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Simultaneous resolution of the micromagnetic and spin transport equations applied
to current-induced domain wall dynamics
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In this paper, we use simulations to study current-induced domain wall dynamics by simultaneously resolving
the spin transport and micromagnetic equations for a three-dimensional ferromagnetic strip. In contrast to local
approaches, which neglect mutual interaction between spins and magnetic moments, our approach recalculates
the spin distribution at each time step using the generalized drift diffusion model, which takes the transverse
spin absorption phenomenon into account. We quantified the differences between a local approach and treatment
based on a self-consistent method by plotting the domain wall velocity as a function of the domain wall width. We
also characterized the domain wall velocity and the Walker breakdown condition as a function of the transverse
spin absorption length l⊥, which plays a crucial role in domain wall dynamics.
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I. INTRODUCTION

The interaction between itinerant electron spins and non-
trivial magnetic textures, such as magnetic domain walls,
is of great interest, not only for basic research, but also
for storage applications [1], and in the design of logical
devices [2]. Current-induced domain wall motion within
ferromagnetic materials has been extensively studied both
through simulations and experiments (for a review see [3] and
references therein). The spin-transfer torque created by the
spin-polarized current acts on the magnetic moments and can
thus move the domain wall. In general, the spin-transfer effect
is nonlocal due to the mutual interaction between magnetic
and electron spin subsystems. Whatever the model type or
geometry, allowing for feedback from the magnetization
dynamics to the electron spin transport and back can be
quite tricky and time consuming [4–9]. For this reason,
most theoretical studies of domain wall dynamics over the
last decade have used local approximations which neglect
the mutual interaction between electron spins and magnetic
moments. For example, the spin-transfer torque calculated
using the drift-diffusive (DD) model [10,11] can be expressed
as a function of local magnetization in the case of slowly
varying magnetic texture similar to what is described in
Thiaville et al. [12]. A local approach considerably simplifies
resolution of the magnetization dynamics equation [12–17]
and gives access to the qualitative analytical description of the
domain wall behavior [18]. However, local approximations are
not compatible with systems with high magnetic gradients,
and in particular those with short domain walls or vortices.
Indeed, among other things, these approximations do not
capture how velocity is affected by the domain wall width, as
predicted by theory [19]. Moreover, the initial DD model and
its equivalents omit the transverse spin absorption resulting
from loss of coherence between different directions of the
electron propagation. This ballistic phenomenon is related to
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the ferromagnetic band structure and cannot be neglected when
investigating current-induced domain wall dynamics. To take
transverse spin absorption into account, Petitjean et al. [20]
developed the generalized drift diffusion (GDD) model based
on the continuous random matrix theory [21,22]. The GDD is
a generalization of the Valet-Fert theory [23].

In this paper, we describe a study of three-dimensional
(3D) transverse domain wall dynamics based on resolution of
the equations for the GDD model [20] and simultaneously
the magnetization dynamics equations in a micromagnetic
approach [24]. We show that transverse spin absorption,
omitted in the simple DD model, plays a crucial role when
calculating the domain wall driving force. Because of this
crucial role, our results described here are quite different from
those reported in previous self-consistent studies based on the
DD model [5]. We also determined how domain wall velocity
increases with decreasing domain wall width, a phenomenon
which was predicted theoretically [19] but is omitted when
applying local approximations.

II. MODEL

A. Spin transport model

In this section, we briefly introduce the GDD theory
equations [20] implemented in our software. Similar to initial
DD theory expressions for the charge current jc

k (�r) and the
spin current jsk(�r), our equations include spatial derivatives of
the local charge potential μc(�r) and the spin chemical potential
(or spin accumulation) μ(�r)

jc
k = −l∂kμc − P l(m · ∂kμ), (1)

jsk = −lP ∂kμcm − l∂kμ − g1l
2
∗ l

−1
L (m × ∂kμ)

+ g2l∗m × (m × ∂kμ). (2)

Here, the charge and spin currents as well as the charge po-
tential and the spin chemical potential are expressed in energy
units. The index k = x,y,z stands for the spatial coordinates
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with spatial derivative ∂k = ∂/∂k, P for the polarization, l∗
for the average mean free path, and l = (1 − P 2)−1l∗ [25].
The unit vector m(�r) points along the local direction of mag-
netization. The spin current expression [Eq. (2)] contains two
supplementary terms compared to simple DD theory. These
two terms are proportional to the cross product (m × ∂kμ).

Their algebraic factors g1 = [(1 + l∗l−1
⊥ )

2 + (l∗l−1
L )

2
]−1 and

g2 = g1(1 + l∗l−1
⊥ ) − (1 − P 2)−1 are a combination of mate-

rial parameters and characteristic lengths, including the spin
coherence length l⊥ and the spin precession length lL.

In a stationary regime [26], the equations for the charge and
the spin current conservation can be written as follows:∑

k

∂kj
c
k = 0, (3)

∑
k

∂kjsk = − l∗
l2
sf

μ − 1

l⊥
(m × μ) × m + 1

lL
(m × μ). (4)

Here, lsf corresponds to the spin flip diffusion length. The
simple vector product in Eq. (4) divided by lL represents
spin precession similar to the initial DD model [11]. The
double vector product in Eq. (4) divided by l⊥ introduces
the absorption of the transverse spin component to the
magnetization vector. This parameter was omitted in previous
DD theories, although several authors did suggest including
a similar phenomenological term [19,27,28] without spin
current renormalization. According to the GDD model, the
spin transverse component decays approximately over the
length scale l⊥ and precesses around the magnetization vector
over a lL length scale in a nontextured magnet with ∂km = 0.

