with which to analyze the data.

Magnetoelectronic circuit theory is the most frequently
used approach to model spin currents at the interface between
a nonmagnet and a ferromagnet. It describes spin transport
in terms of four conductance parameters, where drops in
spin-dependent electrochemical potentials across the interface
play the role of traditional voltages. However, the theory
cannot describe interfaces with spin-orbit coupling because it
does not consider spin-flip processes due to spin-orbit coupling
at the interface. Figure 1(a) depicts a typical scattering
process described by one of these conductance parameters.
Given its success in describing spin transport in normal-
metal/ferromagnet bilayers, generalizing magnetoelectronic
circuit theory to include interfacial spin-orbit coupling would
make it a valuable tool for describing heavy-metal/ferromagnet
bilayers.

To generalize magnetoelectronic circuit theory one must
consider all the ways that interfacial spin-orbit coupling
potentially affects spin transport. One such effect, known as
spin memory loss, describes a loss of spin current across
interfaces due to spin-orbit coupling. We illustrate a process
that contributes to spin memory loss in Fig. 1(b). This loss
occurs when the atomic lattice at the interface behaves as a
sink of angular momentum. Recent work [64] incorporates
this behavior into a theory for spin pumping, but descriptions
of this effect date back to over a decade ago [65–68]. Thus,
generalizing magnetoelectronic circuit theory for interfaces
with spin-orbit coupling requires accounting for spin memory
loss. By incorporating spin-flip processes at the interface into
magnetoelectronic circuit theory, one can treat this aspect of
the phenomenology of interfacial spin-orbit coupling.

Another important consequence of interfacial spin-orbit
coupling is that in-plane electric fields can create spin
currents that flow away from the interface. First-principles
calculations of Pt/Py bilayers suggest that a greatly enhanced
spin Hall effect occurs at the interface (as compared to
the bulk) that could generate such spin currents [69]. This
suggests that in-plane electric fields (and not just drops in
spin and charge accumulations across the interface) must
play a role in generalizations of magnetoelectronic circuit
theory. It also suggests that one cannot confine transport to
the two-dimensional interface when describing the effect of
in-plane electric fields. Instead, one must consider transport
both along and across the interface. Some of the consequences
of this three-dimensional picture have been investigated

104419-2



SPIN TRANSPORT AT INTERFACES WITH SPIN-ORBIT . . . PHYSICAL REVIEW B 94, 104419 (2016)

in multilayer systems containing an insulator [70,71]. The
only semiclassical calculations of three-dimensional metallic
bilayers are based on the Boltzmann equation [44]. Like
spin memory loss, these spin currents must be included in
generalizations of magnetoelectronic circuit theory to fully
capture the effect of interfacial spin-orbit coupling. In the
following we give a semiclassical picture of how such spin
currents arise, and how they exert magnetic torques that are
typically not considered in bilayers.

Figure 1(c) depicts how spins aligned with the magneti-
zation scatter from an interface with spin-orbit coupling. For
the scattering potential discussed in Sec. IV, single reflected
and transmitted spins cancel on each side of the interface.
However, the net cancellation of spin is avoided if the number
of incoming carriers differs between sides. In the simplest sce-
nario, this occurs if the in-plane electric field drives different
currents within each layer, so that the occupancy of carriers
differs on either side for a given in-plane momentum. We find
that through this mechanism, carriers subject to interfacial
spin-orbit scattering can carry a net spin current in addition to
exhibiting a net spin polarization. If the net spin polarization is
misaligned with the magnetization, it can exert a torque on the
magnetization at the interface. This describes the contribution
to the spin torque normally associated with the Rashba-
Edelstein effect (discussed earlier). However, the spin currents
created by interfacial spin-orbit scattering can flow away from
the interface, and those that flow into the ferromagnet exert ad-
ditional torques. Although these spin currents generate torques
via the spin-transfer mechanism, they arise from interfacial
spin-orbit scattering instead of the spin Hall effect. This mech-
anism, which cannot be captured by confining transport to the
two-dimensional interface, is not usually considered when an-
alyzing spin torques in bilayers. However, it can contribute to
the total spin torque in important ways. For instance, it allows
for spin torques generated by interfacial spin-orbit coupling
to point in directions typically associated with the spin Hall
effect. The spin polarization and flow directions of these spin
currents are not required to be orthogonal to each other or
the electric field, unlike the spin currents generated by the
spin Hall effect in infinite bulk systems. More work is needed
to determine how this semiclassical description of interfacial
spin current generation compares with the first-principles
description of an enhanced interfacial spin Hall effect [69].

In this paper, we generalize magnetoelectronic circuit
theory to include interfacial spin-orbit coupling. Not only
does interfacial spin-orbit coupling modify the conductance
parameters introduced by magnetoelectronic circuit theory, it
requires additional conductivity parameters to capture the spin
currents that arise from in-plane electric fields and spin-orbit
scattering. Furthermore, the transfer of angular momentum
between carriers and the atomic lattice at the interface alters
the spin torque that carriers can exert on the magnetization; this
introduces additional parameters that are needed to distinguish
spin torques from spin currents. However, we find that many
of the parameters in this generalized circuit theory may
be neglected when modeling spin-orbit torques in bilayer
systems, and that including the conductivity and spin torque
parameters is more important than modifying the conductance
parameters. As with magnetoelectronic circuit theory, we
provide microscopic expressions for most parameters.

In a companion paper, to highlight the utility of the proposed
theory, we produce an analytical model describing spin-orbit
torques caused by the spin-Hall and interfacial Rashba-
Edelstein effects. We achieve this by solving the drift-diffusion
equations with this generalization of magnetoelectronic circuit
theory. In that paper, we focus on only the parameters that
describe the response of in-plane electric fields, and neglect
all other changes to magnetoelectronic circuit theory. We
show that this simplified approach captures the most important
effects found in Boltzmann equation calculations of a model
system. In this paper, we discuss the complete generalization of
magnetoelectronic circuit theory in the presence of interfacial
spin-orbit coupling.

In Sec. II of this paper we describe spin transport at
interfaces with and without interfacial spin-orbit coupling. In
Sec. III we motivate the derivation of all parameters, leaving
some details for Appendixes A and B. In Sec. IV we perform a
numerical analysis of each boundary parameter for a scattering
potential relevant to heavy-metal/ferromagnet bilayers. This
analysis allows us to determine which parameters matter
the most in these systems. Finally, in Sec. V we discuss
implications of our theory on experiments involving spin-orbit
torque, spin pumping, the Rashba-Edelstein effect, and the spin
Hall magnetoresistance.

II. SPIN AND CHARGE TRANSPORT AT INTERFACES

In the following we discuss the general phenomenology
of spin transport at interfaces with and without spin-orbit
coupling. We first describe some conventional spin transport
models to build up to the proposed model, and refrain from
presenting explicit expressions of any parameters until later
sections.

A. Collinear spin transport

In the absence of spin-flip processes one often assigns
separate current densities for majority (j↑) and minority (j↓)
carriers, i.e.,

j↑ = G↑�μ↑ j↓ = G↓�μ↓. (1)

Here G↑/↓ denotes the spin-dependent interfacial conductance,
while �μ↑/↓ refers to the drop in quasichemical potential
for each carrier population across the interface. We may then
define charge (c) and spin (s) components for the drop in
quasichemical potential

�μc = �μ↑ + �μ↓ (2)

�μs = �μ↑ − �μ↓, (3)

and for the current densities

jc = j↑ + j↓ (4)

js = j↑ − j↓. (5)

across the interface. Using the following modified conductance
parameters

G± = 1
2 (G↑ ± G↓), (6)
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we may rewrite Eq. (1) as(
js

jc

)
=

(
G+ G−
G− G+

)(
�μs

�μc

)
(7)

instead. In this case both spin and charge currents are
continuous across the interface.

B. Magnetoelectronic circuit theory

When describing spin orientation in bulk ferromagnetic
systems, the magnetization direction provides a natural spin
quantization axes. However, at the interface between a non-
magnet and a ferromagnet, the net spin polarizations of each
region need not align. To account for this, one must consider
spins in the nonmagnet that point in any direction. In the
ferromagnet, spins are misaligned with the magnetization near
the interface but become aligned in the bulk. This occurs
because spins precess incoherently around the magnetization;
eventually the net spin polarization transverse to the magne-
tization vanishes. In transition metal ferromagnets and their
alloys, this dephasing happens over distances smaller than the
spin diffusion length.

