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Dual approach to circuit quantization using loop charges

Jascha Ulrich* and Fabian Hassler
JARA-Institute for Quantum Information, RWTH Aachen University, D-52056 Aachen, Germany

(Received 2 June 2016; revised manuscript received 15 August 2016; published 6 September 2016)

The conventional approach to circuit quantization is based on node fluxes and traces the motion of node charges
on the islands of the circuit. However, for some devices, the relevant physics can be best described by the motion
of polarization charges over the branches of the circuit that are in general related to the node charges in a highly
nonlocal way. Here, we present a method, dual to the conventional approach, for quantizing planar circuits in
terms of loop charges. In this way, the polarization charges are directly obtained as the differences of the two
loop charges on the neighboring loops. The loop charges trace the motion of fluxes through the circuit loops. We
show that loop charges yield a simple description of the flux transport across phase-slip junctions. We outline
a concrete construction of circuits based on phase-slip junctions that are electromagnetically dual to arbitrary
planar Josephson junction circuits. We argue that loop charges also yield a simple description of the flux transport
in conventional Josephson junctions shunted by large impedances. We show that a mixed circuit description in
terms of node fluxes and loop charges yields an insight into the flux decompactification of a Josephson junction
shunted by an inductor. As an application, we show that the fluxonium qubit is well approximated as a phase-slip
junction for the experimentally relevant parameters. Moreover, we argue that the 0-π qubit is effectively the dual
of a Majorana Josephson junction.

DOI: 10.1103/PhysRevB.94.094505

I. INTRODUCTION

Superconducting circuits offer the opportunity to study
quantum mechanics on mesoscopic scales unimpeded by dis-
sipation. The great flexibility in design of the superconducting
circuits has created the field of circuit quantum electrodynam-
ics where superconducting circuits are used as artificial atoms
featuring strongly enhanced light-matter coupling compared
to standard cavity QED. Due to weak dissipation, such
systems can be described quantum-mechanically with an
appropriate Hamiltonian. Finding such a Hamiltonian is the
task of circuit quantization. In recent years, there has been a
large interest in realizing purely reactive impedances, called
“superinductances” L, with small parasitic capacitance C such
that the characteristic impedance Z = √

L/C is much larger
than the superconducting resistance quantum RQ = h/4e2 [1].
The large impedance leads to a strong localization of charges
with fluctuations below the single Cooper-pair limit. This fact
makes these large inductances highly relevant for qubits such
as the 0-π qubit [2] or the fluxonium [3] with strongly reduced
sensitivity to external charge fluctuations. The suppression of
charge fluctuations below the single Cooper-pair limit is also
relevant for phase slip junctions. Considering the transport of
quantized fluxoids as duals of the quantized electron charge
[4], phase-slip junctions can be understood as electric duals of
conventional Josephson junctions with a nonlinear, 2e-periodic
voltage-charge relation V (Q) [5]. Recently, there has been
much progress both in the theoretical understanding [6] and the
experimental realization [7–10] of phase slip junctions using
superconducting nanowires. Large characteristic impedances
also imply strongly enhanced electric fields in waveguides,
allowing an enhanced coupling to qubits like the transmon or
efficient nanomechanical coupling to nanostructures [11,12].
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The localization of charge in circuits with large impedances
suggests a description in terms of the polarization charges on
the circuit elements which remain close to being good quantum
variables due to their slow dynamics. The conventional
approach to circuit quantization in terms of node fluxes,
however, works with the charges on the islands, which are
related to the polarization charge in a highly nonlocal way
[13,14]. While the node-flux formalism is well-suited for the
description of the fast charge transport in superconducting
devices with low impedances and localized fluxes, it must be
considered ill-suited for the description of fast flux transport
with localized charges in large-impedance environments. In
particular, the nonlinear capacitive behavior of phase-slip
junctions cannot be modeled in a straightforward way using
node fluxes.

In view of the growing interest in superinductances and
phase-slip junctions in the large-impedance setting, we provide
here a dual approach to circuit quantization in terms of loop
charges. As we will show, it yields a simple description of
planar circuits involving phase-slip junctions in the same
way as the use of node fluxes yields a simple description of
circuits involving Josephson junctions. Loop charges are the
time-integrated currents circulating in the loops of a planar
circuit and their canonical momenta are the physical fluxes
within the loops. While in the node flux formulation terms
in the Hamiltonian relate to the transport of the physical
charges on the islands, the loop charge formulation describes
the transport of the physical fluxes within the loops [15,16].
Therefore the formalism presented here will be most useful
for problems for which it is more natural to think about the
transport of fluxes rather than about the transport of Cooper
pairs.

Loop currents as independent current degrees of freedom
were already considered by Maxwell [17] and are frequently
used in mesh analysis of electrical engineering. However, due
to the typically large number of dissipative components in
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electrical network, systematic Lagrangian formulations have
received only limited attention [18–23] and are not tailored
specifically to the problem of circuit quantization. On the
other hand, in the superconducting community, the loop charge
formulation appears to be largely unknown. Charge degrees of
freedom akin to loop charges have previously been introduced
through explicit analysis of the Kirchhoff current law [24–28].
An explicit analysis of the Kirchhoff current law can be
avoided by using matrix representations of the circuit topology
[29,30] at the expense that the Lagrangian cannot be read off
straightforwardly from the circuit graph.

In contrast, here we are interested in presenting a formu-
lation that makes circuit quantization straightforward in the
sense that the Lagrangian can be obtained immediately from
the circuit graph using a set of simple rules. In Sec. II A,
we give a brief introduction to the node flux formulation,
including a more extensive discussion of its problems with the
description of phase-slip junctions. In Sec. II B, we introduce
the new loop charge formulation. We provide simple rules
for the construction of the Lagrangian of a lumped element
circuit and discuss the Legendre transform to the Hamiltonian
formulation. We also discuss how to handle offset charges,
external fluxes, and voltage or current sources. In Sec. III,
we discuss the duality between the node flux and the loop
charge formulation. In Sec. III A, we consider passive duality
transformations where the same system is described using
different variables and explicitly construct the transformation
from the node flux to the loop charge representation of a given
circuit. This section may be skipped on first reading since in
practice it is sufficient and much easier to use the rules given
in Sec. II B for the construction of the loop charge Lagrangian.
In Sec. III B, we consider active duality transformations which
yield new circuits electromagnetically dual to a given circuit.
We show how to construct electromagnetic duals of arbitrary
circuits using the loop charge formulation. In Sec. IV, we
discuss how to introduce dissipation in circuits described by
loop charges. In Sec. V, we extend the formalism to mixed
circuit descriptions where part of the circuit is described
in terms of node fluxes and some other part in terms of
loop charges. This leads to additional insights regarding
the flux decompactification of inductively shunted Josephson
junctions [32]. Finally, in Sec. VI, we discuss examples of
the loop charge description for the fluxonium and the 0-π
qubit. We show that for large inductances the fluxonium
qubit can be well approximated as a nonlinear capacitor and
the 0-π qubit effectively becomes the dual of a Majorana
Josephson junction. We finish with a short discussion of our
results.

As a last point, let us, for the convenience of the reader,
briefly comment on the conventions and the terminology that
we will use in this paper. We will represent a circuit as a
directed graph which we will occasionally also refer to as
the (electrical) network. Following conventions from electrical
engineering, we will also use the term branches when referring
to the edges of the circuit and the word node when referring
to the vertices. In contrast, we will simply refer to the loops of
the circuits as loops and refrain from using the word meshes.
Throughout this work, φ will denote fluxes in terms of which
the superconducting phase differences are given by 2πφ/�Q

with the superconducting flux quantum �Q = h/2e.

II. CIRCUIT QUANTIZATION USING NODE FLUXES
OR LOOP CHARGES

In the lumped element approximation, an electrical circuit
is described as a graph where each branch represents a two-
terminal electrical element such as a capacitor, an inductor,
a voltage source, and so forth. In order to consistently keep
track of the orientations, we assign an orientation to each
branch of the graph, which specifies the direction in which a
positive current flows and the direction of a positive voltage
drop. The lumped element approximation yields a simplified
circuit description that is valid as long as the propagation
time of electromagnetic waves between the circuit elements is
negligible, i.e., the circuit dimensions are much smaller than
the wave-length of electromagnetic radiation at the frequencies
of interest. While in the general case, characterizing the
circuit requires the calculation of the microscopic electric and
magnetic fields within the circuit from Maxwell’s equations,
within the lumped element approximation, it is sufficient to
know the voltage drops V br

b across and the currents I br
b along

each branch b of the network. The equations governing the
behavior of the voltages V br

b and the currents I br
b are the

Kirchhoff circuit laws and the element-dependent constitutive
laws relate V br

b and I br
b .

It is convenient to work exclusively with independent
voltages V or currents I which determine all the voltage drops
V br(V ) and current flows Ibr(I) within the circuit in such a
way that either the Kirchhoff voltage law or the current law
is automatically fulfilled. The dynamics of the voltages V
or currents I is governed by differential equations obtained
after applying the remaining Kirchhoff law together with the
constitutive laws. The constitutive laws are most easily stated
in terms of branch fluxes φbr and branch charges qbr defined
as

φbr(t) =
∫ t

−∞
dt ′ V br(t), (1)

qbr(t) =
∫ t

−∞
dt ′ Ibr(t), (2)

where V br and Ibr are the vectors of branch voltages and
currents, respectively. For a capacitor on branch b, qbr

b can be
interpreted as the (polarization) charge on one of the capacitor
plates [31] and the constitutive law assumes the form

V br
b = fV,b

(
qbr

b

)
, (3)

where the voltage is given by fV (q) = q/C for an ideal
capacitor C. For a phase-slip junction, on the other hand, the
function fV (q) is periodic with period 2e. In the simplest
model, we obtain the expression fV (q) = Vc sin(πq/e), with
Vc the critical voltage.

For inductors, Faraday’s law yields an interpretation of
φbr

b (t) as the flux threading the inductor and the constitutive
law takes the form

I br
b = fI,b

(
φbr

b

)
, (4)

with fI (φ) = φ/L for an ideal inductance L. The constitutive
relations (3) and (4) suggest that in general, it will be most
convenient to work with independent fluxes φ or charges Q
that are the time-integrated voltages V or currents I defined in
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a way analogous to Eqs. (1) and (2) such that φ̇ = V or Q̇ =
I . For circuit quantization, we are then interested in finding
a Lagrangian L(φ,φ̇) or L( Q, Q̇) such that its equations of
motion reproduce the differential equations originating from
the remaining Kirchhoff law.

The choice between a flux-based or a charge-based ap-
proach is restricted by two considerations. The first restriction
comes from circuit quantization. For circuit quantization,
we require the circuit Lagrangian L(x,ẋ) for the degrees
of freedom xi to be of the standard form L = T (ẋ) − U (x)
known from classical mechanics, where T is a quadratic form
corresponding to a kinetic energy term and U is a potential
energy term. The other restriction comes from the constitutive
laws. For example, the constitutive relation (3) shows that
the charge qbr

b may be a convenient degree of freedom for
the description of a capacitor since it determines both the
current I br

b = q̇br
b and the voltage V br

b through relation (3).
Similarly, the flux φbr

b may be a convenient degree of freedom
for the description of an inductor since it determines the voltage
V br

b = φ̇br
b and the current through relation (4).

We will start by reviewing the flux-based formulation in
terms of node fluxes [14] and then introduce the new charge-
based formulation in terms of loop charges.

