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Attenuation of 7 GHz surface acoustic waves on silicon
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We measured the attenuation of GHz frequency surface acoustic waves (SAWs) on the Si (001) surface using
an optical pump-probe technique at temperatures between 300 and 600 K. SAWs are generated and detected by
a 700 nm Al grating fabricated by nanoimprint lithography. The grating for SAW generation is separated from
the grating for SAW detection by ≈150 μm. The amplitude of SAWs is attenuated by coupling to bulk waves
created by the Al grating, diffraction due to the finite size of the source, and the intrinsic relaxational Akhiezer
damping of elastic waves in Si. Thermal phonon relaxation time and Grüneisen parameters are fitted using
temperature-dependent measurement. The f Q product of a hypothetical micromechanical oscillator limited by
Akhiezer damping at this frequency is ∼3×1013 Hz.
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I. INTRODUCTION

In nonmetallic crystals, the intrinsic attenuation of acoustic
waves is governed by the interactions with thermally excited
phonons mediated by the anharmonicity of the interatomic
potentials [1]. This intrinsic attenuation imposes an upper limit
to the quality factor Q of mechanical oscillators, where Q is
defined as 2π times the ratio between total stored energy and
energy dissipated per cycle of oscillation. The widely used
mechanical oscillators such as microelectromechanical sys-
tems (MEMS) and nanoelectromechanical systems (NEMS)
can now operate at GHz frequencies. High Q factors are
needed for their applications as filters and sensors [2–4]. Near
room temperature, the Q is typically limited by a multiphonon
relaxation process where the strain of the acoustic wave
disturbs the distribution of thermally excited phonons, and
the relaxation of the distribution to an equilibrium requires an
increase of entropy and therefore causes dissipation of energy
from the acoustic wave.

Acoustic attenuation by the relaxation of the thermal
phonon distribution was first proposed by Akhiezer [5] under
the constraint ωτ � 1, where ω is the angular frequency of
an acoustic wave and τ is the time scale over which the
distribution of thermally excited phonons relaxes to local
equilibrium, i.e., the average phonon relaxation time. The
theory was later extended using Boltzmann theory [1,6,7] to
higher acoustic wave frequencies, ωτ > 1. Maris [1] pointed
out that the Akhiezer theory, or the Boltzmann theory, should
be applicable when ω � kBT /� and ωτ �� 1 is satisfied,
where T is temperature. Throughout the paper, we will call the
attenuation from relaxation of thermally excited phonon at this
frequency regime “Akhiezer damping.” This definition of the
range of applicability of the Akheizer theory is less restrictive
than the limit ωτ � 1, which is referred to as the Akhiezer
regime in much of the scientific literature on this topic.

A simplified expression for the acoustic attenuation α due
to Akhiezer damping is [8–11]

α = CT

2ρv3

ω2τ

1 + ω2τ 2
(〈γ 2〉 − 〈γ 〉2), (1)
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where C is the volumetric heat capacity, ρ is the density, v is
the speed of the acoustic wave, and γ is the mode Grüneisen
parameter of the thermally excited phonons; γ depends on the
frequency and polarization of the phonon and the mode of the
strain. The angular brackets in Eq. (1) denote an average over
the entire population of thermally excited phonons. In Sec. IV,
we discuss the condition when Eq. (1) is a good approximation
to Boltzmann theory.

At low frequencies, ω2τ 2 � 1, Eq. (1) has a simple
quadratic dependence on the frequency of the acoustic
wave [1,6]:

α = CT

2ρv3
ω2τ (〈γ 2〉 − 〈γ 〉2). (2)

This relationship can also be described by a phenomenological
equation [12,13]:

α = ω2η/2ρv3, (3)

where η is the effective phonon viscosity. For a bulk acoustic
wave, η can be calculated by the phonon viscosity tensor [13],
which has the same symmetry as the elastic constant tensor of
the material. Comparing Eqs. (2) and (3), η contains informa-
tion of both τ and mode Grüneisen parameters and depends
on the mode (normal or shear), polarization, and direction of
propagation of the acoustic wave. The ideal quality factor Q of
an acoustic wave is Q = ω/(2αv). Therefore, based on Eq. (3),
the f Q product is independent of frequency; f Q is often used
as a figure of merit [14] for mechanical oscillators.

The highest frequencies achieved in previous studies
[8,15–19] of attenuation of an acoustic wave in Si at room
temperature is ≈2 GHz. If we estimate τ ∼ 20 ps [20], then
ωτ ∼0.2 and it adequately satisfies the condition ω2τ 2 �1.
Therefore, in the previous work, Eq. (3) is a good approx-
imation, α has a quadratic dependence on frequency, and
the effective phonon viscosity can be obtained from the
proportionality between attenuation and ω2. As we discuss
below, previous results for the attenuation of acoustic waves
in Si show significant discrepancies. Similarly, data for the
phonon viscosity tensor also have large discrepancies [13,16].

None of the previous studies of Si near RT are at frequencies
high enough to separate τ and the mean-square variations in
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the mode Grüneisen parameters that appear in Eq. (1). When
an acoustic wave in Si is at several hundreds of MHz and
experiment is done at temperature much lower than Debye
temperature, ωτ ∼ 1 is satisfied [8,9] and Eq. (1) has been used
to describe the low-temperature measurements. At low temper-
atures, only a small fraction of the phonon modes in acoustic
branches are thermally excited. Since the majority of phonon
modes of Si are thermally excited at RT, the low-temperature
measurements cannot be reliably extrapolated to RT.

Daly et al. [20] recently used Eq. (1) to characterize the
attenuation of a longitudinal acoustic wave in Si when ωτ ∼ 1.
At RT, the measured attenuation at 50 and 100 GHz is consis-
tent with the assumption of 〈γ 2〉 − 〈γ 〉2 = 1 and fitting of the
data with τ ≈ 20 ps. Since both the relaxation of the thermal
phonon and the Grüneisen parameters are dependent on the
acoustic mode, the purpose of the present study is to better
understand the Akhiezer damping of acoustic modes with pre-
dominately transverse polarization when ωτ ∼ 1 at RT. When
Eq. (1) is applicable, Q reaches a minimum at ωτ = 1. We use
the temperature dependence of the attenuation in the regime
ωτ ∼ 1 to derive estimates of both the thermal phonon lifetime
τ and the mean-squared variation of the Grüneisen parameters.

