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Simultaneous suppression of superfluid and resistance on approach to superconductor-insulator
transition in underdoped ultrathin Ca0.3Y0.7Ba2Cu3O7−δ films
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Using simple four-terminal resistance measurements and two-coil superfluid stiffness measurements,
we observe an extended temperature range wherein both the superfluid density and the resistance are
substantially suppressed, in some cases below experimental resolution, in severely underdoped ultrathin films of
Ca0.3Y0.7Ba2Cu3O7−δ (CaYBCO). This temperature range δTc, deemed the “offset,” is in some films more than
1
2 of the resistive transition temperature. δTc scales linearly with the characteristic two-dimensional (2D) vortex
unbinding temperature T2D, growing larger with underdoping upon approach to the superconductor-insulator
transition. Absent in three-dimensional samples of CaYBCO, we discuss the offset in the context of a previously
observed 2D quantum critical point in the vicinity of the superconductor-insulator transition, as well as in the
context of intrinsic and extrinsic inhomogeneities in the superconducting state of the film.
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I. INTRODUCTION

In the cuprate family of high-temperature superconductors,
which fluctuations are primarily responsible for the collapse
of the superconducting state has been a widely debated topic.
For a particular hole doping, it is unclear whether thermal
fluctuations drive both the amplitude and the phase of the order
parameter to zero, or whether the phase alone is suppressed to
zero, with some authors suggesting that the pairing amplitude
is nonzero at temperatures far exceeding Tc. Further compli-
cating the picture are quantum critical fluctuations arising from
the approach to a quantum critical point (QCP), in this case
a superconductor-insulator transition (SIT), with decreasing
hole doping. These quantum critical fluctuations affect the
number of electrons that enter the superconducting state [1,2],
thereby decreasing the energy associated with changes in
the phase of the order parameter. Dimensionality can add
yet another layer of complication to the forms the various
fluctuations may take, especially given the highly anisotropic
layered structure of the cuprates. Thus, not only must multiple
parameters (e.g., temperature, doping, thickness) be varied
to disentangle the contributions of different fluctuations, but
comparisons must be made between measurements sensitive
to different aspects of the system. In this work, we focus on
ultrathin films of Ca0.3Y0.7Ba2Cu3O7−δ (CaYBCO), seeking
to compare measurements of the superfluid density with the
resistivity. Given previous work establishing the presence of
two-dimensional (2D) phase fluctuations in the disappearance
of the superfluid density [1], (specifically, vortex/antivortex
pair production), comparison of the superfluid and resistivity
data for these films could shed light on the prominence of 2D
thermal phase fluctuations near the SIT.

Two-dimensional thermal fluctuations of the phase in the
form of vortex singularities have been known since the
theoretical work of Kosterlitz and Thouless and Berezin-
skii [3–5]. Tightly bound pairs of vortices and antivortices
(having opposite magnetic moments and corresponding to the
conservation of magnetic flux in zero external field) form
due to thermal fluctuations above the lowest-energy Meissner
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state. Entropic considerations lead to the unbinding of the
vortex/antivortex pairs at a characteristic temperature T2D,
defined implicitly by the equation

kBT2D = φ2
0

8πμ0

d

λ2(T2D)
, (1)

where φ0 is the flux quantum, μ0 the permeability of free space,
d the thickness of the film, and λ(T2D) the ab-plane magnetic
penetration depth. Evidence of this vortex unbinding transition
has been seen in both resistivity studies as well as superfluid
density measurements [1,6] for various superconducting films.
For superfluid density, the appearance of free vortices and
antivortices should lead to a near discontinuous change from
finite to zero superfluid, while the resistivity should show a
sharp rise above T2D of an exponential form, first calculated
by Halperin and Nelson [7]. Using the superfluid density as
a benchmark for the appearance of vortex/antivortex pairs,
a more constrained fit of the Halperin-Nelson theory to the
resistivity should be possible. Deviations of the resistivity at
higher temperatures from this theory could then be compared
and possibly attributed to other fluctuations than vortex phase
fluctuations, such as fluctuations in the amplitude of the order
parameter.

However, during the course of this study, an unexpected
pattern emerged: as T2D decreased, there was an increasingly
large temperature region where the superfluid density and
resistivity were simultaneously suppressed, complicating the
analysis of the vortex fluctuations. Such suppression of the
superfluid density has often been associated with sample in-
homogeneity. Benfatto and collaborators have done extensive
work on how spatially random inhomogeneity can affect the
results of the two-coil measurement as well as the measured
resistivity, successfully applying this model both to the thin
films of BCS superconductors as well as cuprate films [8–12].
Application of this model to our films thereby sheds light on
what role spatially random inhomogeneity might play in the
suppression of the superfluid density and resistivity, although
we find that it fails to adequately explain the experimental data.

II. EXPERIMENT

Our samples are grown via pulsed laser deposition (PLD)
using a KrF excimer laser (248 nm). Laser pulses hit a
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Ca0.3Y0.7Ba2Cu3O7 target at a rate of 30 Hz with an energy
density of 2.4 J/cm2 (effective spot size 2.5 mm by 3.0 mm)
in an atmosphere of flowing oxygen at 300 mTorr. The films
are grown on commercially prepared STO (001) substrates
heated to 760 ◦C, with one unit cell (uc) deposited at a time
(1 uc for CaYBCO is 11.8 Å), followed by a 90-s break. A
base layer of three uc’s of nonsuperconducting PrBa2Cu3O7

(PBCO) is deposited between the bare SrTiO3 (STO) and the
CaYBCO, and the CaYBCO is capped with 10 uc’s of PBCO
to protect against degradation. We calibrate the number of
laser pulses corresponding to the deposition of a single uc
by etching a prepared film of ≈50 to 100 uc’s and using
AFM to measure the thickness. After deposition, the films are
annealed at 450 ◦C in O2 pressures ranging from 1 to 650 Torr,
which controls the oxygen doping. All samples have the same
Ca concentration. Underdoping of the films is accomplished
solely through manipulation of the oxygen content during the
post-growth annealing.