A. Node flux representation

The Kirchhoff voltage law states that the “vector field”
φbr is conservative. Therefore the Kirchhoff voltage law
can automatically be satisfied provided the fluxes φbr are
represented via the “gradient” of a potential. In the discrete
graph setting, the potential is given by the node fluxes φn that
are placed on each node n of the circuit. For a branch b directed
from node n to node n′, the branch flux φbr

b is obtained as the
discrete gradient φbr

b = φn − φn′ of the node fluxes (along b).
In this way, the node fluxes determine all the voltage drops
over the branches of the circuit. Since the physical voltages
depend only on differences of node fluxes, we may arbitrarily
set the flux of one of the nodes (called the ground node) to
zero. The voltage φ̇n associated with a node flux can then be
interpreted as a voltage relative to ground.

The Kirchhoff current law is implemented through the equa-
tions of motion of a Lagrangian L(φ,φ̇) which is constructed
as follows. Each inductive element at a branch b adds the term
−U (φbr

b ) to the Lagrangian, where

U
(
φbr

b

) =
∫ φbr

b (t)

0
dφ fI,b(φ) (5)

is simply the magnetic field energy as can be easily verified
by integrating the power V br

b (t)I br
b (t) over time and using

the relation (4). Similarly, each capacitive element with
capacitance C adds a term Cφ̇2

b/2 which is just the electric
field energy.

The equations of motion with respect to a node flux φn are
given by the Euler-Lagrange equations

d

dt

∂L
∂φ̇n

− ∂L
∂φn

= 0. (6)

Let us consider a branch directed from a node n′ towards
a node n such that φbr

b = φn′ − φn. For inductive branches,
we obtain a term −I br

b = −fI,b(φbr
b ) to the current balance

while for capacitive branches, we obtain a term −Cφ̈br
b . In

both cases, this is just the current flowing away from node n

through branch b. For the opposite orientation φbr
b′ = φn − φn′ ,

we would obtain I br
b′ = fI,b′ (φbr

b′ ) and Cφ̈br
b′ . In both cases, we

therefore obtain the current flowing away from node n. We
conclude that the equations of motion for the node flux φn

reproduce the Kirchhoff current law at node n. The formalism
can straightforwardly be extended to include electromotive
forces due to external magnetic fields, see Ref. [14].

The form of the constitutive relation (4) indicates that the
node flux representation is well-suited for the description of
nonlinear inductances. The knowledge of the branch flux φbr

b

over an inductance readily gives access to the voltage and the
current through Eq. (4). Moreover, the terms (5) added to the
Lagrangian can simply be interpreted as (possibly nonlinear)
potential energy terms which pose no problem for circuit
quantization.

In contrast, the node flux formulation cannot be used for the
description of nonlinear capacitors. The constitutive relation
(3) shows that the natural variable for a capacitor is the branch
charge qbr

b rather than the branch flux φbr
b . Determining the

current flow through the capacitor solely from the knowledge
of φbr

b is generally impossible. Although for invertible fV,b, we
may in principle obtain I br

b = φ̈br
b /f ′

V,b[f −1
V,b(φ̇br

b )], generating
this term through the equations of motion requires adding

a term of the form
∫ φ̇br

b

0 dV f −1
V,b(V ) to the Lagrangian. This

will only lead to a quadratic kinetic energy term Cφ̇2
b/2

when considering a linear capacitor C. In contrast, a circuit
containing a nonlinear capacitance cannot readily be quantized
when described in terms of node fluxes φn. To that end, we
need a charge-based description, which we will describe in
details in the next section.

B. Loop charge representation

While the idea of representing the “vector field” φbr by a
“scalar potential” φ in order to guarantee the Kirchhoff voltage
law is rather natural, it may be less obvious how to define
charge degrees of freedom which automatically guarantee
current conservation. For a planar graph that is effectively
two-dimensional such that it can be drawn on a sheet of paper
without crossing lines, the correct degrees of freedom for that
purpose are the loop charges Ql . They are the time-integrated
loop currents circulating within every loop l of the network that
does not have any inner loops, cf. Fig. 1. We give an orientation
to the loop charges by specifying the orientation of a positive
current flow. This orientation is in principle arbitrary but the
simplest rules emerge for a consistent choice of orientation. In
the current paper, we choose the orientation of all loop currents
to be counter-clockwise.

Similar to the node fluxes, the loop charges are unphysical
degrees of freedom in the sense that they generally do not
correspond directly to a physical charge on a branch of the
network. For example, by simple inspection of Fig. 1, we
observe that the polarization charge qbr

b of the phase-slip
junction (diamond) on the branch b in the specified direction
is given by the difference qbr

b = Q1 − Q2 of the loop charges
with their indicated orientations; here, the loop charge Q1

(Q2) enters with a plus (minus) sign as its orientation is along
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φ1, q1

φ2, q2

Q1Q1, Φ1 Q2Q2, Φ2

qbr

FIG. 1. Example network with the loop charges Q1 and Q2, which
are the time-integrated currents circulating in the loops in the specified
orientation, and their conjugate momenta �1 and �2, which are the
fluxes in the respective loops. For comparison, we also indicate node
fluxes φ1 and φ2 at two nodes (shown as dots) of the network together
with their conjugate momenta q1 and q2 which are the charges on the
islands. For general networks, the physical charge across a branch
is related to the charges on the islands in a highly nonlocal way. In
contrast, it is easy to see that using the loop charges Q1 and Q2, we
obtain the local expression qbr

b = Q1 − Q2 for the polarization charge
across the phase-slip junction (diamond) taking their respective
orientations into account. We have also indicated the transverse flux
flow through the phase-slip junction (gray double-headed arrow). In
contrast to a normal capacitor, in a phase-slip junction, the flow of
flux is quantized in units of the superconducting flux quantum �Q.
This expresses the duality to a Josephson junction, which features
longitudinal charge-transport in the direction of the element which is
quantized in units of the Cooper-pair charge 2e.

(opposite) to that of qbr
b . While in the node flux formulation, we

obtain the physical flux across every branch as the difference
of node fluxes on neighboring nodes, in the loop charge
formulation, we obtain in this way the physical (polarization)
charge across every branch as the difference of loop charges in
neighboring loops. By formally placing a loop charge Q0 = 0
at the exterior of the circuit, this statement also remains correct
for finite circuits with a boundary.

The loop charge construction can also be justified directly
from Maxwell’s equations. According to Maxwell’s equations,
current conservation (in a stationary situation) is guaranteed
when the current I flowing through some area bounded by a
contour γ is obtained from the circulation of the magnetic field
according to I ∝ ∮

γ
ds · B. For each branch b of the network,

we can decompose the current Ib into a sum of currents Il ∝∫
γl

ds · B, where each part γl of the contour is associated with
a specific face of the circuit that is pierced by the contour, see
Fig. 2(a). The current Il can be interpreted as the loop current
within the pierced loop l, see Fig. 2(b). The loop charge Ql

is then simply related to the current Il as Q̇l = Il . The above
considerations also show that we will generally only obtain the
current from the difference of precisely two loop charges when
the circuit is planar, i.e., effectively two-dimensional [33]. We
show in Appendix A that the loop charge description is indeed
limited to planar circuits.

Having identified the loop charges Q as variables guar-
anteeing current conservation, we are left with the task of
defining a Lagrangian whose equations of motion guarantee
the Kirchhoff voltage law. The construction of this Lagrangian

γ

IIIII

γ2γ1

I2

I1

(a) (b)

FIG. 2. Motivation of loop currents from Maxwell’s equations
for a lumped element circuit, represented in terms of its nodes (dots)
and faces (light filled rectangles). In (a), a general network is shown
with a current I (dark arrow) along a directed branch of the circuit.
The contour γ (light arrows) encircles the current I . According to
Maxwell’s equations, current conservation is guaranteed when the
current I running through the branch is obtained from the circulation
of the magnetic field around it, I ∝ ∮

γ
ds · B. The total current I can

be decomposed into a sum of currents Il ∝ ∫
γi

ds · B, where each
part γl of the contour is associated with a specific face of the circuit
graph that is pierced by the contour. The currents Il have a direct
interpretation in terms of the currents circulating around the pierced
loops. This is particularly easy to see for a planar circuit depicted in
(b) as we may close the contour integral at infinity. As a result, we
obtain I = (−I1) − I2, in line with the interpretation of the currents
Il as currents circulating in loop l. Viewing the circuit from above,
we recover Fig. 1.

is analogous to the construction of the Lagrangian for the
node fluxes. Specifically, each capacitive element adds a term
−U (qbr

b ) to the Lagrangian, where

U
(
qbr

b

) =
∫ qbr

b (t)

0
dq fV,b(q) (7)

is just the electric energy stored in the capacitor. Specifically,
for the simplest model fV (Q) = Vc sin(πQ/e) of a phase-slip
junction, we obtain the term (up to a constant)

U
(
qbr

b

) = −ES cos(πqbr
b /e) (8)

with the characteristic energy ES = eVc/π . For each linear
inductor L, we add a kinetic term of the form L(q̇br

b )2/2. In
this way, the equations of motion with respect to a loop charge
Ql yield the balance of voltage drops obtained from a counter-
clockwise traversal of the loop l. The relevant terms that have
to be added to the Lagrangian are summarized for different
components in Fig. 3. Since Josephson junctions are nonlinear
inductors, they cannot be directly described using the loop
charge formulation. We will introduce a way to obtain a charge-
based descriptions of Josephson junctions in Sec. VI (see also
the comments in Sec. III A).

A Hamiltonian description requires the introduction of
canonical momenta

�l = ∂L/∂Q̇l. (9)

Each �l can be interpreted as the loop flux in the loop l of
the circuit. If the relation (9) between the loop fluxes � and
the loop charges Q is invertible, we can perform the Legendre
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Circuit element Lagrangian expression

Q1 Q2 L(Q̇1 − Q̇2)
2/2

Q1 Q2 −MQ̇1Q̇2

Q1 Q2 −(Q1 − Q2)
2/2C

Q1 Q2 − Q1−Q2
0

fV (Q)dQ

Q1 Q2

+− −(Q1 − Q2)V

Q Φex
Q̇Φex

FIG. 3. The left column depicts various circuit elements [inductor
L, capacitor C, mutual inductance M , general capacitance with
voltage-charge relation V = fV (Q), voltage source V , and external
flux �ex] with their corresponding expression in the Lagrangian
(right column). In a planar graph, each of the circuit elements
is part of two loops with loop charges Q1 and Q2 which are
indicated along with their respective orientation for completeness.
The simplest representation of a phase-slip junction amounts to
choosing fV (Q) = (πES/e) sin(πQ/e), where ES/� is the phase-slip
rate. This corresponds to a term ES cos[π (Q1 − Q2)/e] in the
Lagrangian.

transformation

H = � · Q̇ − L( Q, Q̇) (10)

and obtain the circuit Hamiltonian which can be readily
quantized through the introduction of canonical commutation
relations [�j,Qk] = δjki�.

It may happen that the relation (9) between the loop
charges Q and the conjugate momenta � is not invertible.
This indicates that not all loop currents are dynamical degrees
of freedom. A simple example for this is an inductor L with
two parallel capacitances C1 and C2 to the left and the right.
Denoting the loop charges in the two loops by Q1 and Q2,
the corresponding Lagrangian reads L = L(Q̇1 − Q̇2)2/2 −
Q2

1/2C1 − Q2
2/2C2. Introducing Q = Q1 − Q2 and Q′ =

(Q1 + Q2)/2, it is obvious that the state of the system
depends only on the current Q̇ through the inductor and
not on the currents through the capacitive branches. As a
consequence, the Lagrangian does not depend on Q̇′, which
gives the constraint ∂L/∂Q̇′ = 0 = �′ for the momentum �′
conjugate to Q′, which cannot be solved for Q̇′. However,
the fact that the Lagrangian does not depend on Q̇′ also
means that the Euler-Lagrange equations for Q′ are purely
algebraic equations (constraints) which can be solved imme-
diately. Resolving the constraint for Q′ and reinserting the
solution into the Lagrangian yields the regular Lagrangian
L = LQ̇2/2 − Q2/2(C1 + C2). Resolving all constraints in
such a way in general leads to a reduced Lagrangian involving
only dynamical degrees of freedom such that the Legendre
transformation (10) and quantization can be performed.