To describe electron flow and spin orientation in non-
magnet/ferromagnet bilayers, we use two separate coordinate
systems. For electron flow, we choose the x/y plane to lie
along the interface and the z axis to point perpendicular to
it. The interface is located at the z-axis origin, and z = 0−
and z = 0+ describe the regions just within the nonmagnet
and ferromagnet respectively. To describe spin orientation,
we choose the direction � to be along the magnetization
(�̂ = m̂) and the directions d and f to be perpendicular to �̂.
The dampinglike (d) and fieldlike (f ) directions point along
the vectors d̂ ∝ m̂ × [m̂ × (−E × ẑ)] and f̂ ∝ m̂ × (−E × ẑ),
respectively. This provides a convenient coordinate system
for describing spin-orbit torques, because torques with a
dampinglike component push the magnetization towards the
−E × ẑ direction, while those with a fieldlike component force
the magnetization to precess about −E × ẑ.

We first define the spin and charge accumulations at the
interface (μα), where the index α ∈ [d,f,�,c,�∗,c∗] describes
the type of accumulation. The first four indices denote the
spin (d, f , l) and charge (c) accumulations in the nonmagnet
at z = 0−. The last two indices describe the spin (�∗) and
charge (c∗) accumulations in the ferromagnet at z = 0+. In the
ferromagnet we omit spin accumulations aligned transversely
to the magnetization, due to the dephasing processes discussed
above. Note that the charge and spin components of μα have
units of voltage. We then define the spin and charge current
densities flowing out of plane (jzα) in an identical fashion. The
charge and spin components of jzα have the units of number
current density.1 We refer to α as the spin/charge index.

One may redefine any tensor that contains spin/charge
indices in another basis when useful. For instance, we may
write the spin accumulations and spin current densities

1To convert these quantities back into their traditional units, one
must multiply the components describing charge current densities by
−e and those describing spin current densities by �/2.

FIG. 2. Spin current densities plotted versus distance from the
interface, calculated using the drift-diffusion equations. (a) treats the
case without interfacial spin-orbit coupling using magnetoelectronic
circuit theory as boundary conditions, whereas (b) treats the case
with interfacial spin-orbit coupling by using Eq. (12) as boundary
conditions instead. Due to precession-induced dephasing, jzd and
jzf dissipate entirely within the ferromagnet some distance from the
interface (denoted by the purple dashed line). With no interfacial
spin-orbit coupling, the spin current density polarized along the
magnetization (jzl) is conserved, while the spin current densities
polarized transversely (jzd and jzf ) exhibit discontinuities at the
interface. With interfacial spin-orbit coupling, all spin currents are
discontinuous at the interface. Furthermore, interfacial spin-orbit
coupling introduces additional sources of spin current via the
conductivity σiα and torkivity γ FM

σ tensors (when an in-plane electric
field is present). These sources may oppose the spin currents that
develop in the bulk. For example, the inclusion of interfacial spin-orbit
coupling leads jzf to switch signs near to the interface, as seen by
comparing (a) and (b).

with longitudinal spin polarization in terms of averages and
differences across the interface:

�μ� = 1
2 (μ� − μ�∗ ), μ̄� = 1

2 (μ� + μ�∗ ), (8)

�jz� = 1
2 (jz� − jz�∗ ), j̄z� = 1

2 (jz� + jz�∗ ). (9)

We may define similar expressions for the charge accu-
mulations and charge current densities. As we shall see,
this basis (α ∈ [d,f,��,�c,�̄,c̄]) provides a more physically
transparent representation of all quantities.

In the absence of interfacial spin-orbit coupling, the spin
current polarized along the magnetization direction remains
conserved. However, the spin current with polarization trans-
verse to the magnetization dissipates entirely upon leaving the
normal metal. The interface absorbs part of this spin current,
while the remaining portion quickly dissipates within the
ferromagnet due to a precession-induced dephasing of spins.
The total loss of spin current then results in a spin transfer
torque. Figure 2 depicts this process by use of solutions to
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the drift-diffusion equations.2 In this situation, one may show
[72,73] that the spin and charge current densities at z = 0±
become

jzα = GMCT
αβ μβ (10)

for a conductance tensor GMCT
αβ given by

GMCT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d f �l �c l̄ c̄

d Re[G↑↓] −Im[G↑↓] 0 0 0 0

f Im[G↑↓] Re[G↑↓] 0 0 0 0

l̄ 0 0 G+ G− 0 0

c̄ 0 0 G− G+ 0 0

�l 0 0 0 0 0 0

�c 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(11)

This formalism—known as magnetoelectronic circuit
theory—disregards spin currents and accumulations in the
ferromagnet with polarization transverse to the magnetization
(due to the precession-induced dephasing described above).
This amounts to assuming that the processes occurring in the
shaded regions of Fig. 2(b) happen entirely at the interface
instead. While this restriction helps to reduce the number of
required parameters, it need not apply to nonferromagnetic
systems or extremely thin ferromagnetic layers.3 Note that the
rows corresponding to average and discontinuous quantities
are switched from the columns corresponding to those quan-
tities. This is done to emphasize that drops in accumulations
cause average currents in magnetoelectronic circuit theory.

Equation (11) implies that spin populations polarized
transverse to the magnetization decouple from those polarized
longitudinal to it. The charge and longitudinal spin current
densities still obey Eq. (7), whereas the transverse (non-
collinear) spin current densities experiences a finite rotation
in polarization about the magnetization axis. Note that the
spin mixing conductance G↑↓ governs the latter phenomenon.
In general, one obtains all parameters via integrals of the
transmission and/or reflection amplitudes over the relevant
Fermi surfaces.

C. Spin transport with interfacial spin-orbit coupling

To generalize magnetoelectronic circuit theory, i.e.,
Eq. (10), to account for interfacial spin-orbit coupling and

2These plots are intended to illustrate properties of the generalized
circuit theory, and are not meant to model a particular material system.
The computational parameters are taken from Ref. [44], but the
following parameters are altered for visual clarity: λ

↓
F = 6.01 nm,

λN = 7.92188 nm, �sf
N = 36.3453 nm, and uR = 0.4.

3For extremely thin ferromagnetic layers, especially those with sig-
nificant lattice mismatch with their neighboring layers, the bilayer be-
comes difficult to describe using either semiclassical models or coher-
ent quantum calculations. In this situation, a generalization of mag-
netoelectronic circuit theory might be insufficient to quantitatively
describe the system. However, such a theory might still be qualita-
tively useful in predicting experimentally relevant phenomena.

in-plane electric fields, we introduce the following expression
for the spin and charge current densities at the interface:

jiα = Giαβμβ + σiαẼ. (12)

Here we use a scaled electric field defined by Ẽ ≡ −E/e so
that the elements of the tensor σiα have units of conductivity.
Without loss of generality, we assume that the electric field
points along the x axis.

The explosion of new parameters (relative to magneto-
electronic circuit theory) is an unfortunate consequence of
spin-flip scattering at the interface. Like magnetoelectronic
circuit theory, one may express each parameter as an integral
of scattering amplitudes over the relevant Fermi surfaces; to
discover which parameters may be neglected we numerically
study these integrals in Sec. IV. Here, we discuss the
overarching implications of this model. In particular, three
new concepts emerge from the above expression.

First, the current density jiα now includes an index describ-
ing its direction of flow (i ∈ [x,y,z]), which was previously
assumed to be out of plane. In this generalization, a buildup of
spin and charge accumulation at interfaces may lead to spin and
charge currents that flow both in plane and out of plane. The
treatment of in-plane currents close to the interface requires
not only the evaluation of Eq. (12), but also an extension of
the drift-diffusion equations themselves.

Second, Eq. (12) depends on values of the spin and charge
accumulations from each side of the interface, rather than
differences in those values across the interface. This suggests
that currents result from both drops in accumulations and
nonzero averages of spin accumulation at the interface.4

Finally, interfacial spin-orbit scattering results in a conduc-
tivity tensor (σiα) that drives spin currents in the presence of
an in-plane electric field. This feature represents the greatest
conceptual departure from previous theories describing spin
transport and is motivated by results from the Boltzmann
equation. Figure 2 describes how some of these properties
alter solutions of the drift-diffusion equations, as compared
with magnetoelectronic circuit theory.

