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Long-distance correlation-length effects and hydrodynamics of 4He films in a Corbino geometry
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Previous measurements of the superfluid density ρs and specific heat for 4He have identified effects that are
manifest at distances much larger than the correlation length ξ3D [Perron et al., Nat. Phys. 6, 499 (2010); Perron
and Gasparini, Phys. Rev. Lett. 109, 035302 (2012); Perron et al., Phys. Rev. B 87, 094507 (2013)]. We report here
measurements of the superfluid density which are designed to explore this phenomenon further. We determine the
superfluid fraction ρs/ρ from the resonance of 34-nm films of varying widths 4 � W � 100 μm. The films are
formed across a Corbino ring separating two chambers where a thicker 268-nm film is formed. This arrangement
is realized using lithography and direct Si-wafer bonding. We identify two effects in the behavior of ρs/ρ: one
is hydrodynamic, for which we present an analysis, and the other is a correlation-length effect which manifests
as a shift in the transition temperature Tc relative to that of a uniform 34-nm film uninfluenced by proximity
effects. We find that one can collapse both ρs/ρ and the quality factor of the resonance onto universal curves by
shifting Tc as �Tc ∼ W−ν . This scaling is a surprising result on two counts: it involves a very large length scale
W relative to the magnitude of ξ3D and the dependence on W is not what is expected from correlation-length
finite-size scaling which would predict �Tc ∼ W−1/ν .

DOI: 10.1103/PhysRevB.94.094520

I. INTRODUCTION

How do two coupled systems undergoing an ordering
transition, which because of different constraints take place
at different temperatures, affect each other? As reported by
Perron et al. [1], the superfluid transition of an array of
(2 μm)3 boxes filled with 4He and connected via a thin film
show a remarkable action-at-a-distance coupling in the specific
heat. This can be measured at a temperature corresponding
to a distance of one hundred times the magnitude of the
three-dimensional correlation length ξ3D. Concomitant with
this, the superfluid density ρs of the film connecting the boxes
is influenced by the proximity to the boxes in two ways. Its
superfluid transition is shifted closer to the bulk transition
Tλ, and there is an overall enhancement of ρs above that of a
uniform film of the same thickness [1–3]. It was conjectured by
Perron and Gasparini [2] that such behavior might be generic
to continuous phase transitions where fluctuations play an
important role, and thus would not be limited to 4He.

As remarked by Fisher [4], in the two-dimensional (2D)
Ising system consisting of an array of strips with different
coupling strengths there is also a two-peak structure in the
specific heat, as is seen in the helium data [1], which is
indicative of the role of the coupling strength between such
strips. In more recent work [5,6] with 2D Ising strips of
different spin coupling strengths and widths Au-Yang and
Fisher found that there is an enhancement of the specific
heat and of the overall critical temperature. In a calculation
which more closely mimics the boxes-plus-film geometry, but
still for 2D Ising, Abraham et al. [7] showed that there is a
remarkable long-distance coupling between squares of spins
connected through extraordinarily long linear links. This, they
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point out, is not a correlation-length effect but is associated
with the emergence of a new length scale which diverges
exponentially. Also, in experiments with junctions between
two high-Tc superconductors through a link which is normal
because of doping, tunneling is seen over distances much larger
than the correlation length [8]. It seems that this, sometimes
referred to as the giant proximity effect, is a manifestation of
similar physics. There are no analogous calculations, as for
the Ising system, for a 3D XY system as appropriate to 4He.
However, recent work has been reported by Del Maestro [9].
Mean-field calculations do not describe the effects seen [10].

In the case of low-temperature superconductors there
have also been experiments which have shown long-range
effects associated with the influence of one superconductor
on another. Kwong et al. [11] have reported studies of
the superconducting transition in aluminum films arrays in
which the critical temperature in different regions is slightly
different due to different chemical treatment. They find that
the superconducting transition of the array shifts between the
two temperature limits defined by the uniform films. However,
when comparing this with expected theoretical predictions
they find that they do not describe their data. The data indicate
that a long-range coupling exists on a scale much larger
than the correlation length, ξ = 1 μm for aluminum. They
tentatively suggest that phase fluctuations due to the small
∼0.02 K difference in the transition temperature of the two
regions might be responsible for this. In another series of
measurements by Liu et al. [12], it was found that a single
crystal of superconducting nanowires of length between 6
and 60 μm superconductivity was induced on the wires when
in contact with superconducting electrodes of higher critical
temperature. These authors also conclude that the observed
long-range proximity effect cannot be understood by existing
theories.

We report in this paper measurements of the superfluid frac-
tion of 4He confined as coupled films. The experiments have
been designed to determine proximity effects on a thin film
due to two adjoining superfluid regions which behave more
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bulklike in the region where the thin film has its transition.
The experimental arrangement consists of two regions where
the 4He is formed as a 268 ± 2-nm film. These regions are
separated by, and linked through, a ring of controlled width
where 4He is formed as a 34.5 ± 0.5-nm film. This geometry is
simpler than the arrangement of boxes-plus-film of the Perron
et al. [1] experiments and is amenable to a more detailed
analysis for the superfluid fraction. It also tests coupling in
a different way: one two-dimensional film in proximity to
another of different thickness.

This paper is organized as follows: we first describe the
experimental arrangement; then we present a theory for the
superfluid fraction for the geometry of the cells. This yields
equations which do not include correlation-length effects but
can be tested against the data, especially for the widest ring
with W = 100 μm. This can be done without any adjustable
parameters except for an overall magnitude normalization.
More importantly, this theory also allows us to separate effects
in ρs/ρ which are hydrodynamic in nature from effects of
coupling which are correlation-length driven. We then present
all of our data and further analysis. This is followed by
conclusions.

II. EXPERIMENTAL DETAILS

The Corbino geometry [13] of our cells is depicted in Fig. 1
in a cutaway view. It consists of two silicon wafers 5 cm in
diameter which have patterned oxide growths and are directly
bonded [14,15]. The SiO2 patterns in this cell consist of an
outermost ring, which seals the cell, and an inner ring of 2.4 cm
diameter which defines an opening of height h = 34 nm and
width W . Not visible on this rendering is a series of oxide
regions on the top wafer. These are bonded on the ring so that
there are actually 250 openings across the ring each of 200 μm
lateral width. This lateral dimension, as well as the height h are
kept constant while W is varied for different cells. This design,
with 1/3 of the ring area being bonded, ensures uniformity for
the opening of small height h. The magnitude of h is chosen
to match as closely as possible the film thickness used in the
measurements with (2 μm)3 boxes of helium, and in a separate
experiment where the full cell consisted of a 33.6 ± 0.9-nm
planar film [3,10]. These data will form a basis for comparison
with the present results. The two regions surrounding the ring