Superconducting circuits with Josephson junctions or
phase-slip junctions may involve transport of strictly quantized
charges or fluxes through the circuit. The former situation
occurs when a superconducting island is connected to the rest
of the network only by capacitors and Josephson junctions.
The isolation of the island demands that the node charge qn of
the island is quantized in units of 2e which corresponds to a �Q

periodicity of the wave function in terms of the node flux φn.
The latter situation occurs if a loop l involves only inductors
and phase-slip junctions. In this case, the flux �l in the loop
is quantized in units of �Q corresponding to a 2e periodicity
of the wave function with respect to the corresponding loop
charge Ql .

Instead of focusing on the circuit to identify islands with
integer node charges (in units of 2e) or loops with integer loop
fluxes (in units of �Q) to determine the appropriate boundary
conditions for the quantization of the fluxes or charges,
we may also determine the appropriate choice of boundary
conditions by looking at the symmetries of the Hamiltonian.
The quantization of fluxes or charges is due to the periodicity
of the underlying potentials. If one ignores the periodicity
considerations of the wave function as described above and
works with node fluxes φ or loop charges Q defined on the
entire real axis, the periodicity leads to the existence of con-
served quantities which correspond to Bloch quasimomenta.
A specific choice of Bloch momentum then corresponds to a
choice of initial condition. Due to the relations (1) and (2),
our inital condition for t → −∞ corresponds to a charge-
and flux-less state and thus all the Bloch momenta vanish
(implying periodic wave-functions). The two approaches are
therefore equivalent and one may choose whatever method
seems more convenient. The symmetry-based perspective will
be particularly useful in the mixed formulation to be discussed
in Sec. V.

A typical lumped element circuit does not just involve
passive elements like capacitors and inductors, but also
involves active elements like voltage and current sources. It
will also feature electromotive forces due to time-varying
fluxes or offset charges on some island of the network. Voltage
sources generating a voltage drop V ex

i are easily described by
adding a term −qbr

i V ex
i to the Lagrangian, where qbr

i is the
corresponding branch charge expressed in terms of the loop
charges. Similarly, for a loop l with loop charge Ql and external
flux �ex

l which generates a positive voltage drop V = �̇ex
l in

the loop current direction, a term Q̇l�
ex
l should be added to

the Lagrangian.
Offset charges are slightly more difficult to handle since

they modify the current balance rather than the voltage balance.
This means that they cannot be described in terms of loop
charges with the simple rules given in Sec. II B since no
term added to the equations of motion can modify the current
balance. Instead, one must represent them through additional
branches which are described in terms of node fluxes. This
requires a mixed loop charge/node flux formulation that we
will describe in detail in Sec. V. In the end, however, we
obtain a simple rule that we will state now for convenience and
whose proof we defer to Sec. V. To understand the rule, we
first note that the lumped element description requires overall
charge neutrality since otherwise there is a net electric field that
extends through the circuit and is not confined to the lumped
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elements. This means that we can only specify n − 1 offset
charges qex

i with i �= 0 on the n islands of the circuit since
overall neutrality implies that the offset charges leave behind
a charge qex

0 = −∑
i �=0 qex

i on the ground node with i = 0.
In order to handle the offset charges qex

i , one must consis-
tently keep track of the paths through which the polarization
charge propagates on its way from the ground node to node
i. To that end, we use the concept of a spanning tree. For a
graph, a spanning tree is defined as a subgraph which does not
have any loops and connects all nodes. The branches of the
graph that belong to the spanning tree are called tree branches.
Since a spanning tree of a connected graph with n nodes has
n − 1 tree branches, we obtain a one-to-one relation between
the n − 1 tree branches and the n − 1 offset charges.

The offset charges can now be included following a number
of simple steps. We first choose a ground node and construct
a spanning tree of the circuit. In a second step, we express the
branch charges qbr of the circuit as differences of loop charges,
following the same reasoning that we apply in absence of offset
charges. As a last step, for all tree branches b, we shift the
resulting charge expression qbr

b by replacing qbr
b �→ qbr

b ± �ex
b .

We use the plus sign if the branch b is directed away from the
ground node and the minus sign otherwise. The sum �ex

b is
the sum of all the external offset charges qex

i that have passed
through the tree branch b on their unique way from the ground
node to node i (within the tree). Note that the specific choice
of spanning tree is a gauge in the sense that it has no physical
consequences. It only amounts to a redefinition of the meaning
of the charges qbr

b that no longer give the physical charge on
the respective tree element.

As an example, consider the capacitive network depicted
in Fig. 4 consisting of six branches b1, . . . ,b6 and 5 nodes
0, . . . ,4 with respective offset charges qex

1 , . . . ,qex
4 . As a first

step, we choose the node 0 as the ground node and use a
spanning tree consisting of the branches b1, b2, b3, and b5

(thick lines). For the next steps, let us explicitly consider the
branch b1. In absence of offset charges, the branch charge qbr

1

0 2

1 3 4

Q1 Q2b1

b2

b5

b3

b6

b4

FIG. 4. Example network consisting of 6 branches b1, . . . ,b6 and
5 nodes 0, . . . ,4. If the branches b4 and b6 (thin lines) are removed
from the graph, the branches b1,b2,b3,b5 (thick lines) still connect all
nodes and therefore form a spanning tree of the graph. Choosing the
node 0 as the ground node, we can only specify the offset charges
qex

1 , . . . ,qex
4 on the remaining nodes since the ground node must carry

the charge qex
0 = − ∑4

i=1 qex
i to guarantee overall charge neutrality.

As explained in the main text, in order to accommodate the offset
charges in our circuit description, we have to determine which offset
charges are transported through which tree branches on their way
from the ground to their respective node. For example, the offset
charge qex

2 has to be transported along the tree branches b1, b2, and
b5 in order to arrive at node 2.

can be expressed as qbr
1 = −Q1 in terms of loop charges. Next

we determine �ex
1 . Since the offset charges qex

1 , qex
2 , qex

3 , and
qex

4 all have to pass through the branch b1 in order to reach their
respective nodes while traversing only tree branches, we find
�ex

1 = ∑4
i=1 qex

i . Since b1 is directed away from the ground
node, including the offset charges amounts to the replacement
qbr

1 = −Q1 �→ −Q1 + �ex
1 . Proceeding in a similar way with

the other branches, we obtain the Lagrangian

L =−
(
qex

1 +qex
2 +qex

3 +qex
4 −Q1

)2

2C1
−

(
Q1−qex

2 −qex
3 −qex

4

)2

2C2

−
(
qex

4 −Q2
)2

2C3
− Q2

2

2C4
−

(
qex

2 +Q2−Q1
)2

2C5
− Q2

1

2C6
.

(11)

We note that in line with our previous discussion, the charge
expressions of the branches b4 and b6 which do not belong to
the tree have not been modified by the offset charges.

With the offset charge description, we can simply represent
a current source, which injects a current I ex into the circuit
and points from node n to node n′ by adding the offset charge∫ t

dt ′I ex(t ′) at node n′ and the offset charge − ∫ t
dt ′I ex(t ′) at

node n.

III. DUALITY BETWEEN NODE FLUXES
AND LOOP CHARGES

In the previous section, we have discussed two representa-
tions of the Lagrangian of a circuit, one in terms of node fluxes
and the other in terms of loop charges. In the following, we
will call such a change in description of the same system from
node fluxes to loop charges a passive duality transformation.
Besides those passive duality transformations of the same
circuit, one can also consider active duality transformations
which yield a different, electromagnetically dual circuit whose
charge dynamics is identical to the flux dynamics of the
original circuit or vice versa. Electromagnetic circuit dualities
have been discussed on a per-case basis in the mesoscopic
physics literature [5,34,35] but, to our knowledge, a general
construction scheme has not been spelled out so far.

In this section, we will explain how to explicitly construct
both passive and active duality transformations with the help
of loop charges. We will start by discussing the explicit
construction of passive duality transformations. Previously,
we have focused on the question on how to read off the
appropriate Lagrangian in either representation directly from a
given circuit graph. We now show how one can transform one
representation into the other. While this is of technical interest,
we want to highlight that this subsection may be skipped on
first reading since in practice it is sufficient and much easier
to use the rules given in Sec. II B for the construction of the
loop charge Lagrangian. We proceed by outlining in Sec. III B
a straightforward way of constructing electromagnetic circuit
dualities using loop charges.

A. Passive duality transformations

The transformation from the node flux to a loop charge
representation is particularly easy to perform in the path
integral picture [36]. In this case, the unitary time-evolution
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operator e−iH t/� is represented in the form

e−iH t/� →
∫
D[φ(t)] e(i/�)

∫ t
dt ′ L(φbr), (12)

where the path-integration is performed over the n − 1 node
fluxes of the circuit graph with n nodes. Note that we have
also suppressed the dependence of the Lagrangian on φ̇

br

for brevity. The description in terms of branch fluxes φbr

is linked to a description in terms of branch charges qbr
b =

∂L(φbr,φ̇
br

)/∂φ̇br
b through the Legendre transformation. For

the following, it will be convenient to perform this Legendre
transformation in a slightly more general form through the
Fourier transformation

e(i/�)
∫ t

dt ′ L(φbr) =
∫
D[qbr(t)]e(i/�)

∫ t
dt ′[L̃(qbr)−qbr·φ̇br

], (13)

where the Lagrangian L̃(qbr,q̇br) is defined implicitly such that
Eq. (13) holds. At the saddle-point level or for a Lagrangian
L̃(qbr,q̇br) that is quadratic in its arguments, performing the
qbr integration shows that L(φbr,φ̇

br
) is simply the Legendre

transformation of L̃(qbr,q̇br).
To proceed further, we need to relate the node fluxes φ

to the branch fluxes φbr. For this, we make use of the basis
node-edge incidence matrix A, which is a R(n−1)×b matrix for
the n − 1 nodes fluxes and the b branches. Its entries Aij ∈
{1,−1} indicate whether the branch j enters (−1) or leaves
(+1) node i. It allows us to express the Kirchhoff current law
in the form Aq̇br = 0 and it relates the branch and node fluxes
via φbr = AT φ.

Performing a partial integration on the term −qbr · φ̇
br =

−qbr · AT φ̇ in the exponent of expression (13), inserting
the resulting expression into Eq. (12), and performing the
integration over φ results in a constraint:

e−iH t/� →
∫
D[qbr(t)]e(i/�)

∫ t
dt ′ L̃(qbr)δ[Aq̇br(t)], (14)

where the δ function has to be understood in such a way that
it demands the vanishing of its argument at each point in time.
The constraint Aq̇br = 0 is of course nothing but the Kirchhoff
current law. As we have discussed in details in Sec. II B, we
can guarantee the Kirchhoff current law for a planar circuit by
considering loop charges. This resolves the constraint and we
obtain the dual representation

e−iH t/� →
∫
D[ Q(t)]e(i/�)

∫ t
dt ′ L̃[qbr( Q)] (15)

in terms of loop charges. For the convenience of the reader,
we repeat this derivation in a slightly more rigorous way in
Appendix B.

We have thus explicitly constructed the passive duality
transformation linking a representation in terms of node
fluxes to a representation in terms of loop charges. We want
to stress once again that in practice it is much easier and
much less error-prone to perform the construction of the
circuit Lagrangian using the rules explained in details in
Sec. II B, rather than starting with a node-flux representation
and repeating the calculation outlined above.