Both cross product terms in Eq. (4) contribute to the
total spin-transfer torque density τ and introduce the mutual
interaction between the magnetization and the conducting
electron spins as follows:

τ = �

2e2l∗ρ

[
1

l⊥
(m × μ) × m − 1

lL
(m × μ)

]
, (5)

where � is the Planck constant, e is the electron charge, and ρ

is the resistivity.

B. Magnetization dynamics

In order to study domain wall dynamics, we completed
Eqs. (1)–(5) with the Landau-Lifshitz-Gilbert (LLG) equation
in a micromagnetic approach augmented with the spin-transfer
torque term

∂m
∂t

= −γ0(m × Heff) + α

(
m × ∂m

∂t

)
+ 2μB

MS�
τ . (6)

We used the following notations for the physical parameters
and constants: γ0 for the gyromagnetic ratio, μB for the Bohr
magneton, Heff for the effective field (including the exchange
and the demagnetizing fields), α for the Gilbert damping factor,
and MS for the saturation magnetization.

C. Self-consistent approach

In our numerical self-consistent approach, the micromag-
netic [Eq. (6)] and spin transport equations [Eqs. (1)–(5)]

FIG. 1. (a) Geometry studied. (b) Thiele domain wall width as a
function of the strip width w for L = 1000 nm and d = 5 nm. (c) Two-
dimensional (2D) snapshot of simulated longitudinal magnetization
mz. (d) Simulated longitudinal magnetization mz as a function of z for
w = 120 nm (gray) and analytical 1D Bloch distribution with �B =
30 nm (solid black line). (e) 2D snapshot of simulated transverse
spin accumulation amplitude |μtrans|. (f) Simulated spin accumulation
amplitude |μtrans| as a function of z for w = 120 nm (gray) and for
1D Bloch distribution with �B = 30 nm (solid black line). Graphs
(e) and (f) are plotted for l⊥ = 1 nm, lsf = 5.5 nm and an applied
voltage difference of 0.1 V, which corresponds to an applied current
amplitude of Japp = 4 · 1011 A m−2.

could be resolved simultaneously. At every iteration, the spatial
configuration of the magnetic moments takes the electron spin
distribution into account, and vice versa. Thus, the spatial
distribution of the spin-transfer torque [Eq. (5)] is recalculated
from the spin distribution [Eqs. (1)–(4)] for every time
step. This distribution can then be injected into a dynamical
LLG equation [Eq. (6)] that resets the new spin distribution
for the next iteration. Our micromagnetic finite element
software feeLLGood [29], supplemented by simple DD theory
equations [11], was previously used to study the domain
wall dynamics within circular cross-section wires [4]. Several
modifications and optimizations were made to this software
for this study. For example, we revised the spin transport
model to take the ballistic phenomenon into account [20].
We also upgraded the numerical time schema by applying
a second-order semiimplicit method with better convergence
and stability [30]. In addition, we developed a hexahedron
hybrid version of feeLLGood with a regular mesh. This hybrid
version combines the advantages of a finite element approach
with efficient calculation of the demagnetizing field using fast
Fourier transform.

D. Transverse domain wall

Figure 1(a) shows the geometry of the rectangular cross-
section strip with length L, thickness d, and width w. The
longest dimension L corresponds to the Z axis, and the shortest
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dimension d to the X axis. The initial magnetic configuration
corresponds to a relaxed transverse tail-to-tail wall located
at z = 0 [Fig. 1(c)]. The magnetic charges at the extremities
were numerically removed to prevent magnetization reversal.
The spin and charge currents were tangent to the lateral
surfaces, and we also used Brown (Neumann) conditions
for magnetization components. Spin accumulation tends to
zero at the extremities at a distance from strong current
and magnetization gradients [Fig. 1(e)]. The micromagnetic
parameters used were those of a permalloy material, with
MS = 800 · 103 A m−1, γ0 = 2.21 · 105 m (A s)−1, α = 0.02
and the exchange constant Aex = 1 · 10−11 J m−1. For the
unchanging spin-transport-dependent parameters, we used the
following values: ρ = 250 · 10−9 (� m)−1, P = 0.76, l∗ =
1.72 nm, lL = 0.7 nm. The strip of L = 1000 nm, d = 5 nm,
and variable w was discretized into 1×2×2 nm rectangular
prisms.