An elastically anisotropic metal film can be used to generate
a high-frequency transverse acoustic wave through heating by
a short duration optical pulse, but the efficiency is relatively
low [21]. We have chosen instead to use a more experimentally
convenient approach of measuring the attenuation of surface
acoustic waves (SAWs). We show in Sec. III A that the attenu-
ation of SAWs can be connected to Akhiezer damping of bulk
transverse acoustic waves. Since pure shear strain in a cubic
crystal such as Si does not suffer from thermoelastic damping,
we can safely ignore thermoelastic damping in our analysis.

SAWs can be generated and detected in optical pump-probe
measurements by providing a spatially periodic source of
heat and providing a method for detecting oscillations of
strain with the same spatial frequency. The transient grating
method [22] uses the interference of two coherent laser beams
to create a spatially periodic heat source with a minimum
wavelength that is on the order of the wavelength of light. The
detection of SAWs in a thermal grating experiment typically
involves mixing the scattered wavefront with a carrier, i.e.,
heterodyne detection [23]. We previously introduced an
approach to generate and detect the SAW using a elastomeric

phase-shift mask in a conventional pump-probe system [24].
This approach is a convenient method for measurement of
elastic constants of thin layers. Unfortunately, however, the
elastomeric mask in contact with the sample produces strong
damping and an attenuation length on the order of 10 μm.
The third approach is to microfabricate a metal grating on the
surface of the sample [25–27]. Typically, the pattern of metal
bars attenuates the SAW significantly by coupling the SAW
to bulk acoustic modes, as we discuss in Sec. III below. By
spatially separating the gratings used to generate and detect the
SAW, we can minimize and quantify damping created by the
grating, and we can probe the intrinsic acoustic attenuation.

The attenuation of SAWs in the context of SAW devices
has been discussed previously by Slobodnik et al. [28,29].
We provide additional analysis of the intrinsic and extrinsic
damping of SAWs.

II. EXPERIMENT

A. Microfabrication of the Al grating structure

The geometry of our sample is shown in Figs. 1(a) and 1(b).
An Al grating is fabricated on the (001) surface of an intrinsic
Si wafer with a gap of various widths (10–150 μm for every
10 μm) between the regions of grating used to generate and
detect SAWs. Figure 1(a) shows a part of the sample with three
different width of the gap between generation and detection
gratings. This experimental design resembles SAW delay lines
used for signal processing and sensing.

Microfabrication of the structure consists of two main steps.
First, we define the gap region by standard liftoff techniques.
AZ-5214E photoresist is used in image reversal mode to cover
the gap region and form a negative wall profile. Then, a thin
Al layer (∼15 nm) is sputtered onto the sample surface. After
deposition, the photoresist pattern together with the Al film
is lifted off by acetone, leaving the gap region uncovered
by Al. Second, we define the Al grating by nanoimprint
lithography [30,31] due to its ability to generate large pattern
areas with high throughput. In nanoimprint lithography, the
pattern is transferred from a stamp to the sample by deforming
a thin resist layer on the sample by pressing the stamp into the
resist layer. Figure 2 shows the flow chart of the full process.

The stamp we use is made of polydimethylsiloxane
(PDMS), with a layer of stiffer PDMS (hard-PDMS)

20 µm 20 µm 

a

1 µm 

b

FIG. 1. SEM image of the grating structure. In (a), the dark area is exposed Si. The bright area is the Al grating. Al metal bars are fabricated
parallel to the edge of the gap region. Two red points illustrate schematically how the pump and probe beams are separated. In our experiments,
the pump and probe beams are separated by 150 μm. The red wavy line indicates the wave propagation from pump grating to probe grating.
(b) Higher magnification image of the Al grating with a 700 nm period, ≈15 nm thickness, and ≈50% filling factor.
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FIG. 2. Process flow diagram for the fabrication of Al gratings
using nanoimprint lithography.

on the grating side of the stamp. This so-called “hard-
PDMS” is made by mixing trimethylsiloxyterminated
vinylmethylsiloxane-dimethylsiloxane (VDT-731, Gelest) and
methylhydrosiloxane-dimethylsiloxane (HMS-301, Gelest)
copolymers [32]. To make a stamp, the hard-PDMS is first
cast and cured (80 ◦C, about 6 min) on a commercial silicon
grating mold (LightSmyth Technology). Then conventional
PDMS (Sylgard 184, Dow Corning) is cast and cured (80 ◦C,
2 h) on top of the hard-PDMS. After curing, the stamp is peeled
off and used for nanoimprint lithography. The commercial
silicon mold has 700 nm periodicity, ≈50% duty cycle, and
350 nm groove depth.

To prepare the sample for nanoimprint lithography, we spin-
coat (2000 rpm for 30 s) SU-8 monomer solution (6% SU-8
monomer in Cyclopentanone) on top of the Al film, followed
by curing at 65 ◦C for 1 min and 95 ◦C for 1 min successively
on a hot plate. The glass-transition temperature of the SU-8
monomer film is ≈95 ◦C. Finally, the PDMS stamp is placed
on top of the sample, on a 95 ◦C hot plate. The weight of the
stamp is sufficient to press the stamp into the resist; i.e., no

external force is needed. After ≈1 min, the sample is cooled
to room temperature and the stamp is peeled off.

We use reactive ion etching (RIE) to remove the thin
SU-8 regions and expose the Al underneath without etching
through the thick SU-8 regions. The RIE tool parameters are
an oxygen pressure of 100 mTorr, rf power of 100 W, and 20 s
etching time. The exposed Al is chemically etched (Al etchant
D, Transene) at room temperature for approximately 100 s.
Finally, the remaining SU-8 is removed using RIE (100 mTorr
oxygen, 400 W rf power, 5 min). Figure 1(b) shows a SEM
image of the final grating structure.

The filling factor, i.e., the ratio between the width of the
metal bars and the periodicity of the grating, can be controlled
by controlling the time of Al wet etching. Al grating with 50%
and 35% filling factors has been fabricated, and the effect of
the filling factor is discussed in Sec. III C.

B. Generation and detection of SAWs using a metal grating

Generation and detection of SAWs by optical pump-probe
techniques has been discussed previously [33]. When
the pump optical pulse arrives at the sample surface, the
temperature of Al bars rises quickly while the temperature
of Si substrate remains relatively unchanged. The expansion
of Al causes spatially modulated stress and generates SAWs.
The amplitude of SAWs is therefore proportional to the
temperature rise of the Al, which is proportional to the
average power of the pump beam.