It is interesting to note that the duality transformation used
here is essentially the same as the one used in the analysis of

the classical two-dimensional XY model [37] or the Schmid-
Bulgadaev transition. In fact, the analogy to the XY model
suggests that Josephson junctions can be described in the loop
charge formulation by making the Villain approximation for
the cosine dispersion EJ cos(2πφbr/�Q) of a Josephson junc-
tion with branch flux φbr. There, one replaces the cosine dis-
persion by the function − minm∈Z EJ (2πφbr/�Q − 2πm)2/2
which retains the �Q periodicity while being quadratic in
φbr. This allows to perform the path integration over φ and
construct a charge-based description of a Josephson junction
in the Villain approximation. We will not pursue this idea
further since we will introduce in Sec. VI an alternative way
to describe a Josephson junction (using loop charges) that is
based on the adiabatic separation of the (fast) Cooper-pair
transport through the junction and the (slow) transport of
polarization charge through the rest of the circuit.

B. Active duality transformations: electromagnetic
circuit duality

In the previous section, we have explained the represen-
tations of circuits in terms of node fluxes or loop charges
which are related by a passive duality transformation. We
now want to show that loop charges are also useful for
constructing active duality transformations. Specifically, given
a graph g of a circuit that is described in terms of node fluxes
and has a corresponding Lagrangian L(φ,φ̇), we define its
electromagnetically dual circuit with graph G as the circuit
whose description in terms of loop charges yields a Lagrangian
that is of the same form as L(φ,φ̇) with φ replaced by a
vector of loop charges Q. We will see below that a dual circuit
exists for planar circuits which are effectively two-dimensional
such that the closure of flux lines in the third dimension can
be ignored; this is in contrast to classical electromagnetism
where electromagnetic dualities only exist in vacuum due to
the absence of magnetic monopoles [38].

In order to construct the dual circuit G, we first need the
notion of a dual graph g′. In the node flux formulation, each
branch flux φbr

b is obtained as the difference of precisely two
node fluxes. We have seen previously that for a planar circuit
described in terms of loop charges, we can similarly describe
each branch charge qbr

b as the difference of two loop charges,
provided we also place a loop charge Q0 = 0 at the exterior
of the circuit. For this reason, we construct the dual graph
g′ by placing one node into each loop of the original graph
g, including the “loop” at the exterior [39]. For each branch
b representing a circuit element that is common to the loops
l0 and l1, we add a branch b′ in the dual graph representing
the same circuit element that joins the dual nodes at l0 and
l1. We choose the orientation of the dual branch such that
it points towards l1 if the orientation of the original branch
is consistent with the loop charge orientation Ql1 and away
from l1 otherwise. This gives a consistent scheme provided we
choose a counterclockwise orientation for all loop charges as
described in Sec. II B. The construction scheme is illustrated
in Fig. 5(a) for a simple circuit. Associating the loop charges
of the original circuit with the nodes of the dual graph, the
charge on branch b of the original circuit can be obtained
as the negative (discrete) gradient of the loop charges along
the branch b′ of the dual graph. Up to a sign, we thus obtain
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Q1 Q2 Q3
g

IYω

Q0g′

Zω

+−

V GQ

(a)

(b)

FIG. 5. In (a), we illustrate the construction of the graph g′ dual to
a graph g. As explained in the main text, we construct g′ by placing
one node into each loop of g. We connect two nodes in the dual
graph g′ whenever there is a circuit element on branch b in g that
separates the corresponding loops l0 and l1. The orientation on the
branch in g′ is chosen such that the branch points towards l1 if the
orientation of the loop charge Ql1 is consistent with the orientation
of the original branch in g and away from l1 otherwise. In (b), we
show the electromagnetic dual graph G that is obtained from g′ by
replacing the elements according to the rules given in Table I.

the branch charge qb of the original graph g from the dual
graph g′ in a way that is completely analogous to the node
flux formulation. Note that the dual graph does not represent
a lumped element representation of a physical circuit but it
should rather be considered a handy mnemonic for the loop
charge representation of the original circuit. We highlight that
iterating this procedure twice gives back the original graph
with the orientation of all branches reversed.

To construct the dual circuit G, we start by considering
the dual graph g′ of g as a lumped element representation
of an actual circuit different from the original circuit. As we
have explained before, we can understand the loop charge
formulation of g′ by thinking about the loop charges of g′
sitting on the nodes of (g′)′. Now, since (g′)′ is just the original
graph g with all branch orientations reversed, we effectively
obtain the branch charges of g′ as the gradient of the loop
charges positioned on the nodes of the original graph g. Thus,
we obtain the result that the node fluxes of g are in one to
one relation with the loop charges of g′. From g′, we obtain
the dual circuit G by replacing circuit elements of g′ in such
a way that the loop charges of G have the same dynamics as
the node fluxes of g. In order to have the same dynamics, the
terms in the Lagrangian corresponding to the circuit elements
have to be equal (up to interchanging ϕ with Q). For example,
a capacitive element in g corresponds to a (kinetic) term of the
form Cφ̇2/2 and its dual is thus given by an inductor LQ̇2/2
(which leads to a kinetic term in the loop charge description).
More generally, we obtain the electromagnetically dual circuit
G from the dual graph g′ of g by replacing all elements in
g′ according to the rules given in Table I. This procedure is
illustrated in Fig. 5(b) for a simple circuit.

IV. DISSIPATION AND ENVIRONMENTS

So far, we have analyzed closed systems where the energy is
conserved. We have given a recipe to calculate the Lagrangian
L( Q, Q̇) that corresponds to a specific lumped-element circuit.
In a typical application, we would then go on by introducing

TABLE I. Circuit elements and their corresponding elements in
the electromagnetically dual circuit.

Original Dual

Capacitance C Inductance L

Josephson junction EJ Phase-slip junction ES

Flux φex through loop n Offset charge qex at node n

Voltage source V Current source I

Admittance Yω Impedance Zω

the Hamiltonian and canonically quantizing position Q and
momentum � = ∂ Q̇L. Given an initial configuration 
t0 ( Q),
we obtain a wave function 
t ( Q) that describes the evolution
of the probabilities |
t ( Q)|2 to find the system in a specific
state Q at time t .

An altogether different but equivalent approach is the path
integral method [36], which we already briefly discussed
in Sec. III A. There the wave function is obtained by the
expression


t ( Q) =
∫
D[ Q(t)]e(i/�)

∫ t

t0
dt ′ L


t0 ( Q′) (16)

that sums over all paths Q(t) fulfilling the boundary conditions
Q(t0) = Q′ and Q(t) = Q. Note that in this approach there
is neither a need to go over to a Hamiltonian nor to postulate
canonical quantization rules.

In conventional electronics, there are elements called
resistors that do not conserve energy. In a quantum setting,
this corresponds to open systems, i.e., a system coupled to
an environment; an example is an electronic circuit which
is coupled to the outside via a electromagnetic transmission
line. We note that recently there has been a lot of progress
in quantizing general linear environments in terms of a few
relevant degrees of freedom [40–44]. Here, we will describe
the environment as an effective action on the system degrees
of freedom.

In the theory of open systems, the interest is in characteriz-
ing the system in questions without having to specify the full
wave function of the system together with its environment.
As in this case the system does not stay in a pure state,
it necessarily has to be characterized by its density matrix
ρt ( Q+, Q−) whose diagonal elements give the probability to
observe the system in a particular state Q− = Q+ and the
off-diagonal terms characterize the coherences. We see that
the fact that the system is open requires to double the degrees
of freedom, i.e., going from Q to Q±. The dynamics of the
system is simply given by

ρt ( Q+, Q−) =
∫
D[ Q+(t), Q−(t)]eiS/� ρt0 ( Q′+, Q′−),

(17)
where S = SS + SE has a contribution due to the system
(without the environment)

SS =
∫ t

t0

dt ′[L( Q+, Q̇
+
,t) − L( Q−, Q̇

−
,t)]. (18)

The influence of the environment can be captured by the so-
called influence functional SE [45].
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If the environment is a linear system in equilibrium
characterized by the impedance Zω, the influence functional
can be calculated explicitly [46,47]. If the branch b (between
the two loops l0 and l1) with branch charge qbr

b = Ql1 − Ql0 is
shunted by the impedance Zω, we obtain the additional action
SE = SR + SD with a reactive part

SR =
∫

dω

4π
Im(Zω) ω(|Q̃−

ω |2 − |Q̃+
ω |2), (19)

where the Fourier-transform Q̃±
ω = ∫ t

t0
dt ′ qbr,±

b (t ′)eiωt ′ enters.
Note that in the reactive part, similar to the system, the
variables Q̃+ and Q̃− are not coupled, which corresponds
to the fact that the evolution of the ket and bra in a pure
state ρt = 
t ( Q+)
∗

t ( Q−) are independent of each other.
In particular, for a simple inductance L with impedance
Zω = −iωL or a capacitance C with impedance Zω = i/ωC,
the expression (19) reproduces the results of Fig. 3.

The dissipation destroys this factorization and makes the
doubling of the degrees of freedom inevitable. In fact, it is
useful to introduce new variables Q̃cl

ω = 1
2 (Q̃+

ω + Q̃−
ω ) and

Q̃
q
ω = Q̃+

ω − Q̃−
ω in terms of which the dissipative part of the

action reads

SD =
∫

dω

2π
Re(Zω) ω

[
Im

(
Q̃cl

−ωQ̃q
ω

) + i(2nω + 1)
∣∣Q̃q

ω

∣∣2]
;

(20)
here, nω denotes the occupation probability of the mode at
frequency ω in the environment. In particular, in equilibrium,
we have the Bose-Einstein distribution nω = (e�ω/kBT − 1)

−1
.

The two terms in Eq. (20) have different tasks: the first term
introduces dissipation in the equation of motion and the last
term leads to fluctuations, see also below.

As an example, we would like to analyze a setup where a
phase-slip junction in series with an inductor and a resistance
is voltage biased at voltage V0, which is illustrated in Fig. 5(b).
The circuit consists of a single loop with loop charge Q. This
system is the dual of the resistively-shunted Josephson junction
shown in Fig. 5(a) [4]. The Lagrangian assumes the form

L = LQ̇2

2
+ ES cos(πQ/e) + V0Q (21)

involving both the phase-slip junction as well as the voltage
bias. The action of the system is obtained via (18). The
Ohmic resistance is modelled by dissipative action (20) with
Re(Zω) = R.

How the system dynamics is modified by dissipation
depends on temperature. Let us first consider the case T = 0,
which can be analyzed using the well-known results for the
dual problem of the resistively-shunted Josephson junction.
For the following, we consider the case V0 = 0. It is then
advantageous to decompose the total flux within the loop in
the form φ + � with φ ∈ [0,�Q] and �/�Q ∈ Z. The former
flux can be interpreted as the Bloch momentum associated
with the dynamics of Q in the 2e-periodic potential due to
the phase-slip junction, while the latter is connected to the
dynamics within a single unit cell of size 2e. For zero shunt
resistance, R = 0, the flux φ (Bloch momentum) is conserved,
corresponding to a complete delocalization of Q over the
valleys of the cosine potential. Localizing the charge Q in a
single valley of the periodic potential requires a superposition

of all Bloch momenta φ. The fluctuation-dissipation theorem,
Sφ(ω) ∝ Re(Zω), shows that increasing Re(Zω) will increase
the fluctuations of φ at frequency ω as described by the spectral
density Sφ(ω) = ∫

dt eiωt 〈φ(t)φ(0)〉. This suggests that for R

sufficiently large such that the fluctuations of φ exceed �Q, Q
will eventually localize within a single valley of the periodic
potential. The transition from a state delocalized over different
valleys of the periodic potential to a localized state is known
as the Schmid-Bulgadaev quantum phase transition that was
mainly studied in the dual problem of the resistively shunted
Josephson junction (for zero current bias) [47–50]. Translated
to our problem, the results imply that Q is localized for
R > RQ and remains delocalized for R < RQ.