FIG. 1. A schematic rendering, not to scale, of the Corbino
confinement. The cell is formed with two 50-mm-diameter silicon
wafers. The support posts and outer border maintain wafer separation
of 268 nm except over the Corbino ring of width W which has a
34-nm film above it. The 268-nm dimension was chosen since it
is large enough so that in the region where the 34-nm film has its
transition the 268-nm film has a superfluid fraction which is within
10% of the bulk value. The square posts (100 μm)2 are at 200-μm
separation and define the 268-nm separation of the two wafers inside
and outside the Corbino ring. The 34-nm height is defined by the
oxide pattern in the upper wafer.

consist of a film which is H = 268 ± 2 nm thick. See Table I
for the actual dimensions h, H of each individual cell. This
table also has the dimensions for other cells which are relevant
for the present work. The height H is defined by bonding the
wafers with a series of oxide posts which are (100μm)2 in
cross section and at 200-μm separation. These posts take up
11% of the volume in these regions. The helium in the cell
communicates with a filling line via a center hole. The staging
of such a cell on a cryostat has been described previously [16].
Basically, it is an arrangement whereby excellent long-term
temperature stability can be achieved by the use of a low-
temperature valve to seal the filling line, and the use of three
stages of temperature regulation. The cell is enclosed by two
light shields, one anchored at a 4He evaporator running at
about 1.4 K, and another at a temperature a few mK above
the temperature of the cell. A separate thermal link allows the
cell to be regulated below the temperature of its light shield.
More details can be found in [16]. The cell has a CuNi resistive
film heater deposited in a spiral pattern on the outer surface
of the bottom wafer. Two doped single-crystal Ge chips are

TABLE I. The oxide thicknesses for each Corbino cell and three other cells.

Corbino cells
W (μm) Small oxide thickness (nm) Large oxide thickness (nm)

4 34.1 ± 0.5 264.6 ± 1.0
8 34.4 ± 0.5 271.1 ± 1.3
18 34.6 ± 0.5 268.0 ± 1.1
18 34.8 ± 0.5 270.9 ± 1.1
40 34.6 ± 0.5 267.7 ± 0.8
100 34.4 ± 0.5 265.7 ± 0.9
Average 34.5 ± 0.5 268 ± 2

Other cells [3]
Uniform film thickness (nm) 33.6 ± 0.9
Film with boxes (nm) 31.7 ± 0.1 (boxes at 4-μm separation)
Film with boxes (nm) 32.5 ± 1.2 (boxes at 2-μm separation)
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epoxied to the top wafer. One is used to regulate the average
temperature of the cell and the other to detect the temperature
oscillations in response to an ac heating.

To obtain the superfluid fraction for the helium confined in
this cell, or similar cells with different oxide patterns, one can
apply a uniform ac heating and vary the frequency to search for
resonant flow. The cells are a superleak sealed at one end. A
resonance consists of superflow between the cell and the filling
line. Because of the experimental arrangement this movement
of the superfluid is adiabatic with very little heat flow between
the cell and the filling line during the cycle of oscillation. This
motion of the superfluid is accompanied with temperature and
pressure excursions in the cell. We measure the temperature
response. This technique has been described [17,18]. Our
thermometry with a doped Ge chip enables us to resolve
temperature oscillations within ∼50 nK. This is achieved by
averaging the temperature oscillations over several minutes at
fixed frequency. The range of resonant frequencies is typically
between about 50 and 1000 Hz. The cell is held at a fixed
average temperature for each resonance sweep. The normal
fluid is viscously immobile. For a cell without the Corbino ring,
there is a single Helmholtz resonance which has been called
adiabatic fountain resonance (AFR) [17,18]. The analysis
yields equations for the temperature oscillations and the phase
shift of these oscillations relative to the ac excitation at the
heater. In practice any superleak staged as the silicon cells
will support an AFR resonance from which a value of the
superfluid fraction can be obtained. However, the meaning
of this superfluid fraction depends on the details of how the
helium is confined. In the case of uniform films of thickness
H the meaning is unambiguous: it is that of a film undergoing
crossover from three dimensions to two dimensions as the
superfluid transition is approached. In the case of the Corbino
cells the meaning of the measured ρs requires some additional
analysis.

There are no significant temperature gradients across the
cell that can be determined experimentally. A calculation of
the temperature distribution in the cell including details of the
heater and thermal links shows that possible gradients are much
less than one μK [19]. However, see below for an exception
to this under a particular resonance condition.

In Figs. 2 and 3 we show two examples of resonances at
two different temperatures. The data for the amplitude of the
temperature oscillations are shown as the product of frequency
times amplitude. This removes a dominant ω−1 dependence.
The phase shift is that of the detected signal relative to the
ac drive frequency. The lines through the data are a fit to
the line shapes derived in [18]. We see in Fig. 2 that for
t ≡ (1 − T/Tλ) = 0.06 both the phase and amplitude signals
are fit well. They yield a consistent resonant frequency which
is indicated by the vertical dashed line. In Fig. 3 are data for
t = 0.004, much closer to the film’s superfluid transition of
tc ∼= 0.003; the fit to the phase is still good but the fit to the
amplitude shows some systematic deviations. We believe that
in this case the amplitude signal is distorted because of finite
velocity effects. The maximum velocity for these particular
data is 1 cm/s at the exit of the cell. In cases such as for Fig. 3
we rely only on the phase signal to determine the resonance.
The increase of dissipation near the transition, above some
noncritical background, is related to the process of vortex

FIG. 2. A sample resonance signal for the amplitude and phase at
t = 0.06 The data fit (solid lines) according to the adiabatic fountain
resonance equations derived in [18]. The resonant frequency ω0 is
indicated by the dashed vertical line. The solid vertical line indicates
the magnitude of the temperature oscillation.

pairs unbinding [20]. This affects the quality factor of the
resonance and limits how close to the transition one can make
a meaningful measurement. We note in these plots with a
vertical line the magnitude of the temperature excursion for the
amplitude signals. This depends on the frequency so it applies
strictly to the region of the resonance. These temperature
oscillations, as mentioned before, are not large, ∼±0.5 μK.
The temperature resolution of these oscillations can be inferred
from the scatter of the amplitude data; it is better than 50 nK.

We present next a theory for the interpretation of the
superfluid fraction which is determined from resonances with
the Corbino cells.