Back to back measurements of ns(T ) and the resistivity
ρ(T ) are performed promptly after post-growth annealing to
prevent degradation from affecting the results. We achieve
temperatures down to 1.3 K through vacuum pumping our
cryostats. For the bulk of our samples, film resistance is
measured by the standard dc four-point technique in the
Van der Pauw geometry. Electrical contact is made through
indium pressed directly onto the sample. Although there is
occasional contact separation when warming the sample back
up to room temperature, the indium generally remains in good
contact even with our ultrathin samples. However, to ensure
optimal resolution during the superconducting transition, we
switched to using a 10-μA, 400-Hz ac current through e-beam
evaporated Ag contact pads. This technique is applied in our
latest samples.

The superfluid density is measured using a two-coil
technique [13]. We place coils of NbTi on either side of
the plane of the film and drive one coil with a 50-kHz sine
wave. Lock-in amplifiers detect the induced EMF due to the
magnetic flux that passes through the other coil, and the mutual
inductance of the coils is calculated. When the sample becomes
superconducting, some portion of the magnetic field from the
drive coil is screened by the film, and the measured mutual
inductance drops. If the ab-plane magnetic penetration depth
λ is much larger than the film thickness d, as it is for our films,
then the induced current density in the film is very nearly
uniform through the film thickness. In this case, conductivities
of individual layers in the cuprate films add in parallel, and
the mutual inductance of the coils is properly related to the
complex sheet conductivity σ = σ1 − iσ2 of the film. λ is
defined from σ2(T ): d

λ2(T ) ≡ μ0ωσ2(T ), where ω is the driving
frequency [13].

A few thick films (50 uc) were grown and tested for
comparison purposes, while the majority of films were either
2, 5, or 10 uc thick. We have grown 10 uc films with Tc’s up
to 75 K, while we have grown 5 uc films with Tc’s up to 60 K
and 2 uc films with Tc’s up to 40 K. We pause to consider
how we should treat the dimensionality of our films. Previous
measurements find that the expected drop in superfluid density
at the Kosterlitz-Thouless-Berezinskii transition occurs at a
temperature consistent with the interpretation that copper-
oxide layers are sufficiently coupled that the full film thickness

FIG. 1. Scaling between the T = 0 K superfluid density and the
T2D, confirming the adherence of these films to the scaling observed
by Hetel et al. [1]. The error bars come from the width of the superfluid
transition, while the determination of the expected T2D using Eq. (1)
is unambiguous.

behaves as a single two-dimensional film [14]. This is puzzling
from a theoretical side, for at T = 0, the c-axis coherence
length for YBCO, ξ , is approximately 4 Å, less than the c-axis
unit-cell dimension of 11.8 Å. One could postulate that ξ

grows with temperature until it exceeds the film size, but we
suspend theoretical discussion of ξ and instead rely upon the
experimental phenomenology to justify treating the films as
2D. The fact that the film thickness values in this study are at
least an order of magnitude less than the ab-plane penetration
depth λ further supports this view. The diamagnetic currents set
up in response to a magnetic field will be uniform through the
thickness of the film. Although in bulk cuprates the presence of
multiple independent layers can modify the vortex/antivortex
interactions from the pure 2D case [15], there are so few
layers in our films that the vortex/antivortex interaction is not
substantially altered. From these considerations we conclude
that films of up to and including 10 uc’s such as in this
study are adequate approximations to 2D, as will be further
discussed during the analysis of the data. This adequacy is
further supported by the adherence of severely underdoped
films to the 2D scaling found by Hetel et al. [1], shown in
Fig. 1. The Appendix contains all superfluid and resistivity
data for the 2D films used in this study.

III. RESULTS

Figure 2 shows the superfluid density and resistivity ρ in
the vicinity of the transition to superconductivity for a film
that is 50 unit cells thick, totaling 59 nm. For our purposes,
this is a thick film [14]. As one would expect from crystals and
other studies on “thick” (20 to 100 uc) films, the resistive and
superfluid transitions are fairly close in temperature. Defining
δTc = T

ρ
c − T2D, where T

ρ
c is the temperature during the

superconducting transition such that the resistance has dropped
to 1

10 of the normal state value, we have δTc = 0.9 K. As
cuprates generally have non-negligible transition width, the
few-K difference between the transitions is well explained by
the use of the 10% point of the resistive transition for our
resistive critical temperature. The resistance can be seen to
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FIG. 2. Superfluid density and resistivity for a thick (50 uc)
CaYBCO film (sample 121116). The offset δTc (defined in the
text), resistive critical temperature T ρ

c , and the 2D vortex unbinding
temperature T2D are labeled on the graph. δTc is seen to be relatively
small, i.e., T ρ

c and T2D are comparable.

drop to zero at the same temperature as the appearance of
superfluid density.

Contrary to expectations from thick films, two-dimensional
films show a large temperature region where both the su-
perfluid and the resistance are suppressed. Figure 3 shows
the resistivity and superfluid measurements for an archetypal
film of 5 uc thickness. The opening of a large offset δTc is
immediately apparent upon visual inspection even before any
quantitative analysis is performed. δTc is more than 1

3 of both
T

ρ
c and T2D.