In many experiments that probe SAWs optically, SAWs
scatter light due to surface displacements rather than
elasto-optic coupling [34]. For the specific case of our
Al grating structure, the electric field reflected by the Al
regions of the sample is larger than the electric field reflected
from the bare Si regions of the sample. The perpendicular
displacements of the Al bars are in phase with each other
when the wavelength of the SAW is equal to the periodicity of
the Al grating. The modulation of the reflected electric field
is therefore linear in the displacements, and the modulation
of the reflectivity is proportional to the SAW amplitude.
By contrast, the scattering cross section of SAWs on a
grating-free surface is quadratic in the SAW amplitude [34].
In our experiments, the amplitude of the detected signal scales
linearly with the pump power, as expected.

Our pump-probe system is described in Ref. [35]. The laser
has a repetition rate of ≈74 MHz. The output is split into a
probe pulse and a pump pulse. Each pump pulse excites a
SAW wave packet. The probe can be delayed relative to the
pump by up to ≈4 ns. Each probe pulse can detect SAW wave
packets generated by any previous pump pulse; for example,
if the delay line is set to 2 ns, then the probe pulses can
detect SAWs that have propagated for 2, 16, 30, 44 ns, etc.
We use spatially separated pump and probe optical pulses to
detect SAWs that have propagated relatively long distances to
increase the sensitivity of the experiment to the intrinsic SAW
attenuation.

We label the pump pulse that is split off from the given
probe pulse as pump pulse n = 0, the prior pump pulse to be
n = −1, the pulse before that to be n = −2, etc. We modulate
the pump beam at ≈9.3 MHz (1/8 of the laser repetition
rate) and synchronously detect the modulation of the reflected
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FIG. 3. (a) Typical in-phase signal for a close offset measurement. Pump and probe beams are offset by 10 μm. (b) Typical out-of-phase
signal for a far offset measurement. Pump and probe beams are offset by 150 μm.

probe intensity with a fast photodiode and rf lock-in amplifier.
Detection of the SAW wave packet generated by pump pulse n

has an ≈ − nπ/4 phase difference with respect to the reference
signal.

In Sec. III C, we discuss how the grating structure with a
non-50% filling factor creates a band gap at the Brillouin-zone
center. Since we cannot make the grating with exactly 50%
filling factor, there is always a small band gap at the Brillouin-
zone center. This band gap produces components with small
group velocity. These minor components of the signal will trail
behind the wave packet. Each response to a pump optical pulse
is overlapped by the trailing part of the response to the previous
pump pulse because the current response can catch up with the
low group velocity component of the previous response.

To measure attenuation, we need to separate the responses;
the phase shifts described above help accomplish that task.
We set the spatial offset between the pump and probe beams
at ≈150 μm, which corresponds to the position of SAW
packets generated by pump pulse n = −2. The signal has a π/2
phase shift and appears only in the out-of-phase channel. The
response from pump n = −3 will appear in both the in-phase
and out-of-phase channel. Since we observe that the in-phase
signal is negligible compared with the out-of-phase signal,
we conclude that the out-of-phase signal is not significantly
contaminated by a contribution from pump n = −3.

Figure 3(a) shows the typical signal for a small offset
between pump and probe, and Fig. 3(b) shows the typical
signal for a large offset. By comparing the amplitude of the
Gaussian wave packet as a function of beam offset, we can
determine the attenuation.

III. PROPERTIES OF SAW ON A SILICON
WITH METAL GRATING

To better estimate the intrinsic SAW attenuation of Si,
we must consider and correct for additional mechanisms that
cause the wave amplitude to change with distance of propa-
gation. In the following sections, we consider the effect of the
mass of the Al grating and diffraction of the acoustic wave.

A. SAW on a Si (100) plane

Using a Green’s-function method [36], we calculate the
dispersion of SAWs of the bare substrate and the substrate
patterned with a thin metal grating. We define the Cartesian
axis where axes â1 and â2 are in the plane of the surface, and
axis â3 is perpendicular to the surface. Gij (k,ω,x3) is the elas-
todynamic Green’s-function tensor in Fourier space (angular
frequency ω and wave vector k of SAW) evaluated at depth
x3. G33(k,ω,x3 = 0) is its (3,3) component, which is at the
surface x3 = 0 and represents the perpendicular displacement
(in the â3 direction) with excitation force at the â3 direction.
G33(k,ω,x3 = 0) has the information of the dispersion relation
of the SAW, which can be used to calculate SAW velocity.
Appendix A describes the details of the calculation.

Our measurements are on the Si (001) surface. For a
cubic crystal, SAWs propagating along the 〈100〉 or 〈110〉
direction are Rayleigh surface acoustic waves (RSAWs), i.e.,
the sagittal plane of SAWs is perpendicular to the surface [37].
For Si(001), as the propagation direction of the SAW rotates
from 〈100〉 to 〈110〉, the SAW is a Rayleigh-like wave and
it gradually converts into the bulk transverse wave with
polarization parallel to the surface. The sagittal plane is no
longer perpendicular to the surface, but there is no wave energy
radiating into the substrate. At directions close to 〈110〉, there
is very small or no displacement perpendicular to the surface in
the Rayleigh-like wave, and it can no longer be measured in our
experimental setup. Beyond ≈37◦ from 〈100〉, another mode
called the pseudo surface acoustic wave (PSAW) [38] arises.
The PSAW has a wave component that radiates into the bulk.
In the 〈110〉 direction, the radiating component disappears
and the wave becomes RSAW again. What we measured is
at 〈110〉 and it belongs to the PSAW branch. To simplify the
terminology in what follows, we use the term SAW to describe
both PSAWs and SAWs.

We calculate the SAW velocity (vSAW) using elastic con-
stants of Si [39]: c11 = 167.4 GPa, c12 = 65.2 GPa c44 =
79.6 GPa, and density ρ = 2.33 g/cm3. At the 〈110〉 direction
where the measurements are carried out, vSAW = 5.09 nm/ps.
The SAW in our experiment has 700 nm wavelength. Thus,
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the predicted frequency is f = 7.27 GHz or, equivalently,
an angular frequency of ω = 45.7 s−1. Experimentally, we
observe f = 7.17 GHz. We attribute the 1.3% difference to
the mass of the patterned Al grating. From linear-response
theory, Im(G33(k,ω,x3 = 0)) arises because of dissipation.
The width of Im(G33(k,ω,x3 = 0)) in the frequency coordinate
can be used to infer the quality factor Q of the SAW created
by coupling to bulk acoustic waves. From our calculations,
we find that for a propagation direction within 5◦ of 〈110〉
direction, the Q factor is >3×104 due to radiation of acoustic
energy into the bulk, and therefore we can neglect this
mechanisms for attenuation of the PSAW.

