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The square lattice antiferromagnet with frustrating next-nearest-neighbor coupling continues to generate
tremendous interest, with an elusive quantum disordered phase in the vicinity of J2 = J1/2. At this precise value
of frustration, the classical model has a very large degeneracy, which makes the problem difficult to handle.
We show that introducing a ferromagnetic J3 coupling partially lifts this degeneracy. It gives rise to a four-site
magnetic unit cell with the constraint that the spins on every square must add to zero. This leads to a two-parameter
family of ground states and an emergent vector order parameter. We reinterpret this family of ground states as
coexistence states of three spirals. Using spin wave analysis, we show that thermal and quantum fluctuations
break this degeneracy differently. Thermal fluctuations break it down to a threefold degeneracy with one Néel
phase and two stripe phases. This threefold symmetry is restored via a Z3 thermal transition, as we demonstrate
using classical Monte Carlo simulations. On the other hand, quantum fluctuations select the Néel state. In the
extreme quantum limit of spin 1/2, we use exact diagonalization to demonstrate Néel ordering beyond a critical J3

coupling. For weak J3, a variational approach suggests an s-wave plaquette-RVB state. Away from the J2 = J1/2
line, we show that quantum fluctuations favor Néel ordering strongly enough to stabilize it within the classical
stripe region. Our results shed light on the origin of the quantum disordered phase in the J1-J2 model.
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I. INTRODUCTION

The paradigmatic example of frustrated magnetism is
the square lattice antiferromagnet with next-nearest-neighbor
coupling: the J1-J2 model. It is well known that it has
Néel antiferromagnetic order when J2 � J1 and stripe order
when J2 � J1. The effects of frustration become apparent in
the intermediate regime when J2 ∼ J1/2. The nature of the
quantum ground state in this regime continues to be debated
with several proposals for plaquette order [1–3], valence
bond crystal [4–12], gapless spin liquid [13], etc. Notably,
there are several proposals for a spin liquid with topological
order [11,14–16].

The complex and rich behavior that intervenes between the
Néel and stripe ground states has its origin in the classical spin
model. Precisely at J2 = J1/2, the classical phase boundary
between Néel and stripe ground states, the classical problem
has an extensively degenerate ground-state manifold [17].
Quantum fluctuations can select correlations from within this
manifold to form various ordered phases. Indeed, this is the
underlying reason behind the many competing claims about
the quantum S = 1/2 phase diagram. While this degeneracy
gives rise to a rich phase diagram, it makes it extremely
difficult to understand this parameter regime. In this paper,
we make the problem tractable by introducing a suitable
tuning knob—a ferromagnetic third-neighbor coupling. This
J3 coupling partially lifts the degeneracy of the J2 = J1/2
problem; it does so in an elegant and tunable manner that
allows for an understanding of the classical and quantum phase
diagrams.

It is well known that extended ground-state degeneracies
may occur at phase boundaries [18–20]. In the problem
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at hand, we focus on extended degeneracy at the classical
phase boundary between Néel and stripe phases. The residual
degeneracy after introducing J3 is given by a local constraint
that leads to a four-site magnetic unit cell. Equivalently, it
can be understood in terms of coexisting spiral states. Similar
physics has recently been seen in the honeycomb lattice J1-J2

problem, where a magnetic field is used to select different
combinations of spirals [18].

The rest of this paper is organized as follows. Section II
describes the classical phase diagram of the J1-J2-J3 problem,
bringing out the special role of a ferromagnetic J3 interaction.
Section III A shows why coexisting spirals are allowed ground
states for the parameters of interest, and how they give rise
to an extensive degeneracy. Sections III B and III C present
the ground-state degeneracy as a local constraint on every
square plaquette. Sections IV A and IV B describe the breaking
of the classical degeneracy by weak quantum and thermal
fluctuations respectively. Section V describes classical Monte
Carlo results that establish a thermal Z3 transition. Section VI
addresses the S = 1/2 limit, with Sec. VI A discussing exact
diagonalization results, Sec. VI B discussing the stabilization
of Néel order into the stripe domain and Sec. VI C presenting
a variational plaquette wave function. Finally, Sec. VII
summarizes our results and discusses consequences for the
quantum disordered phase in the J1-J2 problem.