We plot δTc versus T2D in Fig. 4. The offset clearly
decreases with increasing 2D temperature in a linear fashion.
We emphasize that this behavior is seen over nearly two orders
of magnitude in temperature. Several films even showed a
resistive transition while the superfluid response remained
zero down to the experimental lower limit of 1.3 K. We took
these films to have T2D = 0. This leads one to ask whether
a whole range of T

ρ
c might be possible at T2D = 0. Current

work focuses on creating and measuring films with resistive
transitions near 0 K. Although initial results indicate that such
films are possible, we have not yet systematically explored this

FIG. 3. Superfluid density and resistivity for a 5 uc CaYBCO film
(sample 120807). The large temperature region where both responses
are suppressed is quantified by δTc = T ρ

c − T2D.

FIG. 4. Critical temperature offset δTc versus vortex unbinding
temperature T2D for several two-dimensional Ca-doped YBCO films.
The red line is a linear fit to the data. Error bars arise from the
determination of T2D and T ρ

c .

region of the phase diagram, and as such we do not include the
data here. The exact definition of the offset does not affect the
order of magnitude of the offset nor the increase of the offset
with underdoping. To illustrate this point, Fig. 5 presents the
offset defined using T 1%

ns , the temperature where the superfluid
has dropped to 1% of the its T = 0 K value, in place of T2D.
Although there is a slightly larger scatter in the data than for
the T2D offset, the increase with underdoping is clear.

Figures 6–8 show closeups of the offset region for several
films. In Fig. 6, we see that for large T2D, the superfluid
and resistivity, although largely suppressed, are still non-
negligible, and meet at 75.95 K. At the moderate T2D in
Fig. 7, we again see that the superfluid density and resistivity
meet at a given temperature, although each is suppressed over
several K by three orders of magnitude from its bulk-state
value. Finally, at the even lower T2D in Fig. 8, there is a clear
temperature region where the superfluid density and resistivity
have dropped below our experimental resolution.

FIG. 5. Critical temperature offset δTc versus the temperature
T 1%

ns where the superfluid has dropped to 1% of its T = 0 K value
for several two-dimensional Ca-doped YBCO films. The red line is a
linear fit to the data. Error bars arise from the determination of T 1%

ns

and T ρ
c .
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FIG. 6. The transition region for film 120509, which has a large
value for T2D = 75.3 K, with both λ−2 and ρ below the levels defining
their respective critical temperatures. T ρ

c = 77.1 K. Note how there
is a nonzero temperature region where λ−2 and ρ are both nonzero.

While the offset increases with underdoping, the resistive
transition becomes wider. The width is defined by locating
the temperature, denoted T 100%, where the resistance begins
to show a precipitous change in curvature with decreasing
temperature and then locating the temperature range over
which the resistance achieves 90% and 10% of its value at
T 100%. These points are shown in Fig. 9. Figure 10 shows
the width of the resistive transition plotted against T2D for
the respective film. It is important to note that although the
resistive transition broadens with underdoping, the superfluid
response still occurs at a temperature far less than where
the resistance is significantly suppressed, in some films by
five orders of magnitude below the normal-state resistance.
Extended regions of significant resistivity do not eliminate the
increase in the offset with underdoping.

The resistive widening is mirrored by the real part of
the sheet conductivity σ1(T ). σ1 constitutes the dissipative
portion of the film response to a magnetic field, and generally

FIG. 7. The transition region for the film 151020, with a moderate
value of T2D = 43.3 K. T ρ

c = 62.5 K. λ−2 and ρ go to zero at the same
temperature.

FIG. 8. A closeup in the transition region for the film 120724,
with a moderately low value of T2D = 24.6 K. T ρ

c = 56.8 K. Both
λ−2 and ρ are suppressed to below experimental resolution over a
significant temperature range. Between 44 and 46 K, a temperature-
independent voltage offset has been subtracted from ρ corresponding
to 0.06 μ
 cm. Below 44 K, a weakly temperature-dependent voltage
of 0.03 μ
 cm/K, attributed to thermal emf, has been subtracted.

exhibits a peak at a temperature Tmax σ1 that is within a few
Kelvin of T2D. Thus, σ1 is generally associated with thermally
excited vortices. The width of the peak has traditionally
been taken as a mixture of film homogeneity and intrinsic
physical effects, with a smaller full width at half maximum
(FWHM) indicating a more homogeneous film [2]. Figure 11
plots the FWHM of σ1(T ) versus Tmax σ1 . The FWHM of
the peak in σ1 is generally largest at severe underdoping,
and decreases as Tmax σ1 attains larger values (which can be
associated with higher T2D). Although this may suggest itself
as the source of the offset, closer examination reveals that
when σ1 has a larger FWHM, the peak in σ1 is often not
symmetric about Tmax σ1 . Rather, Tmax σ1 tends to occur closer
to the higher-temperature end of the superfluid transition,
while shoulders in the lower-temperature side of σ1 inflate the
FWHM. An example of this can be seen in Fig. 12, showing
σ1 for the 5 uc film 120807. We expect that this shoulder

FIG. 9. The resistivity for the 5 uc film 120807 showing the
positions that define T 100%, T 90%, T 50%, and T 10%, as used in
determining T ρ

c and the width of the transition.
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FIG. 10. The width of the resistive transition, defined as T 90% −
T 10%, versus T2D. A strong dependence on T2D can be seen, suggesting
a connection between how readily thermal vortices unbind and the
widening of the resistive transition. Error bars are based upon the
error in determination of the defining temperatures.

in σ1 corresponds to a minority, yet nontrivial, percentage of
the film transitioning into the vortex state, and thereby yielding
dissipation. Since the appearance of these nonsuperconducting
regions does not correspond to a significant decrease in ns ,
we infer that ns rapidly decreases only when a majority of
the film has entered the nonsuperconducting state. Since this
downturn is precisely what happens at T2D, only a minority of
an inhomogeneous film would be in the superconducting state
in the offset region, i.e., that temperature region above T2D.