FIG. 3. A sample resonance signal for the amplitude and phase at
t = 0.004. The data fit according to the adiabatic fountain resonance
equations derived in [18]. Again, the resonant frequency is indicated
by the dashed vertical line. The amplitude signal is somewhat
distorted because of finite velocity effects, however the fit of the
phase still yields the resonant frequency.
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III. HELMHOLTZ RESONANCES FOR A
THREE-CHAMBER OSCILLATOR

The superfluid fraction determined from a resonance with
the Corbino cell with the widest ring W = 100 μm is shown
in Fig. 4 on a log-log plot. Also shown in this figure are data
for a cell with a uniform 33.6-nm film [3,10]. The solid line is
the dependence of the superfluid fraction for bulk, unconfined
helium [21]. Both sets of film data have the same critical
temperature tc ∼= 0.003. The horizontal line is the magnitude
for the expected Kosterlitz-Thouless jump [22] at tc for a planar
film of 33.6 nm. This can be written as

�ρs = 4m

hλ2
T

, (1)

where λT = 2π�
2/mkBT is the thermal wavelength, m is the

mass of a 4He atom, and h is the film thickness. One can see
that the data for the 33.6-nm film comes close to this value;
dissipation prevents following this closer than the last point.
The data for a 34-nm film across a Corbino ring 100 μm wide
and in equilibrium with a 268-nm film have a larger superfluid
fraction but vanish effectively at the same temperature. The
temperature dependence for the Corbino data is quite different
from that of a planar film. This is brought out more clearly
in Fig. 5 where the ratio of ρs/ρs,bulk is plotted. Both of
these data are normalized to the bulk value near t = 0.1. The
decrease from this value as one moves closer to the transition
is quite different for these two cases. The Corbino data fall
quite abruptly at the critical temperature near tc ∼= 0.003,
while the uniform film has a more gentle decrease toward
tc. To understand this behavior we examine now in more detail
the resonances allowed for the Corbino cells and hence an
interpretation of the behavior shown in Fig. 5.

Rayleigh considered Helmholtz resonances in a two-
chamber gas oscillator with open ends [23]. The approach is to
construct a Lagrangian involving the kinetic energy of the gas
and the potential energy associated with the compressibility.
In the same spirit one can view the Corbino cells as a three-

t=1−T/Tλ
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FIG. 4. The superfluid fraction of the Corbino cell with W =
100 μm is shown with the 33.6-nm planar data. A hydrodynamic
effect causes the Corbino data to behave like a 268-nm film until near
tc where there is a rapid decrease in the superfluid fraction.
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FIG. 5. The ratio ρs/ρsb vs t for the Corbino cell with w =
100 μm, and the 33.6-nm planar data. The difference in the behavior
of these data can be understood via the hydrodynamics discussed
below.

chamber radial oscillator which is however closed on one end
and open at the center. The three chambers consist of the two
chambers where the helium film is at a thickness H = 268 nm;
we will refer to these as regions 1 and 3, with chamber 1 open
to the filling line. Chamber 2 is the region across the ring
where the film is at h = 34 nm. To just focus on the possible
resonances, one can ignore dissipation in the movement of
the superfluid and construct a Lagrangian from which the
equations of motion follow. Given the confinement dimensions
and the frequencies in the experiment (the viscous penetration
depth is of the order of 25 times the largest separation of the
silicon surfaces) only the superfluid component will flow. The
kinetic energy can then be written as

KE = 1
2g0ρsbṙ

2
1 + 1

2g′
1ρs1ṙ

2
1 + 1

2g2ρs2ṙ
2
2 + 1

2g3ρs1ṙ
2
3 , (2)

where ṙi is the velocity of the superfluid at the entrance of
each chamber and gi is a geometric factor with units of volume
reflecting the radial flow in the cell. The first term is introduced
as an end correction to include the fact that the superfluid
flows out of the cell (and into a fourth chamber, the filling
line which is at saturated vapor pressure) with a velocity
ṙ1 and at the bulk superfluid density ρsb. The superfluid
densities in chambers 1 and 3 are the same ρs1, characteristic
of the 268-nm confinement plus any influence from ρs2 in
the ring. The end-effect volume g0 can be determined from
hydrodynamics. It has been shown that for flow out of a channel
through a flanged orifice the effective length of the channel is
increased by an amount given by δ
 = 0.48

√
A, where A is

the cross-sectional area of flow [24,25]. This length turns out
to be small relative to the overall linear dimension of the cell:
with R = 2 cm one finds δ
/R = 0.7 × 10−3. However, at
the exit of the cell the superfluid velocity is largest, and it
is more realistic to include this end effect as an additional
kinetic energy. One has g0 = 2πr0Hδ
 = 1.20 × 10−8 cm3

where r0 = 0.0508 cm is the radius of the opening into
the silicon cell, and from the above δ
 = 1.4 × 10−3 cm.
Note that this end correction is much smaller than the one
considered by Brooks et al. [26] for a Helmholtz resonator
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involving an array of channels in Nuclepore filters [27–29]
separating two chambers of bulk helium. The other geometric
factors can be obtained by assuming a 1/r velocity field
inside the cell. In chamber 1 this extends from r0 to the
Corbino ring Rc = 1.2 cm, ṙ(r) = ṙ1 × ( r0

R−r0
)(R

r
− 1). With

this dependence of the velocity on the radial distance, the total
kinetic energy in this chamber is given by

KE1 = 1

2
ρs1ṙ

2
1

{
2πf1H

(
r0

R − r0

)2

×
[
R2 ln

Rc

r0
− 2R(Rc − r0) + 1

2

(
R2

c − r2
0

)]}
, (3)

where f1 = 0.89 is the open fraction of this chamber not
taken up by the supporting oxide posts. One finds g′

1 =
8.8 × 10−7 cm3. Similarly, for region 3 extending from Rc

to R = 2.0 cm, one can take the velocity field as ṙ(r) =
ṙ3 × ( Rc

R−Rc
)(R

r
− 1). Upon integration from Rc to R one

finds g3 = 4.11 × 10−5 cm3. For the chamber defined by the
relatively narrow width and height of the Corbino ring, one
can take the velocity field as constant. One has g2 = V2 =
f22πRcHW where f2 = 2/3 is the fraction of the volume
which is not taken up by the oxide supports in this region, and
W is the width which we will take for the present numerical
calculation as the largest we have used in our cells: 100 μm.
One finds g2 = 1.73 × 10−7 cm3.

One can now incorporate the end correction into a single
term so that KE1 is given by

KE1 = 1

2
g0ρsbṙ

2
1 + 1

2
g′

1ρs1ṙ
2
1 = 1

2
ρs1g

′
1

(
1 + g0

g′
1

ρsb

ρs1

)
ṙ2

1

= 1

2
g′

1

(
1 + 1.36 × 10−2 ρsb

ρs1

)
ρs1ṙ

2
1 ≡ 1

2
g1ρs1ṙ

2
1 . (4)

The potential energy U is due to the compression and
rarefaction of the confined helium and the flexing of the
375-μm-thick Si wafers as the superfluid moves between
chambers. It is given by

U = 1

2K1V1
(v1 − v2)2 + 1

2K2V2
(v2 − v3)2 + 1

2K3V3
v2

3

(5)
where vi represents the volume entering each chamber,
and Ki , Vi are the compressibility and volume of each
chamber. The volumes entering the chambers can be written as
v1 = �r1σ1

ρs1

ρ
; v2 = �r2σ2

ρs2

ρ
; v3 = �r3σ3

ρs1

ρ
. The variables

�ri = r − ri are the displacement of the superfluid measured
from the entrance of each chamber. The cross-sectional areas
of flow σi and the volumes of each chamber vi are given
in Table II. The equations of motion now follow from the
Lagrangian KE − U ,

r̈1 + αρs1�r1 − α12ρs2�r2 = 0, (6)

r̈2 − α122ρs1�r1 + βρs2�r2 − α232ρs1�r3 = 0, (7)

r̈3 − α233ρs2�r2 + γ ρs1�r3 = 0, (8)

where the coefficients of �ri involve various geometric factors
and the compressibilities. These factors are listed in Table III.
Assuming an oscillatory solution �ri = �rioe

iωt yields the

TABLE II. Geometric terms for W = 100 μm Corbino cell.