II. CLASSICAL PHASE DIAGRAM

The Heisenberg model on the square lattice is well known
as the parent Hamiltonian of the undoped cuprates [21]. We
study an extended version of this Hamiltonian given by

H = J1

∑
〈i,j〉

Si .Sj + J2

∑
〈〈i,j〉〉

Si .Sj + J3

∑
〈〈〈i,j〉〉〉

Si .Sj , (1)

where 〈i,j 〉, 〈〈i,j 〉〉, and 〈〈〈i,j 〉〉〉 refer to nearest neigh-
bors, next-nearest neighbors, and third-nearest neighbors,
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respectively. We take the couplings J1 and J2 to be antiferro-
magnetic. Choosing J3 to be ferromagnetic leads to interesting
consequences as we argue below.

A. Method of spiral states

To find the classical ground state for given J1, J2, and J3,
we use the method of spiral states [22–24], which proposes a
spiral ground state as a variational ansatz. While variational
methods generally provide an upper bound for the ground-state
energy, the method of spiral states here provides the exact
ground-state energy. As shown in Theorem 1 of Ref. [25], for
any given values of the Heisenberg couplings, the ground-state
manifold is guaranteed to include a spiral state. Of course, this
spiral state may be degenerate with the other nonspiral ground
states.

As our spiral ansatz, we assume a coplanar spiral state
characterized by a pitch vector Q,

Si = S{cos (Q.ri)x̂ + sin (Q.ri)ŷ}. (2)

This state breaks spin rotational symmetry spontaneously. We
have chosen the XY plane for concreteness; the ordering could
occur in any plane. The energy of this state is given by

EQ/NS2 = J1(cos Qx + cos Qy) + 2J2 cos Qx cos Qy

+ J3(cos 2Qx + cos 2Qy), (3)

where N is the total number of spins. Minimizing with
respect to Q, we obtain the classical phase diagram shown
in Fig. 1. There are three well-defined regions: Néel, stripe,
and incommensurate. In the Néel region, the ground state is
the standard Néel antiferromagnet with Q = (π,π ). The stripe
phase breaks a Z2 symmetry corresponding to the choice
between horizontal and vertical stripe order [17]. The ordering
wave vector is Q = (0,π ) or (π,0). In both Néel and stripe
phases, the wave vector Q is fixed at high-symmetry points
on the Brillouin zone edge. In contrast, in the incommensurate
phase, the value of Q changes with the coupling strengths [26].
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FIG. 1. Classical phase diagram with antiferromagnetic J1, ob-
tained using the method of spiral states. Néel and stripe phases are
separated by the line J2 = J1/2, J3 � 0. The incommensurate phase
is bounded by the lines J3 = 0.5|J2 − 0.5J1|.

The incommensurate phase has been shown to give rise to a
quantum nonmagnetic phase along one particular line in the
space of couplings [26]. While this phase diagram has been
extensively studied for antiferromagnetic J3 [5,27–31], we
focus on the case of ferromagnetic J3 here. A similar phase
diagram has been found for ferromagnetic J1 [32].

III. EXTENDED DEGENERACY ALONG THE
( J2 = J1/2,J3 < 0) LINE

Following the arguments of Ref. [25], the Néel region of
the phase diagram in Fig. 1 has a unique ground state with
antiferromagnetic order. The incommensurate region has four
possible ground states corresponding to four choices of Q
in the spiral ansatz. The stripe region has a large ground-state
degeneracy characterized by an independent ordering direction
on each sublattice [17,25].

We focus on the line defined by J3 < 0 and J2 = J1/2,
which is the phase boundary between Néel and stripe phases.
Naı̈vely, we may expect that the classical ground state here
to be threefold degenerate with Néel, horizontal stripe and
vertical stripe ground states. However, the degeneracy is much
larger as we show below.

A. Coexisting spirals

At (J2 = J1/2,J3 = 0), the method of spirals gives an
infinitely degenerate ground state. Minimizing the variational
energy picks all Q’s that lie on the edge of the Brillouin
zone, as shown in Fig. 2(left). A ferromagnetic J3 breaks
this degeneracy and picks three wave vectors as shown in
Fig. 2(right): Q1 = (π,π ) corresponding to Néel, Q2 = (0,π )
corresponding to horizontal stripe and Q3 = (π,0) correspond-
ing to vertical stripe ordering. All three Q’s satisfy the special
property of being half a reciprocal lattice vector, i.e., 2Q ≡ 0.
As shown by Villain [22], this property allows the spirals to
coexist. To show this, we first note that the three Q’s satisfy
sin(Q · ri) = 0 at every lattice point. Therefore, in a spiral state
as in Eq. (2), we may only retain the cosine terms. A coexisting
spiral can be written as