This adds to our skepticism that the simultaneous suppression
of ns and ρ is an artifact of inhomogeneity.

The appearance of the offset in ultrathin CaYBCO films
naturally aroused our curiosity as to ultrathin Bi2Sr2Ca1Cu208

(BSCCO). Much to our surprise, a 200 nm (65 uc) BSCCO film
showed a significant offset (see Fig. 13). Thin BSCCO films
(4 to 10 uc) similarly showed an offset. Systematic study of
the offset in ultrathin BSCCO is in order, although controlling
film homogeneity is less advanced than in ultrathin CaYBCO.

FIG. 11. The full width at half maximum of σ1(T ) versus the
location of the peak in σ1 for the films presented in this paper. There
is a general linear trend, with narrower peaks at higher temperatures.

FIG. 12. (a) σ1 for the 5 uc film 120807, with Tmax σ1 = 41.6 K.
σ1 is clearly not symmetric about this temperature. Even if the
midpoint between the cusps is chosen to define Tmax σ1 , the peak
is not symmetric. (b) σ1 compared against ns = λ−2(T ). Despite the
shoulder in σ1 at temperatures below Tmax σ1 , ns drops below 1

10 of its
T = 0 value when σ1 peaks.

IV. ANALYSIS

A. Fits of fluctuation effects

We start our quantitative analysis with the superfluid
density. Figure 14 shows the superfluid density data for

FIG. 13. A 65 uc (200 nm) BSCCO film, showing the same offset
behavior as ultrathin CaYBCO films.
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FIG. 14. Superfluid density λ−2 for the 5 uc film 120807. The
intersection of the line labeled “5 uc KTB line” with λ−2 determines
T2D.

the 5 uc film 120807 as well as the T2D line, constructed
from Eq. (1) so that the intersection of λ−2(T ) and the T2D

line gives the expected value of T2D. In our experiment,
the determination of T2D is unambiguous, as d

λ2 is extracted
directly from the measured mutual inductance [13], while φ0,
μ0, and kB are constants. Hence, errors in measurements of
other film properties, such as thickness d, do not affect T2D,
given that the CuO planes of CaYBCO have been found to
be coupled rather than independent [2]. Further information is
extracted from the superfluid density by taking a quadratic fit
to the low-temperature data, motivated by the expected λ−2(T )
dependence for a dirty-limit d-wave superconductor [16], with
3D films of CaYBCO showing good agreement to the d-wave
form to within a few K of Tc [17]. The zero of the quadratic
fit could be interpreted as T

mf
c , the mean field transition

temperature in the absence of fluctuation effects. The right
panels of the figures in the Appendix, Figs. 25–36, show the
low-temperature fit in comparison to the resistivity. Although
for some curves the quadratic fit goes to zero reasonably close
to the resistive transition, other films, such as the 5 uc film
120724 shown in Fig. 15, show a greater discrepancy. Clearly,
identifying the zero of the fit as T

mf
c is problematic. Whether

FIG. 15. Quadratic low-temperature fit to the superfluid density
of the 5 uc film 120724. The zero of the fit falls far short of the
resistive transition.

this stems from the same source as the offset δTc or is due
to the general inapplicability of the quadratic form at higher
temperatures for our 2D films is unclear. The fit also helps de-
termine ns(0), which is used to confirm that the film conforms
to the expected linear scaling between T2D and ns(0) [1].

The analysis of the resistivity begins by separating out the
contributions from the PBCO buffer layers and the CaYBCO
layers. The contribution of the PBCO buffer layers is modeled
by variable range hopping (VRH) conductivity taken from
the literature [18,19]. The same VRH parameters are used
regardless of the doping. Due to the ultrathin nature of our
CaYBCO, the PBCO conductivity can have a sizable contribu-
tion at higher temperatures, especially for severely underdoped
CaYBCO, accounting for up to 10% of the measured resistivity
at room temperature. However, this contribution is less
important in the temperature range where the transition occurs,
especially as the increased conductivity of the superconducting
state comes to dominate the total conductivity of the film.
Consequently, the resistivity near the transition is presented
without adjustment for the contribution from PBCO.

We take a simple linear fit as a first-order approximation for
the in-plane normal-state resistance given the work of Wuyts,
Moshchalkov, and Bruynseraede [20]. The resistive transition
itself is modeled using two-dimensional Aslamazov-Larkin
(AL) corrections to the normal-state conductivity

σAL = e2

16�d ln ε
, (2)

where ε = T
T AL

c
and d is a relevant thickness scale. For com-

pleteness we will compare fits using both the single unit-cell
thickness and the full film thickness for d. The AL corrections
represent the formation of Cooper pairs due to thermodynamic
fluctuations above Tc. It is mathematically apparent that T AL

c is
the critical temperature associated with zero resistance since
the conductivity becomes infinite as T → T AL

c and Cooper
pair formation becomes the minimum of the free energy
as opposed to a product of thermodynamic fluctuations. We
restrict ourselves to the 2D form for uncoupled layers, as the
three-dimensional (3D) form is only applicable in about 0.25 K
of T

ρ
c , assuming a c-axis coherence length of ≈0.4 nm.