For finite temperature T , the Schmid-Bulgadaev transition
is formally absent because thermal activation will always lead
to a finite probability for the charge Q to transition between
different valleys of the potential [47]. However, as long as
we are on the insulating side of the Schmid transition with
R > RQ where quantum tunneling of Q is absent, we can
describe the dynamics of Q semiclassically. This corresponds
to expanding the action around Qq = 0 [51], which leads to

S =
∫ t

t0

dt ′[V0 − LQ̈cl − RQ̇cl − Vc sin(πQcl/e)]Qq

+ iR

∫
dω

2π
ω(2nω + 1)

∣∣Qq
ω

∣∣2
(22)

with Vc = πES/e. Next, we introduce the fluctuation ξ of
the voltage over the resistor via a Hubbard-Stratonovich
transformation. In fact, we have that

eiSD =
∫
D[ξ (t)] exp

[
−

∫
dω

2π

(
iξ ∗

ωQq
ω+ |ξω|2

4Rω(2nω+1)

)]
.

(23)

After this transformation, the action is linear in Qq , which
allows for performing the path-integral over Qq . The result is
the Langevin equation

V0 − LQ̈cl − RQ̇cl − Vc sin(πQcl/e) = ξ (t) (24)

for Qcl(t). In the end, as Qq = Q+ − Q− is small, we obtain
a result for the time-evolution of the probability distribution
Pt (Q) = ρt (Q,Q); with Q = Qcl ≈ Q+ ≈ Q−. It is given by

Pt (Q) =
∫
D[ξ (t)] exp

[
−

∫
dω |ξω|2

8πRω(2nω + 1)

]
Pt0 (Q′),

(25)
where Qcl(t) fulfills the Langevin equation with Qcl(t0) = Q′
and Qcl(t) = Q. In particular, the fluctuating part of the voltage
ξ (t) is Gaussian with mean 〈ξ 〉 = 0 and variance

〈ξω′ξω〉 = 4πRω coth(�ω/2kBT )δ(ω′ + ω), (26)

where we used the fact that 2nω + 1 = coth(�ω/2kBT ) in
equilibrium.

V. MIXED CIRCUIT QUANTIZATION AND PROOF
OF CIRCUIT RULES

In the previous section, we have reviewed the node flux
description and explained in some detail the loop charge
description of circuits. We now want to show that one can
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also combine both descriptions such that part of the circuit is
described in terms of node fluxes while the other is described
in terms of loop charges. As an example, we will use this
approach to prove the rules for the inclusion of offset charges
given above.

Let us assume that we decide to describe a only a certain
subset of the branches of the graph in terms of loop charges.
In the following, we will refer to the part of the graph spanned
by the corresponding branches as the subgraph, while the
remaining branches belong to what we will call the subgraph
complement. The boundary nodes of the subgraph are the
nodes that possess both incident branches that belong to
the subgraph as well as incident branches that belong to
its complement. We denote the vector of node fluxes at the
boundary nodes by φ∂ . Similarly, the boundary loops of the
subgraph with loop charges denoted by Q∂ are the loops with
branches that partly belong to the subgraph and partly belong
to its complement. Since the voltage drops over the branches to
which the boundary loops belong as well as the currents in the
branches incident on the boundary nodes are partly described
in terms of node fluxes and partly in terms of loop charges, the
Kirchhoff voltage law at the boundary loops and the Kirchhoff
current law at the boundary nodes is no longer automatically
fulfilled. We therefore have to ensure it manually by adding
appropriate terms to the Lagrangian. Let us denote the current
flowing from a boundary node i to a neighboring node j within
the subgraph by q̇ij . Since the Euler-Lagrange equations with
respect to the node flux φi yield the currents flowing away
from node i, we can ensure the Kirchhoff current law by
adding the term − ∑

i φ
∂
i

∑
j q̇ij to the Lagrangian. Similarly,

for the boundary loops with charges Q∂
i , we can guarantee

the Kirchhoff voltage law by adding a term −∑
i Q

∂
i

∑
j φ̇ij ,

where φ̇ij are the voltage drops (in the loop current direc-
tion) over the parts of the loop that are in the subgraph
complement.

The first of the terms just described manifestly guarantees
current conservation while the second manifestly guarantees
the Kirchhoff voltage law. Importantly, both terms are identical
up to a total time derivative, as we show in Appendix C. As
a consequence, if one wants to guarantee both the Kirchhoff
current law as well as the Kirchhoff voltage law, we have to
add one (and only one) of them to the circuit Lagrangian.

Let us now use these results to prove the rules for
the inclusion of offset charges described in Sec. II B. As
we have discussed there, offset charges must be modeled
through the inclusion of additional lumped elements in the
circuit. These elements are naturally described in terms of
node fluxes since they modify the current balance. Therefore,
in order to describe the presence of offset charges qex on the
nodes of the circuit, we add to each of the tree branches with
charges q tr another virtual parallel branch which will represent
the action of the displacement currents and will be described
in terms of node fluxes. As a consequence, only a fraction q ′tr
of the total charge q tr entering the branches will remain on the
original tree element, while the charge q tr − q ′tr will reside on
the virtual branch. Since the equations of motion with respect
to φ yield the currents flowing away from the respective nodes,
offset charges qex on the nodes of the circuit correspond to a
term φ̇ · qex in the Lagrangian. In order to ensure the Kirchhoff

φn φn′q′trqtr qtr

qtr − q′tr

FIG. 6. In order to describe the presence of offset charges,
a virtual branch (solid black line) representing the effect of the
displacement currents is added in parallel to each tree branch of
the original circuit (solid gray line). As a consequence, the charge
q tr entering the tree branch splits into the charge q ′tr on the tree
element and the charge q tr − q ′tr on the virtual branch. The current
flowing away from node n and n′ into the subgraph (gray) is given
by ±(q ′tr − q tr). Ensuring the Kirchhoff laws therefore requires
adding the terms −(φn − φn′ )(q̇ ′tr − q̇ tr) = −φtr(q̇ ′tr − q̇ tr) with the
tree branch flux φtr = φn − φn′ to the Lagrangian.

laws, we also have to add the terms −φtr · (q̇ ′tr − q̇ tr),
cf. Fig. 6.

We have already discussed in in Sec. III A that the
node-edge incidence matrix A relates the branch fluxes and the
node fluxes as φbr = AT φ. A decomposition of qbr = (qch,q tr)
into the vector of chord charges qch and tree charges qbr gives
rise to a corresponding decomposition of A = (Ach,Atr) with
Atr a square matrix. Since there are no loops in a tree, we have
the result Atrv �= 0 for every vector v ∈ Rb, implying that Atr

has full rank and the inverse A−1
tr is well-defined [52]. With

the help of the matrix A, we can write the expression added
to the Lagrangian in the form φ̇ · qex − φ · Atr(q̇ ′tr − q̇ tr).
Since Atr is invertible, the equations of motion with respect
to φ yield the constraint q̇ ′tr = q̇ tr − A−1

tr q̇ex. As a result, we
can simply ignore the virtual branches just introduced and
continue working with the original circuit graph, provided we
simply replace each expression in the Lagrangian involving
the tree charge q tr by q ′tr. It can be shown that for all nodes
j that are connected to ground through branch i, the entries
of (A−1

tr )ij are given by ±1 depending on whether branch
i points towards or away from ground, while they are zero
for all other nodes [52]. Using this, we reproduce the rules
given previously. We show in the Appendix C that proceeding
similarly for a circuit with external fluxes that is described in
terms of node fluxes recovers the rules given in Ref. [14].

For completeness, we note that no such simple rule
emerges if one intends a mixed description of the circuit.
In that case, one does not get around representing external
fluxes and offset charges explicitly through virtual additional
circuit elements. For an external flux �ex

l in some loop l with
loop charge Ql which is part of the subgraph or an offset
charge qex

n at some node n which is either part of the subgraph
complement or a boundary node, those virtual elements
are easy to handle. In that case, they simply add the terms
Q̇l�

ex
l , φ̇nq

ex
n to the Lagrangian without requiring additional

terms to guarantee the Kirchhoff laws. For external fluxes in
loops that lie completely within the subgraph complement
or offset charges at the nodes of the subgraph (without the
boundary nodes), however, the additional terms guaranteeing
the Kirchoff laws have to be added by hand.

As an example, we consider the fluxonium circuit depicted
in Fig. 7. We describe the inductive shunt in terms of loop
charges and the rest of the circuit in terms of node fluxes.
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φ0=0

φ

−Q − q
C

+Q + q
LQ Q

Φex Φex

(a) (b)

FIG. 7. In (a), we show the idealized exact fluxonium circuit
and in (b), we show the approximate fluxonium representation
obtained after exploiting the passive duality transformation explained
in Sec. VI A. The gray part of the circuit denotes the subgraph
described by loop charges.

Using the rules given above, we obtain the Lagrangian

L = C

2
φ̇2 + EJ cos

(
2πφ

�Q

)
+ L

2
Q̇2 − Qφ̇ + Q̇�ex (27)

with EJ = �QIc/2π . Here, the first two terms are due to the
Josephson junction and its associated capacitance, which are
described in terms of node fluxes, while the term LQ̇2/2 is due
to the inductive shunt within the subgraph which is described
in terms of loop charges. The voltage drop φ̇ in the direction
of the loop charge Q gives the term −Qφ̇ guaranteeing the
Kirchhoff voltage and current law. The external flux �ex within
the boundary loop adds the term Q̇�ex. Since we describe the
inductive shunt in terms of the polarization charge Q, we have
to take φ to be �Q-periodic since only integer number of
Cooper-pairs can flow from the ground to the node with flux
φ in absence of the inductive shunt. Performing the Legendre
transformation, we obtain the Hamiltonian [53,54]

Hflux = (q + Q)2

2C
− EJ cos

(
2πφ

�Q

)
+ (� − �ex)2

2L
, (28)

where q = ∂L/∂φ̇ and the total flux � = ∂L/∂Q̇ are canon-
ically conjugate to φ and Q. The Hamiltonian acts on wave
function of the form ψ(φ,�), where φ is periodic (with period
�Q).

The capacitive term of the Hamiltonian (28) reveals that the
physical charge q̃ = q + Q on the capacitor plate is the sum of
the charge q ∈ 2eZ (flowing through the Josephson junction)
and Q (flowing through the inductor). As the charges do not
enter individually, the operator ei(φ−�)/�Q commutes with the
Hamiltonian. As a result, we obtain that the fluxes are equal
with φ̃ = � = φ, where the last equality holds modulo �Q

[55]. We introduce the new wave function

ψ̃(φ̃) = ψ(φ̃,φ̃) (29)

with −i�∂φ̃ψ̃(φ̃) = (q + Q)ψ(φ,�) such that the charge q̃ on
the capacitor plate is the conjugate variable to φ̃. With that,
we have decompactified the phase φ (defined on the interval
[0,�Q]) to φ̃ (defined on the complete real line). This gives
the conventional form of the fluxonium Hamiltonian (acting
on the wave function ψ̃)

H̃flux = q̃2

2C
− EJ cos

(
2πφ̃

�Q

)
+ 1

2L
(φ̃ − �ex)2, (30)

with q̃ the conjugate variable to φ̃. Alternatively, in the path
integral formulation, one can start with (28) and integrate out
the harmonic mode Q in order to arrive at (30) [53,54].

It has previously been shown that in the limit L → ∞,
selection rules emerge from the Hamiltonian (30) which limit
the dynamics of the decompactified variable φ̃ to the dynamics
of a compact variable φ corresponding to the system without a
shunt [32]. The origin of the selection rules is made transparent
by the Hamiltonian (28), which shows that polarization charge
Q becomes conserved in the limit L → ∞. The explicit
separation of the transport of q over the Josephson junction
and the flow of polarization charge Q through the shunt in the
Hamiltonian (28) clearly brings out the different time scales
associated with the two processes. This fact makes it very
useful for the derivation of an effective fluxonium Hamiltonian
as we will discuss in Sec. VI A. As another example of
the mixed formulation, we discuss in the Appendix E the
derivation of a Hamiltonian for the experimental setup of
Ref. [28].