Without interfacial spin-orbit coupling the in-plane con-
ductance tensors (Gxαβ and Gyαβ ) vanish, implying that accu-
mulations do not create in-plane currents in this scenario. The
conductivity tensor vanishes as well. Spin transport transverse
to the magnetization still decouples from that longitudinal
to it, and magnetoelectronic circuit theory is recovered. In
the presence of interfacial spin-orbit coupling, none of the
tensor elements introduced in Eq. (12) necessarily vanish, and
spin transport in all polarization directions becomes coupled.
However, for the interfacial scattering potential studied in
Sec. IV, many parameters differ by orders of magnitude; thus
certain parameters may be neglected on a situational basis.

D. Spin-orbit torques

Without interfacial spin-orbit coupling, spin and charge
accumulations at an interface create both a spin polarization

4Note, however, that an average charge accumulation amounts to
an offset in electric potential; thus it cannot affect the interfacial spin
currents.
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and spin currents. The spin polarization develops at z = 0 and
exerts a torque on any magnetization at the interface via the
exchange interaction. The spin current that develops at z = 0+
exerts an additional torque by transferring angular momentum
to the ferromagnetic region via dephasing processes. For
simplicity, we assume that this spin current transfers all of
its angular momentum to the magnetization rather than the
bulk atomic lattice. We do so under the assumption that the
dephasing processes within the ferromagnet diminish spin
currents faster than the spin diffusive processes caused by
bulk spin-orbit coupling. All of the incident transverse spin
current is then lost at the interface (z = 0) or in the bulk
of the ferromagnet (z > 0), and carriers can only exchange
angular momentum with the magnetization. Thus, the spin
current at z = 0−, which represents the incident flux of angular
momentum on the magnetized part of the bilayer, equals the
total spin torque on the system. Furthermore, the spin torques
at z = 0 and z > 0 add up to equal the spin current at z = 0−.

However, at interfaces with spin-orbit coupling, the atomic
lattice behaves as a reservoir that carriers may transfer angular
momentum to. In this scenario, carriers exert spin torques on
both the magnetization and the lattice. We cannot compute spin
torques solely from the spin currents described by Eq. (12) if
we are to account for the losses to this additional reservoir of
angular momentum. Thus, we introduce a separate expression
for the total spin torque on the bilayer:

τσ = 
σβμβ + γσ Ẽ, (13)

Note that the index σ ∈ [d,f ] describes the directions trans-
verse to the magnetization, since spin torques only point in
those directions. The tensor 
, known as the torkance, de-
scribes contributions to the spin torque from the buildup of spin
and charge accumulation at an interface. The tensor γ , which
we call the torkivity, captures the corresponding contributions
from an external, in-plane electric field. The torkivity tensor
originates from interfacial spin-orbit scattering, much like the
conductivity tensor introduced earlier.

We may separate the total spin torque into two contribu-
tions:


σβ = 

mag
σβ + 
FM

σβ (14)

γσ = γ mag
σ + γ FM

σ . (15)

The first tensors on the right-hand side of Eqs. (14) and (15)
describe torques exerted by the spin polarization at z = 0.
The second tensors describe the spin torque exerted in the
bulk of the ferromagnet (z > 0). Both torques are exerted on
the magnetization rather than on the atomic lattice. Here we
assume that the torque at z > 0 equals the transverse spin
current at z = 0+ as before. Thus, the spin torques exerted at
z = 0 and z > 0 are both included in the torkance and torkivity
tensors.

Without interfacial spin-orbit coupling, the torkivity tensor
vanishes and the torkance tensor 
σβ becomes identical to
Gzσβ . This indicates that the transverse spin current at z = 0−
equals the total spin torque, as expected. In the presence of
interfacial spin-orbit coupling, the lattice also receives angular
momentum from carriers; in this case 
σβ �= Gzσβ and γσ �= 0.
Thus, by computing the tensors introduced in Eq. (13), one

may calculate spin-orbit torques such that the lattice torques
are accounted for. Furthermore, Eqs. (14) and (15) allow one
to separate the total spin torque into its interfacial and bulk
ferromagnet contributions.

Having now discussed the phenomenology of the gener-
alized circuit theory, we note that Eqs. (12) and (13) apply
to any interface between a ferromagnet and a nonmagnet.
Though we have focused on heavy metals, the nonmagnet
could be an insulator or replaced by a vacuum instead. Thus,
the generalized circuit theory can provide boundary conditions
for multiple interfaces within the same device. Nonmagnetic
metallic interfaces can be handled as well, and are briefly
discussed at the end of the following section.

III. DERIVATION OF BOUNDARY PARAMETERS

Interfacial spin-orbit coupling causes both momentum- and
spin-dependent scattering at interfaces. If the incident distribu-
tion of carriers depends on momentum and/or spin, outgoing
carriers may become spin polarized via interfacial spin-orbit
scattering. This gives rise to nonvanishing accumulations,
currents, and torques, which are related by Eqs. (12) and (13).
We now motivate these relationships, which can be expressed
in terms of scattering amplitudes. We do so by approximating
the nonequilibrium distribution function near the interface.

We first consider the total distribution function fα(k),
which gives the momentum-dependent occupancy of carriers
described by the spin/charge index α. In equilibrium, this dis-
tribution function equals the Fermi-Dirac distribution feq

α (εαk).
Just out of equilibrium, fα(k) is perturbed as follows

fα(k) = feq
α (εαk) + ∂feq

α

∂εαk
gα(k), (16)

where gα(k) denotes the nonequilibrium distribution function.
The equilibrium distribution functions vanish for α ∈ [d,f,�]
since the nonmagnet exhibits no equilibrium spin polarization.
However, the nonequilibrium distribution functions for all
spin/charge indices are generally nonzero.

To obtain the currents and spin torques in Eqs. (12) and (13),
we must evaluate gα(k) near the interface. One could evaluate
gα(k) by solving the spin-dependent Boltzmann equation for
the bilayer system. This approach captures spin transport
both in the bulk and at the interface. However, a simpler
approach is to assume some plausible dependence of gα(k)
on the accumulations and the electric field at the interface.
Through this assumption we directly relate those quantities
to the currents and the spin torques, thereby obtaining the
tensors introduced in Eqs. (12) and (13). These equations
provide boundary conditions for bulk models of spin transport
such as the drift-diffusion equations. In the companion paper,
we show that solving the drift-diffusion equations using these
boundary conditions produces quantitatively similar results
to solving the Boltzmann equations, which explicitly include
such processes.

To be useful for bilayers, the boundary conditions given
by Eqs. (12) and (13) must capture physics absent from the
bulk models. Ideally, these boundary conditions should be
independent of the length scales for which the bulk models
are valid, such as the spin diffusion length. However, the bulk
models do not capture variations on the scale of the mean-
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free path, so Eqs. (12) and (13) must capture this physics
instead. For this reason, the boundary parameters discussed
here depend on momentum relaxation times but not on spin
diffusion lengths.

For simplicity, we assume that spherical Fermi surfaces
describe carriers in both layers. Later we generalize this
formalism to describe nontrivial electronic structures. In the
nonmagnet, all carriers belong to the same Fermi surface. In
the ferromagnet, majority (↑) and minority (↓) carriers belong
to different Fermi surfaces. Thus, we use the spin/charge
basis α ∈ [d,f,�,c,↑,↓], since in this model carriers belong-
ing to those populations have well-defined Fermi surfaces
and velocities. The tensors derived in this section may be
expressed in other spin/charge bases by straightforward linear
transformations.