For near-optimally doped films, this model gives good
agreement with the resistive transition especially at the higher-
temperature end, as can be seen in Fig. 16. For severely
underdoped films, the agreement is limited to a smaller section
of the high-temperature end of the transition. The increasing
departure of the normal state from linearity as we approach the
SIT is no doubt a factor in this lack of agreement. Figure 16
shows the AL fit for the 5 uc film 120807. We have presented
fits using both the single unit cell and the full film thickness as
the relevant length scale d. Since the full film thickness governs
the vortex/antivortex unbinding transition in the superfluid
density [1,2], one would expect that the full film thickness
should be used for the AL conductivity. However, a better fit is
achieved using the single unit-cell thickness instead. This is not
definitive since other effects, including the film inhomogeneity
and the deviation of the normal-state resistivity from our
simple linear approximation, could be leading to erroneous
fits. (It is because of the rather simple linear approximation that
we have allowed the normal-state resistivity to differ between
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FIG. 16. The 2D Aslamazov-Larkin model for paraconductivity
fit to the resistivity of the 5 uc sample 120807 using both a single
unit cell and the full film thickness as the relevant thickness scales.
We have assumed a normal-state resistivity linear in temperature
and allowed it to vary between the two fits. The fit for using
a single unit cell is in reasonable agreement for the upper half
of the transition, while the resistivity changes curvature at lower
temperatures, deviating from the fit. The AL fit for the full film
thickness deviates greatly from the data, but as explained in the main
text, the quality of this fit as well as the single-layer fit could be
happenstance arising from other effects.

the two fits, and have not held the normal-state temperature
dependence to be rigidly fixed.) These effects would have to be
rigorously accounted for before one could say that the copper
oxide layers are decoupled during the resistive transition.

Turning to the low-temperature end of the resistive tran-
sition, we attempt to apply the model of Halperin and
Nelson (HN) [7]. Thermally excited vortices and antivortices,
having opposite magnetic moments, will move in opposite
directions under the influence of a dc electric current. When
the vortex/antivortex pairs are bound, these opposite responses
result in no net motion for the pair, but at T2D, the vortices and
antivortices should begin to move, resulting in an induced
electric field opposite to the supercurrent flow. This electric
field causes dissipation, and the sample should exhibit a
voltage dependent upon the number of vortices and antivortices
present. Halperin and Nelson calculated this resistance:

R�
RN�

= C exp

(
−2b

√
Tc − T2D

T − T2D

)
, (3)

where RN� is the normal-state sheet resistance, Tc is the mean
field transition temperature, and C and b are constants of order
unity [6,7]. As a phenomenological choice, we take Tc to be
≈T

ρ
c , the measured resistive transition temperature, allowing a

less than 2-K variation for goodness of fit. Figure 17 shows this
model applied to the 5 uc film 120807, determined by seeking
linear regions in ln ρ versus (T − T2D)−0.5. This is shown in
Fig. 18, revealing approximately three linear regions in T −
42.2 K that correspond roughly to the very low-temperature
end of the transition, the first 10% of the transition, and the
high-temperature end of the transition.

In each of these temperature regimes, the model of HN can
be made to fit the data by altering the fitting parameters, yet

FIG. 17. Fits of the Halperin-Nelson theory for resistance due
to thermally excited vortices to the 5 uc film 120807 resistivity, as
extracted in Fig. 18. T2D = 42.2 K. By altering some of the fitting
parameters, the theory can be made to replicate specific temperature
regions of the resistivity, but fails to provide a logically consistent fit.

it greatly deviates from the resistivity curve outside of those
temperature regimes. At the very low end of the transition,
the fitting procedure yields a fit only to the lowest resistivity
values. As it misses almost the entirety of the transition, as
well as fitting those ultralow resistivity values most affected
by experimental noise, this fit is obviously unreasonable. At the
high-temperature end, the fit is again unreasonable, as it misses
the rapidity with which the resistivity falls with decreasing
temperature. Furthermore, the very applicability of HN to the
high-temperature end is unsound, as it is expected that the
HN model should give way to AL fluctuations [11]. Near
T 10%, a decent agreement is achieved in the region where
the HN form is expected to be applicable, but with grossly
inappropriate fitting parameters, namely, C = 2.75 × 1019 and

FIG. 18. First method of fitting the Halperin-Nelson theory
(dashed line) for resistance due to thermally excited vortices to the
5 uc film 120807 resistivity. The natural log of the resistivity is
plotted against the argument of the exponent in the Halperin-Nelson
resistivity [Eq. (3)]. Three linear regions that might fit the theory are
extracted. Here, T2D = 42.2 K, taken from the superfluid data, while
the values for b and Tc are left free since this fitting procedure only
fixes their functional relationship.
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FIG. 19. Halperin-Nelson fit to the resistivity of the 5 uc CaY-
BCO film 120807 leaving T2D as a free parameter. This yields a value
of T2D = 64.2 K, much higher than the T2D = 42.2 K derived from
λ−2. The fitting parameters are far more reasonable than when using
the lower value of T2D.

b ≈ 20, assuming Tc is somewhere between 60 and 80 K. The
prime culprit in this appears to be the extremely low value
of T2D. To give even a remotely useful fit to the data, any
parameter selection should at least yield a low value for ρ

below the transition, and cross the resistivity data at one point.
If we require ρ(60 K) � 1 μ
 cm and ρ(78 K) = 320μ
 cm,
b must exceed 16, while C > 109 for any choice of T

mf
c

between 60 and 80 K. If we instead take T2D as a free parameter,
and attempt to fit the data directly, we achieve more reasonable
results, but are then still faced with a significant discrepancy
between T2D from the superfluid and resistive data. Figure 19
shows an example of this fit for the 5 uc film 120807. The
fit yields C = 2.72 and b = 0.246, but using T2D = 64.2 K,
which is decently higher than the value of 42.2 K obtained from
the superfluid data. The HN fit is compared to the single-layer
AL fit in Fig. 20. As expected, the HN model gives a better

FIG. 20. Halperin-Nelson fit to the resistivity of the 5 uc CaY-
BCO film 120807 leaving T2D as a free parameter compared with
the 2 uc This yields a value of T2D = 64.2 K, much higher than the
T2D = 42.2 K derived from λ−2. The fitting parameters are far more
reasonable than when using the lower value of T2D extracted from the
superfluid density transition.

fit at the low-temperature end of the transition, while the AL
model gives a better fit at the high-temperature end.