VI. APPLICATIONS

As we have discussed in the previous sections, Josephson
junctions cannot be handled directly using loop charges. On
the other hand, it is well-known that Josephson junctions
are approximately self-dual [5] and can behave as nonlinear
capacitors at low energies. As we now want to show, this yields
an approximate way of incorporating Josephson junctions in
the loop charge description.

In particular, we discuss the example of a single Joseph-
son junction: the effective nonlinear capacitor is given by
the 2e-periodic ground-state energy ε0(Q), where Q is the
polarization charge. An instructive way to understand the 2e

periodicity is provided by writing the total charge on capacitor
plate as the sum q + Q of the integer charge n = q/2e

and the continuous polarization charge Q, cf. Eq. (30) [47].
While the former corresponds to (excess) Cooper pairs on
the island, the latter models the polarization charge, i.e.,
continuous displacements of negative and positive charges
on the island against each other due to polarizing electric
fields. The unusual aspect of the Josephson junction is the
fact that it allows exchange of individual Cooper-pairs through
tunneling, whereas the polarization charge remains fixed due
to the insulating layer of the Josephson junction. As a result, a
Josephson junction is only able to screen the charges in units
of 2e yielding the periodic ground-state energy ε0(Q).

The separation of the charge q + Q remains useful
when shunting the Josephson junction by a large (complex)
impedance Zω that allows the exchange of the polarization
charge between the capacitor plates. As long as the impedance
is large, there will be an adiabatic separation of the fast flow
of integer charges n through the Josephson junction and the
polarization charge flow through the shunt. We will make this
idea in two examples more explicit.

A. Fluxonium

We now want to apply this idea in the description of the
fluxonium circuit of Fig. 7 [3]. In the limit of large inductance
L, the shunt impedance Zω = −iωL becomes large and we can
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perform the adiabatic decoupling of the polarization charge Q

and the phase φ in the fluxonium Hamiltonian (28). To that
end, we introduce the (instantaneous) eigenstates uQ,s(φ) of
the Cooper-pair box Hamiltonian

Hcpb = 1

2C

(
−i�

∂

∂φ
+ Q

)2

− EJ cos

(
2πφ

�Q

)
, (31)

such that Hcpb uQ,s(φ) = εs(Q) uQ,s(φ) holds, where εs(Q) is
the 2e-periodic instantaneous eigenenergy to the (constant)
polarization charge Q. In the adiabatic approximation, we
make the ansatz ψ(φ,Q) = uQ,s(φ)χs(Q) for the total wave
function of Hflux in Eq. (28). Inserting this ansatz and
neglecting derivatives of uQ,s with respect to Q, we arrive
at the lowest-order adiabatic approximation [32,56,57]

Hs = 1

2L

(
i�

∂

∂Q
− �ex

)2

+ εs(Q) (32)

for the Hamiltonian of the wave function χs(Q) which is 2e

periodic. The Hamiltonian (32) is the (passive) dual description
a Josephson junction shunted by a large impedance as alluded
to in the introduction and depicted in Fig. 7.

We want to comment on the connection of the wave
functions χs,n(Q) for the nth eigenstate obtained in this manner
to the wave function ψ̃(φ̃) of the (conventional) fluxonium
Hamiltonian H̃flux of Eq. (30). Using the relation (29) as well
as the adiabatic ansatz, we obtain

ψ̃s,n(φ̃) =
∫ 2e

0

dQ

2π�
uQ,s(φ̃)χs,n(Q)eiQφ̃/�, (33)

as an approximate expression of the exact eigenstates.
To highlight the accuracy of the approximate expression

(33), we have numerically calculated the eigenstates ψ̃m(φ̃)
of the Hamiltonian (30), as explained in Appendix F, and the
eigenstates χs,n(Q) and uQ,s(φ) of the Hamiltonians (32) and
(31). In Fig. 8, we show the comparison of the exact eigenstates
to the approximate eigenstates (33) for �ex = �Q/2. Note
that the wave functions can be chosen real due to the
symmetry under φ̃ �→ �Q − φ̃ (or, (φ,�) �→ (−φ,�Q − �),
respectively) and are centered vertically at their corresponding
energy value. Especially for the low-lying states, one sees good
agreement between the exact eigenstates and the approximate
states (33). In particular, for the exact lowest energy states
ψ̃g , ψ̃e of the fluxonium Hamiltonian (30), we find the
correspondence

(ψ̃g,ψ̃e) �→ (ψ̃0,0,ψ̃0,1), (34)

i.e., the states ψ̃g , ψ̃e are all associated with the lowest s =
0 band of the Cooper-pair box. As we show in Fig. 9, this
property persists for the entire range of external flux �ex. In
particular around the experimentally relevant flux bias of half
a flux quantum, �ex = �Q/2, we find overlaps |〈ψ̃g|ψ̃0,0〉|,
|〈ψ̃e|ψ̃0,1〉| well above 0.95. We thus arrive at the conclusion
that the fluxonium can effectively be understood as a phase-
slip junction with a constitutive relation V = fV (Q) = ε′

0(Q).
Instead of using the original fluxonium circuit from Fig. 7(a),
we may therefore obtain an accurate description in terms of
the simpler circuit depicted in Fig. 7(b), which follows from
the first circuit by replacing the Josephson junction and its
associated capacitance by a phase slip junction.
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FIG. 8. Exact (φ̃ < �Q/2) and approximate (φ̃ > �Q/2) flux-
onium wave functions for �ex = �Q/2. The exact wave functions
are computed by exact diagonalization of the full Hamiltonian (30)
and the approximate wave functions are obtained by computing
eigenstates χs,n(Q) of the adiabatic Hamiltonian (32) and using
formula (33). The states live in a potential (solid black line) composed
of a harmonic contribution (dashed black line) due to the inductance
with an inductive energy EL = (�Q/2π )2/L and the superposed
cosine potential due to the Josephson junction with the Josephson
energy EJ . The parameters EJ /4EC = 0.9 and EL/4EC = 0.052
(with the capacitive energy EC = e2/2C) correspond to the qubit
discussed in Ref. [3]. The wave functions of both Hamiltonians can
be chosen real due to the symmetry under (φ,�) �→ (−φ,�Q − �)
and are centered vertically at their corresponding energy eigenvalue.

The circuit from Fig. 7(b) yields a simplified fluxonium
description which may, e.g., be convenient in order to
understand the effects of environmental noise. As an example,
we consider the case of a noisy inductor which we model by
an additional resistor R in series with the inductance L. The
flux φ over the resistor couples linearly to the current Q̇ and
we can therefore apply the results of Sec. IV. Using standard
results for qubits [58,59], one arrives at a relaxation rate

�1 = |〈χ0,0|∂Q|χ0,1〉|2
L2

Sφ(E01/�), (35)
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FIG. 9. Approximate fluxonium eigenstates ψ̃s,n which have the
maximum overlap with either of the three lowest energy states ψ̃g ,
ψ̃e, ψ̃f of the exact fluxonium Hamiltonian (30). The approximate
eigenstates are calculated via Eq. (33), using the eigenstates of the
Hamiltonian (32) which arises from projection on band s of the
Cooper-pair box Hamiltonian (31).
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where E01 > 0 denotes the energy difference between
the states χ0,1 and χ0,0 and Sφ(ω) = ∫

dt eiωt 〈φ(t)φ(0)〉 =
2�R(nω + 1)/ω is the spectral density of flux fluctuations over
the resistor. In units of the RL time τRL = L/R, the result reads
�1τRL = (nB + 1)�2

01/LE01 with nB the photon number at
frequency ω = E01/�. As a result, the decay �1 is proportional
to the ratio of the magnitude of energy fluctuations �2

01/L due
to the (quantum) fluctuations of � to the energy difference of
the transition.

B. 0-π qubit

As another example, we consider the 0-π qubit, which
is based on a special type of Josephson inductance that is
�Q/2-periodic in the phase φ. This has to be contrasted with
the �Q-periodicity found in conventional Josephson junctions.
There exist two different proposals for its realizations. The
first proposal, the superconducting current mirror, is based
on an energetic suppression of single Cooper-pair tunneling
[2], whereas the second proposal, the Josephson rhombus,
is based on destructive interference of single Cooper-pair
tunneling guaranteed through symmetry [60,61]. Independent
of the specific way the �Q/2-periodic junction is realized, its
effective Hamiltonian can be written as

H = 4EC(q + Q)2 − EJ2 cos(4πφ/�Q), (36)

where q = −i�∂/∂φ is conjugate to φ, EJ2 gives the strength
of the �Q/2-periodic junction and we have included a charging
energy with polarization charge Q.

There exist two possible choices of qubit states. When
the junction strength is much larger than the charging en-
ergy, EJ2/EC � 1, the states can be approximated as states
localized at the potential minima φ = 0 or φ = �Q/2 of
the junction term. On the other hand, it is clear that the
correct eigenstates of the Hamiltonian (36) are characterized
by Cooper-pair parity as a good quantum number, since the
EJ2 term only connects charge states differing by 4e. Indeed,
tunneling between the minima of the junction leads to a
hybridization of the states localized at φ = 0 or φ = �Q/2
into odd and even superpositions ψo, ψe, which are in direct
correspondence to states characterized by odd or even Cooper-
pair parity [62]. This is illustrated in Fig. 10(a) for EJ2 = 20EC

and Q = 0. Going over to a Bloch band description with
the choice of a �Q/2-periodic unit cell allows mapping the
Hamiltonian (36) to the Hamiltonian of the conventional
Cooper-pair box. One can then use the semiclassical results
for the 2e-periodic charge dispersion of the lowest band
of the conventional Cooper-pair box [63]. After the appro-
priate scaling, it maps to the 4e-periodic charge dispersion
ε0 = −A cos(πQ/2e) + const. with bandwidth 2A, where A

is given by

A = 26

√
2

π

(
EJ2

8EC

) 3
4
ECe−√

2EJ2/EC . (37)

For the lowest band, the exact charge dispersion (solid line)
and its asymptotic expression (37) (dashed line) is illustrated
in Fig. 10(b) for the same parameters EJ2 = 20EC as in (a).
Going back to a �Q-periodic unit cell corresponds to folding
the Bloch-bands for Q > 2e back to the origin. The resulting
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FIG. 10. In (a), we show the two lowest-energy wave functions
of the 0-π Hamiltonian (36) for EJ2 = 20EC and Q = 0. The
wave functions can be chosen real and are centered vertically at
their corresponding energy. One observes the even or odd character
of the eigenstates under translations by �Q/2, which reflects the
Cooper-pair parity of the states. In (b), we illustrate the Bloch bands
originating from the choice of a �Q/2-periodic unit cell, resulting in
Bloch-band periodicity of 4e. The asympotic estimate (37) valid for
EJ2 � EC is shown as a blue dashed line. In (c), we illustrate the
folded zone scheme corresponding to the choice of a �Q-periodic unit
cell, which arises from (b) by folding the part of the Bloch bands for
Q > 2e back. The two resulting bands differ in Cooper-pair parity.
The band crossings at Q = e are protected as long as Cooper-pair
parity is conserved.

band structure is displayed in Fig. 10(c). The states from the
lowest two bands are the qubit states ψe, ψo corresponding to
even or odd Cooper-pair parity. In the regime EJ2 � EC , the
gap Eeo between the two states roughly scales as Eeo = 2A ∝
e−√

2EJ2/EC .
The question of which choice of states adequately describes

the qubit depends on the size of perturbations that yield
transitions between states of different Cooper-pair parity. Such
a perturbation is, e.g., a finite amplitude EJ1 for tunneling of
conventional Cooper pairs. An amplitude EJ1 that is much
larger than the gap Eeo will lead to a rapid dephasing of the
superpositions in the states ψe, ψo and effectively project back
to the states localized at the potential minima.