To characterize the distribution of magnetization in all three
dimensions, we used the Thiele definition of domain wall
width [31,32]

�T = 2wd∫
volume

(
∂m
∂z

)2 . (7)

The correspondence between the strip width w and �T is
shown in Fig. 1(b) for a strip of thickness d = 5 nm. Thus,
for example, the domain wall width is estimated to be �T ≈
30 nm for a strip width of 120 nm. In order to study domain
wall velocity as a function of domain wall width (Sec. IV),
we varied the strip width w while maintaining a constant
strip thickness d and length L. Through this approach, we
could compare the behavior of a relatively short domain
wall to that of a long domain wall with the same material
parameters and the same type of transverselike magnetization
distribution. Moreover, we also could compare the domain
wall behavior in two extreme cases: low spin diffusion with
lsf < �T and high spin diffusion with lsf > �T . The choice
to scale the lateral dimension rather than varying the domain
wall width by another means does not alter the main results
and conclusions presented in this paper. For example, Lee
et al. [7] assumed a perpendicularly magnetized nanowire
with a variable value for the out-of-plane crystalline anisotropy
parameter to vary the domain wall width. In their paper, the
domain wall was assumed to be a quasi-one-dimensional (1D)
structure, whereas in this paper, we deal with the nontrivial
lateral distribution of magnetization, which requires full 3D
micromagnetic calculations.

Figures 1(c) and 1(d) represent the equilibrium spatial
distribution of magnetization simulated for w = 120 nm. The
spatial distributions corresponding to transverse spin accumu-
lation amplitudes are depicted in Figs. 1(e) and 1(f). As a visual
guide, we superimposed simulated distributions (clouds of
gray points) on the data obtained with the analytical 1D Bloch
distribution (solid line). The magnetization components of the
Bloch distribution were expressed as mz = tanh(z/�B) and
my = cosh−1(z/�B), which includes the domain wall width,
�B = 30 nm. The spin accumulation amplitude is related to the
magnetization gradient, and its maximum corresponds to the
middle of the domain wall, where the magnetization is most
altered. The height of this peak also determines the efficiency

of the spin-transfer-torque-related force driving the domain
wall.

III. LONG DOMAIN WALL LIMIT

Before going into the details of the numerical results
obtained with our self-consistent software, we will introduce
several useful simplified expressions. In most theoretical and
experimental studies of current-induced domain wall displace-
ment, the efficiency of the driving force is characterized by
the so-called nonadiabatic parameter β [12]. This parameter
is introduced as a ratio of the nonadiabatic τ na (“out-of-
plane” or “fieldlike”) spin-transfer torque contribution over
the adiabatic τ a (“in-plane”) contribution. In the long domain
wall limit, when the electron spins adiabatically follow the
magnetization direction, this parameter β is assumed to be
constant throughout the system. Its value can be calculated by
combining the characteristic lengths. For example, the most
frequently used local model [12] can be obtained from the
simple DD theory [11] for the long domain wall limit (� �
lsf). In this case, the nonadiabatic parameter βNA = (lJ /lsf)2

is a combination of the two characteristic lengths: the spin
flip length lsf and the exchange length lJ . In the latter case,
the domain wall’s driving force does not depend on its width
and is determined by the current amplitude applied. Similar to
previous theories, the authors of the GDD theory proposed an
analytical expression of the nonadiabatic parameter for very
long domain walls [20]

βtheor = lLl∗
l2
sf

[
1 + l∗l2

L

l⊥l2
sf

+
(

lL

l⊥

)2
]−1

. (8)

This parameter correlates with the spin coherence length
l⊥, as illustrated in Fig. 2(a). In the limit of the long l⊥, this
expression reduces to βtheor ≈ (lLl∗)/l2

sf , which is similar but
not equivalent to the nonadiabatic parameter βNA = (lJ /lsf)2

obtained from the simple DD theory. Indeed, with the long
l⊥ limit, the double vector product in Eq. (5) disappears
to give a spin diffusion equation [Eq. (4)] similar to that
obtained with the simple DD theory. Moreover, for the long
l⊥ length, the βtheor parameter tends to saturate towards the
permalloy value βNA = 0.04 with lJ = √

lLl∗ = 1.1 nm and
lsf = 5.5 nm. This result is not surprising since the absorption
of the transverse spin component becomes negligible in the
long l⊥ limit and the system’s behavior tends to be dominated
by lsf and lL. We will only discuss the similarities between
the two models for some limits because solving the complete
GDD theory [Eqs. (1)–(5)] never gave the same numerical
result as the initial DD theory. At intermediate l⊥ values, the
spin transverse component absorption phenomenon prevails.
In these cases, spin transfer occurs at shorter distances, and
thus the nonadiabatic parameter βtheor decreases drastically.
For example, for a permalloy with l⊥ = 1 nm, the nonadiabatic
parameter is βtheor = 0.026, which is almost twofold lower
than its estimation based on the simple DD theory. Several
experimental studies have also reported moderate values of the
nonadiabatic parameter comparable to α for long transverse
domain walls in permalloy [33,34], and these results are
coherent with Eq. (8).
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FIG. 2. (a) Analytical value of the nonadiabatic parameter β

as a function of l⊥ according to Eq. (8) with a large domain
wall width (� � lsf ). (b) Simulated steady-state velocity v for two
values of strip width: w = 120 nm (�T ≈ 30 nm) and w = 10 nm
(�T ≈ 9.1 nm). The solid black line corresponds to the analytical
expression produced by applying Eq. (9). (c) Simulated steady-state
velocity and its deviation from the theoretical value calculated using
Eq. (9) as a function of the domain wall width for l⊥ = 1 nm.
Graphs (b) and (c) were plotted for an applied voltage difference
of 0.1 V, which corresponds to an applied current amplitude of
Japp = 4 · 1011 A m−2 and U = 52 m s−1. (a)–(c) correspond to the
spin flip length lsf = 5.5 nm.