We calculate the symmetric strain tensor εij with
i,j = 1,2,3 in the SAW at the (001) plane and propagating
in the 〈110〉 direction. The amplitude of the density of elastic
energy is Eel = 1

2cijklεij ε
∗
kl . The strain is represented by a

complex number, and an asterisk denotes complex conjugate.
For cubic crystals, the nine components of the symmetric strain
tensor can be viewed as the basis of the representation of the
group, which is the symmetrized product of the point group
of the cubic crystal [40–42]. The resulting group is reducible;
therefore, the six independent components of strain tensor can
be recombined to form the new basis of the three irreducible
representations. The volumetric strain mode εv = ε11 + ε22 +
ε33 corresponds to the bulk modulus cB = (c11 + 2c12)/3;
the two equivalent stretch modes ε2 = ε11 − ε22 and ε3 =
(2ε33 − ε11 − ε22)/

√
3 correspond to tetragonal shear modulus

(c11 − c12)/2; and three equivalent shear modes ε12, ε13, and
ε23 correspond to shear modulus c44. The density of elastic
energy in a cubic crystal is then [42,43]

Eel = 1

2
cB |εv|2 + c11 − c12

4
(|ε2|2 + |ε3|2)

+ 2c44(|ε12|2 + |ε13|2 + |ε23|2). (4)

When ω2τ 2 � 1 is satisfied, the concept of phonon viscos-
ity can be applied to calculate the Akhiezer damping of SAWs
as described by Maris [44]. We adopt part of Maris’s approach
and provide a brief derivation of the effective viscosity of
SAWs in the following. The average rate of energy loss, Pv ,
due to phonon viscosity is [44]

Pv = 1

2
ω2

∫
ηijklεij ε

∗
kl dV , (5)

where ηijkl is the phonon viscosity tensor and the integral is
over volume. The total energy of the SAW is the same as
the amplitude of the elastic energy, since the time average of
elastic energy and kinetic energy is the same. Therefore, the
total energy of the system is

W =
∫

Eel dV. (6)

Since the phonon viscosity tensor ηijkl has the same symmetry
as elastic constants tensor cijkl , the average rate of energy loss
by Akhiezer damping in Si is

Pv =
∫

ω2

[
1

2
ηB |εv|2 + η11 − η12

4
(|ε2|2 + |ε3|2)

+ 2η44(|ε12|2 + |ε13|2 + |ε23|2)

]
dV, (7)

where ηB = (η11 + 2η12)/3. By writing the attenuation
coefficient as

αSAW = Pv

2WvSAW
= ω2ηSAW

2ρv3
SAW

, (8)

the effective viscosity of the SAW can be defined as

ηSAW = ρv2
SAW

2W

∫ [
ηB |εv|2 + η11 − η12

2
(|ε2|2 + |ε3|2)

+ 4η44(|ε12|2 + |ε13|2 + |ε23|2)

]
dV. (9)

For the SAW on the Si (001) surface along the 〈110〉
direction, the effective viscosity is

ηSAW = 0.059ηB + 0.269

(
η11 − η12

2

)
+ 0.545η44, (10)

where η44 is the effective viscosity of a fast transverse (FT)
bulk acoustic wave in the 〈110〉 direction, and (η11 − η12)/2 is
the effective viscosity of a slow transverse (ST) bulk acoustic
wave in the 〈110〉 direction. Thus, the SAW attenuation in our
measurements has predominantly shear character.

B. Diffraction and phonon focusing

The SAW is generated by a pump laser beam with a 1/e2

spot size of w0 = 5.5 μm. The propagation distance that
separates the near-field from the far-field is on the order of
πw2

0/λ, where λ is the acoustic wavelength. The propagation
distance in our experiments (≈150 μm) is comparable to
πw2

0/λ ≈ 140 μm, and we must consider diffraction in our
data analysis.

We start by considering diffraction of a two-dimensional
(2D) wave for an isotropic medium for a wave of wave vector
k = 2π/λ. The wave amplitude at an arbitrary position (x0,y0)
is the superposition of the circular waves generated by each
point of the source. For a line source centered at x = 0,y =
0 and extending in the y direction with Gaussian intensity
distribution u0 ≡ exp (−2y2/L2) (L is the 1/e2 spot radius),
the wave amplitude at (x0,y0) is

U (x0,y0)∝
∫ ∞

−∞
exp

(
−2

y2

L2

)exp
(−ik

√
x2

0 +(y0−y)2
)

[
x2

0 + (y0 − y)2
]1/4 dy.

(11)

The exponential term in the numerator is the phase of circular
waves. The amplitude of a circular wave in two dimensions
falls off with distance r as 1/

√
r .

The Si (100) surface is not isotropic, and the SAW velocity
vSAW varies with direction. We plot the slowness surface
1/vSAW in Fig. 4. From 〈100〉 to ≈37◦ away from 〈100〉, the
SAW is Rayleigh-like and has relatively big perpendicular
displacement (therefore measurable in experiment), and its
slowness surface is plotted. Beyond ≈37◦ until 〈110〉, the
PSAW has much bigger perpendicular displacement, and
its slowness surface is plotted. The discontinuity in Fig. 4
appears because the slowness surface of the two modes does
not intersect. The vector normal to the slowness surface is
the direction of the group velocity. For directions near 〈110〉,
the slowness surface has smaller curvature than a circle, and
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FIG. 4. Slowness surface of the Rayleigh-like SAW (from the
〈100〉 direction to ≈37◦ away, where the discontinuity is located)
and the PSAW (from the discontinuity to the 〈110〉 direction) on the
Si(001) plane, and a comparison between the slowness surface close
to the 〈110〉 direction and a circle (red line).

the vectors normal to the slowness surface tilt toward 〈110〉.
This phonon focusing effect concentrates energy toward 〈110〉
and suppresses the effects of diffraction in this direction.