Si = S{cos (Q1.ri)û + cos (Q2.ri)v̂ + cos (Q3.ri)ŵ}, (4)

where û, v̂, and ŵ are arbitrary vectors. This is an allowed
spin configuration if the spin length is preserved at every site.
This condition gives us the following constraints, upon using
the properties of Q1,2,3:

|û|2 + |v̂|2 + |ŵ|2 = 1,

û · v̂ = v̂ · ŵ = ŵ · û = 0. (5)

( , )

(0,0) kx

ky

+

( , )(0, )

( ,0)

FIG. 2. Ground-state spiral wave vectors for (J2 = J1/2; J3 = 0)
(left) and for (J2 = J1/2; J3 < 0) (right).
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We note that the ability to form coexisting spirals is a
special feature of the (J2 = J1/2, J3 < 0) line. For example,
the incommensurate phase in Fig. 1 does have multiple Q
solutions. However, they cannot be combined into a coexisting
state with uniform spin length.

The state in Eq. (4) has nine independent parameters—three
components each of û, v̂ and ŵ. After taking into account the
four constraints in Eq. (5), we have five degrees of freedom
in choosing the ground state. From the three Q’s, it is easy
to see that the coexistence state in Eq. (4) has a four-site unit
cell. The allowed ground states and the unit cell can also be
understood from a local constraint as we show below.

B. Sum of squares argument with J3 = 0

Let us first consider the J3 = 0 case with J2 = J1/2. At
this special point, the classical Hamiltonian can be written as
a sum over squares [17],

HJ3=0 =
∑
�

H� =
∑
�

J1

4
(S1 + S2 + S3 + S4)2, (6)

where the sum is over every square plaquette—see Fig. 3(left).
The decomposition into a sum over squares works because
each J1 bond is shared between two adjacent squares, while
each J2 bond only appears in one square. As the Hamiltonian
is a sum over positive quantities, the ground state is given by
the condition that each square should have zero total spin, i.e.,

S1 + S2 + S3 + S4 = 0, (7)

on every square. As we argue below, this local constraint leads
to an infinitely degenerate ground-state manifold reminiscent
of spin ice [33].

Let us first consider a single square. An allowed spin
configuration is given by a choice of four vectors on a sphere
which satisfy Eq. (7). Such a configuration can be described by
two angles θ and ϕ, upto an overall spin rotation. As depicted
in Fig. 4, S1 and S2 are initially chosen to make an angle 2θ

with each other. The spins S3 and S4 are chosen to lie on the
same plane with S3 = −S2 and S4 = −S1, thereby satisfying

J3

J3

J1

J2

S1 S2

S3S4

FIG. 3. (Left) When J3 = 0, the Hamiltonian can be written as
a sum over squares. Each J1 bond is shared between two adjacent
squares, while each J2 bond only occurs in one square. (Right)
Shaded squares represent the magnetic unit cell favoured by J3: the
ferromagnetic J3 bonds ensure that all shaded squares have the same
spin configuration.

FIG. 4. Parameterizing the ground state of a single square with a
zero-total-sum constraint by two angles: we first take all spins to lie in
one plane so that S1 and S2 make an angle 2θ . We choose S3 = −S2

and S4 = −S1 to satisfy the zero-total-spin constraint. We then rotate
S3 and S4 about the S1 + S2 axis by an angle ϕ.

the zero-total-spin condition. We have one more degree of
freedom in rotating S3 and S4 about the S1 + S2 axis by the
angle ϕ. With this parameterization, taking ẑ to be parallel to
S1 + S2, we arrive at

[S1,S2,S3,S4] = S[n̂{θ,0},n̂{θ,π},n̂{π−θ,ϕ},n̂{π−θ,ϕ+π}], (8)

where n̂{α,β} denotes a unit vector with polar angle α and
azimuthal angle β. We assert that any spin configuration on
a square that satisfies Eq. (7) can be obtained by a suitable
choice of {θ,ϕ} followed by a global spin rotation.

On the full two-dimensional square lattice, the problem
of enumerating all allowed ground states reduces to that
of assigning {θ,ϕ} to each square, keeping in mind that
neighboring squares are coupled. It is easy to see that this
leads to an infinite number of ground-state configurations. We
note here that the domain of θ is [0,π ], while that of ϕ is
[0,2π ); the parameters {θ,ϕ} thus define an emergent vector
field with unit length. An effective field theory for the J3 = 0
problem would involve a vector field with fixed length coupled
to an SO(3) matrix field that encodes spin rotations.