To approximate gα at the interface we use the following
expression:

gin
α (k||) = −e

(
qα + Ẽf E

α (k||)
)
, (17)

Equation (17) represents the portion of gα incident on the
interface, where k|| denotes the in-plane momentum vector
and e equals the elementary charge. The right-hand side of
Eq. (17) describes two pieces of the incoming distribution
function; Fig. 3 depicts both pieces over k space for each side
of the interface. The first term captures spin/charge currents
incident on the interface. They may arise, for example, from the
bulk spin Hall effect or ferromagnetic leads. The quantities qα

denote the isotropic spin/charge polarization of those currents.
The second term represents the anisotropic contribution to the
distribution function caused by an external electric field. We
remind the reader that the scaled electric field Ẽ points along
the x axis. The simplest approximation for f E

α (k||) is to use the
particular solution of the Boltzmann equation in the relaxation
time approximation:

f E
α (k||) = −evxα(k||) ×

⎧⎪⎨
⎪⎩

0 α ∈ [d,f,�]
τ α = c

τ↑ α = ↑
τ↓ α = ↓

. (18)

This term describes the in-plane charge current caused by
the external electric field, but also describes an in-plane
spin current polarized opposite to the magnetization in the
ferromagnet. The momentum relaxation times in the fer-
romagnet differ between majority (τ↑) and minority (τ↓)
carriers. In the nonmagnet, the momentum-relaxation time (τ )
is renormalized by bulk spin-flip processes (see Appendix A).

The outgoing distribution function

gout
α (k||) = Sαβ (k||)gin

β (k||), (19)

is specified by the incoming distribution function and the
unitary scattering coefficients Sαβ , given by

Sαβ ≡ |vzα(k||)|
|vzβ(k||)|S

′
αβ(k||), (20)

where

S ′
αβ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2 tr[r†σαrσβ] α,β ∈ [d,f,�,c]
1
2 tr[t†σαtσβ] α ∈ [d,f,�,c], β ∈ [↑,↓]
1
2 tr[(t∗)†σαt∗σβ] α ∈ [↑,↓], β ∈ [d,f,�,c]
1
2 tr[(r∗)†σαr∗σβ] α,β ∈ [↑,↓]

.

(21)

Here we define the Pauli vector σα such that σd = σx , σf = σy ,
σ� = σz, and

σc =
(

1 0
0 1

)
, σ↑ =

(
1 0
0 0

)
, σ↓ =

(
0 0
0 1

)
. (22)

The coefficient S ′
αβ gives the strength of scattering for carriers

with spin/charge index β into those with spin/charge index α.
The scattering coefficients depend on the 2 × 2 reflection and
transmission matrices for spins pointing along the magnetiza-
tion axis. In particular, the matrices r∗ and t∗ describe reflec-
tion and transmission respectively into the ferromagnet. The
matrices r and t describe reflection and transmission into the
nonmagnet. Note that the density of states and Fermi surface
area element differ between incoming and outgoing carriers.
Thus, to conserve particle number one must include the ratio of
velocities within the scattering coefficients, as done in Eq. (20).

We obtain all nonequilibrium quantities near the interface
by integrating gα over the relevant Fermi surfaces. We note
that the outgoing part of gα includes the consequences
of interfacial scattering, since it depends on the scattering
coefficients. For example, the interfacial exchange interaction
leads to spin-dependent scattering, which is captured by the
difference in the diagonal elements of the 2 × 2 reflection
and transmission matrices. On the other hand, the interfacial
spin-orbit interaction introduces spin-flip scattering, which is
captured by the off-diagonal elements within these matrices.
Thus, to describe the consequences of interfacial spin-orbit
scattering we must not limit the form of the reflection and
transmission matrices as was often done in the past.

We write the current density jiα for carriers with spin/charge
index α flowing in direction i ∈ [x,y,z] as follows:

jiα = 1

�(2π )3

1

vFα

∫
FSα

d2kviα(k)gα(k). (23)

Note that all integrals run over the Fermi surface corresponding
to the population with spin/charge index α. The quantity vFα

denotes the Fermi velocity for that population. To define the
accumulations μα we follow the example of magnetoelectronic
circuit theory [72,73] and assume that the incoming currents
behave as if they originate from spin-dependent reservoirs.
This implies that the incoming polarization qα approximately
equals the accumulation μα at the interface.

We have now discussed the requirements for deriving the
conductance and conductivity tensors found in Eq. (12). We
obtain these tensors by plugging Eqs. (17) and (19) into
Eq. (23) and noting that qα ≈ μα . In doing so we write
the currents jiα in terms of the accumulations μα and the
in-plane electric field Ẽ. From the resulting expressions one
then obtains formulas for the conductance and conductivity
tensors in terms of the interfacial scattering coefficients. We
outline this remaining process in Appendix A.
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FIG. 3. Nonequilibrium distribution functions gα(k) in the presence of interfacial spin-orbit scattering, resulting from an (a) incident spin
and charge accumulation and an (b) in-plane external electric field. The images depict gα(k) on each side of the interface plotted over k space.
The gray spheres represent the equilibrium Fermi surface. The colored surfaces represent the nonequilibrium perturbation to the Fermi surface,
given by the charge distribution gc(k) (not to scale). The arrows denote the spin distribution gσ (k). The blue and red regions represent the wave
vectors pointing incident and away from the interface respectively. (a) Scenario in which the incident carriers exhibit a net spin and charge
accumulation. The spin-polarization of the outgoing carriers differs from the incident carriers due to interfacial spin-orbit scattering. The total
spin/charge current density (jiα) and the resulting spin torques (τσ ) are related to the total spin/charge accumulation (μα) by the tensors Giαβ

and 
σβ , respectively. (b) Scenario in which the incident carriers are subject to an in-plane electric field. The in-plane electric field drives two
different charge currents on each side of the interface, since each layer possesses a different bulk conductivity. This shifts the occupancy of
carriers (i.e., the charge distribution) differently on each side of the interface. When spin-unpolarized carriers scatter off of an interface with
spin-orbit coupling they become spin polarized. Because the occupancy of incident carriers was asymmetrically perturbed at the interface, a
net cancellation of spin is avoided in even the simplest scattering model. The resulting spin/charge currents and spin torques are captured by
the tensors σiα and γσ , respectively. Note that for a ferromagnetic layer, in-plane electric fields also create incident in-plane spin currents as
well (suppressed for clarity in this figure).

To describe realistic systems we generalize this derivation
in Appendix C to treat nontrivial electronic structures. The
generalized expressions include both interband and intraband
terms, and describe both intrinsic and extrinsic scattering if
interfacial disorder is captured within the scattering matrix.
This enables the boundary parameters to describe Berry’s
phase effects, skew scattering, the side jump mechanism, and
spin swapping.

Having discussed the currents that arise from interfacial
spin-orbit scattering, we now discuss the spin torques caused
by the same phenomenon. The transverse spin polarization at
z = 0 exerts a torque on any magnetization at the interface
via the exchange interaction. The transverse spin current at
z = 0+ exerts a torque by transferring angular momentum to
the ferromagnet. The total spin torque then equals the sum
of these two torques. To describe the spin torque at z = 0,
we must compute the spin polarization at the interface. To
accomplish this we define the following matrix

Tσβ =
{

1
2 tr[(t∗)†σσ t∗σβ] β ∈ [d,f,�,c]
1
2 tr[t†σσ tσβ] β ∈ [↑,↓]

. (24)

which describes phase-coherent transmission from all popula-
tions into transverse spin states at the interface. We may then
compute the ensemble average of spin density 〈sσ 〉 at z = 0 as
follows:

〈sσ 〉 = 1

�(2π )3

∑
β

1

vFβ

∫
FSβ∈ı

d2kTσβ(k||)gin
β (k||). (25)

The torque at z = 0 is then given by

τmag
σ = −

∫ 0+

0−
dz

Jex

�
[〈s〉 × m̂]σ , (26)

where Jex equals the exchange energy at the interface. We
evaluate this integral over the region that describes the
interface, where the exchange interaction and strong spin-orbit
coupling overlap. Note that the cross product [〈s〉 × m̂]σ =
εσσ ′ 〈sσ ′ 〉 is evaluated by computing Eq. (25).