Taking into account phonon-focusing effects, the wave
intensity at (x0,y0) is [45,46]

U (x0,y0) ∝
∫ ∞

−∞

N∑
l=1

u0(y)√|r̄|v(l)
g κ (l)

exp(−ik̄(l) · r̄)dy, (12a)

r̄ = (x0,y0 − y), (12b)

u0(y) = exp(−2y2/L2), (12c)

n̄ = r̄

|r| . (12d)

To evaluate Eq. (12), we first find n̄, the direction vector
from point source (0,y) to field point (x0,y0). Then we search
the slowness surface to find points s(1) to s(N) whose group
velocities have the same direction as n̄. These N points have
group velocity v̄(l)

g , phase velocity v̄(l)
p , curvature κ (l), and wave

vectors k̄(l) = ωv̄(l)
p , l = 1, . . . ,N . Note that if the slowness

surface is a circle, then v̄g = v̄p = v̄ and only one point would
satisfy the requirement.

We experimentally verify this calculation by measuring the
wave amplitude as a function of probe position displaced
perpendicular to the wave propagation direction, i.e., the
transverse direction, at ≈150 μm from the source; see Fig. 5.
The calculation for the isotropic case, Eq. (11) (blue line),
gives a wider distribution along the transverse direction than
experiment. The calculation for the phonon-focusing case,
Eq. (12) (red line), is narrower and fits the measurement well.
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FIG. 5. Relative signal intensity when the probe beam is offset
at the transverse direction at far field. Black dots are experiment
results. The red line is the calculation considering phonon focusing
[Eq. (12)]. The blue line is calculated diffraction for an isotropic plane
[Eq. (11)]. The line labeled “No diffraction” is the calculation if no
diffraction is considered.

C. Effect of metal grating

The effect of a thin metal grating on SAWs has been
described previously [25,47]. We numerically model the
perturbation of SAWs created by the metal grating using the
mass loading approximation [47] and the surface Green’s-
function method. (Details of our calculations are given in
Appendix A.) The grating creates changes in dispersion, i.e.,
band structure, and attenuation, i.e., reduced lifetimes.

Without the grating, the dispersion is a straight line with
equal group and phase velocity. When a periodic array of
metal bars is added to the surface, these bars are displaced
together with the surface by the SAW. The surface must provide
sufficient force to drive the displacement of the bars, and
therefore the boundary condition at the surface is a periodic
force field. Similar to an electron wave function in a periodic
potential, the dispersion curves of SAWs are folded into the
first Brillouin zone: −π/λ to π/λ, where λ is the periodicity
of the grating.

Because of the folding in k space, the SAW dispersion curve
intersects the dispersion curve of fast bulk transverse acoustic
waves and bulk longitudinal acoustic waves. The figure in
Appendix A 3 shows the dispersion in the first Brillouin zone
and coupling between the SAW and the bulk acoustic wave. Al
has relatively low density and produces less attenuation than a
high density metal such as Au [25].

Zone folding can create a band gap at the Brillouin zone
center if the filling factor of the grating deviates from 0.5.
Figure 6 plots Im(G33(k,ω,x3 = 0)) near the Brillouin zone
center with δ excitation. Figure 6(a) shows that if the filling
factor is 0.5, there is no band gap at the Brillouin-zone
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FIG. 6. (a) Im(G33) at the Brillouin-zone center with 0.5 grating filling factor and δ excitation. (b) Far-field signal with grating of
≈0.5 filling factor. (c) Im(G33) at the Brillouin-zone center with 0.35 grating filling factor and δ excitation. (d) Far-field signal with grating of
≈0.35 filling factor.

center. However, if the filling factor is not 0.5, for example
0.35, as shown in Fig. 6(c), there is a significant band gap
at the Brillouin-zone center from ≈ − 0.04×106 m−1 to
≈0.04×106 m−1.

For a filling factor that deviates from 0.5, the k = 0
modes of the two branches are standing waves with a π/2
phase difference. Because of this phase difference, the two
standing waves drive the metal bars with different magnitude
displacements and accelerations, and the energies of the two
waves are different, opening a gap. If the grating has a 0.5
filling factor, standing waves with π/2 phase difference have

the same magnitude of displacement and hence the same
energy, and the energy gap at k = 0 is zero.

Deviations from a 0.5 filling factor and the opening of a
gap at the zone center are important in our measurements. A
SAW excited by a finite-size pump beam is composed of wave
components over a range of wave vectors k of −2π/L < k <

2π/L near the Brillouin-zone center, where L ≈ 5.5 μm is the
1/e2 radius of the focused pump. So the range of the excited
wave vector is from ≈ − 0.18×106 m−1 to ≈0.18×106 m−1.
These components combine to form a Gaussian wave packet. If
a band gap exists at the zone center, then the wave components
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close to the zone center have suppressed group velocity. After
propagating a long distance, these slower components of the
wave packet will lag behind the other components of the wave
packet, with k farther away from the zone center. For grating
with a 0.35 filling factor, ≈20% of the wave component has
group velocity ranging from the SAW velocity vSAW to zero
(right at the center of the band gap), as Fig. 6(c) shows. Thus,
the shape of the wave packet will not be Gaussian, as Fig. 6(d)
shows, and is difficult to interpret. If the band gap is small,
then the wave packet has a Gaussian shape, as Fig. 6(b) shows,
and is simpler to analyze.

IV. RESULT AND DISCUSSION

We define the wave amplitude measured with closely
separated (lclose) pump and probe as Rclose and the wave
amplitude with widely separated (lfar) pump and probe as Rfar;
the total attenuation of SAW after it travels l = lclose − lfar is
A = Rfar/Rclose. As discussed in Sec. III, A contains effects
from diffraction, damping created by the metal grating, and
the intrinsic attenuation of Si:

A ≡ Rfar

Rclose
= f (l)D(l) exp(−αglg) exp(−αSil), (13)

where αSi is the intrinsic attenuation coefficient, αg is the
attenuation coefficient of the Al grating, and lg is the width of
the Al grating region. D(l) is the contribution of diffraction
and phonon focusing. f (l) is a sum of all the other effects
that we are not considering, for example the effect of surface
roughness and the presence of the native oxide of Si.

As described in Sec. II B, for Rfar we want to measure the
SAW generated by pump pulse n = −2 and place the signal
in the out-of-phase channel. We therefore separate the pump
and probe by lfar = 147 μm, which is how far the SAW travels
in ≈30 ns. In this way, we position the probe so that the
wave packet is at the center of the measurement window. To
measure Rclose, we want to suppress the thermal signal. We
choose lclose = 10 μm so that the thermal signal is small and
the SAW wave packet is at the center of the measurement
window.