C. Sum of squares argument with J3 < 0

Introducing a ferromagnetic J3 coupling leads to a drastic
simplification. As shown in Fig. 3(right), the J3 term forces
every alternating square to have the same spin configuration.
The ground state is completely fixed once we fix S1, S2, S3, and
S4 on one shaded square. Moreover, if the spins on the shaded
square are chosen to satisfy Eq. (7), the unshaded squares
automatically satisfy Eq. (7) as well. Such a spin configuration
will minimize the J1-J2 energy contribution, while maximally
lowering its energy from the J3 bonds.

Thus, with a ferromagnetic J3 coupling, all possible ground
states are obtained by constraining Si’s on one square so as
to satisfy Eq. (7). This gives us a two-parameter ground-state
manifold (upto global spin rotations) characterized by {θ,ϕ} or
equivalently by a vector of unit length. With three Euler angles
required to define a global spin rotation matrix, we have five
degrees of freedom in total—in agreement with the coexisting
spirals argument in Sec. III A.
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IV. SPIN WAVE ANALYSIS

We have established that the classical model with J2 = J1/2
and J3 < 0 has a two parameter ground-state manifold. This
degeneracy can be broken by thermal/quantum fluctuations
by the well-known “order by disorder” mechanism [34]. To
demonstrate this, we consider spin wave fluctuations about a
generic state in the ground-state manifold.

As argued above, all the allowed ground states have a
four-site magnetic unit cell. Performing the usual Holstein
Primakov transformation and retaining O(S) terms, we obtain
a quadratic Hamiltonian of the form

HO(S) = −8J3N�S2 +
∑

k

′
(ψ†

k ψ−k)H8×8(k)

(
ψk

ψ
†
−k

)
. (9)

The sum is over half the Brillouin zone and N� is the number
of unit cells in the system—shaded squares in Fig. 3(right).
We have denoted ψ

†
k = {a†

1,k a
†
2,k a

†
3,k a

†
4,k}, where a

†
i,k creates

a spin wave fluctuation with momentum k on the sublattice i.
The 8 × 8 matrix with O(S) terms can be diagonalized by a
bosonic Bogoliubov transformation to give

HO(S) =−8J3N�S2+
∑

k

′
4∑

j=1

εj,k{γ †
j,kγj,k+γj,−kγ

†
j,−k}+ck,

(10)

where εj,k are the spin wave energies, ck is a k-dependent
constant and γ

†
j,k is the eigenmode creation operator. The index

j may be thought of as a band index—for every k, we have four
eigenmodes as we have four spins in the real-space magnetic
unit cell. Our spin wave results are obtained by numerical
diagonalization of the 8 × 8 Holstein Primakov Hamiltonian.

In Fig. 5, we illustrate the spin wave spectrum for four
possible ground states. We have chosen four highly symmetric
configurations for the purpose of illustration: Néel, stripe,
coplanar and tetrahedral orders. In the ground-state manifold,
the Néel and stripe phases are the only allowed collinear

1

2

3

4

Ek

1

2

3

k=(kx,ky)

Ek

(0,0) (0,π) (π,π) (0,0) (π,0)

1

2
Ek

1

2

3

k=(kx,ky)

Ek

(0,0) (0,π) (π,π) (0,0) (π,0)

(d)(c)

(a) (b)

FIG. 5. Spin wave dispersion of four possible ground states:
(a) Néel, (b) stripe, (c) coplanar, and (d) tetrahedral (noncoplanar)
states. The plots are for J2 = J1/2 and J3 = −0.1J1. The schematic
in each panel shows the four spins in the magnetic unit cell. In all the
ground states, there are gapless modes, which go to zero linearly as
well as those that go to zero quadratically.

ground states. We have chosen the most symmetric coplanar
state which has spins forming right angles with each other,
with each spin pointing towards the vertices of a square. Of
the noncoplanar states, the most symmetric is the one with
four spins pointing towards the vertices of a tetrahedron.

As in the four states in Fig. 5, we find two kinds of
gapless modes in all allowed ground states: linear modes with
εj,k ∼ k as well as quadratic modes with εj,k ∼ k2. Linear
modes usually occur in antiferromagnets, while quadratic
modes occur in ferromagnets. Our system combines both these
elements.