Radius of filling hole r1 = 0.0508 cm
Radius of Corbino ring Rc = 1.20 cm
Volume of chamber 1 V1 = 1.07 × 10−4 cm3

Volume of Corbino ring V2 = 1.73 × 10−7 cm3

Volume of chamber 3 V3 = 1.90 × 10−4 cm3

Cross section into chamber 1 σ1 = 8.5 × 10−6 cm2

Cross section into chamber 2 σ2 = 1.73 × 10−5 cm2

Cross section into chamber 3 σ3 = 2.00 × 10−4 cm2

KE factor for end correction g0 = 1.20 × 10−8 cm3

KE factor for chamber 1 g1 = 8.8 × 10−7 × δ cm3

KE factor for chamber 2 g2 = 1.73 × 10−7 cm3

KE factor for chamber 3 g3 = 4.11 × 10−5 cm3

following secular equation for the angular frequency:

ω6 − [βρs2 + (α + γ )ρs1]ω4

+ [
(γβ + αβ − α232α233 − α12α122)ρs1ρs2 + αγρ2

s1

]
ω2

− (αβγ − αα232α233 − α12α122γ )ρ2
s1ρs2 = 0. (9)

This equation allows for three solutions in ω2. The simplest is
when ρs2 = 0 across the Corbino ring, in which case there is
no flow from the outer volume and the term γ must also be set
to zero. This leaves only a resonance associated with V1 and
is given by

ω2
0 = αρs1 = σ 2

1

g1K1V1ρ

ρs1

ρ
. (10)

This can be compared with the expression obtained from the
AFR analysis [18],

ω2
AFR = σ1

lK1V1ρ

ρs1

ρ
. (11)

In the AFR derivation a more realistic length l is introduced
to take into account the length over which the temperature T

and pressure P vary from their oscillating values in the cell to
the constant values in the filling line. The filling line contains
about one mm3 of bulk helium. In practice l can be obtained
from the measurements only if K1 = KHe + KSi is known. It

TABLE III. Terms in the secular equation with W = 100 μm.
Units are in cm−2 except as noted; δ is dimensionless.

α = σ 2
1 /(K1ρ

2g1V1) = 0.77/K1ρ
2δ

β = σ 2
2 /(K2ρ

2g2V2) + σ 2
2 /(K1ρ

2g2V1) ∼= 0.99 × 104/K2ρ
2

γ = σ 2
3 /(K2ρ

2g3V2) + σ 2
3 /(K3ρ

2g3V3) ∼= 5.6 × 103/K2ρ
2

α12 = σ1σ2/(K1ρ
2g1V1) = 1.55/K1ρ

2δ

α122 = σ1σ2/(K1ρ
2g2V1) = 7.9/K1ρ

2

α233 = σ2σ3/(K2ρ
2g3V2) = 4.8 × 102/K2ρ

2

α232 = σ2σ3/(K2ρ
2g2V2) = 1.15 × 105/K2ρ

2

α(βγ − α232α233) − α12α122γ

= (σ1σ2σ3)2/(K1K2K3ρ
6g1g2g3V1V2V3)

= 3.9 × 104cm−6/K1K2K3ρ
6δ

δ = 1 + 0.0136ρsb/ρs1
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is found from many cells for which this resonance has been
studied and from the magnitude of the resonant frequencies of
these cells, that K1 � KHe. KSi depends on the oxide pattern,
the uniformity of the bonding and the thickness of the wafers,
375 μm in our case. Thus, to take care of the unknown
values of K1 and l the superfluid fraction obtained from the
measured resonance is normalized in a region of temperature
where confinement effects are negligible, i.e., where the ratio
of the data to the corresponding bulk superfluid fraction is
1. In this way only the combination of factors σ1/lK1 is
determined. The AFR derivation also has the advantage that
dissipation is included and expressions for the resonant line
shapes can be obtained [18]. However, the existence of an AFR
resonance simply indicates that there is adiabatic superflow in
a superleak which is accompanied by temperature oscillations
of the enclosure. It says nothing about the possible structure
within that superleak or the meaning of the observed superfluid
fraction relative to this internal structure. The Lagrangian
derivation supplements the AFR by determining the meaning
of the measured ρs in terms of the detailed structure of the
superleak. Another aspect of the Lagrangian approach is the
ability to introduce an end correction in a meaningful way.

It is interesting to use this end correction to gauge the effect
on a cell which is fully a 34-nm film. One finds that the cor-
rection is small and given by δ = (1 + 4.2 × 10−3ρsb/ρs,film).
This would imply a maximal correction of less than two percent
from the value ρs,film/ρs,b

∼= 1 well below the transition, to the
point closest to the transition temperature where the lowest
value measured is ρs,film/ρs,b

∼= 0.3.
For the region where both superfluid fractions are nonzero,

evaluation of the various terms in the secular equation
shows that for typical experimental frequencies the ω6 term
is smaller than the other terms in the equation by six to
eight orders of magnitude. The ω6 term would become
important at frequencies above 104 Hz which are not re-
alized experimentally. Thus, the ω6 term can be dropped
and the equation becomes a quadratic in ω2 with solutions

given by

ω2
± = − b

2a
± b

2a

√
1 − 4ac

b2
, (12)

a = βρs2 + (α + γ )ρs1, (13)

b = (−γβ − αβ + α232α233 + α12α122)ρs1ρs2 − αγρ2
s1, (14)

c = (αβγ − αα232α233 − α12α122γ )ρ2
s1ρs2. (15)

From the above one can see that in the limit that the superfluid
density in the ring becomes small one can expand the square
root to obtain

ω2
− = − c

b

= (αβγ − αα232α233 − α12α122γ )ρs1ρs2

[(γβ + αβ − α232α233 − α12α122)ρs2 + αγρs1]
. (16)

Thus ω− will vanish as ρs2 vanishes. One can now identify
this resonance, which vanishes at tc = 0.003, as characteristic
of the 34-nm film. This resonance will track the vanishing of
ρs2, but obviously will have contributions from ρs1 as given by
this equation as one moves to lower temperatures. The other
solution ω2

+ does not vanish when ρs2 vanishes but has a strong
dip as ρs2 goes to zero. This is the resonance dominated by
the two 268-nm chambers which eventually must cross over
to a single chamber resonance as ρs2 vanishes. We were able
to excite this second resonance only for the Corbino ring with
W = 40 μm. See below.