We first consider the amplitude change D(l) caused by
diffraction combined with phonon focusing. Calculation using
Eq. (12) gives D(l) = 0.85.

We then consider damping created by the grating. Experi-
mentally, we find αg > αSi. To increase the sensitivity of the
experiment to αSi, we must minimize lg . Even the grating
within the small distance of propagation across the width of the
pump and probe optical beams creates appreciable damping,
and therefore we must quantify the damping created by the Al
grating to improve the measurement of αSi. Based on Eq. (13),
ln(Rfar/Rclose) changes linearly with lg . Thus, we can fit a line
to ln(Rfar/Rclose) versus lg and extrapolate to lg = 0 to remove
damping created by Al grating.

We achieve this by varying the gap width. Figure 1 shows
part of the sample that has three different gap widths. In
experiment, we change the gap size from 130 to 90 μm, but
we keep lfar constant, i.e., the width of the grating region varies
from 17 to 57 μm. To align the relative position of pump and
probe along the transverse direction, we displace the pump
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FIG. 7. Ratio between wave amplitudes of far offset and close
offset with different lengths of the grating region. The vertical axis is
plotted on a log scale, and data are fitted with straight lines. Each set
of data is labeled by the sample temperature. The slope can be used to
calculate the attenuation coefficient of the Al grating. The inset is the
measurement configuration for far offset. Red dots stand for pairs of
positions of pump and probe beams. Repeating the measurement for
five different gap widths while keeping the distance between the pump
and probe beams constant introduces five different lengths of the
grating region. Comparing them with the close offset measurement
gives five data points at each temperature. The results are extrapolated
to zero grating length (on the vertical axis) to get intrinsic attenuation.

beam along the transverse direction and find the position where
the signal is maximized.

The inset of Fig. 7 shows the experimental configuration to
measure Rfar. Figure 7 shows the measured attenuation with
five different widths of grating region, fitting, and extrapolation
to the point where attenuation from the Al grating is removed.
We repeat the measurement at four temperatures: 30, 100,
200, and 250 ◦C. If f (l) is assumed to be 1, we can obtain
the following: at 30 ◦C, αg = 152 cm−1 and αSi = 9 cm−1;
at 100 ◦C, αg = 145 cm−1 and αSi = 14.2 cm−1; at 200 ◦C,
αg = 140 cm−1 and αSi = 18.4 cm−1; and at 250 ◦C, αg =
136 cm−1 and αSi = 19.4 cm−1.

In Boltzmann theory, the change in the occupation number
of a mode is generated by two processes: phonon transport
between regions with different strain, and localized phonon
relaxation due to phonon collisions [1]. Equation (1) can be
viewed as a result from localized relaxation theory [9], with
Q ∝ ωτ/(1 + ω2τ 2). Therefore, Eq. (1) is a good approx-
imation when phonons relax locally before they propagate
to regions with different strain, i.e., 〈vphonon〉τ � v/f , where
〈vphonon〉 is the averaged group velocity of thermally excited
phonons, f = ω/2π is the frequency of the acoustic wave,
and v is the velocity of the acoustic wave. This condition
can be written as ωτ < v/〈vphonon〉. At a temperature much
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FIG. 8. Temperature dependence of the measured intrinsic atten-
uation coefficient. Red points are measurements. The black line is a
fit to the data using Eq. (1) and τ = 30 ps and (〈γ 2〉 − 〈γ 〉2) = 0.053.

lower than the Debye temperature, only a small fraction of the
acoustic phonon branches are excited, and v/〈vphonon〉 � 1.
Mason et al. [8,9] show that Eq. (1) fits the measured acoustic
attenuation of Si well at low temperature when ωτ � 1. For Si
at RT, the majority of phonon modes are excited. The phonon
modes with a larger wave vector generally have a smaller group
velocity and a higher density of states. In particular, the group
velocity of optical phonons is much smaller than v. Thus, we
conclude that v/〈vphonon〉 > 1 in Si at RT. Our experiment falls
into the ωτ ∼ 1 and RT regime, ωτ < v/〈vphonon〉 is satisfied,
and Eq. (1) is a good approximation.

We fit results for αSi to Eq. (1); see Fig. 8. In Eq. (1), we
use the heat capacity for Si from Ref. [48]. We assume that
the relaxation time scales as τ ∝ 1/T . The fitting gives τ =
30 ps and 〈γ 2〉 − 〈γ 〉2 = 0.053. The experimental uncertainty
in τ is large, approximately a factor of 2. The uncertainty in
〈γ 2〉 − 〈γ 〉2 is much smaller, on the order of ±0.01.

The measured intrinsic attenuation coefficient and Akhiezer
model using the fitted τ and (〈γ 2〉 − 〈γ 〉2) are compared with
previous experimental results and phonon viscosity modeling
in Fig. 9, which also reveals discrepancies among prior
experiments and the phonon viscosity models.

Based on our analysis of Sec. III A, the attenuation
coefficient of the SAW by the theory of phonon viscosity can
be calculated by Eq. (3) with the effective viscosity ηSAW

calculated by Eq. (10). The results using phonon viscosity
tensors of Lamb and Richter [13] and Helme and King [16] are
labeled as “SAW-Lamb viscosity” and “SAW-Helme viscos-
ity,” respectively, in Fig. 9. Extrapolation of our experimental
results to ω2τ 2 � 1 agrees better with the calculation based
on Helme and King’s phonon viscosity tensor. In the regime of
our measurements, ωτ ∼ 1, the Akhiezer damping predicted
by Eq. (1) deviates significantly from the phonon viscosity
model, Eq. (3).
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FIG. 9. Comparison between our result and prior reports and
the phonon viscosity model. L denotes a longitudinal bulk acoustic
wave. FT and ST denote a bulk fast transverse acoustic wave and
a bulk slow transverse acoustic wave, respectively. Notation like
〈100〉 denotes the propagation direction. Data marked [a] are from
Ref. [18], data marked [b] are from Ref. [15], data marked [c] are from
Ref. [8], and data marked [d] are from Ref. [19]. The straight line of
“SAW-Lamb viscosity” and the dashed line “SAW-Helme viscosity”
correspond to the attenuation coefficient of SAW calculated using
Eq. (3) and the effective viscosity of SAW from Eq. (10). They use
the phonon viscosity tensor from Lamb and Richter [13] and Helme
and King [16], respectively. The Akhiezer model is calculated using
Eq. (1), where τ and 〈γ 2〉 − 〈γ 〉2 are from our measurement.