B. Analysis of film inhomogeneity

Although in some films the superfluid density shows a
sudden downturn in the vicinity of T2D, as expected, other
films have a more rounded, broad transition. There is also
a small tail at upper temperatures. Given that this tail is
mirrored in the resistivity, as well as the sizable widths of
both σ1 and ρ, it would seem that there is a less than desirable
amount of inhomogeneity in several of our films. It has been
pointed out that inhomogeneity can lead to erroneous fitting
values when attempting to apply HN and AL models of the
resistivity [11]. Inhomogeneity could certainly be causing
some of the issues with the fits of the previous section, such
as the deviation of the HN fit at low temperatures from the
measured resistivity (see Fig. 19). This naturally raises the
question of how inhomogeneity might relate to the offset.

To answer that question, we applied the renormalization
group (RG) analysis of Ref. [21] to one of our films. In that
work, Benfatto et al. derive RG flow equations appropriate
for 2 unit-cell CaYBCO films undergoing the Kosterlitz-
Thouless-Berezinskii 2D vortex/antivortex unbinding transi-
tion mentioned in the Introduction. Using the low-temperature
quadratic fit λ−2(T = 0) − αT 2 (where α is a constant) as
the superfluid density in the absence of vortex/antivortex
pairs, the RG equations can be numerically solved to yield
a renormalized λ−2(T ). For a perfectly homogeneous film,
the only fitting parameters for this procedure would then be
the coupling between the layers of the film and the vortex
creation energy μ. We follow Benfatto et al. in keeping the
initial interlayer coupling a constant fraction of the superfluid
stiffness (which is proportional to λ−2). As for μ, it is
selected so that the RG calculated transition occurs at the
same temperature as the experimental data. In practice, this
was selected to be near T2D, which also generally agreed with
the peak in σ1. For an inhomogeneous film, the procedure
can be repeated using different values of λ−2(T = 0), and the
total superfluid response of the film fit by assuming that the
film consists of regions with a local value of λ−2(T = 0).
These regions are taken to be randomly distributed in space,
occurring with Gaussian probability. Averaging the calculated
renormalized superfluid curves over the Gaussian distribution
then provides a fit to the experimental data. As we were able
to reproduce the curves in Ref. [21], we are confident that we
are properly applying the methodology to our samples.

Figure 21 shows the superfluid fit for the 2 uc film 120802.
The bulk of the curve can be fit with a single Gaussian.
However, to achieve the tail at the higher-temperature end of
the transition, we added a second Gaussian distribution with
a small weighting compared to the first. Consequently, the
probability distribution P [λ−2(T = 0)] was

Pa√
2πσ 2

a

e
− (λ−2−λ

−2
a )

2

2σ2
a + Pb√

2πσ 2
b

e
− (λ−2−λ

−2
b

)
2

2σ2
b (4)

with Pa = 0.982, λ−2
a = 1.438 μm−2, σa = 0.489 μm−2,

Pb = 0.018, λ−2
b = 3.121 μm−2, and σb = 0.624 μm−2. The
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FIG. 21. Fit of the superfluid density for the 2 uc film 120802
accounting for inhomogeneity. Most of the transition could be
captured using a single Gaussian probability distribution for the local
superfluid densities. The tail at high temperature required a small
contribution from a second Gaussian.

value for μ, in units of the vortex energy expected from the
XY model, was 2.02, which is within 6% of the value reported
in Ref. [21] for films with comparable T2D, further supporting
the applicability of this RG approach to our particular samples.

Once the RG calculations have accounted for the inhomo-
geneity in λ−2, the same equations can provide insight into the
resistive transition by extracting the vortex correlation length ξ

(not to be confused with the coherence length) and converting
it into a resistance in the manner of Refs. [9,11]. A full
treatment of the resistivity would extrapolate from the result
of the RG calculation to include the effects of AL fluctuations
near and above T

mf
c , which in this case corresponds to

the zero of the low-temperature quadratic fit used for the
bare superfluid density. An effective medium theory (EMT)
would then be used to calculate the resistivity resulting from
the randomly distributed local values of λ−2(T = 0), the
probability distribution of which has already been calculated
in reference to the superfluid density data. This is beyond
the scope of this paper. We need only consider what the
minimum resistivity might be for a film with a spatially random
distribution of superfluid transitions, with concomitant ρ(T )
curves. As the resistivity that can be calculated from the
vortex/antivortex RG equations is capped at 0.5RN [11], while
the major effect of AL fluctuations would be to suppress RN

to between 1 and 0.5 except for a small region around T
mf
c , we

take the resistivity calculated from the RG analysis as is. On
the whole, we believe this to be a reasonable approximation
considering that we need not exactly replicate the resistivity
data, but rather ascertain if spatially random inhomogeneity
can account for the offset. In the same vein, we do not perform
an EMT analysis, but rather take all the local resistivities to
be in parallel. This represents the lowest possible resistivity
that such a collection of resistors can assume. As even one
superconducting link would completely suppress the resistivity
in this scenario, the accuracy of our analysis is limited by
numerical considerations, specifically over how many standard
deviations we integrate the probability distribution. Care is
taken to integrate out to λ−2(T = 0) values such that higher

FIG. 22. The resistivity calculated from the RG analysis of film
120802. Despite a number of approximations erring on the side
of lower resistivity, the calculated resistivity still rises much more
quickly than the experimental resistivity.

values of λ−2(T = 0) would occur with a probability of less
than 1 in 109.

Figure 22 shows the calculated resistivity for film 120802.
As can readily be seen, the RG calculation produces a
resistivity that rises far more rapidly than the observed
resistivity. We can only conclude that a spatially random
distribution of local superfluid densities cannot account for
the offset.