One can replace the various terms in the secular equation
with their numerical values. These are known for the patterned
cells to within a few percent. The largest uncertainty is for the
filling hole in the center of the cell which is made with a
0.040-in. diameter diamond drill. The effective hole size is
probably known within 10% . With numerical values, and for
the case of the W = 100-μm-wide ring, the expression for the
resonance ω− across the ring is given by

ω2
−

4.5cm−2ρsb

K1ρ2

=
[(

1 + 0.56K1
K3

+ 0.084
δ

)
ρ ′

s1ρ
′
s2 + 0.048

δ
ρ ′2

s1

ρ ′
s2 + 0.57ρ ′

s1

]⎡
⎣1 −

√√√√1 − 0.19

(
ρ ′

s2 + 0.56ρ ′
s1

)
ρ ′

s2
1
δ

K1
K3[(

1 + 0.56K1
K3

+ 0.084
δ

)
ρ ′

s2 + 0.048
δ

ρ ′
s1

]2

⎤
⎦, (17)

where δ = (1 + 1.36 × 10−2 ρsb

ρs1
) is the end correction. The

compressibilities for regions 1 and 3 are retained in this
expression. One expects that K1/K3

∼= 1 given that both
regions have the same 11% of oxide bonding. The ring
region with 33% bonding is expected to have a much smaller
compressibility with K2

∼= KHe. This cancels out in the above.
Finally, we note that because we analyze the data as the ratio of
the measured superfluid fraction normalized by the bulk value,
we have done so in the above expression with the notation
ρ ′

si ≡ ρsi/ρs,bulk.
The left hand side of the above is the quantity

ρs,measured/ρs,bulk. We can see that it is a function of both the
superfluid fraction on the two sides of the ring ρs1, and the
superfluid fraction across the ring ρs2. To test this equation
against the measured value one needs ρs1 and ρs2. One can

assume that with W = 100 μm ρs2 will be well represented
by that of a uniform film. One has available data from an
independent experiment where the full volume of the cell was
at 33.6 nm. This can be used with no adjustments. The small
difference in h of about 1 nm between these data and the
present data is not important. It would cause, for instance,
a difference in the value of tc of 0.000 02, about two orders
of magnitude smaller than tc itself. The difference in h is
also within the uncertainty of the determination of the oxide
thickness.

For ρs1 there are no available data. However, one can
construct the behavior of ρs1 from experimental measurements
of a film of thickness H = 0.2113 μm [30]. Even though the
data for the superfluid density do not scale with size as tH 1/ν

over a wide range of H [31], one can still use this scaling for
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FIG. 6. The ratio ρs/ρsb vs t for the Corbino cell with w =
100 μm and the 33.6-nm planar data are plotted with the calculated
values for the Corbino cell. The calculated values for this quantity are
the pluses using the data from ω+ of the 40-μm ring, and the crosses
using ρs1(268 nm) from the scaled value of ρs1 (0.2113 μm). The
diamonds are calculated using an internal cell resonance, Eq. (20).
See text.

small variations in H ; see for instance [32]. An alternative to
this is to use the superfluid density we obtained from the second
resonance ω+ with a 40-μm ring. This follows ρs1 (268 nm)
but is affected by the behavior of ρs2 near the transition in the
region where ρs2 vanishes. However, as we will see, with the
40-μm ring the transition is at slightly warmer temperature
than for 100-μm ring. Thus using the results from ω+ is
not unreasonable. We show the results of this calculation of
ρs,measured/ρs,bulk via Eq. (17) in Fig. 6. The measured values of
the superfluid fraction for the 100-μm ring obtained from ω−
are the open squares. The calculated values for this quantity
are the pluses using the data from ω+ of the 40-μm ring,
and the crosses using ρs1 (268 nm) from the scaled value of
ρs1(0.2113 μm). The open circles are the data for the uniform
33.6-nm film. Both the calculated values and the measured
data go to zero at t ∼= 0.003 as expected from Eq. (17). The
two ways of calculating ρs,measured/ρs,bulk agree quite well.
Both reproduce the relatively shallow drop in ρs,measured/ρs,bulk

away from tc, but miss in the region where ρs,measured/ρs,bulk

goes rapidly to zero, i.e., the calculated values have a much
sharper, almost discontinuous, drop to zero than the data.
This might have been expected. The data reflect the rapid
onset of dissipation near the transition and display a relatively
smooth but still sharp reduction of the superfluid fraction. The
calculated superfluid density drops almost discontinuously to
zero at tc ∼= 0.003. There is no dissipation in the Lagrangian
model, so this difference is not surprising. The important result
of this calculation is the fact that the model reproduces the
large enhancement of ρs,measured/ρs,bulk, the difference between
the open circles and the measured data, the open squares
in the region just below the transition. Thus this feature is not
due to correlation-length effects between the film across the
ring and the films external to it, but rather is a hydrodynamic
effect of this particular cell arrangement of superleaks. We will
see that this feature will also be present with data for narrower
rings. However, these will in addition show an enhancement

in tc which will be the indication of correlation-length effects
between the films.

We note that the above results are independent of the
end correction. This correction, which can be inferred from
Eq. (17) by setting δ = 1, has less than a 0.1% effect in the
change of the superfluid fraction in the region 0.003 � t �
0.01. Thus it is negligible. The dependence of the superfluid
fraction on the ratio of the compressibilities K1/K3 can also
be tested. Varying this ratio in the range 10–0.1 changes the
results by ±1% of the drop in the superfluid fraction in the
region 0.003 � t � 0.01. Smaller values of this ratio have a
negligible effect. It is very likely, as pointed out above, that,
given the construction of the cell with the same oxide bonding
in regions 1 and 3, one will have K1/K3

∼= 1. This is the value
used for the calculations shown in Fig. 6.

In summary, the model for the interpretation of the
measured superfluid fraction in these cells obtained from
the resonance ω− shows that the region below the transition
temperature of the 0.034-μm film across the Corbino ring
is dominated by the behavior of the 0.27-μm regions on
either side of the ring. For the ring of 100 μm there are no
discernible correlation-length effects associated with critical
coupling between these two regions as would be evidenced by
a shift in the critical temperature relative to that of a uniform
film.

It is interesting to consider the above results for confine-
ments which are much more complicated than the Corbino
geometry considered above, say a cell with a distribution
of sizes such as would be realized with packed powders
superleaks or with porous glasses. It seems clear that the
interpretation of such data from a resonance measurement
would not be straightforward. It would reflect the confinement
in a unique way which could not be generalized from sample
to sample or be indicative of a type of universal behavior.

IV. DATA WITH NARROWER CORBINO RINGS

We have obtained data for six different experimental cells
each with the same 34.5 ± 0.5-nm thickness film across the
ring and with width W = 4, 8, 18, 40, and 100 μm. In the case
of the 18-μm ring we constructed and measured two separate
cells to verify the reproducibility of the cell construction and
the subsequent measurements.