The energy dissipation in a mechanical oscillator can
be from extrinsic and intrinsic mechanisms. Two important
extrinsic mechanisms are air damping [49] and clamping
loss [50,51]. The intrinsic damping mechanisms are thermoe-
lastic dissipation [3,52] and Akhiezer damping. For extrinsic
damping, vacuum packaging can be used to eliminate air
damping, and the symmetrical design of a mechanical oscilla-
tor can reduce the clamp damping. For intrinsic damping, uti-
lizing specific modes can suppress thermoelastic dissipation.
For example, a pure shear strain in cubic crystal does not cause
a volume change, and therefore no thermoelastic dissipation
occurs. Akhiezer damping is created by a local strain and
represents a fundamental upper limit to the Q of mechanical
oscillators. Our measurements show that the mean-squared
variation of Grüneissen parameters 〈γ 2〉 − 〈γ 〉2 of shear strain
is an order of magnitude smaller than the corresponding
parameters for normal strain [8,14,53]. Comparing with the
Akhiezer damping of a longitudinal acoustic wave measured
by Daily et al. [20], the Akhiezer damping of an acoustic wave
at GHz with predominately shear character is approximately
six times smaller. A silicon mechanical oscillator with a
vibrational mode of mostly shear character will have a higher
upper limit of the Q factor than one with a vibrational mode
of predominately normal character.
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In summary, we measure the attenuation of 7.2 GHz trans-
verse acoustic waves to be αSi ≈ 9 cm−1 at room temperature.
The result of a small mean-squared variation of Grüneissen
parameters for shear strain indicates a high-Q factor for a
mechanical oscillator with mostly shear character.
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APPENDIX: CALCULATION OF THE SURFACE
GREEN’S FUNCTION

We describe here the procedure of calculation of the surface
Green’s function of a bare substrate, a substrate with uniform
mass loading, and a substrate with periodic mass loading.
We adopted the treatment of metal grating in Ref. [47] into
the Green’s function method described in Ref. [54]. For
completeness, we give a full derivation of our calculation.

1. SAW of substrate

We start with the calculation of a bare substrate. For any
acoustic waves, the displacement Ū = [U1,U2,U3] satisfies
the equation (adopts Einstein summation notation)

Cijkl

∂2Uk

∂xj∂xl

= ρ
∂2Ui

∂t2
, i,j,k,l = 1,2,3, (A1)

where Cijkl is the elastic constant tensor of the substrate, Ui is
the displacement at the i direction, and ρ is the density of the
substrate. Equation (A1) admits a plane-wave solution of

Ui = Ũiexp[i(k̄ · x̄ − ωt)], (A2)

where Ũi is the unit polarization vector, k̄ = 2πn̄/λ is the wave
vector, λ is the wavelength, and n̄ is the wave normal. Putting
Eq. (A2) back into Eq. (A1) gives the Christoffel equation,

�ikŨk ≡ Cijklkj klŨk = ρω2Ũi . (A3)

�ik is defined as the Christoffel matrix. For the eigenvalue
problem of the 3×3 Christoffel matrix to have a solution, k̄

and ω should have the following relationship:

det(�ik − ρω2δik) = 0. (A4)

For SAW with wave vector k̄‖ = (k1,k2) and propagating
on the (x1,x2) plane, the displacement Ū satisfies Eq. (A1). Ū

can be written in Fourier space of (ω,k̄‖)

Ui(x̄,t) = 1

(2π )3

∫ ∞

−∞
dk̄‖

∫ ∞

−∞
dω ui(k̄‖,x3,ω)ei(k̄‖·x̄‖−ωt).

(A5)

With given ω and (k1,k2), Eq. (A4) can be solved to give
six k

(n)
3 (possible complex numbers) and six corresponding

eigenvectors ᾱ(n). According to linear algebra, they are com-
ponents of the SAW. SAW should not have wave components
that come from a substrate or with higher energy when deeper
into a substrate. This selection rule eliminates three k

(n)
3 and

corresponding ᾱ(n). With the three solutions left, the Fourier
kernel in Eq. (A5) can be written as

ui(k̄‖,x3,ω) =
3∑

n=1

A(n)α
(n)
i eik

(n)
3 x3 , (A6)

where A(n) are three coefficients of the linear combination of
three wave components. They are the only unknowns.

Next, the boundary conditions are applied to solve the
coefficients A(n). The boundary condition at surface x3 = 0
is point excitation:

σl3(x̄‖,x3 = 0,t) = Cl3pq

∂Up(x̄‖,x3 = 0,t)

∂xq

= δl3δ(x̄‖)δ(t),

(A7)

which can be written in Fourier space as

δl3δ(x̄‖)δ(t) = δl3
1

(2π )3

∫ ∞

−∞
dk̄‖

∫ ∞

−∞
dω ei(k̄‖x̄‖−ωt). (A8)

Applying Eqs. (A5), (A6), and (A8) in Eq. (A7), we have

3∑
n=1

iCl3pqk
(n)
q α(n)

p A(n) = δl3, (A9a)

k
(n)
1 = k1, k

(n)
2 = k2. (A9b)

We can define the 3×3 matrix B
(n)
l = iCl3pqk

(n)
q α(n)

p and

solve the equation B
(n)
l A(n) = δl3 to get all three A(n). Putting

A(n) back into Eq. (A6) gives ū(k̄‖,x3,ω). ū(k̄‖,x3 = 0,ω) is the
third column of the surface elastodynamic Green’s function
in Fourier space, Gij , thus G33 = u3(k̄‖,x3 = 0,ω) can be
obtained. G33(k̄‖,x3 = 0,ω) is mapped in (k‖,ω) space (in
the k̄‖ direction), and its extreme points define the dispersion
curve. Figures 6(a) and 6(c) are the color maps of G33 close to
the Brillouin zone center. Figure 10 is from the extreme points
of G33.

2. SAW of the substrate with a uniform mass layer

If there is a uniform layer on top of the substrate, the
boundary condition becomes

σl3(x‖,x3 = 0,t) = Cl3pq

∂Up(x‖,x3 = 0,t)

∂xq

= δl3δ(x‖)δ(t) + μ
∂2Ul(x‖,x3 = 0,t)

∂t2
.