Before leaving the analysis of the experimental data, it is
worth noting that we are not the first to experimentally produce
the offset in ultrathin CaYBCO films. In his thesis [22], Hetel
discusses additional data surrounding the ultrathin CaYBCO
films that were used to establish the linear scaling of ns

with Tc at severe underdoping, as presented in Ref. [1].
Among the additional data, Hetel reports both the superfluid
density and the resistivity of a single 2 unit-cell sample of
CaYBCO (see p. 46 of Ref. [22]). A digitally reproduced
copy, along with our determination of T2D and T

ρ
c , is shown

in Fig. 23. From these values, we extract δTc = 11.8 K, which

FIG. 23. Superfluid and resistivity data for a 2 uc CaYBCO film
reproduced from the thesis of Hetel [22]. The extracted values of T2D

and T ρ
c yield a value of δTc comparable to the trend line from our

samples.
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FIG. 24. RG analysis applied to the data from Hetel. The super-
fluid data are fit using a Gaussian probability distribution for λ−2,
with λ−2 = 13.6 μm−2 and σ = 0.612 μm−2. The experimental
resistivity can be roughly approximated by using only local superfluid
values that lie 4σ from the mean. When the total film distribution of
superfluid values is taken into account, the calculated resistivity again
fails to match the experimental resistivity.

compares favorably with the expected value from our films of
δTc = 34.8 K − 0.42 × T2D = 13.8 K. Furthermore, when we
apply the same RG analysis used earlier to this film, we find
that the resistivity would roughly correspond to a Tc 4 × σ

away from the average T2D, as shown in the expanded view of
the offset region in Fig. 24. At 4 × σ , regions with a higher Tc

occur with a probability of only 3 × 10−5, which would still
seem a very small portion of the film to be almost completely
determinative of the total film resistivity. When the resistivity
of regions lying up to 6 × σ from the mean are averaged in
parallel, the resistivity clearly rises before the experimental
data. Unfortunately, Hetel did not record resistivity data for
his severely underdoped films due to difficulties making good
electrical contact [22].

V. DISCUSSION

The suppression of both λ−2 and the resistivity ρ over
an extended range in temperature would seem to stretch
existing theory if not past its limits, at least to its extreme.
To understand the offset, we take as our starting point the
superfluid transition. The pronounced downturn of λ−2(T )
with increasing temperature has been identified with the 2D
transition [1,21], and motivates our determination of T2D. The
presence of vortices is further supported by the dissipative
signal from the two-coil measurement. It would seem clear
that thermal vortices unbind at the downturn. As temperature
increases, the density of free vortices and antivortices should
also increase. When coupled with the dissipative action of
vortices, this leads to the Halperin-Nelson form for the
resistance below the mean field transition at T

mf
c but above

T2D. Previous experience, including our own experiments with

thick CaYBCO films as in Fig. 2, is that T
mf
c −T2D

T
mf
c

� 1 [11,23].

Yet, we find that in 2D films, T
mf
c − T2D is comparable to

T
mf
c when we reasonably take T

mf
c = T

ρ
c . Even if T

mf
c is

taken at some other point on the resistive transition, δTc

is still sizable. More questions are raised if T
mf
c cannot

be associated with the resistive transition. Thus, it would
seem that either a superconducting state with thermal vortices
can persist over a larger temperature range than expected,
or that some other state or effect interposes between the
unbinding of vortices at T2D and the transition to the normal
state.

In either case, it is unlikely that the offset is a structural
artifact of the films. We would expect structural inhomo-
geneities, such as defects, impurities, or disordering of the
Cu-O chains present in CaYBCO, would be spatially random.
Since each structural effect has the potential to lower the local
critical temperature, the resulting distribution of local critical
temperatures would be spatially random. Yet, the RG analysis
explicitly constructed to handle spatially random Tc’s failed
to account for the offset. A more refined analysis for the
resistivity, effective medium theory (EMT), would necessarily
fail as well since our weighting of local resistivities represents
a lower bound on any EMT resistivity. It is interesting to note
that Benfatto et al. have explored the applicability of EMT
to systems with weak correlation in the spatial distribution
of Tc [8] and found reasonable agreement between the EMT
calculation and more direct numerical modeling. Thus, any
theory of spatial inhomogeneity in the superconducting state
that could explain the offset must have a nontrivial degree of
spatial correlation.

Any possible link between spatially correlated inhomo-
geneity and the appearance of the offset would require new
physics. One possibility is suggested in Ref. [24], where
numerical studies establish that transverse current responses
to applied vector fields, normally not present in the BCS
model, arise in disordered superconductors. For regions of
the film with higher superfluid density, these currents can
link neighboring regions to create correlated current paths.
A calculation of the extent of this effect for superfluid
distributions such as ours would be a useful check on the
role of inhomogeneity. In addition, a more exact calculation
of the resistivity for our samples, as outlined in the discussion
of the RG analysis, might help to clarify the dependence of
the offset on T2D by removing the incidental discrepancy
due to spatially random inhomogeneity. The RG analysis
might be further expanded to include Ref. [25], which would
also allow an analysis of σ1. In that work, σ1, as measured
by two-coil measurements, was found to be anomalously
large. This was linked to the slowing down of the vortices,
possibly due to inhomogeneity. Given the broad width of
our σ1 curves, further investigations of inhomogeneity are in
order.