For the following, we are interested in the regime where
EJ1 is smaller than Eeo. Note that this is, e.g., the regime
of the experiments discussed in Ref. [62]. In this case, the
Cooper-pair parity and the offset charge Q in the interval (0,2e)
remain good quantum numbers and the level structure can be
represented as indicated in Fig. 10(c). Note that the crossing of
the two level curves is protected as long as Cooper-pair parity
is conserved.

It is intriguing to note that there is an obvious duality
between the charge dispersion of the 0-π qubit shown in
Fig. 10(c) and the flux dispersion of a junction connecting
two Majorana bound states with energy (fractional Josephson
effect) [64]

H = ± cos(πφ/�Q), (38)
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where the choice of the plus or minus sign is related to
the occupation parity of the nonlocal fermion hosted by the
Majorana bound states. Dual to the treatment of the 0-π qubit,
one can describe the 2�Q-periodic Majorana junction in terms
of a folded zone-scheme in a �Q-periodic unit cell, leading
to a similar picture as in Fig. 10(c) but with Q/2e replaced
by φ/�Q. Now the two bands differ in superconducting flux
quantum parity and the crossing at �Q/2 is protected as long
as flux quantum parity is preserved. This corresponds to an
absence of conventional Josephson junctions in a loop with the
Majorana junction through which conventional �Q phase-slips
may occur [65].

Embedding the 0-π circuit in a large-impedance environ-
ment as discussed in Sec. VI leads to a low-energy description
by states living in the charge-dispersion bands from Fig. 10(c).
With this starting point, one may consider more complex
circuits. We thus arrive at there intriguing conclusion that the
0-π qubit may allow us to explore the plethora of proposals
existing for Majorana qubits [66,67] from a dual perspective.

VII. CONCLUSIONS

In this paper, we have discussed a charge-based approach
to circuit quantization using loop charges which are the time-
integrated currents circulating in the loops of a planar circuit.
We have shown that the appropriate circuit Lagrangian can be
read off the electrical network using a set of simple rules. In
this approach, we obtain a local Hamiltonian description in
terms of charges in a planar circuits of arbitrary topology. We
have discussed how to handle dissipative elements by going
over from closed systems to open systems.

We have shown explicitly that a passive duality transfor-
mation relates the charge-based circuit description in terms of
loop charges to the flux-based description in terms of node
fluxes which is conventionally employed for the quantization
of superconducting circuits. While the flux-based formulation
is convenient for the description of charge currents, the charge-
based formulation yields a simple description whenever the
dynamics is characterized by flux currents. In particular, we
have argued that passive duality transformations are useful for
Josephson junctions in large-impedance environments, which
behave as nonlinear capacitors supporting a quantized flux
flow at low energies.

We have shown that the loop charge formulation can be
used more generally for the description of arbitrary circuits
involving phase-slip junctions which are nonlinear capacitors
electromagnetically dual to Josephson junctions. We have
explained that electromagnetic duality can be used as an
active transformation yielding new circuits whose charge
dynamics is identical to the flux dynamics of the original
circuit. We have shown how the loop charge formalism
allows the straightforward construction of such active duality
transformations. In particular, Josephson junctions have to be
replaced by phase-slip junctions. The duality between the node
fluxes and the loop charges guarantees that the loop charges
are useful for the description of latter circuits in the same way
that node fluxes are useful for Josephson junction circuits.

We have introduced a mixed circuit description in terms of
loop charges and node fluxes. We have shown that the mixed
formulation gives additional insights into the decompactifica-

tion of the flux φ over a Josephson junction that is shunted by
an inductor.

We have explicitly illustrated how passive duality trans-
formations yield simplified circuit descriptions for Josephson
junctions shunted by large impedances using the fluxonium
qubit and the 0-π qubit as an example. We have shown that
regarding the fluxonium as a nonlinear capacitor yields an
approximate though accurate description of the qubit states
for relevant qubit parameters. We have illustrated how this
may be used, e.g., for a simplified description of relaxation
caused by environmental noise. As another example, we
have considered the 0-π qubit. We have shown that in the
absence of conventional Cooper-pair tunneling, the junction
dynamics becomes electromagnetically dual to the dynamics
of a Majorana Josephson junction.

From this work, several interesting routes arise that could
be explored in the future. It will be highly interesting to use
the loop charge formalism for quantitative analysis of recent
experiments involving phase-slip junctions. It will also be
interesting to exploit the duality of the 0-π qubit to a Majorana
junction and explore existing proposals for Majorana physics
from a dual perspective.
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APPENDIX A: MATHEMATICAL PRELIMINARIES

For the convenience of the reader, we here want to rederive
the standard result of circuit analysis [33,52] that in a planar
circuit, loop charges Q determine all the branch currents q̇br in
such a way that the Kirchhoff current law is fulfilled. Along the
way, we will recall a few standard mathematical results about
graphs that will be used in the remainder of the appendix. More
information can be found in the literature [33,52].

We first need to show that there is an independent current
for each of the m chords of the spanning tree. To see that
the Kirchhoff current law implies precisely m independent
currents, we make use of the basis node-edge incidence matrix
A, which is a R(n−1)×b matrix for the n − 1 nodes without
the ground node and the b branches. Its entries Aij ∈ {1,−1}
indicate whether branch j enters (−1) or leaves (+1) node i.
Given a vector qbr of branch charges, the Kirchhoff current
law can be expressed as Aq̇br = 0. A decomposition of
qbr = (qch,q tr) into the vector of chord charges qch and tree
charges qbr gives rise to a corresponding decomposition of
A = (Ach,Atr). Since there are no loops in a tree, we have the
result Atrv �= 0 for every vector v ∈ Rb, implying that Atr has
full rank and the inverse of A−1

tr is well-defined [52]. One can
also show the result | det Atr| = 1. Using that A−1

tr is invertible,
we obtain the relation q̇ tr = −A−1

tr Achq̇ch, showing that the m

chord charges qch fully specify all currents in the circuit.
Our intuitive notion that the loop currents give the correct

number of independent currents in a planar graph is confirmed
by Euler’s theorem for connected planar graphs which is the
relation n − b + f = 2, where f is the number of faces of
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a graph. Using b = m + n − 1, we obtain f = m + 1, where
the +1 arises since f also counts the exterior of the planar
graph as a face. This shows that the loop charges in the faces
of the graph indeed give the correct number of independent
currents for a planar circuit. More generally, one can show
[33] that this is no longer case for a nonplanar graph.

It remains to relate the chord charges qch more explicitly
to the loop charges Q. To characterize the change of variables
from qch to Q, we note that we may characterize the loops of
a circuit in terms of the fundamental circuit matrix B ∈ Rm×b,
where each entry Bij ∈ {1,−1} indicates that the branch j

is oriented in the same direction (1) or opposite (−1) to the
arbitrarily chosen orientation of the loop i formed by the ith
chord and the branches of the spanning tree. The matrix B

obeys the important relation ABT = 0. which expresses the
fact that for each node that is part of some loop, branches
having the same incidence orientation with respect to the node
will necessarily have opposite orientations with respect to the
loop. From the relation ABT = 0 and the decomposition A =
(Ach,Atr), we obtain the expression B ′ = (1,−AT

ch(A−1
tr )T ) for

the fundamental circuit matrix corresponding to the loop basis
induced by the chords. For the loop basis corresponding to the
loop charges we have the more general form B = (Bch,Btr)
where Bch is invertible since it is related to the identity matrix
via a basis transformation in loop space. This finally gives the
relation qch = BT

ch Q.
By definition of the matrices A and B, we obtain the

results q̇br = BT Q̇ and φ̇
br = AT φ̇. Making use of the relation

ABT = 0 shows that the branch fluxes and branch charges
defined in this way automatically fulfill the Kirchhoff voltage
law Bφ̇

br = 0 and the Kirchhoff current law Aq̇br = 0.

APPENDIX B: DUALITY IN THE PATH INTEGRAL

Our starting point is expression (13),

e(i/�)
∫ t

dt ′ L(φbr) =
∫

D[qbr(t)]e(i/�)
∫ t

dt ′[L̃(qbr)−qbr·φ̇br
]. (B1)

For the decomposition qbr = (qch,q tr) of the branch charges,
we have found in Appendix A the relation q̇ tr = −A−1

tr Achq̇ch,
which shows that the chord charges qch determine the tree
charges qch up to constant offset charges λ. We can make this
explicit by introducing the factor

1 =
∫

D[λ(t)] δ
[(

q tr + A−1
tr Achqch − λ

)
(t)

]
(B2)

into the integral (B1). Using the relation φbr = AT φ for the
vector of node fluxes θ and performing the integration over the
tree charges q tr yields

e(i/�)
∫ t

dt ′L(φbr) =
∫

D[λ(t)]
∫

D[qch(t)]

× e(i/�)
∫ t

dt ′[L̃(qch,−A−1
tr Achqch+λ)−λAT

tr φ̇]. (B3)

Performing a partial integration on the term −iλAT
tr φ̇/� in the

exponent, inserting the resulting expression in Eq. (12) and
performing the integration over the node fluxes φ, we obtain a
constraint at each point in time in terms of the delta function
δ[Atrλ̇(t)]. Since Atr has full rank and obeys | det Atr| = 1, this
is equivalent to demanding λ̇ = 0 for all times. We resolve

this constraint by demanding that offset charges are constant,
λ(t) ≡ λ. In fact the value of λ = 0 is fixed by the boundary
condition that all the elements are uncharged for t → −∞.
We thus obtain the representation

e−iH t/� →
∫

D[qch(t)]e(i/�)
∫ t

dt ′ L̃[qch,−A−1
tr Achqch], (B4)

for the time-evolution operator. In a planar circuit, we
may finally exploit the relation qch = BT

ch Q and replace the
integration over qch by an integration over the loop charges Q.
We then recover expression (15) from the main text.

APPENDIX C: EQUIVALENCE OF TERMS MANIFESTLY
GUARANTEEING THE KIRCHHOFF CURRENT LAW OR

THE VOLTAGE LAW IN THE MIXED FORMULATION

We want to prove the equality (up to a total time-derivative)
of the term − ∑

i φ
∂
i

∑
j q̇ij manifestly guaranteeing the Kirch-

hoff current law and the term − ∑
i Q

∂
i

∑
j φ̇ij manifestly

guaranteeing the Kirchhoff voltage law. Let P ∈ Rb×b be the
matrix projecting on the branches (the subgraph) that shall be
described in terms of loop charges. We note that we have the
identity

−
∑

i

φ∂
i

∑
j

q̇ij = −φAPBT Q̇, (C1)

where B is the fundamental circuit matrix introduced in
Appendix A corresponding to the loop charges Q. This identity
can be understood by noting that PBT Q̇ is the projection of
the vector of branch currents onto the branches of the subgraph.
The expression (APBT Q̇)i gives the current balance for each
node i of the subgraph. According to the definition of the basis
node-edge incidence matrix A, positive currents flowing away
from node i come with a plus sign, while positive currents
flowing into node i come with a minus sign. In line with
the definition of the q̇ij , one thus obtains in both cases the
current flowing away from node i. Crucially, due to the usage
of the loop charge, the current balance is nonzero only for
the boundary nodes i with corresponding node flux φ∂

i , which
proves the equality. Using the orthogonality ABT = 0 and
performing a partial integration, we can rewrite the expression
(C1) as

−φAPBT Q̇ = − QB(1 − P )AT φ̇ + (ttd.)