Among all of these cells the one with a 40-μm ring behaved
differently. This was the only cell for which we were able to
excite the resonance ω+. This is given by Eq. (17) only with
the plus sign in front of the square root. Of course there are
slightly different constants reflecting the ring being 40 μm
wide as opposed to 100 μm wide. These data are shown in
Fig. 7 as crosses. Also shown on this plot are data of ρs for
a uniform 268-nm film obtained by scaling the data from the
measured ρs of a 211-nm film. One can see that the measured
value of ρs obtained from ω+ agrees with the behavior of a
268-nm film except in the region where ρs2 goes to zero near
t ∼= 0.0035. Here the measure ρs has a dip which is predicted
by ω+. In principle we should be able to calculate this behavior
from ω+. However, contrary to the 100-μm ring there is a shift
in the critical temperature of the film in the ring. Thus it would
not be correct to assume that ρs2 within the ring could be
represented by that of a uniform film. The motion of the helium
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FIG. 7. The ratio ρs/ρsb vs t for the Corbino cell with w = 40 μm
obtained from ω+, and the data for 211-nm planar film scaled
to 268 nm.

for the ω+ mode must be different from that of the ω− mode.
In the latter, helium moves in phase in all chambers, in and
out of the cell. For ω+, helium must still move out of the cell
from chamber V1 since, with typical excitation levels, we see a
“normal” amplitude of temperature oscillations corresponding
to a few μK. However, it is possible that in chamber V3 the
helium moves out of phase with respect to the motion in V1.
We have no way to establish this from the data.

There is another possibility for a resonance which would not
involve helium leaving the cell. This would be an internal mode
where the movement of the helium is out of phase in the two
chambers with a velocity node at the filling line, the outer cell
border, and in the middle of the ring. We have measured such a
mode with the 40-μm cell. The characteristics of this internal
mode are a much smaller temperature signal of ∼200 nK, and
a resonance at a higher frequency than given by Eq. (17). The
difference is that this new motion conserves mass within the
cell. Consequently, because of this constraint, one obtains a
secular equation which is second order in ω2. The solution for
ω2 which vanishes when ρs2 vanishes is given by

ω2
H

∼= σ 2
3 ρsb

(g1 + g3)K1V1ρ2

(
1 + K1V1

K3V3

)
ρ ′

s1ρ
′
s2

ρ ′
s2 + 3g2

g1+g3

σ 2
3

σ 2
2
ρ ′

s1

.

(18)
This is obtained with the assumption that K2V2 �
K1V1,K3V3. The symbols in the above have the same values
as in the case of the derivation of Eq. (17), except for gi which
can only be determined if one knows the velocity dependencies
within each chamber of the cell. One could also look at this
resonance as a fourth sound mode [33]. However, this would
not allow one to sort out the contributions of the measured
superfluid density from the different regions of the cell. The
structure of Eq. (18) is the same as Eq. (17). This can be seen
by expanding the square root in Eq. (17) and retaining the
symbols as Eq. (18). One obtains

ω2
− ∼= σ 2

1 ρsb

g1K1V1ρ2

ρ ′
s1ρ

′
s2[

1 + K3V3
K1V1

(
1 + g3σ

2
1

g1σ
2
3

)]
ρ ′

s2 + K3V3
K1V1

g2σ
2
1

g1σ
2
2
ρ ′

s1

,

(19)

where one has assumed K2V2 � K1V1,K3V3 and we have
omitted the end correction. One can see that the dependence
of these two frequencies ωH , ω− on ρs1, ρs2 is the same, both
vanishing when ρs2 vanishes. One can go further by assuming
that K1 = K3, and for Eq. (18) approximating the velocity
field as decreasing linearly to zero within the ring and at the
edges. This allows one to calculate the g factors. For Eq. (19)
all the factors are the same as in Table II, except for g2 which
for 40 μm is 2.5 times smaller. One can now display Eq. (18)
with numerical factors

ω2
H ∼ ρ ′

s1ρ
′
s2

ρ ′
s2 + 0.042ρ ′

s1

. (20)

This equation is plotted as the diamonds in Fig. 6 using as
an approximation the values for ρs1, ρs2 of planar films. This
procedure is not strictly valid but is reasonable to see the
behavior of the measured ρs as one approaches the transition.
One can see that the behavior predicted by Eq. (20) and this
different resonance mode is very similar to that predicted for
ω− by the full Eq. (17). Thus, we conclude that we can use
these data from this internal mode at equal footing with all the
other data which are obtained with the resonance ω−.

We note that if we use Eq. (18) to compare the magnitude of
the measured frequency one would require that K1

∼= 9 × KHe

for the 40 μm cell. For the other cells, and the magnitude of
ω−, one finds that K1

∼= 1.26 × KHe. This is consistent with
the assumption that K1 > KHe we have been making all along
in describing these resonances.

For each cell the procedures followed after bonding, staging
on the cryostat and data acquisition were the same. In
particular, for each cell a separate temperature calibration
of the Ge thermometers was done. This is required because
the bare Ge chips do not maintain their calibration upon
recycling. More importantly, since the relevant variable is
t ≡ (1 − T/Tλ), for each cell a determination of the bulk
superfluid transition was done several times over the course
of the measurements. To obtain Tλ one makes use of the
maximum in the heat capacity associated with a small bulk
sample which is condensed in the cell’s filling line. This
procedure is described in [16]. For each cell a series of
resonances is obtained. These, as discussed, are proportional
to

√
ρs/ρ but need to be normalized to ρs,bulk far from the

transition because of the uncertainty in the compressibility.
The complete set of data is shown on the log-log plot in Fig. 8.
The behavior of ρs,bulk/ρ is given by the solid line [21]. All
of the data are for the same resonance ω− (ωH in the case of
40 μm), except for the ×’s which are for ω+. The remarkable
aspect of these data is that even with W as large as 40 μm
one can see a measurable shift of the transition closer to Tλ

due to the presence of the 268-nm film on either side of the
ring. Since there are supports over the ring which separate
the film into 200-μm-wide sections, one may look at the
Corbino film as one consisting of 250 sections with dimensions
0.034 × W × 200 μm3 with Dirichlet boundary conditions
along the direction perpendicular to the flow at L = 200 μm
defined by the bonded SiO2; and, order-parameter-matching
conditions in the direction of flow W . With lateral dimensions
of W × 200 μm2 one might well consider this patch of film as
having infinite lateral extent, at least based on the magnitude
of ξ−

3D = ξ−
0 t−ν = 0.353t−ν nm ∼= 17 nm at t = 0.003. Thus,
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FIG. 8. The superfluid fraction ρs/ρ vs the reduced temperature t .
The open circles are the 33-nm planar data to which the Corbino data
are compared. The two horizontal lines are the expected Kosterlitz-
Thouless jump for the 33.6- and 268-nm planar data.

one has W/ξ−
3D

∼= 2400 to 240 for the range of W ’s where
a shift in tc is measured. These are very large distances
for correlation-length effects. The temperature dependence of
these data in Fig. 8 does not appear at first to be much different
from other data of confined helium. However, as we have seen
from Figs. 4 and 5 for the case of W = 100 μm this can
be deceptive on a log-log plot which does not have sufficient
resolution. In Fig. 9 we show all of the data plotted as ρs/ρs,bulk.
This type of plot takes away what one might consider a
background temperature dependence of the bulk superfluid
density. The shift in the transition temperature is more obvious
here as is the difference in the temperature dependence of the
Corbino data relative to that of the planar 33.6-nm film, the
open circles. All the Corbino data have the characteristic which
we identified in Fig. 5 and via Eq. (17) as a hydrodynamic effect
between the 34-nm film and the 268-nm film on either side of
ring: below the transition, colder temperatures, the value of ρs

follows more closely the behavior of the 268-nm film. Now,

t

ρ s
ρ s
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10−4 10−3 10−2

0.
4

0.
6

0.
8

1.
0

FIG. 9. The ratio ρs/ρsb vs t for all the Corbino cells and for the
33.6-nm planar data. The symbols are identified in Fig. 8.