As a result of the reduction in the nonadiabatic parameter
with decreasing l⊥, the steady-state domain wall velocity
should also decrease [Fig. 2(b)]. Indeed, by analogy with
the previous models [18], in the long domain wall limit,
the steady-state domain wall velocity is expected to correlate
linearly with the applied current density. Thus

vsteady = βtheor

α
U, (9)

where

U = PμB

MSe(1 − P 2)
Japp, (10)

has the dimension of a velocity and scales with the electrical
current density Japp. Moreover, critical UWalker values give the
so-called Walker breakdown condition [18]

UWalker = αMS

γ0�

2|β − α| (Ny − Nx), (11)

where Nx and Ny are the demagnetizing factors along the x

and y directions [35]. In these conditions, the domain wall
enters a precessional regime with average velocity

v̄ = 1 + αβtheor

1 + α2
U. (12)

The steady-state velocity in Eq. (9), where the nonadiabatic
parameter is constant, does not depend on domain wall width.
However, this approximation has limits. In the next section,
we demonstrate that the spatial dependence of the nonadiabatic
parameter, when inherently considered within a self-consistent
approach, has a significant impact on current-driven domain
wall motion.

IV. NUMERICAL RESULTS

In this section, we discuss the numerical results ob-
tained using our software. The voltage difference �V =
[μc(L/2) − μc(−L/2)]/e = JappρL applied at the extremities
of the strip triggers motion of the domain wall along the Z

axis. In this case, the nonadiabatic parameter β is no longer
constant, and its spatial distribution is nontrivial. The domain
wall driving force is determined by its effective value βsim,
which can be estimated from the velocity data.

A. Velocity vs domain wall width

We confirmed that the steady-state domain wall velocities
obtained numerically differ from those calculated using the
simplified analytical formula in Eq. (9) from the previous
section. This difference was particularly notable for relatively
short domain wall widths and long spin flip lengths. The
local spin-transfer torque approach, which neglects the spin
diffusion effects, gives lower velocity values. In this case,
the spin-transfer torque amplitude at a given point depends
only on the local magnetization and its local gradient. In our
self-consistent approach, the spin-transfer torque amplitude
at a given point is affected by the magnetization and spin
distributions over the spin flip length lsf . Thus, the resulting
nonadiabaticity is determined to a large extent by the interplay
between the domain wall width and the spin flip length values.
Figure 3 compares the spatial distribution of the nonadiabatic
to adiabatic spin-transfer torque |τ na|/|τ a| ratio for three
values of the domain wall width. This quantity approaches
a constant value in the long domain wall limit [Fig. 3(c)].
Moreover, it coincides with βtheor of the local model. Shorter
domain wall widths result in a nontrivial spatial distribution of
the |τ na|/|τ a| ratio and in higher values of the effective nona-
diabaticity [Figs. 3(a) and 3(b)]. High magnetization gradients
favor a spin-transfer torque with increased amplitude, resulting
in a more nonadiabatic system. Thus, for example, the highest
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FIG. 3. Ratio of the nonadiabatic spin-transfer torque contribu-
tion over the adiabatic contribution as a function of the Z coordinate
obtained with the analytical 1D Bloch distribution mz = tanh(z/�B )
and my = cosh−1(z/�B ). Dashed lines correspond to the longitudinal
magnetization spatial distribution. (a) �B = 5 nm. (b) �B = 10 nm.
(c) �B = 20 nm.

steady-state velocities are expected for the sharpest magnetic
textures, as according to Eq. (9), it is directly proportional to
the nonadiabatic parameter. At the same time, the high values
of β should have less impact on the average velocity in the
precessional regime according to Eq. (12).

Figure 2(b) compares the simulated steady-state velocities
to those obtained with Eq. (9). As expected, simulated points
approach the theoretical curve for a long domain wall width
with lsf � �T . Nevertheless, the nonlocal velocity was a
little higher than the analytical value. The deviation between
analytical curve and simulated points was more pronounced

for shorter strip widths, and consequently for shorter domain
walls. However, the moderate difference in Fig. 2(b) is
explained by a very small spin flip length value which does not
exceed the domain wall width. Similar qualitative conclusions
were reported by Claudio-Gonzalez et al. [5]. These authors
simulated velocities self-consistently for long transverse and
vortex domain walls using the simple DD model. For both
types of domain walls, the nonlocal velocity was higher
than the analytical value. In Fig. 2(c), we have plotted the
steady-state velocities as a function of the domain wall width.
As expected, we observed a significant increase in velocity
for short domain walls with high magnetization gradients. A
similar relationship between velocity and magnetic gradient
was predicted theoretically for a 1D Bloch wall in the
frame of the simple DD theory [19]. In their article, Akosa
et al. [19] found the velocity to scale with the inverse
square of the domain wall width. Similarly, by applying a
semiclassical approach [36], Lee et al. [7] also reported that
an increase in effective nonadiabaticity generated high domain

FIG. 4. (a) Simulated steady-state velocity as a function of l⊥ for
different spin flip lengths lsf . Each curve is normalized by vsteady with
the corresponding value of β

l⊥→∞
theor . The solid black line corresponds

to the analytical expression produced by applying Eqs. (8) and (9).
(b) 2D snapshots of simulated transverse spin accumulation amplitude
|μtrans| for three values of lsf and l⊥ = 1 nm. White lines correspond to
the longitudinal magnetization isovalues: mz = ±0.5. Graphs (a) and
(b) were plotted for w = 10 nm (�T ≈ 9.1 nm) and for an applied
voltage difference of 0.1 V, which corresponds to an applied current
amplitude of Japp = 4 · 1011 A m−2 and U = 52 m s−1.
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wall velocities within semi-1D nanowires with very narrow
domain walls (� < 2.71 nm).