= −
∑

i

Q∂
i

∑
j

φ̇ij + (ttd.), (C2)

where (ttd.) stands for a total time derivative. Here, (1 −
P )AT φ̇ is the vector of voltage drops over the branches of
the subgraph complement. The expression [B(1 − P )AT φ̇]i
gives the voltage balance for each loop i of the subgraph
complement, which is nonzero only for the boundary loops
i with corresponding loop charges Q∂

i . This proves the last
equality sign.

094505-15



JASCHA ULRICH AND FABIAN HASSLER PHYSICAL REVIEW B 94, 094505 (2016)

φ′ch φch − φ′ch

Qn

Qn′

FIG. 11. In order to describe the presence of external fluxes,
each chord branch of the circuit (solid lines) is split into two
branches, one representing the original element (black solid line),
the other representing the electromotive force (solid gray line). As
a consequence, the total flux φch along the elements splits into the
flux φ′ch along the original element and the flux φch − φ′ch along
the virtual branch. Ensuring the Kirchhoff laws therefore requires
adding the terms −(Qn − Qn′ )(φ̇ch − φ̇′ch) = −qch(φ̇ch − φ̇′ch) with
the chord charge qch = Qn − Qn′ to the Lagrangian.

APPENDIX D: PROOF OF THE RULES FOR THE
INCLUSION OF EXTERNAL FLUXES USING

THE MIXED FORMULATION

In this section, we want to show that the mixed formulation
allows to understand the origin of the rules for the inclusion
of external fluxes into the node flux formulation that were
given in Ref. [14]. To that end, let us assume the presence of
fluxes �ex in the loops corresponding to the loop charges Q.
We split each chord of the circuit graph into two branches,
one which represents the original chord element and a second
virtual branch, which represents the electromotive force due
to the external flux. As a consequence of the splitting, the total
flux φch over the chord and the virtual branch will split up into
a flux φ′ch over the chord element and a flux φch − φ′ch over
the virtual branch. Describing the virtual element in terms of
charges requires adding the terms Q̇ · �ex − qch · (φ̇

ch − φ̇
′ch

)
to the Lagrangian, cf. Fig. 11. As discussed in Appendix A, the
chord charges qch are related to the loop charges Q according
to qch = BT

ch Q with the invertible matrix Bch. Since the loop
charges Q are not dynamic, their equations of motion yield a
constraint φ̇

′ch = φ̇
ch + B−1

ch φ̇
ex

.
For a chord b with an orientation that is consistent

(inconsistent) with the counter-clockwise orientation of its
corresponding chord loop, the entries (B−1

ch )bl are given by +1
(−1) for all loops that lie within the face having the chord loop
as its boundary and zero for all other loops. That means that
all the nonzero entries in the rows of B−1

ch are of absolute value
1 and have the same sign. In order to see that this description
of the entries yields indeed the inverse of Bch, let us consider
the expression

Mbb′ =
∑

l

(
B−1

ch

)
bl

(Bch)lb′ . (D1)

We need to show that Mbb′ = δbb′ . When b �= b′, the chord
b′ lies either outside or inside the face having the chord
loop corresponding to b as its boundary. It cannot lie on the
boundary of the face, i.e., it cannot be a part of the chord loop
corresponding to b, since the chords uniquely specify a loop
in the graph. If it lies outside the face, we obtain Mbb′ = 0
by our characterization of the matrix B−1

ch . If it lies inside the
face, it forms part of two neighboring loops l, l′ whose entries
(Bch)lb′ , (Bch)l′b′ differ in sign. Since the rows of B−1

ch all have
the same sign we also obtain Mbb′ = 0 upon summing over l.

φ1 φ′
1 φ2 φ′

2 φ3 φ′
3 φN+1φ′

N
Q′

1 Q′
2 Q′

3

Q1 Q2 Q3 QN

L0 L0

C0 C0

CJ CJ

...

FIG. 12. Circuit corresponding to the setup in Ref. [28]. We only
want to describe the Josephson junction (the subgraph complement
depicted in black) in terms of node fluxes, whereas we describe the
rest of the circuit (the subgraph depicted in gray) in terms of loop
charges.

For b = b′, there is only one loop l which lies in the face having
the chord loop corresponding to b as its boundary, and the
entries (B−1

ch )bl , (Bch)bl are both either plus or minus one, giving
Mbb = 1. Therefore Mbb′ = δbb′ . This shows that we may
simply work with the original circuit graph without the virtual
branches, provided we add to each expression involving the
flux in a chord the external flux in its corresponding loop [14].

APPENDIX E: ADDITIONAL EXAMPLE
FOR THE MIXED FORMULATION

As an example, consider the circuit depicted in Fig. 12,
which corresponds to the setup studied in Ref. [28]. According
to the rules discussed in the main text, its Lagrangian reads

L =
N∑

i=1

[
1

2L0
Q̇2

i − 1

2CJ

Q′2
i − 1

2C0
(Qi − Qi+1)2

+ EJ cos(2πϕi/�Q) − (Q′
i − Qi)ϕ̇i

]
, (E1)

where we have defined QN+1 = 0 and ϕi = φi − φi ′ . Note
that the last term −(Q′

i − Qi)ϕ̇i just corresponds to the term
− ∑

i Q
∂
i

∑
j φ̇ij that appears in the mixed formulation as

discussed in the main text. Note that the term ϕ̇iQi enters
with an overall plus sign since the voltage drop ϕ̇i is measured
in the direction opposite to the anticlockwise orientation of the
loop current Qi . There is no kinetic term for the coordinates
Q′

i such that their Euler-Lagrange equations are algebraic with
the solution Q′

i = −CJ ϕ̇i . Inserting this solution back into the
Lagrangian and performing the Legendre transformation with
respect to ϕ̇i and Q̇i yields the Hamiltonian

H =
N∑

i=1

[
1

2CJ

(qi − Qi)
2 − EJ cos(2πϕi/�Q)

+ 1

2C0
(Qi − Qi+1)2 + 1

2L0
�2

i

]
, (E2)

where (qi,ϕi) and (�i,Qi) are canonically conjugate pairs.
Eq. (E2) reproduces the result derived in Ref. [28].

APPENDIX F: DIAGONALIZATION OF FLUXONIUM
USING A HIGHER-ORDER MATRIX NUMEROV METHOD

An efficient way of diagonalizing the fluxonium Hamilto-
nian consists in projecting the Hamiltonian onto the eigenstates
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of the harmonic part due to charging energy and inductive
shunt, and diagonalizing the resulting matrix. The disadvan-
tage of this method is the fact that it requires calculating
explicitly all matrix elements of the cosine potential using the
harmonic oscillator eigenstates. This can be done analytically
but the resulting expressions are quite involved. A more
direct approach, which is simpler in practice, consists in
diagonalizing the Hamiltonian in real space. This requires
discretizing the second-order derivative operator. For this, one
usually employs the lowest-order Numerov approximation of
order O(a4), where a is the lattice spacing. The resulting
discretized Schroedinger equation can be recast in matrix
form [68] such that it can be conveniently solved by standard
(sparse) matrix methods. It would seem natural to consider
also higher-order Numerov representations of the second-order
derivative of order O(a2r+2), where r ∈ N, but they are
normally avoided due to stability issues [69]. Interestingly,
we have found that stability is not a problem when solving
the resulting eigenvalue problem by standard (sparse) matrix
methods instead of the conventional shooting method; a
method that will be described in the following.

We consider at time-independent Schroedinger equation of
the form

D2ψ(x) = [−i∂x + A(x)]2ψ(x) = −f (x)ψ(x), (F1)

where D = −i∂x + A(x) is the covariant derivative operator
and f (x) equals f (x) = 2m[V (x) − E] for a Hamiltonian
of the standard form H = (p + A)2/2m + V (x). For a wave
function ψ̃(x) defined as

ψ̃(x) = ei
∫ x

dx ′ A(x ′)ψ(x), (F2)

we find the relation

e−i
∫ x

dx ′ A(x ′)(−i∂x)nψ̃(x) = Dnψ(x), (F3)

which gives a convenient way of evaluating the higher orders of
the covariant derivative acting on ψ(x) through conventional
derivatives of ψ̃(x). Using Eq. (F3), we obtain through Taylor
expansion with respect to λ the result

e−i
∫ x

dx ′ A(x ′)[ψ̃(x + λ) + ψ̃(x − λ)] = ψ(x + λ)ei
∫ x+λ

x
dx ′A(x ′) + ψ(x − λ)e−i

∫ x

x−λ
dx ′A(x ′) =

∞∑
n=0

2(−1)n

(2n)!
D2nψ(x)λ2n, (F4)

which gives a relation between the values of the covariant
derivatives D2jψ(x), j ∈ N0, and the value of the wave
function ψ(x) at positions x ± λ. Following ideas of Ref. [70],
we stop the expansion (F4) at n = r and evaluate (F4) for
values λ = ja, j ∈ {−r, . . . ,r} \ {0}, where a is the lattice
constant, which gives 2r equations for the covariant derivative
D2jψ(x) and the wave function values at points ψ(x + ja).
Solving these equations for D2ψ(x) and D2rψ(x) yields
expansions of the form

D2ψ(x) = 1

a2

j=r∑
j=−r

cjψj + O(a2r ), (F5)

D2rψ(x) = 1

a2r

j=r∑
j=−r

djψj + O(a2), (F6)

where we introduced the abbreviated notation ψj = ψ(x +
ja). The expansion coefficients cj and dj read

cj =
r∑

k=1

2r2((r − 1)!)2

(r − k)!(r + k)!

(−1)k

k2

× (−2δj,0 + δk,|j |ei
∫ x+ja

x
dx ′A(x ′)), (F7)

dj = (−1)|j |(2r)!

(r − |j |)!(r + |j |)!e
i
∫ x+ja

x
dx ′A(x ′). (F8)

Numerov’s idea is to improve the accuracy of the expansion
by a factor of a2 by exploiting the structure of the differential
equation (F1). Including the term of order λ2n+2 in Eq. (F4)
[that we previously dropped in order to arrive at Eq. (F5)] and
solving for the unknowns D2jψ(x) with j ∈ {1, . . . ,r} while

keeping D2r+2ψ(x) as a free parameter yields

D2ψ(x) = 1

a2

r∑
j=−r

cjψj + (r!)2a2rD2r+2ψ(x)

(2r + 1)!(r + 1)
+ O(a2r+2).

(F9)

Acting on both sides of Eq. (F1) with D2r gives the expression

D2r+2ψ(x) = −D2r [f (x)ψ(x)] (F10)

for D2r+2ψ(x). Since we only need D2r [f (x)ψ(x)] to accu-
racy O(a2) in the expansion (F9) of order O(a2r+2), we can
use the previously derived expression (F6). We then obtain
the Numerov’s expression for the second-order covariant
derivative

D2ψ(x) = 1

a2

r∑
j=−r

cjψj − (r!)2

(2r + 1)!(r + 1)

×
r∑

j=−r

djfjψj + O(a2r+2), (F11)

which is better by a factor of a2 in accuracy compared to the
naive form (F5).

Extending ideas of Ref. [68], we can convert this system of
equations into a generalized eigenvalue problem. We introduce
a matrix A having cj /a

2 on the j th diagonal, where j > 0
refers to the upper diagonals and j < 0 refers to the lower
diagonals, a diagonal matrix V = diag(Vj ) representing the
potential, and a matrix B having −(r!)2dj/(2r + 1)!(r + 1)
on the j th diagonal. All of these matrices are sparse and allow
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writing Eq. (F1) as the sparse generalized eigenvalue problem[
1

2m
A + (B + 1)V

]
ψ = EBψ, (F12)

where ψ is the discretized wave function vector. This Hermi-
tian generalized eigenvalue problem can be solved efficiently
by standard methods.
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