FIG. 10. A plot of planar cell thickness vs critical temperature
tc = 1 − Tc/Tλ. All data were obtained using AFR. The fit yields a
critical exponent ν = 0.66 ± 0.02 which agrees with the value deter-
mined for the bulk superfluid fraction ν = 0.6705 ± 0.0006 [21].

in addition to this, we see a correlation-length effect which is
manifest as a shift of the transition to higher temperatures.

We also note in Fig. 9 the ×’s are from the ω+ mode of
the 40-μm cell. As remarked above, except the region where
the superfluid density in the ring vanishes, these data follow
the relatively smooth drop toward the expected Kosterlitz-
Thouless jump. This is the same behavior as the data for the
uniform 33.6-nm film. The shift in the transition temperature
Tc from ω+ is plotted in Fig. 10 as a film of 268 nm along with
other data available for fully planar confinement in a Si cell
(see also Fig. 24 of [31]). All of the data in Fig. 10 have been
obtained with AFR. The transition temperature is taken as the
last point for which a resonance could be seen. It is clear that
the shift in Tc for the ω+ data agrees well with all the other
data from strictly planar cells. Thus, our identification of this
signal as coming from the 268-nm region of the Corbino cell is
unambiguous. The determination of tc depends to some extent
on the quality of the resonance which is different for different
cells, and leads to the scatter one sees in Fig. 10. The film
thickness, as determined from the oxide growth, has relatively
small uncertainty. The solid line in Fig. 10 is a fit to these
data to a power law. It yields the expected shift exponent ν =
0.66 ± 0.02 which agrees with the value determined for the
bulk superfluid fraction ν = 0.6705 ± 0.0006 [21] and other
determinations; see Table I of Ref. [31].

It is interesting to compare the correlation-length effects
obtained in the Corbino geometry with the analogous observa-
tions in the case of the same thickness film in equilibrium with,
and linking an array of (2 μm)3 boxes of helium. These latter
data and the arrangement for the measurements are discussed
in more detail in [1–3]. In Fig. 11 we plot the superfluid
density ratio ρs/ρs,bulk as a function of temperature. Three
sets of data are shown: the Corbino data with W = 4 μm;
the film-boxes data when the separation of the boxes (these
are in a square array) is also 4 μm; and the uniform film
data. The influence of the larger confinement on the thin film
in equilibrium with it is manifest differently for these two
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FIG. 11. The ratio ρs/ρsb is plotted for the Corbino cell with
W = 4 μm as well as for the 33-nm planar cell and the cell with a
31.7-nm film in the presence of (2 μm)3 boxes spaced 4 μm.

arrangements. First of all, in both cases, there is a shift of the
transition to higher temperatures. This is larger for the Corbino
film. The temperature dependence of ρs/ρs,bulk is also different
for the two cases. For the Corbino case this can be partly
understood in terms of Eq. (17). But of course this equation
says nothing about a possible shift in Tc. For the boxes-film
arrangement the flow within the cell is clearly different. There
is no superfluid flow from the boxes into the filling line, as there
is for the 0.27-μm region in the Corbino cell. Thus an analysis
such as leading to Eq. (17) is not appropriate. It is not clear why
the shift in the transition is larger for the Corbino film than
in the boxes-film arrangement when the “distance” between
the film and the larger reservoirs is the same. This must be
related presumably to the perimeter of contact between the
large region and the film. There is no theory for helium at
present that has addressed these long-range coupling effects.

One can define a shift of the transition temperature Tc(W )
for the Corbino data relative to that of a uniform film Tc(∞),
δtc = [Tc(∞) − Tc(W )]/Tλ. This shift is shown in Fig. 12 as a
function of 1/W on a log-log plot. We see that this shift is well
described by a power law δtc = (W/W0)−ν . We find that W0 =
0.33 nm ∼= ξ−

0 the coefficient of the bulk correlation length
below Tλ. This is a surprising result given the magnitude of
W . If W is considered the “small dimension” determining the
shift in Tc, then finite-size scaling would predict a dependence
of the shift as W−1/ν not W−ν . Yet the result is clearly in the
spirit of finite-size scaling in the sense that no new critical
exponent is needed [34] to describe δtc. Note that the datum
for W = 100 μm is not plotted on this graph since the shift
is too small to be resolved. Extrapolating the line in Fig. 12
to 1/W = 0.01 μm−1 would yield δtc ∼= 10−4. We also note
that this power law must fail as the ring width vanishes. In this
limit the maximum shift would be ∼2.9 × 10−3.

Our Corbino films can be viewed as undergoing a crossover
from bulklike behavior far from Tc to finite-size and eventually
2D crossover. One might expect the 2D correlation length to
come into play in some way. However the crossover to two
dimensions is extremely narrow in temperature. This can be
seen as follows. The 2D correlation length below Tc can be

w−1(μm−1)

δt
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FIG. 12. A plot of δtc vs W−1. The straight line is given by
δtc ∼= (W/ξ−

0 )−ν .

defined from the behavior of the dielectric constant associated
with vortices and is given by ξ−

2D = a exp(1/bτ 1/2) [20], where
one takes a = ξ−

3D(t) and where τ ≡ (1 − T/Tc), i.e., the
distance to the transition temperature Tc not Tλ as for ξ−

3D(t).
The nonuniversal constant b depends on the thickness of the
film. This was shown by Finotello et al. [35,36]. From [36] one
obtains that b(34.5 nm) ∼= 105. Thus even for τ = 10−4 one
has ξ−

2D
∼= 2.6ξ−

3D; and, at τ = 10−3 ξ−
2D differs from ξ−

3D(t) by
only 30%. Thus, the 2D correlation length not only does not
provide a large length scale which might explain our results,
but its influence if at all is over a very narrow region of
temperature near Tc.

One can now use the shift in the transition temperature
to replot the data of Fig. 9 so that the transition takes place
at the same temperature as for that of the uniform film, or
equivalently that of the 100-μm ring. The data rescaled this
way are shown in Fig. 13. There is very good collapse of these
data on a universal locus showing the similarity of the behavior
for rings of various widths.
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FIG. 13. Scaling of the ratio ρs/ρsb when plotted vs t shifted by
δtc = [Tc(∞) − Tc(W )]/Tλ.
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FIG. 14. Scaling of the dissipation 1/Q when plotted vs t + δtc.
This is the same shift as in Fig. 13 for ρs/ρsb.