B. Velocity vs spin flip length

We observed that high spin diffusion, for which lsf > �T ,
does not only result in the velocity increase compared to
the Eq. (9), but also may change its behavior qualitatively.
Figure 4(a) compares the steady-state velocities as a function

of l⊥ for three values of lsf . Whereas the difference between
the simulated points and the analytical curve is moderate
for the small lsf value, it becomes more pronounced with
rising lsf . The latter is not captured by the Eq. (9). In
contrast to the local approximation, here, the spin distribution
at a given point is affected by its environment over the
spin flip length. The spin accumulation amplitude decays
from its maximum in the center of the domain wall over
lsf distance. Long lsf length favors a large spatial overlap

FIG. 5. (a) Simulated velocity v as a function of the applied local current U [Eq. (10)] for different values of l⊥ and with w = 10 nm and
lsf = 5.5 nm. Filled symbols represent the steady-state regime and open symbols the precessional regime. Solid green lines correspond to the
steady-state motion velocity according to Eq. (9). Dashed green lines correspond to the average velocity in the precessional regime according
to Eq. (12). Vertical red lines indicate the Walker breakdown. (b) Domain wall width �t→∞

T as a function of the local current U applied
in the steady-state regime. The equilibrium value �T ≈ 9.1 nm corresponds to U = 0. (c) The nonadiabatic parameter βsim estimated from
simulations as a function of the local current U applied in the steady-state regime.
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between the magnetization gradient and the spin accumulation
distribution [Fig. 4(b)]. Thus, the mutual interaction between
two subsystems is more efficient, which gives rise to a high
effective nonadiabaticity. This explains a noticeable deviation
between the analytical curve and the simulated points in
Fig. 4(a) for lsf > �T . The curve shape modification may be
explained by the complex interplay between the phenomena
involved. Accurate description of this behavior requires the
self-consistent simulations.

C. Velocity vs current

Renormalization of the nonadiabatic parameter results
in changes to the velocity versus applied current behavior.
Figure 5(a) compares the simulated velocity to the velocities
calculated by applying Eqs. (9) and (12) for different values
of the spin coherence length l⊥. Depending on the l⊥ value,
for the same material parameters, two distinct cases are
possible: β > α with slope(vsteady) > slope(v̄) and β < α

with slope(vsteady) < slope(v̄). In our calculations, both cases
were observed. The simulated values exceeded the analytical
ones due to the higher nonadiabaticity considered by the
self-consistent treatment.

We also noted in our simulations that the steady-state ve-
locity displayed not-quite linear behavior. Thus, the extracted
nonadiabatic parameter βsim (as a proportionality coefficient
between the current amplitude and the velocity) increased with
the current amplitude applied [Fig. 5(c)]. As expected, the
deviation of the steady-state velocity from the linear behavior
is more pronounced for the long spin flip lengths [Fig. 6]. The
deviation from linearity coincided with the decrease in domain
wall width related to its structure deformation. The reduction
of the domain wall width [Fig. 7(a)] was accompanied with
the out-of-plane tilt of the domain wall induced by the rising
current amplitude [Fig. 7(b)]. This behavior simulated within
the self-consistent approach is qualitatively similar to that
obtained using the micromagnetic resolution of the local
model [12]. Nevertheless, Fig. 7(a) evidences the discrepancy
between two approaches. Indeed, high values of the effective
nonadiabatic parameter β in the self-consistent approach
resulted in a high efficiency of the applied current. In this case,
the reduction of the domain wall width occurred for lower
applied current values. From purely micromagnetic point of
view, we did not observe any significant qualitative changes of
the internal domain wall structure between the two approaches.
All differences in the steady-state domain wall velocities we
attribute to the renormalization of the effective nonadiabatic
parameter which depends on the domain wall width to the spin
flip length ratio.

The deviation of the steady-state velocity from linearity
may be explained by the continuous renormalization of the
nonadiabatic parameter βsim with changing domain wall width
for each value of the applied current. This mutual interaction
between magnetic and spin subsystems was enhanced for
larger values of the spin flip length. In contrast to that, in
the case of the local model [12], the domain wall width
reduction did not affect the velocity versus applied current
linear behavior [Fig. 6(a)]. The deviation from linearity
observed here may be compared qualitatively to the velocity
versus applied magnetic field behavior [37,38]. In that case,

FIG. 6. (a) Simulated steady-state velocity as a function of the
applied local current U [Eq. (10)] for different values of lsf . Solid
green lines correspond to the steady-state motion velocity according
to Eq. (9). Cross symbols correspond to the velocity values obtained
with the simplified local micromagnetic model [12]. (b) Deviation
of the simulated steady-state velocity from the theoretical value
calculated using Eq. (9) as a function of the applied local current for
different values of lsf . Graphs (a) and (b) were plotted for w = 10 nm
(�T ≈ 9.1 nm).

the velocity is proportional to the domain wall width. Thus,
the domain wall width reduction due to the magnetization
out-of-plane tilt resulted in a simulated velocity decrease
compared to the analytical value.