As the Hamiltonian has SO(3) rotational symmetry, we may
have a maximum of three Goldstone modes corresponding
to the three generators of SO(3). However, our ground-state
manifold has larger symmetry due to the internal (θ,ϕ)
degrees of freedom. The four gapless modes that we see
include “quasi-Goldstone” modes [35] corresponding to long
wavelength fluctuations of these internal coordinates.

A. Quantum order by disorder

At zero temperature, the spin wave Hamiltonian gives
an O(S) correction to the ground-state energy: 
E =∑

k
′ ∑4

j=1 {εj,k + ck}. This can be interpreted as zero-point
energy due to spin wave fluctuations. In Fig. 6(left), the
zero-point energy is plotted as a function of J3 for the four
classical ground states shown in Fig. 5. The Néel state has
the lowest energy as shown. Indeed, the Néel state has the
lowest zero-point energy among all ground states for any
J3 < 0. This is illustrated in Fig. 7(left), which plots 
E for
a particular value of J3 (J3 = −J1) as a function of θ and ϕ

on the surface of the n̂{θ,ϕ} sphere. Thus, with quantum spins
at zero temperature, we expect the (J2 = J1/2,J3 < 0) line to
show Néel order. We confirm this expectation for the case of
S = 1/2 in Sec. VI using exact diagonalization.

While the Néel state has the lowest energy, it may be
destabilized for small S values by quantum fluctuations.
The Néel ordered-moment has a 1/S correction given by

m = 1

4N�

∑
k

∑
i〈a†

i,kai,k〉. When 
m ∼ S, we may surmise
that Néel order becomes unstable. We plot 
m as a function J3

in Fig. 6(right). For the extreme quantum limit of S = 1/2, we
see that the Néel state is stable for J3 � −0.1J1. For weaker
J3 couplings, quantum fluctuations destabilize the Néel state.
This is consistent with the expectation of a quantum disordered
state at (J2 = J1/2,J3 = 0); however, the precise value of
the critical J3 coupling may change upon including nonlinear
corrections.
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FIG. 6. (Left) Zero-point energy due to spin wave excitations as
a function of J3. (Right) Correction to Néel moment as a function
of J3.
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FIG. 7. Order by disorder due to spin wave fluctuations. Zero-
point energy (left) and free energy (right) due to spin waves as a
function of {θ,ϕ} for J2 = J1/2 and J3 = −0.1J1. The energy and
free energy are plotted on the surface of a sphere, with the polar angle
given by θ and azimuthal angle given by ϕ. The zero-point energy is
minimum for the Néel state, corresponding to {θ,ϕ} = {π/2,0} or the
x̂ direction. The free energy is minimum at three points: {θ,ϕ} = {0,0}
corresponding to horizontal stripe, {θ,ϕ} = {π/2,π} corresponding
to vertical stripe and {θ,ϕ} = {π/2,0} corresponding to Néel orders.

B. Thermal order by disorder

At finite temperatures, low energy spin wave excitations
will contribute to the entropy of the system. In the classical
limit, it is the entropy that breaks the degeneracy of the ground-
state manifold. For classical spins at low temperatures, the
free energy is given by [36] F ≈ kBT

∑
k

∑
i ln(εi,k). The

spin wave energies εi,k here are the same as those obtained
by the Holstein-Primakov method. Even though the Holstein-
Primakov method is designed for quantum spin-S spins, it
gives the same spectrum as a purely classical derivation using
equations of motion.

We plot the free energy as a function of θ and ϕ in
Fig. 7(right). The effect of thermal fluctuations is very different
from that of quantum fluctuations. The lowest free energy oc-
curs in three different states: Néel, vertical stripe, and horizon-
tal stripe states. Thus, at low temperatures, the classical spin
model breaks global spin rotation symmetry as well as a Z3

symmetry, corresponding to a choice among Néel, horizontal
stripe and vertical stripe orders. We note here that the threefold
symmetry is “accidental”—there is no lattice symmetry that
guarantees that the Néel and stripe states must be degenerate.

At any nonzero temperature, spin rotational symmetry is
restored, in accordance with the Mermin Wagner theorem.
However, the discrete Z3 symmetry may survive up to some
critical temperature. In Sec. V, we confirm this picture using
Monte Carlo simulations—surprisingly, the Z3 is restored via
a single thermal transition in the universality class of the three-
state Potts model. Our study provides an interesting example
where thermal fluctuations and quantum fluctuations give rise
to different behaviors. While this is not surprising, there are
very few such examples reported in literature [20,36–38].