There is an interesting parallel to be noted between our
ultrathin CaYBCO films and measurements on LBCO crystals
at 1

8 doping. In La2−xBaxCuO4 (LBCO) at 1
8 doping, the

c-axis resistive transition occurs at a lower temperature than
the ab-plane resistive transition [26]. In the same samples,
neutron diffraction shows an enhancement of stripe formation
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due to a temperature-induced transition to a low-temperature
tetragonal (LTT) state. These stripes are believed to frustrate
the interlayer coupling in LBCO, allowing for what are
otherwise 2D vortices to have a large impact on the bulk
crystal. It has been hypothesized that this temperature effect
in the anisotropy of the resistivity is due to a pair density wave
(PDW) state, a theoretical electronic state with periodic spatial
modulation of the pairing amplitude. The PDW would be a
candidate state for linking stripes and superconductivity, and
is expected to be more pronounced in 2D systems [27]. LBCO
doped to 0.095 exhibits a similar anisotropic phenomenon, but
only under nonzero magnetic field, possibly due to differences
in stripe formation with doping [28]. Analysis of the form
of the c-axis resistivity in these samples suggests that it
is due to vortices, which is once again suggestive of our
vortex/antivortex physics.

Our CaYBCO films are 2D by construction, and as such
already bear a greater resemblance to LBCO samples with
interlayer frustration than bulk YBCO, which has fairly strong
interlayer coupling. Furthermore, we expect ultrathin CaY-
BCO films to be tetragonal for two reasons: calcium doping and
the use of STO as our substrate. YBCO undergoes a transition
from orthorhombic to tetragonal as the oxygen per unit cell
decreases below 6.6 [29]. Since partial Ca substitution for Y
in YBCO dopes in extra holes, we can readily push the oxygen
content of our films below 6.6 while still achieving significant
Tc’s. Thus, our films will be in a tetragonal state. Furthermore,
the underlying STO is cubic in structure, further encouraging
tetragonal rather than orthorhombic film formation. Coupled
with the temperature separation between the appearance of
vortices in our superfluid density measurements and the
ab-plane resistivity, the possibility that ultrathin CaYBCO is
also a candidate for a PDW demands further experimental
investigation. We hope to test thin LBCO films at 1

8 doping to
further establish the connection between LBCO and ultrathin
CaYBCO.

If the offset is indeed indirect evidence for a PDW, ultrathin
CaYBCO would be an excellent test bed for models probing the
energy scales associated with a PDW. In LBCO, observation
of the zero magnetic field offset requires strong stripes to
make the sample 2D and thus limits the doping range over
which it can be easily observed. Ultrathin CaYBCO is 2D
by construction, and thus does not require strong magnetic
fields to produce the offset. Given that doping in CaYBCO can
be continuously controlled through post-growth annealing, a
heightened level of model parameter control can be achieved
that is rare in solid-state systems.

The appearance of an offset in thick BSCCO films is at
first surprising, but on further examination fits within a picture
of a 3D versus a 2D QCP as a factor in the offset. Previous
work has shown that 2D and 3D CaYBCO films obey different
scaling relationships for T2D and ns(0) [1,2], corresponding to
the expected scaling difference between a 2D and 3D QCP.
This is logically consistent with the appearance of the offset
in 2D films but not in 3D films of CaYBCO. BSCCO is more
anisotropic than YBCO, and 2D features appear to persist
in otherwise thick films. Thick films (≈60 uc) of BSCCO

show the same 2D linear scaling of λ−2(0) with Tc as ultrathin
YBCO [16], while more homogeneous 10 uc films show the
same quantitative relationship as YBCO over and above the
equivalence of the scaling form [30]. Further investigation
of BSCCO is in order, especially as regards the role of
dimensionality and inhomogeneity in driving the formation
of any offset.

VI. CONCLUSION

We have measured a temperature regime in ultrathin
films of Ca-doped YBCO showing simultaneous suppression
of the resistance and the superfluid density. This “offset”
δTc is a significant fraction of the expected mean field
transition temperature associated with the resistive transition
T

ρ
c . δTc is linearly dependent upon T2D, the two-dimensional

vortex unbinding temperature, and increases upon severe
underdoping. The presence of the offset in films that are
inherently 2D while its absence in films that respond as
3D, along with doping-dependent features of the offset,
are suggestive of the effects of a previously identified 2D
quantum critical point in ultrathin CaYBCO [1]. Alterna-
tively, or perhaps complementary, an increased amount of
inhomogeneity in films exhibiting a large offset demands a
careful analysis beyond naive expectations for the effects of
inhomogeneity.
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APPENDIX

We show here all superfluid and resistivity data for the
films presented in this work. Panel (a) for each film shows
the superfluid density (proportional to λ−2), the real part of
the sheet conductivity, as well as a quadratic low-temperature
fit. Panel (b) for each film shows the superfluid density,
the quadratic low-temperature fit, and the resistivity (see
Figs. 25–36). Small voltage offsets related to noise and thermal
emfs have been subtracted from most resistivity graphs. These
were generally small corrections (<1 μ
 cm), except for
film 120823. Here, the correction was on the order of the
normal-state resistivity. We include the film, although we
have ascribed its offset value with correspondingly large
error bars. Films 120509, 12217, and 1231 are 10 unit cells
thick, films 120604, 120807, 120724, and 120806 are 5
unit cells thick, film 151020 is 4 unit cells thick, and films
120802, Jon’s Film, 120803, and 120823 are 2 unit cells
thick.
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FIG. 25. 10 uc film 120509.

FIG. 26. 10 uc film 12217.

FIG. 27. 5 uc film 120604.

094525-12



SIMULTANEOUS SUPPRESSION OF SUPERFLUID AND . . . PHYSICAL REVIEW B 94, 094525 (2016)

FIG. 28. 10 uc film 1231.

FIG. 29. 4 uc film 151020.

FIG. 30. 5 uc film 120807.
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FIG. 31. 2 uc film “Jon’s Film”.

FIG. 32. 5 uc film 120724.

FIG. 33. 2 uc film 120802.
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FIG. 34. 2 uc film 120803.

FIG. 35. 2 uc film 120823.

FIG. 36. 5 uc film 120806.
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