D. Walker breakdown

The threshold for applied current density delimiting
the steady-state and precessional regimes is indicated by
the vertical red line in Fig. 5(a). Figure 7(c) compares the
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FIG. 7. (a) Steady-state domain wall width as a function of the
applied local current U [Eq. (10)]. (b) Spatial distribution of the
out-of-plane magnetization component mx for several values of
the applied local current: U1 = 50 m/s, U2 = 100 m/s, U3 =
150 m/s, U4 = 200 m/s. (c) Walker breakdown as a function of the
spin coherence length l⊥. The solid black line corresponds to the result
of Eq. (11) with βtheor obtained by applying Eq. (8). The dashed line
corresponds to the result of Eq. (11) where the nonadiabatic parameter
βsim was estimated from the data in Fig. 2(b). Symbols correspond
to the observed changes to domain wall motion characterizing
the Walker breakdown. All plots correspond to a strip with w =
10 nm (�T ≈ 9.1 nm) and lsf = 5.5 nm. (a) and (b) correspond to
l⊥ = 1 nm.

simulated and analytical values of the Walker breakdown
as a function of the spin coherence length l⊥. The solid
black line corresponds to the solution of Eq. (11) with the
theoretical value of βtheor obtained by applying Eq. (8). This
curve reveals that, for a permalloy material with l⊥ ≈ 1 nm,
Walker breakdown would occur at very high current values.

This effect will be beneficial in potential applications. As
indicated above, the simulated parameter βsim was greater
than βtheor for all values of l⊥. Consequently, the UWalker

dependence calculated using Eq. (11) with βsim [dashed line
in Fig. 7(a)] shifts to the left, towards smaller values of
l⊥. The symbols in Fig. 7(a) correspond to the alteration to
domain wall motion characteristic of the Walker transition
observed in simulations: from laminar motion with constant
velocity to forward drift with oscillating domain wall width and
velocity. As expected, these symbols fit well with the dashed
line.

V. CONCLUSION

This paper presents a study of the transverse domain
wall dynamics based on simultaneous resolution of the spin
transport and micromagnetic equations for a 3D ferromagnetic
strip. We observed considerable differences between the sim-
plified and self-consistent treatments of the current-induced
domain wall dynamics. These differences clearly highlighted
the limitations of a local spin-transfer torque approach, which
neglects spin diffusion effects and thus underestimates domain
wall velocities. Moreover, while a local approach is sufficient
with long domain wall limit, it does not hold true in many
situations requiring self-consistent treatment of the spin and
magnetization dynamics. We reported both qualitative and
quantitative modifications of the domain wall velocity due
to the spin diffusion phenomena. In contrast to the local
approximation, where the domain wall velocity does not
depend on its width, the simultaneous resolution of the spin
transport and micromagnetic equations indicated an increase
in domain wall velocity with decreasing domain wall width.
Thus, due to spin diffusion effects, the same applied current
density can move shorter domain walls or other sharp magnetic
textures (vortices, Bloch points, etc.) much more effectively.
In addition, high spin diffusion with long spin flip length
lsf results in qualitative changes of velocity versus current
behavior compared to theoretical predictions. Furthermore, we
characterized domain wall velocity and the Walker breakdown
condition as a function of the transverse spin absorption length
l⊥. This analysis revealed that the transverse spin absorption,
omitted in the simple DD model, plays a crucial role when
calculating the domain wall driving force and its velocity. As a
consequence, the domain wall velocity values presented here
were quite different to those presented in studies based on
the simple DD model. Indeed, the transverse spin absorption
phenomenon involves an additional characteristic length l⊥,
which dominates the spin accumulation distribution in the
system, and thus the efficiency of spin-transfer torque. For very
short l⊥, drastic attenuation of transverse spin accumulation
could even result in an overall decrease in spin-transfer torque
efficiency. This effect should be taken into consideration
when performing current-induced domain wall dynamics
experiments.
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[24] A. Hubert and R. Schäfer, Magnetic Domains (Springer Verlag,

Berlin, 1998).
[25] In Ref. [20], the polarization P and the average mean free path

l∗ are defined as P = (l↑ − l↓)/(l↑ + l↓) and 1/l∗ ≡ 1/l↑ + 1/l↓
with l↑(↓) the mean free path for majority (minority) electrons.
These parameters are equivalent to the usual ones of Valet-Fert
theory [21,23].

[26] In stationary regime, the time derivatives of the local charge
potential ∂tμc and of the spin chemical potential ∂tμ are
neglected in comparison to that of magnetic moments ∂tm. Both
transport variables μc and μ are treated within the long time limit
since their characteristic time scales several orders of magnitude
shorter than that of the magnetic moments.

[27] P. M. Haney, H.-W. Lee, K.-J. Lee, A. Manchon, and M. D.
Stiles, Phys. Rev. B 87, 174411 (2013).

[28] P. Chureemart, I. D’Amico, and R. W. Chantrell, J. Phys.:
Condens. Matter 27, 146004 (2015).