(A10)

Here μ is the mass per unit area. The mass loading term in
Fourier space is

μ
∂2Ul(x‖,x3 = 0,t)

∂t2

= 1

(2π )2

∫ ∞

−∞
dk‖

∫ ∞

−∞
dω ei(k‖x‖−ωt)(−μω2)

×
3∑

n=1

A(n)α
(n)
l eik

(n)
3 (k̄‖,ω)x3 , (A11)

k
(n)
1 = k1, k

(n)
2 = k2, k

(n)
3 = k

(n)
3 . (A12)
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FIG. 10. Dispersion curve of the SAW from 0 to π/λ with metal grating, drawn by plotting extreme points of G33(k‖,x3 = 0,ω). In both
figures, the blue line is the dispersion curve of bulk fast transverse acoustic waves, and the red line is the dispersion curve of bulk longitudinal
acoustic waves in the Si 〈110〉 direction; they are not from the G33(k‖,x3 = 0,ω) calculation but are plotted separately. (a) The black line is
Re(G33(k‖,ω,x3 = 0)), which shows the mode folding and band structure in the first Brillouin zone. (b) The black line is Im(G33(k‖,ω,x3 = 0)).
The imaginary part of the Green’s function appears only after the SAW couples with bulk acoustic waves. The acoustic band gap is too small
to be visible in this plot.

So the boundary condition at x3 = 0 is

δl3 =
3∑

n=1

A(n)iCl3pqα
(n)
p k(n)

q eik
(n)
3 (k̄‖,ω)x3 − (−μω2)

3∑
n=1

A(n)α
(n)
l eik

(n)
3 (k̄‖,ω)x3 =

3∑
n=1

A(n)
[
iCl3pqα

(n)
p k(n)

q + μω2α
(n)
l

]
. (A13)

Using this new boundary condition and repeating the previous procedure, one can calculate G33.

3. SAW of the substrate with periodic grating

Similarly, the periodic mass loading of metal grating changes the boundary condition to

σl3(x‖,x3 = 0,t) = Cl3pq

∂Up(x‖,x3 = 0,t)

∂xq

= δl3δ(x‖)δ(t) + μ(x‖)
∂2Ul(x‖,x3 = 0,t)

∂t2
(A14)

and μ(x‖) has a periodic rectangular dependence on position (rectangular grating). Its Fourier transform is

μ(x‖) =
∞∑

m=−∞
μmeimGx‖ , |Ḡ| = 2π

λ
Ḡ = (g1,g2), (A15)

where λ is the periodicity of the grating. When applying this boundary condition, μ(x‖) causes the mixing between components
ui(k‖ + nG,x3,ω), with integer n from −∞ to ∞. So we rewrite the expression of surface displacement as

Ui(x̄,t) = 1

8π3

∫ ∞

−∞
dk‖

∫ ∞

−∞
dω ui(k̄‖,x3,ω)ei(k‖x‖−ωt)

= 1

8π3

∞∑
m=−∞

∫ G/2

−G/2
dk‖

∫ ∞

−∞
dω ui(k̄‖ + mḠ,x3,ω)ei[(k‖+mG)x‖−ωt]

= 1

8π3

∫ G/2

−G/2
dk‖

∫ ∞

−∞
dω

∞∑
m=−∞

ui(k̄‖ + mḠ,x3,ω)ei[(k‖+mG)x‖−ωt]

= 1

8π3

∫ G/2

−G/2
dk‖

∫ ∞

−∞
dω

∞∑
m=−∞

3∑
n=1

A(n)(m)α
(n)(m)
i eik

(n)(m)
3 x3ei[(k‖+mG)x‖−ωt]. (A16)

k
(n)(m)
3 and α

(n)(m)
i correspond to the (k‖ + mG‖) term in the solution of the Christoffel equation. α

(n)(m)
i is independent with the

size of k‖; it only depends on the propagation direction. However, we still assign it to each m for the sake of programming the
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calculation. A similar process can be applied for the boundary condition:

δl3δ(x‖)δ(t) = δl3
1

(2π )3

∫ ∞

−∞
dk‖

∫ ∞

−∞
dω ei(k‖x‖−ωt) = δl3

1

(2π )3

∫ G/2

−G/2
dk‖

∫ ∞

−∞
dω

∞∑
m=−∞

ei[(k‖+mG)x‖−ωt]. (A17)

In these integrals, we require |k‖| < G/2. Therefore, the boundary condition is

i

∞∑
m=−∞

3∑
n=1

A(n)(m)C3lpqα
(n)(m)
p k(n)(m)

q eik
(n)(m)
3 x3eimGx‖

= δl3

∞∑
m=−∞

eimGx‖ −
∞∑

M=−∞
μMeiMGx‖

∞∑
m=−∞

3∑
n=1

ω2A(n)(m)α
(n)(m)
l eik

(n)(m)
3 x3eimGx‖ .

(A18)

Here we define k
(n)(m)
1 = k1 + mg1, k

(n)(m)
2 = k2 + mg2. Rearrange the index and apply x3 = 0:

i

∞∑
m=−∞

3∑
n=1

A(n)(m)C3lpqα
(n)(m)
p k(n)(m)

q eimGx‖ = δl3

∞∑
m=−∞

eimGx‖ −
∞∑

m=−∞

3∑
n=1

ω2
∞∑

M=−∞
μMA(n)(m−M)α

(n)(m−M)
l eimGx‖ , (A19)

which will give the final relationship between all the coefficients of linear combination:

∞∑
m=−∞

eimGx‖
3∑

n=1

[
iA(n)(m)C3lpqα

(n)(m)
p k(n)(m)

q + ω2
∞∑

M=−∞
μMA(n)(m−M)α

(n)(m−M)
l

]
= δl3

∞∑
m=−∞

eimGx‖ . (A20)

It is clear that the harmonic terms in periodic mass loading cause the mixing between different eigenmodes. This is a linear
algebra equation for all A(n)(m). It is impractical to consider all the harmonic terms. In our calculation, we only consider up to the
fifth harmonics, i.e., we treat A(n)(m) = 0 if |m| > 5. Solving all A(n)(m) can give u3(k̄‖,x3 = 0,ω).

Figure 10 is the dispersion curve of the SAW with the presence of metal grating. Re(G33) shows the dispersion curve of the
SAW. Figure 10(a) shows that the metal grating creates band structure. Im(G33) represents the damping of the SAW. Figure 10(b)
shows that the attenuation of the SAW by a metal grating is due to the coupling between the SAW and the bulk acoustic wave.
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