The analysis of the line shape to obtain the resonant
frequency uses Eqs. (30) and (31) derived in [18]. This analysis
yields also the dissipation 1/Q, where Q is the quality factor.
A plot of 1/Q against the same shifted temperature as for
ρs/ρs,bulk is shown in Fig. 14. We find that the quality factors
also collapse onto a single locus near the transition as did
ρs/ρs,bulk. Thus, this independent aspect of the transition
confirms the scaling with (W/W0)−ν . To achieve this collapse
we have also shifted the dissipation data vertically to agree
near t ∼= 0.03. This is reasonable, since it is our experience
with these resonators that each cell has slightly different
sources of background dissipation which are not associated
with the transition. Some of these come from the flexing of
the silicon wafers and depend on the quality of the bonding.
One can also see this in Fig. 14 near t ∼= 0.1, well away from
the critical region, that the data do not collapse indicating
different sources of background dissipation which depend
on the absolute temperature and are not associated with the
transition. Note that in Fig. 14 we do not have data for the
W = 40 − μm cell since it did not yield resonances that could
be analyzed to extract the quality factor.

V. SUMMARY AND COMMENTS

We have observed that the superfluid fraction of thin films
of helium is greatly affected at long range by the proximity of
thicker films. For the widest thin film, W = 100 μm, for which
no significant shift in the transition temperature is observed, the
temperature dependence of the measured superfluid fraction
can be understood in terms of the hydrodynamics of the two
films in equilibrium. The analysis involves a three-chamber
Helmholtz oscillator with input from the geometry of the
cell and the superfluid fractions of the two films in the
thermodynamic limit. When the width of the thinner film
is reduced, one finds that the measured superfluid fraction
persists to a higher temperature, but its overall temperature
dependence is similar to that for the widest film. The shift
to higher temperatures is governed by the three-dimensional
correlation length. This is surprising in light of the fact that
near the transition W/ξ−

3D
∼= 2400 to 240 for the widths from

40 to 4 μm. It is found then that both the superfluid fraction and
the dissipation associated with the resonance can be collapsed
on universal curves. To see how unusual these results are one
notes that for a film of thickness H the critical temperature
Tc is reached when H/ξ−

3D(tc) ∼= 1.7, and the specific-heat
maximum Tm at H/ξ−

3D(tm) ∼= 1.5 [31]. So, these markers
of a finite system take place when ξ−

3D(tc) ∼ H . In our case
one has ξ−

3D(tc) � W and the ratio W/ξ−
3D is not universal

because of the W−ν scaling of δtc as opposed to H−1/ν for the
planar films. There are clearly different mechanisms at play in
finite-size effects for uniform confinement leading to shifts
in transition temperatures, or rounding of thermodynamic
responses, as opposed to the coupling/proximity effects of
the present experiment.

These long-range effects associated with the coupling
between two regions of 4He were identified in experiment
of the specific heat with (1μm)3 boxes of helium separated by
a thin film 19 nm thick and 1 μm wide [31,37]. These data
presented a puzzle because they did not obey finite-size scaling
as the planar films did. Since the connecting film was normal
throughout the critical region of the boxes it was felt that
the data should represent a collection of isolated boxes, hence
should scale. This thinking was clearly wrong. Subsequent data
showed that the coupling has nothing to do with the existence
of a superfluid, but rather must be a property of the critical
system. The observed coupling must be conveyed via critical
fluctuations rather than by the existence of a nonzero order
parameter. Subsequent measurements with (2 μm)3 boxes
where the separation between boxes was varied in two different
cells clearly showed this to be the case [31]. Again, as for
the now-understood (1μm)3 boxes, the coupling of the boxes
through the connecting films was observed both below Tλ and
above Tλ where the helium was normal. These measurements
also showed that there is a reciprocal effect which modifies the
connecting film as well as the behavior of helium in the boxes.
Of relevance to our present experiment is the observation with
these data that the effect of coupling between (2 μm)3 boxes
could be seen in the specific heat when the separation between
the boxes was as large as 100 times ξ+

3D for T > Tλ. Yet
the dependence of the excess specific-heat signal generated
through this coupling is described by empirical functions
which have the same power law as the bulk correlation length
ξ+

3D (see Figs. 19, 21, and 22 in Ref. [3]). We have now
seen effects in the Corbino geometry which are manifest at
separations of over 1000 times ξ−

3D, yet with a power-law shift
in the critical temperature governed by the critical exponent ν

of the 3D correlation length.
It is impossible to understand these effects if one thinks

in terms of a mean-field transition. This is the approach
taken some time ago by Mamaladze and Cheishvili [38,39]
in considering the possibility of what would constitute a
weak link to couple two regions of helium and display
Josephson effects [40]. This mean-field approach does not
work for the effects discussed here as has been calculated
explicitly [10]. Josephson effects have been seen in both 3He
and 4He [41–43]. The former can in fact be considered, as far
as its phase transition, a mean-field superfluid. Considerable
effort was expended in constructing suitable weak links for
these effects. This was aided by the fact that 3He has a relatively
large zero-temperature correlation length and of course small
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fluctuations effects. In the case of 4He the opposite is true.
So that to see Josephson effects for 4He with reasonable weak
links one has to work closer to the transition and make use
of the divergence of the correlation length. What our data
indicate is that coupling between superfluid regions of 4He
can be realized over much longer distances than one would
expect on the basis of ξ3D. This would make it possible to study
Josephson effects with much more readily available weak links
separating helium regions as widely as many micrometers. As
was pointed out in [3], the experiments with 4He actually take
advantage of proximity effects to work with superleaks in a
temperature region where, if isolated, they should be normal
and hence not support superflow.

In calculations of the winding number for an XY system
to obtain ρs/ρ one also finds that for films of size L × L the
transition temperature shifts to higher temperatures as L is
decreased [44,45]. However, this is an artifact of the periodic
boundary conditions, and is seen for films of at most 124 × 124
atomic sites [46]. Dirichlet boundary conditions on the other
hand shift the transition to lower temperatures as the width

of the film is decreased [31,47]. This enhancement of the
transition temperature and the thermodynamic response, such
as specific heat, for periodic boundary conditions in not just
a property of 2D XY systems, but was observed for a finite
2D Ising system [48], and in the field-theoretic calculations for
4He with 1D crossover [49]. Our films across the Corbino ring
are 5.6 × 105 atoms laterally and 1.1 × 104 to 2.8 × 105 atoms
in the flow direction. These are much larger than any numerical
calculations. There is no periodicity in the flow direction in our
geometry, so the enhancement in ρs we measure is not related
to this mechanism and must be connected with the 268-nm
film on either side of the film in the Corbino ring and critical
point coupling.
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