[29] E. Kritsikis, A. Vaysset, L. D. Buda-Prejbeanu, F. Alouges, and
J.-C. Toussaint, J. Comput. Phys. 256, 357 (2014).

[30] F. Alouge, E. Kritsikis, J. Steiner, and J.-C. Toussaint,
Numer. Math. 128, 407 (2014).

[31] A. A. Thiele, Phys. Rev. Lett. 30, 230 (1973).
[32] A. Thiaville, Y. Nakatani, F. Piechon, J.Miltat, and T. Ono,

Eur. Phys. J. B 60, 15 (2007).
[33] M. Hayashi, L. Thomas, Ya. B. Bazaliy, C. Rettner, R. Moriya,

X. Jiang, and S. S. P. Parkin, Phys. Rev. Lett. 96, 197207
(2006).

[34] M. Eltschka, M. Wotzel, J. Rhensius, S. Krzyk, U. Nowak, M.
Klaui, T. Kasama, R. E. Dunin-Borkowski, L. J. Heyderman,
H. J. van Driel, and R. A. Duine, Phys. Rev. Lett. 105, 056601
(2010).

[35] A. Aharoni, J. Appl. Phys. 83, 3432 (1998).
[36] Jiang Xiao, A. Zangwill, and M. D. Stiles, Phys. Rev. B 73,

054428 (2006).
[37] Y. Nakatani, A. Thiaville, and J. Miltat, Nat. Mater. 2, 521

(2003).
[38] E. Martinez, L. Lopez-Diaz, L. Torres, C. Tristan, and O. Alejos,

Phys. Rev. B 75, 174409 (2007).