To describe the spin torque at z = 0+, we introduce an
additional scattering matrix:

S̄σβ =
{

1
2 tr[(t∗)†σσ t∗σβ] β ∈ [d,f,�,c]
1
2 tr[(r∗)†σσ r∗σβ] β ∈ [↑,↓]

. (27)

This scattering matrix is used to calculate the transverse spin
current at z = 0+. Since this spin current rapidly dephases, it
contributes entirely to the spin torque exerted on the ferromag-
net. Note that the currents discussed previously corresponded
to carriers with well-defined velocities. However, transverse
spin states in the ferromagnet consist of linear combinations
of majority and minority spin states. Since these spin states
possess different phase velocities, the velocities of transverse
spin states oscillate over position. These states also posses
different group velocities, and wave packets with transverse
spin travel with the average group velocity. The transverse
spin current at z = 0+ then equals

τ FM
σ = 1

�(2π )3

∑
β

∫
2DBZ

dk||
v̄z(k||)
vzβ(k||)

S̄σβ(k||)gin
β (k||), (28)

where

v̄z(k||) ≡ 1
2 (vz↑(k||) + vz↓(k||)) (29)
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gives the average group velocity of carriers in the ferro-
magnet. Note that we write this integral over the maximal
two-dimensional Brillouin zone common to all carriers (see
Appendixes A and B). The total torque then equals the sum of
torques at the interface and in the bulk ferromagnet:

τσ = τmag
σ + τ FM

σ . (30)

As before we assume that the incoming polarizations
approximately equal the accumulations at the interface. Thus,
we obtain τ

mag
σ and τ FM

σ in terms of μα and Ẽ by plugging
Eqs. (17) and (19) into Eqs. (25), (26), and (28). From the
resulting expressions we may define the torkance and torkivity
tensors introduced in Eq. (13). In Appendix B we discuss this
process, and in Appendix C we present generalized expressions
for nontrivial electronic structures.

We note that the conductance and conductivity tensors
describe the charge current and longitudinal spin current in
the ferromagnet, but not the transverse spin currents. In the
ferromagnet, the transverse spin currents dissipate not far
from the interface, while the charge current and longitudinal
spin current can propagate across the entire layer. Thus,
the transverse spin currents in the ferromagnet are best
described as spin torques given by τ FM

σ ; this explains why
we include them in the torkance and torkivity tensors instead
of the conductance and conductivity tensors. If we derive
a similar formalism to describe a nonmagnetic bilayer, spin
currents polarized in all directions should be included in the
conductance and conductivity tensors. With no magnetism,
no spin torques are exerted at or near the interface and the
torkance and torkivity tensors are not meaningful.

IV. NUMERICAL ANALYSIS OF BOUNDARY
PARAMETERS

In the following we numerically analyze the boundary
parameters introduced in Eqs. (12) and (13) in the presence
of an interfacial exchange interaction and spin-orbit scattering.
We do so to provide intuition as to the relative strengths of each
boundary parameter. We use a scattering potential localized
at the interface [44] that is based on the Rashba model of
spin-orbit coupling

V (r) = �
2kF

m
δ(z)[u0 + uexσ · m̂ + uRσ · (k̂ × ẑ)], (31)

where u0 represents a spin-independent barrier, uex governs
the interfacial exchange interaction, and uR denotes the Rashba
interaction strength. Plane waves comprise the scattering wave
functions in both regions.

In Fig. 4 we plot various boundary parameters versus the
exchange interaction strength (uex) and the Rashba interaction
strength (uR). Figures 4(a)–4(c) display individual boundary
parameters, while Figs. 4(d)–4(g) display multiple boundary
parameters for a given tensor. The plots in Figs. 4(d)–4(g)
are arranged as arrays to help visualize the coupling between
spin/charge components. The spin-orbit interaction misaligns
the preferred direction of spins from the magnetization
axis. Thus, no two tensor elements are identical, though
many remain similar. As expected, the coupling between the
transverse spin components and the charge and longitudinal
spin components does not vanish.

The conductance tensor Gzαβ generalizes GMCT
αβ in the pres-

ence of interfacial spin-orbit coupling. Comparison to Eq. (11)
suggests that the parameters Gzdd and Gzdf represent the
real and imaginary parts of a generalized mixing conductance
(G̃↑↓). Each element of the conductance tensor experiences
a similar perturbation due to spin-orbit coupling. However,
the tensor elements from the 2 × 2 off-diagonal blocks in
Fig. 4(d) either vanish or remain two orders of magnitude
smaller than those from the diagonal blocks. This remains
true even for values of uR approaching the spin-independent
barrier strength u0. While these blocks are small for the simple
model treated here, they may become important for particular
realistic electronic structures. The fact that the elements Gz�cα

and Gzαc̄ vanish for all α ensures the conservation of charge
current and guarantees no dependence on an offset to the
charge accumulations. Note that four additional parameters
vanish in the conductance tensor shown in Fig. 4(d); this
occurs because identical scattering wave functions were used
for both sides of the interface when computing the scattering
coefficients. These parameters do not vanish in general.

The results shown in Fig. 4 were computed for a magne-
tization with out-of-plane components. In magnetoelectronic
circuit theory, the parameters are independent of the mag-
netization direction. With interfacial spin-orbit coupling, this
is no longer the case. In general all of the parameters in
Eqs. (12) and (13) depend on the magnetization direction.
However, we find that this dependence is weak for the model
we consider here. For in-plane magnetizations (not shown)
the 2 × 2 off-diagonal blocks vanish, but spin-orbit coupling
still modifies the diagonal blocks in the manner described
above.

In the presence of interfacial spin-orbit coupling the lattice
also receives angular momentum from carriers. This results
in a loss of spin current across the interface, or spin memory
loss, which the elements Gz�lα partly characterize. The com-
putation of these parameters for realistic electronic structures
should help predict spin memory loss in experimentally
relevant bilayers. In particular, spin memory loss might play
a crucial role when measuring the spin Hall angle of heavy
metals via spin pumping from an adjacent ferromagnet [9].
Here Gz�ll̄ provides the strongest contribution to spin memory
loss that is caused by accumulations, and approaches the
imaginary part of the generalized mixing conductance in
magnitude.

Until now, we have discussed the tensors that describe
how accumulations affect transport. However, in-plane electric
fields and spin-orbit scattering create additional currents
that form near the interface. In particular, the conductivity
parameters σiα describe the currents that can propagate into
either layer without significant dephasing. For instance, the
element σzl̄ describes an out-of-plane longitudinal spin current
driven by an in-plane electric field. The element σz�l then gives
the discontinuity in this spin current across the interface. This
discontinuity arises because of coupling to the lattice, and thus
contributes to spin memory loss.

Likewise, the torkivity tensors describe contributions to
the total spin torque that arise from in-plane electric fields
and spin-orbit scattering. This includes the torques exerted
by the spin polarization at z = 0 and by the transverse spin
currents at z = 0+. The tensors γ

mag
σ and γ FM

σ describe these
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FIG. 4. Contour plots of various boundary parameters versus the interfacial exchange (uex) and Rashba (uR) strengths. The magnetization
points away from the electric field 45◦ in-plane and 22.5◦ out-of-plane. Note that the parameters plotted in (a)–(c) describe the scattering
processes illustrated in Figs. 1(a)–1(c). (a) Plot of Gzdf , which generalizes Im[G↑↓] in the presence of interfacial spin-orbit coupling. It
describes a rotation of spin currents polarized transversely to the magnetization. (b) Plot of Gzl̄�l , which contributes to spin memory loss
longitudinal to the magnetization. It varies mostly with uR , since interfacial spin-orbit coupling provides a sink for angular momentum. (c) Plot
of γ FM

d , which describes the out-of-plane, dampinglike spin current created by an in-plane electric field and spin-orbit scattering. It exceeds its
fieldlike counterpart (γ FM

f ); thus, the resulting spin current exerts a (mostly) dampinglike spin torque upon entering the ferromagnet. (d) An
array of contour plots, with each plot shown over an identical range as those in (a)–(c). The plot in row α and column β corresponds to the
parameter Gzαβ . From this one may visualize the coupling between spin/charge indices for this tensor, shown across the parameter space of
the scattering potential given by Eq. (31). The overall structure of Gzαβ resembles that of magnetoelectronic circuit theory, given by Eq. (11).
The corresponding figures for (e) σzα , (f) γ FM

σ , and (g) γ mag
σ are also shown.

torques respectively. Since the transverse spin currents at
z = 0+ quickly dephase in the ferromagnet, we treat them
as spin torques and do not include them in the conductivity
tensor.

To understand how the boundary parameters contribute
to spin-orbit torques, we note that γ

mag
f > γ

mag
d over the

swept parameter space. This implies that the torque exerted
at z = 0 is primarily fieldlike, which agrees with previous
studies of interfacial Rashba spin-orbit torques [44]. However,
we also find that γ FM

d > γ FM
f for strong uR; in this case the

resulting spin current exerts a dampinglike torque by flowing
into the ferromagnet. Both spin torque contributions result
from the interfacial Rashba interaction. This implies that
interfacial spin-orbit scattering provides a crucial mechanism
to the creation of dampinglike Rashba spin torques. In the
companion paper we support this claim by comparing spin-

orbit torques computed using both the drift diffusion and
Boltzmann equations.

V. OUTLOOK

In the previous section we demonstrated that only cer-
tain boundary parameters remain important when modeling
spin-orbit torques. The interfacial conductivity and torkivity
parameters capture physics due to in-plane external electric
fields. They depend on the difference in bulk conductivi-
ties, which are typically easier to estimate than interfacial
spin/charge accumulations. For this reason, calculating the
conductivity and torkivity tensors for a realistically modeled
system should provide direct insight into its spin transport
behavior. In particular, we showed that conductivity and
torkivity parameters strongly indicate the potential to produce
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dampinglike and fieldlike torques. Further studies may yield
significant insight into the underlying causes of these and other
phenomena for specific material systems. Even so, treating
the elements of these tensors as phenomenological parameters
should benefit the analysis of a variety of experiments, which
we discuss now.

(i) Spin pumping/memory loss. Spin pumping experiments
in Pt-based multilayers suggest that the measured interfacial
spin current differs from the actual spin current in Pt, leading
to inconsistent predictions of the spin Hall angle [9,55].
Rojas-Sanchez et al. [9] explain this discrepancy in terms of
spin memory loss while Zhang et al. [55] attribute it to interface
transparency. The latter characterizes the actual spin current
generated at an interface when backscattering is accounted for;
it depends on G↑↓ and does not require interfacial spin-orbit
coupling. Though further experimental evidence is needed
to resolve these claims, the elements of Gzαβ characterize
both spin memory loss and transparency. Figure 4 implies that
transparency depends on interfacial spin-orbit coupling, while
spin memory loss also depends on the interfacial exchange
interaction. Thus, the generalized boundary conditions intro-
duced here unify these two interpretations and allow for further
investigation using a single theory.

(ii) Rashba-Edelstein effect. The inverse Rashba-Edelstein
effect describes the process by which spin-orbit coupling
(in a region of broken inversion symmetry) converts a spin
accumulation into a charge current. This phenomenon could
occur at an interface or in a thin film with strong spin-orbit
coupling. Sanchez et al. [42] measure this effect at the Ag/Bi
interface of a NiFe/Ag/Bi trilayer. In their experiment, a spin
accumulation is generated at the Ag/Bi interface by pumping
a spin current from the NiFe layer through the Ag layer;
the inverse Rashba-Edelstein effect then converts this spin
accumulation into an in-plane charge current. The theoretical
methods that describe this phenomenon to date [38,46–48,70]
assume orthogonality between the polarization of the spin
accumulation and the direction of the charge current flow.
However, the conductance tensor introduced here shows that
this restriction is not a strict requirement, and that the strength
of the Rashba-Edelstein effect is given by a tensor rather than a
single parameter. To model the experiment of Ref. [42] using
the drift-diffusion equations, one could use the generalized
circuit theory as boundary conditions at the Ag/Bi interface.
Consideration of the entire trilayer may not be necessary,
since minimal spin relaxation occurs in the Ag layer due to
a spin diffusion length that far exceeds the layer thickness
[42,74]. The conductance tensor elements Gxcβ (which could
be computed using first-principles calculations of the Ag/Bi
interface) then determine the strength of conversion between
the various spin accumulations and the generated in-plane
charge current.5

(iii) Spin Hall magnetoresistance. The conductivity tensor
also leads to in-plane charge currents. These currents depend

5In the drift-diffusion approach, as in existing two-dimensional
models, the in-plane charge current generated by the inverse Rashba-
Edelstein effect is a sheet current confined to the interface. In this
case, the units of the relevant elements of the conductance tensor
differ by a factor of length.

on magnetization direction via the scattering amplitudes, and
thus suggest a new contribution to the spin Hall magnetoresis-
tance based on the Rashba effect in addition to that from the
spin Hall effect. Preliminary calculations of this mechanism
suggest a magnetoresistance in Pt/Co of a few percent, which
is comparable or greater than experimentally measured values
in various systems [60–63].

We expect that the most useful approach for interpreting
experiments as above is to treat the new transport parameters
as fitting parameters. In the future, this approach can be
checked by calculating the parameters from first principles
[75,76] as has been done for magnetoelectronic circuit theory.
This requires computing the boundary parameters for realistic
systems using the expressions given in Appendix C. Such
calculations would provide a useful bridge between direct
first-principles calculations of spin torques [77–80] and drift-
diffusion calculations done to analyze experiments.

To conclude, we present a theory of spin transport at
interfaces with spin-orbit coupling. The theory describes
spin/charge transport in terms of resistive elements, which
ultimately describe measurable consequences of interfacial
spin-orbit scattering. In particular, the proposed conductivity
and torkivity tensors model the phenomenology of in-plane
electric fields in the presence of interfacial spin-orbit coupling,
which was previously inaccessible to the drift-diffusion equa-
tions. We calculate all parameters in a simple model, but also
provide general expressions in the case of realistic electronic
structure. We found that elements of the conductivity and
torkivity tensors are more important than the modifications of
other transport parameters (such as the mixing conductance) in
many experimentally relevant phenomena, such as spin-orbit
torque, spin pumping, the Rashba-Edelstein effect, and the
spin Hall magnetoresistance.
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APPENDIX A: DERIVATION OF THE CONDUCTANCE
AND CONDUCTIVITY TENSORS

To derive the conductance and conductivity tensors we must
approximate the distribution function fα(k) at the interface.
The distribution function gives the momentum-dependent
occupancy of carriers described by the spin/charge index
α. Just out of equilibrium, it is perturbed by the linearized
nonequilibrium distribution function gα(k), as seen in Eq. (16).
In the following we complete the derivation begun in Sec. III.

We write the portion of gα(k||) incident on the interface
as done in Eq. (17). The first term on the right-hand side
of Eq. (17) captures the spin and charge currents incident
on the interface, while the second term gives an anisotropic
contribution caused by an external electric field. As discussed
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in Sec. III, the simplest approximation for gα(k||) is to use the
particular solution of the Boltzmann equation in the relaxation
time approximation, given by Eq. (18). The momentum
relaxation times that we use account for differing majority (τ↑)
and minority (τ↓) relaxation times in the ferromagnet, and are
renormalized by bulk spin-flip scattering in the nonmagnet:

(τ )−1 = (τmf)
−1 + (τsf)

−1. (A1)

We may better approximate Eq. (18) by forcing the distribution
function to obey outer boundary conditions as well. In the com-
panion paper we present a more sophisticated approximation
for Eq. (18) that accomplishes this by using solutions to the
homogeneous Boltzmann equation.

The outgoing distribution, given by Eq. (19), is specified by
the incoming distribution and the scattering coefficients Sαβ .
The scattering coefficients are given by Eq. (20) and Eq. (21).
Here we compute nonequilibrium accumulations analogously
to the currents defined by Eq. (23),

μα = −1

e

1

AFSα

∫
FSα

d2kgα(k), (A2)

where μα denotes the accumulation. Furthermore, AFSα
gives

the Fermi surface area while vFα
gives the Fermi velocity. The

quantities just defined apply to the population with spin/charge
index α. Likewise, all integrals are evaluated over the Fermi
surface that corresponds to the spin/charge index α. Note that
we express the accumulations in units of voltage and the
current densities in units of number current density. Using
Eqs. (19) and (20) we may rewrite these expressions as
integrals over the maximal two-dimensional Brillouin zone
common (2DBZ) to all carriers

μα = −cμ

e

∑
β

∫
2DBZ

dk||
1

vzα(k||)
(δαβ + Sαβ)gin

β (k||) (A3)

jiα = −cj

e

∑
β

∫
2DBZ

dk||
viα(k||)
vzα(k||)

(δαβθiz + Sαβ)gin
β (k||),

(A4)

where

cμ ≡ vFα

AFSα

, cj ≡ − e

�(2π )3
. (A5)

Note that the velocities correspond to outgoing carriers. The
factor θiz ≡ (1 − 2δiz) accounts for the fact that incoming and
outgoing currents have the opposite sign for i = z but the
same sign for i ∈ [x,y]. By integrating over the maximal two-
dimensional Brillouin zone we encounter evanescent states,
since k|| vectors not corresponding to real Fermi surfaces have
imaginary kz values. Here we neglect the contributions to the
currents and accumulations due to evanescent states. Such
contributions vanish very close to the interface.