104405-9

http://dx.doi.org/10.1126/science.1145799
http://dx.doi.org/10.1126/science.1145799
http://dx.doi.org/10.1126/science.1145799
http://dx.doi.org/10.1126/science.1145799
http://dx.doi.org/10.1126/science.1108813
http://dx.doi.org/10.1126/science.1108813
http://dx.doi.org/10.1126/science.1108813
http://dx.doi.org/10.1126/science.1108813
http://dx.doi.org/10.1016/j.mser.2011.04.001
http://dx.doi.org/10.1016/j.mser.2011.04.001
http://dx.doi.org/10.1016/j.mser.2011.04.001
http://dx.doi.org/10.1016/j.mser.2011.04.001
http://dx.doi.org/10.1063/1.4922868
http://dx.doi.org/10.1063/1.4922868
http://dx.doi.org/10.1063/1.4922868
http://dx.doi.org/10.1063/1.4922868
http://dx.doi.org/10.1103/PhysRevLett.108.227208
http://dx.doi.org/10.1103/PhysRevLett.108.227208
http://dx.doi.org/10.1103/PhysRevLett.108.227208
http://dx.doi.org/10.1103/PhysRevLett.108.227208
http://dx.doi.org/10.1038/srep14855
http://dx.doi.org/10.1038/srep14855
http://dx.doi.org/10.1038/srep14855
http://dx.doi.org/10.1038/srep14855
http://dx.doi.org/10.1016/j.physrep.2013.05.006
http://dx.doi.org/10.1016/j.physrep.2013.05.006
http://dx.doi.org/10.1016/j.physrep.2013.05.006
http://dx.doi.org/10.1016/j.physrep.2013.05.006
http://dx.doi.org/10.1063/1.3075555
http://dx.doi.org/10.1063/1.3075555
http://dx.doi.org/10.1063/1.3075555
http://dx.doi.org/10.1063/1.3075555
http://dx.doi.org/10.1103/PhysRevLett.96.027204
http://dx.doi.org/10.1103/PhysRevLett.96.027204
http://dx.doi.org/10.1103/PhysRevLett.96.027204
http://dx.doi.org/10.1103/PhysRevLett.96.027204
http://dx.doi.org/10.1103/PhysRevLett.88.236601
http://dx.doi.org/10.1103/PhysRevLett.88.236601
http://dx.doi.org/10.1103/PhysRevLett.88.236601
http://dx.doi.org/10.1103/PhysRevLett.88.236601
http://dx.doi.org/10.1103/PhysRevLett.93.127204
http://dx.doi.org/10.1103/PhysRevLett.93.127204
http://dx.doi.org/10.1103/PhysRevLett.93.127204
http://dx.doi.org/10.1103/PhysRevLett.93.127204
http://dx.doi.org/10.1209/epl/i2004-10452-6
http://dx.doi.org/10.1209/epl/i2004-10452-6
http://dx.doi.org/10.1209/epl/i2004-10452-6
http://dx.doi.org/10.1209/epl/i2004-10452-6
http://dx.doi.org/10.1063/1.2165921
http://dx.doi.org/10.1063/1.2165921
http://dx.doi.org/10.1063/1.2165921
http://dx.doi.org/10.1063/1.2165921
http://dx.doi.org/10.1063/1.2830964
http://dx.doi.org/10.1063/1.2830964
http://dx.doi.org/10.1063/1.2830964
http://dx.doi.org/10.1063/1.2830964
http://dx.doi.org/10.1103/PhysRevB.79.094430
http://dx.doi.org/10.1103/PhysRevB.79.094430
http://dx.doi.org/10.1103/PhysRevB.79.094430
http://dx.doi.org/10.1103/PhysRevB.79.094430
http://dx.doi.org/10.1016/j.jmmm.2008.12.011
http://dx.doi.org/10.1016/j.jmmm.2008.12.011
http://dx.doi.org/10.1016/j.jmmm.2008.12.011
http://dx.doi.org/10.1016/j.jmmm.2008.12.011
http://dx.doi.org/10.1103/PhysRevB.82.214411
http://dx.doi.org/10.1103/PhysRevB.82.214411
http://dx.doi.org/10.1103/PhysRevB.82.214411
http://dx.doi.org/10.1103/PhysRevB.82.214411
http://dx.doi.org/10.1209/0295-5075/78/57007
http://dx.doi.org/10.1209/0295-5075/78/57007
http://dx.doi.org/10.1209/0295-5075/78/57007
http://dx.doi.org/10.1209/0295-5075/78/57007
http://dx.doi.org/10.1103/PhysRevB.91.094411
http://dx.doi.org/10.1103/PhysRevB.91.094411
http://dx.doi.org/10.1103/PhysRevB.91.094411
http://dx.doi.org/10.1103/PhysRevB.91.094411
http://dx.doi.org/10.1103/PhysRevLett.109.117204
http://dx.doi.org/10.1103/PhysRevLett.109.117204
http://dx.doi.org/10.1103/PhysRevLett.109.117204
http://dx.doi.org/10.1103/PhysRevLett.109.117204
http://dx.doi.org/10.1103/PhysRevLett.103.066602
http://dx.doi.org/10.1103/PhysRevLett.103.066602
http://dx.doi.org/10.1103/PhysRevLett.103.066602
http://dx.doi.org/10.1103/PhysRevLett.103.066602
http://dx.doi.org/10.1103/PhysRevB.84.035412
http://dx.doi.org/10.1103/PhysRevB.84.035412
http://dx.doi.org/10.1103/PhysRevB.84.035412
http://dx.doi.org/10.1103/PhysRevB.84.035412
http://dx.doi.org/10.1103/PhysRevB.48.7099
http://dx.doi.org/10.1103/PhysRevB.48.7099
http://dx.doi.org/10.1103/PhysRevB.48.7099
http://dx.doi.org/10.1103/PhysRevB.48.7099
http://dx.doi.org/10.1103/PhysRevB.87.174411
http://dx.doi.org/10.1103/PhysRevB.87.174411
http://dx.doi.org/10.1103/PhysRevB.87.174411
http://dx.doi.org/10.1103/PhysRevB.87.174411
http://dx.doi.org/10.1088/0953-8984/27/14/146004
http://dx.doi.org/10.1088/0953-8984/27/14/146004
http://dx.doi.org/10.1088/0953-8984/27/14/146004
http://dx.doi.org/10.1088/0953-8984/27/14/146004
http://dx.doi.org/10.1016/j.jcp.2013.08.035
http://dx.doi.org/10.1016/j.jcp.2013.08.035
http://dx.doi.org/10.1016/j.jcp.2013.08.035
http://dx.doi.org/10.1016/j.jcp.2013.08.035
http://dx.doi.org/10.1007/s00211-014-0615-3
http://dx.doi.org/10.1007/s00211-014-0615-3
http://dx.doi.org/10.1007/s00211-014-0615-3
http://dx.doi.org/10.1007/s00211-014-0615-3
http://dx.doi.org/10.1103/PhysRevLett.30.230
http://dx.doi.org/10.1103/PhysRevLett.30.230
http://dx.doi.org/10.1103/PhysRevLett.30.230
http://dx.doi.org/10.1103/PhysRevLett.30.230
http://dx.doi.org/10.1140/epjb/e2007-00320-3
http://dx.doi.org/10.1140/epjb/e2007-00320-3
http://dx.doi.org/10.1140/epjb/e2007-00320-3
http://dx.doi.org/10.1140/epjb/e2007-00320-3
http://dx.doi.org/10.1103/PhysRevLett.96.197207
http://dx.doi.org/10.1103/PhysRevLett.96.197207
http://dx.doi.org/10.1103/PhysRevLett.96.197207
http://dx.doi.org/10.1103/PhysRevLett.96.197207
http://dx.doi.org/10.1103/PhysRevLett.105.056601
http://dx.doi.org/10.1103/PhysRevLett.105.056601
http://dx.doi.org/10.1103/PhysRevLett.105.056601
http://dx.doi.org/10.1103/PhysRevLett.105.056601
http://dx.doi.org/10.1063/1.367113
http://dx.doi.org/10.1063/1.367113
http://dx.doi.org/10.1063/1.367113
http://dx.doi.org/10.1063/1.367113
http://dx.doi.org/10.1103/PhysRevB.73.054428
http://dx.doi.org/10.1103/PhysRevB.73.054428
http://dx.doi.org/10.1103/PhysRevB.73.054428
http://dx.doi.org/10.1103/PhysRevB.73.054428
http://dx.doi.org/10.1038/nmat931
http://dx.doi.org/10.1038/nmat931
http://dx.doi.org/10.1038/nmat931
http://dx.doi.org/10.1038/nmat931
http://dx.doi.org/10.1103/PhysRevB.75.174409
http://dx.doi.org/10.1103/PhysRevB.75.174409
http://dx.doi.org/10.1103/PhysRevB.75.174409
http://dx.doi.org/10.1103/PhysRevB.75.174409