We must now express the accumulations and currents in
terms of the incoming polarizations and the in-plane electric
field. Plugging Eqs. (17) and (19) into Eqs. (A3) and (A4), we
obtain the following:

μα = Aαβqβ + aαẼ (A6)

jiα = Biαβqβ + biαẼ, (A7)

where the tensors that contract with the incident spin/charge
polarization are given by

Aαβ = cμ

∫
2DBZ

dk||
1

vzα

(δαβ + Sαβ ) (A8)

Biαβ = cj

∫
2DBZ

dk||
viα

vzα

(δαβθiz + Sαβ) (A9)

while the tensors that multiply the in-plane electric field
become

aα = cμ

∑
β

∫
2DBZ

dk||
1

vzα

(δαβ + Sαβ)f E
β (A10)

biα = cj

∑
β

∫
2DBZ

dk||
viα

vzα

(δαβθiz + Sαβ)f E
β . (A11)

In the same spirit as magnetoelectronic circuit theory, these
tensors represent moments of the scattering coefficients
weighted by velocities.

To determine exactly how the currents depend on the
accumulations, we solve for jiα in terms of μα . Doing so
yields the following conductance and conductivity tensors

Giαβ = Biαγ [A−1]γβ

σiα = biα − Giαβaβ.

To further simplify these expressions, we follow the example
of magnetoelectronic circuit theory [72,73] and assume that
the incoming spin currents behave as if they originate from
spin-dependent reservoirs. This implies that the incoming spin
polarization qα equals the quasichemical potential μα at the
interface. For this to be true, we must find that Aαβ ∝ δαβ and
aαβ = 0 by inspection of Eq. (A6). These relationships hold if
one evaluates Eqs. (A8) and (A10) over the incoming portion
of the Fermi surface only. We find that the contributions from
the outgoing portion of the Fermi surface cancel to a good
approximation, which suggests that:

Giαβ = Biαβ (A12)

σiα = biα. (A13)

The above equations give simpler expressions for the conduc-
tance and conductivity tensors in terms of interfacial scattering
coefficients.

APPENDIX B: DERIVATION OF THE TORKANCE
AND TORKIVITY TENSORS

To describe the spin torque at z = 0, we must compute the
ensemble average of spin density 〈sσ 〉 using Eq. (25). The
resulting torque is given by Eq. (26). To describe the spin
torque at z = 0+, we must calculate the transverse spin current
in the ferromagnet using Eqs. (28) and (29). We then express
the spin torque in terms of the incoming polarizations and
the in-plane electric field by plugging Eqs. (17) and (19) into
Eqs. (25), (26), and (28). In doing so we obtain

τσ = Cσβqβ + cσ Ẽ, (B1)
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where

Cσβ = CFM
σβ + C

mag
σβ (B2)

cσ = cFM
σ + cmag

σ (B3)

describes the separation of the spin torque into its bulk
ferromagnet and interface contributions. The tensors that
contract with the incident spin/charge polarization are given by

CFM
σβ = cj

∫
2DBZ

dk||
v̄z

vzβ

S̄σβ, (B4)

C
mag
σβ = −Jex

�
cj

∑
σ ′

∫
2DBZ

dk||
1

vzβ

εσσ ′Tσ ′β, (B5)

while the tensors that multiply the in-plane electric field
become

cFM
σ = cj

∑
β

∫
2DBZ

dk||
v̄z

vzβ

S̄σβf E
β . (B6)

cmag
σ = −Jex

�
cj

∑
β

∫
2DBZ

dk||
1

vzβ

εσσ ′Tσ ′βf E
β , (B7)

where the velocity v̄z(k||) corresponds to the outgoing portion
of the Fermi surface in the ferromagnet.

As we did for the currents, we solve for τσ in terms of μα .
Doing so yields the following torkance and torkivity tensors


σβ = Cσγ [A−1]γβ

γσ = cσ − 
σβaβ.

The torkance tensor describes the contribution to the total spin
torque that arises from the accumulations at the interface. The
torkivity tensor describes the subsequent contribution from
interfacial spin-orbit scattering when driven by an in-plane
electric field. Following the arguments made for Eq. (A12):


σβ = Cσβ (B8)

γσ = cσ . (B9)

As seen in the companion paper, this approximation produces
good agreement with the interfacial charge currents, spin cur-
rents, and spin torques computed via the Boltzmann equation.

APPENDIX C: BOUNDARY PARAMETERS FOR
REALISTIC INTERFACES

To generalize the expressions from the previous section to
include electronic structure, we must consider the nonequilib-
rium distribution function for all bands relevant to transport:

fmα(k) = feq
mα(εmαk) + ∂feq

mα

∂εmαk
gmα(k). (C1)

Here m describes the spin-independent band number and α

denotes the spin/charge index. If the case of a nonmagnet,
for each spin-independent band there are two degenerate
states. Linear combinations of these states can produce phase-
coherent spin states that point in any direction. Thus, for the
nonmagnet, the spin/charge index should span α ∈ [d,f,�,c],

where the � direction is aligned with the magnetization in the
neighboring ferromagnet for convenience. In the ferromagnet
all bands are nondegenerate, so each state possesses a different
phase velocity. As a result, linear combinations of these
states have spin expectation values that oscillate over position,
complicating the description presented above. There is no
natural pairing of nondegenerate spin states. However, if states
are quantized along a particular axis, the spin accumulations
and spin currents with polarization along that axis are well
defined regardless of the choice of pairing. Thus, for each spin-
independent band in the ferromagnet, the spin/charge index
spans the states describing majority and minority carriers, i.e.,
α ∈ [↑,↓].

We generalize the approximate distribution function
f E

mα(k||) caused by an external electric field to allow for
a band dependence. We do so because the velocities now
depend on band number and the scattering times may as well.
However, we assume that the incoming polarization qα does
not depend on band number; thus we treat incident currents as
if they originate from spin-dependent (but not band-dependent)
reservoirs. The momentum relaxation times for each spin-
independent band in the nonmagnet are renormalized using
Eq. (A1).

To account for coherence between bands, we begin with
a more general expression for the ensemble average of the
outgoing current:

〈〈
j out
iα

〉〉 = 1

�

∑
mnn′β

∫
2DBZ

dk||
gin

mβ

|vmzβ | tr
[
(sn′m)†J out

n′n,iαsnmσβ

]
.

(C2)

We note that Eq. (C2) includes both interband and intraband
terms, both of which could significantly contribute to the
boundary parameters. Here s stands for reflection or trans-
mission, depending on what region(s) incoming and outgoing
carriers are from. The indices m and β correspond to incoming
carriers, while n, n′, and α describe the outgoing carriers. The
current operator J out

n′n,iα is given by

J out
n′n,iα = i�

2m

∫
2DPC

dr||(�n′k)†(
←−
∂i σα − σα

−→
∂i )�nk, (C3)

where the integral runs over a two-dimensional slice of the
primitive cell (aligned parallel to the interface). The 2 × 2
matrix �nk is defined for outgoing modes in the ferromagnet
as

�nk = eik||·r||

(
u

↑
nk(r)eik

↑
nzz 0

0 u
↓
nk(r)eik

↓
nzz

)
, (C4)

where u
↑/↓
nk (r) and k

↑/↓
nz denote the Bloch wave function and

out-of-plane wave vector for majority/minority carriers. Both
are defined at k|| on the Fermi surface corresponding to band
n. For outgoing modes in the nonmagnet, �nk simplifies to:

�nk = eik||·r||eiknzzunk(r)I2×2. (C5)

The incoming current is defined as follows:

〈〈
j in
iα

〉〉 = 1

�

∑
mβ

∫
2DBZ

dk||
gin

mβ

|vmzβ | tr
[
J in

m,iασβ

]
, (C6)
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where

J in
m,iα = θiz

i�

2m

∫
2DPC

dr||(�mk)†(
←−
∂i σα − σα

−→
∂i )�mk (C7)

gives the current operator for the incoming current. The total
current is then〈〈

jiα

〉〉 = 〈〈
j in
iα

〉〉 + 〈〈
j out
iα

〉〉
= 1

�

∑
mnn′β

∫
2DBZ

dk||
gin

mβ

|vmzβ |

× tr
[(

θizJ
in
m,iα + (sn′m)†J out

n′n,iαsnm

)
σβ

]
, (C8)

where the choice of scattering matrix depends on the incoming
spin/charge index β and outgoing spin/charge index α as
follows:

snm =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

rnm α,β ∈ [d,f,�,c]
tnm α ∈ [d,f,�,c], β ∈ [↑,↓]

t∗nm α ∈ [↑,↓], β ∈ [d,f,�,c]

r∗
nm α,β ∈ [↑,↓]

. (C9)

By plugging in the generalizations of Eqs. (17) and (18) into
Eq. (C8), we find that Eq. (A9) generalizes to the following:

Biαβ = − e

�

∑
mnn′

∫
2DBZ

dk||
1

|vmzβ |

× tr
[(

θizJ
in
m,iα + (sn′m)†J out

n′n,iαsnm

)
σβ

]
(C10)

while Eq. (A11) now becomes:

biα = − e

�

∑
mnn′β

∫
2DBZ

dk||
f E

mβ

|vmzβ |

× tr
[(

θizJ
in
m,iα + (sn′m)†J out

n′n,iαsnm

)
σβ

]
. (C11)

Assuming as before that the incoming spin currents behave
as if they originate from spin-dependent reservoirs (μα ≈ qα),
we have:

Giαβ = Biαβ (C12)

σiα = biα. (C13)

Thus, Eqs. (C10) and (C11) generalize the conductance
and conductivity tensors, respectively, to include nontrivial
electronic structure.

The transverse spin current that develops in the ferromagnet
at z = 0+ may be obtained by using similar expressions. The
tensor CFM

σβ , originally given by Eq. (B4), now becomes

CFM
σβ = − e

�

∑
mnn′

∫
2DBZ

dk||
1

|vmzβ |

×
{

tr
[
(t∗n′m)†J out

n′n,zσ t∗nmσβ

]
β ∈ [d,f,�,c]

tr
[
(r∗

n′m)†J out
n′n,zσ r∗

nmσβ

]
β ∈ [↑,↓]

. (C14)

Likewise, the tensor cFM
σ , first described by Eq. (B6), general-

izes to the following:

cFM
σ = − e

�

∑
mnn′β

∫
2DBZ

dk||
f E

mβ

|vmzβ |

×
{

tr
[
(t∗n′m)†J out

n′n,zσ t∗nmσβ

]
β ∈ [d,f,�,c]

tr
[
(r∗

n′m)†J out
n′n,zσ r∗

nmσβ

]
β ∈ [↑,↓]

. (C15)

Evaluating the trace in Eq. (C15) gives the ensemble average of
velocity for the transverse spin states in the ferromagnet. Here
we do not assume that the velocity of these states equals the
average velocity of majority and minority carriers. However,
for the simple model discussed in the previous section, one
can show that the current operator J out

n′n,zσ simplifies to the
following:

J out
n′n,zσ → J out

zσ ∝ 1
2 (vz↑ + vz↓)σσ . (C16)

In this scenario, Eqs. (C14) and (C15) reduce to Eqs. (B4) and
(B6) as expected. This justifies the use of the average velocity
to describe transverse spin states in the simple model. For
μα ≈ qα we have:


FM
σβ = CFM

σβ (C17)

γ FM
σ = cFM

σ . (C18)

Thus we have generalized the torkance and torkivity tensors
that describe bulk ferromagnet torques for nontrivial electronic
structures.

For realistic systems, the interface should be modeled over a
few atomic layers so that an exchange potential and spin-orbit
coupling may simultaneously exist. If these atomic layers
make up the scattering region used to obtain the scattering
coefficients, then the expressions presented here describe the
currents on either side of the interface as intended. However,
in order to describe the interfacial torque, the tensors C

mag
σβ

and c
mag
σ must be written as sums of the layer-resolved

torques within the interfacial scattering region. We save the
generalization of Eqs. (B5) and (B7) for future work, since in
this paper we treat the interface as a plane rather than a region
of finite thickness.

APPENDIX D: BOUNDARY PARAMETERS RELEVANT
TO BILAYER SPIN-ORBIT TORQUES

In Sec. IV, we numerically analyze each boundary pa-
rameter for an interfacial scattering potential that includes
the exchange interaction and spin-orbit coupling. We find
that many parameters differ by several orders of magnitude.
In the companion paper, we use this information to derive
an analytical drift-diffusion model of spin-orbit torques in
heavy-metal/ferromagnet bilayers. In the following we discuss
the minimal set of parameters crucial to that solution.

Table I includes six parameters important to the interface
of heavy-metal/ferromagnet bilayers. Along with the spin
diffusion length (lsf), the bulk conductivity (σ NM

bulk), and the spin
Hall current density (j sH

d ) in the nonmagnet, they describe all
of the phenomenological parameters used by the analytical
drift-diffusion model in the companion paper. The first two
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TABLE I. Table of phenomenological parameters relevant to the
drift-diffusion model of spin-orbit torque developed in the companion
paper, chosen by the numerical study performed in Sec. IV. All other
boundary parameters are discarded in that model. As can be seen in
Sec. III A of the companion paper, the first four parameters govern the
total spin torque thickness dependence, while the last two parameters
describe the spin torque’s zero-thickness intercept. Note that here all
boundary parameters obey the sign convention that positive currents
flow towards from the ferromagnet.

Parameter Value

Effective mixing conductance
Re[G̃↑↓] Gzdd or Gzff

Im[G̃↑↓] Gzdf or Gzf d

Spin current due to interfacial spin-orbit scattering
jE
d (0−) σzdẼ

jE
f (0−) σzf Ẽ

Spin torque on the lattice at the interface
τ latt
d (σzd − γd )Ẽ

τ latt
f (σzf − γf )Ẽ

parameters are the real and imaginary parts of the spin
mixing conductance. The generalized version of these
parameters may be extracted from the conductance tensor
Gzαβ . Numerical studies show that these parameters depend
weakly on magnetization direction. In the companion paper,
the ungeneralized spin mixing conductance is used. The
parameters jE

d (0−) and jE
f (0−) denote the interfacial spin

currents just within the nonmagnet that arise due to in-plane

electric fields and spin-orbit scattering. In analogy to the bulk
spin Hall current, these parameters act as sources of spin
current for the drift-diffusion equations. Thus, in the absence
of jE

d (0−), jE
f (0−), and j sH

d , all bulk currents and accumulations
vanish. In addition to the spin mixing conductance, these
parameters determine the nonmagnet thickness dependence
of spin-orbit torques. The final two parameters give the
approximate loss of angular momentum to the interface. They
equal the dampinglike and fieldlike spin-orbit torques in the
limit of vanishing nonmagnet thickness. They are derived by
subtracting the interfacial torque from the loss in out-of-plane
spin current density across the interface. Our numerical
analysis suggests that spin and charge accumulations cause
negligible differences in these two quantities. Thus, we assume
that τ latt

d and τ latt
f stem primarily from spin-orbit scattering at

the interface. The treatment of the lattice torque presented in
the companion paper begins from this assumption.

The model introduced in the companion paper generalizes
the drift-diffusion model used in Ref. [44] to include interfacial
spin-orbit effects. Only two additional phenomenological
parameters [jE

d (0−) and jE
f (0−)] are required to capture

the nonmagnet thickness dependence, while an additional
two parameters (τ latt

d and τ latt
f ) describe the corresponding

zero-thickness intercept. Table I provides formulas for these
phenomenological parameters in terms of the boundary pa-
rameters contained within Eqs. (12) and (13). We note that in
magnetoelectronic circuit theory, the conductance parameters
are given by sums of interfacial scattering coefficients over
the available scattering states. All of the boundary parameters
introduced here possess a similar form, as discussed in
Appendixes A, B, and C.
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