V. CLASSICAL MONTE CARLO

Spin wave theory suggests that the classical spin model
should have a finite temperature phase transition above which
Z3 symmetry is restored. The Z3 transition in two dimensions
is known to be a continuous transition with well established
critical exponents. To verify this, we have performed classical
Monte Carlo simulations using standard single flip Metropolis

and energy conserving microcanonical moves. The simulations
were performed on L × L lattices with periodic boundary
conditions, with L up to 120. Focussing on the J2 = J1/2
line, we simulated many negative J3 values. Starting from ran-
dom initial configurations, we performed 5 × 105 Metropolis
moves, with each Metropolis move followed by 3–4 energy
conserving microcanonical moves. The first 5 × 104 moves
were ignored in measurements to allow for equilibration. For
each temperature value, we used 10–20 instances to average
physical quantities.

We compute the specific heat defined by Cv = N
T 2 (〈E2〉 −

〈E〉2), where N = L2. It shows a maximum which grows and
shifts with increasing system size, as shown in Fig. 8(top
left). This clearly indicates a phase transition, most likely
continuous [24,39–41]. The low temperature free energy
obtained from the spin wave expansion clearly demonstrates
that there should be Z3 symmetry breaking at very low
temperatures. The classical Monte Carlo results for Cv versus
T show a single peak, indicating that the Z3 symmetry is
restored via a single phase transition.

We introduce a local complex order parameter in each
square plaquette, following a similar definition on the hon-
eycomb lattice [24],

ψn = (Ŝ1.Ŝ3 + Ŝ2.Ŝ4) + ω(Ŝ1.Ŝ2 + Ŝ3.Ŝ4)

+ω2(Ŝ1.Ŝ4 + Ŝ2.Ŝ3), (11)

where ω = ei2π/3, and (1,2,3,4) are labels for spins on a
square plaquette with the diagonals being (1,3) and (2,4), see
Fig. 3(left). The order parameter is designed to be proportional
to 1, ω, and ω2 for Néel, horizontal stripe and vertical
stripe, respectively. The average order parameter is defined
as m = 1

N

∑
n ψn, where n sums over all square plaquettes in

the system.
Signatures of the phase transition are also seen in suscepti-

bility and in the Binder cumulant, defined as χ = N
T

(〈|m|2〉 −
〈|m|〉2) and U4 = 〈|m|4〉/〈|m|2〉2, respectively. The suscepti-
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FIG. 8. Classical Monte Carlo results. (Top left) Specific heat as a
function of temperature for different system sizes. (Top right) Tc as a
function of J3. (Bottom left) Susceptibility vs temperature for various
system sizes. (Bottom right) The Binder cumulant as a function of
temperature. All panels show data for J2 = J1/2 and J3 = −2J1.
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bility shows a maximum which increases with system size,
shown in Fig. 8(bottom left). Figure 8(bottom right) shows
the Binder cumulant, which exhibits a crossing, indicative of
a continuous transition.

Near a Z3 thermal transition in two dimensions, the specific
heat, susceptibility and the order parameter are known to scale
as Cv ∝ Lα/ν , χ ∝ Lγ/ν , and 〈|m|〉 ∝ L−β/ν respectively,
with α/ν = 2/5(= 0.4), β/ν = 2/15(≈ 0.1333), and γ /ν =
26/15(≈ 1.7333) [42]. For (J2 = J1/2,J3 = −2J1), we find
Tc/J1 ≈ 1.75 ± 0.01. The critical exponents are found to
be α/ν ≈ 0.402, β/ν ≈ 0.132 and γ /ν ≈ 1.561, in good
agreement with the Z3 (three-state Potts) universality class.

We point out an important aspect here—we only see the
Z3 transition for J3 � −3J1/2. For weaker J3, we do find a
broad maximum in specific heat and susceptibility. However,
we do not see clear finite size scaling expected for a phase
transition. This can be rationalized in the following way. Spin
wave results tell us that at low temperature, there are three
states with minimum free energy. The system will break this
threefold symmetry and pick one of the three. As we increase
temperature, we may expect a Z3 transition if other competing
states from outside the threefold set are not accessible to the
system. In our system, the other states that could become
accessible are the spiral states that are ground states for J3 = 0
but not for J3 < 0, see Fig. 2. These states lie above the three
low energy states (Q = (π,π ), (π,0), and (0,π )), separated by
an energy cost proportional to J3. As long as the temperature is
below ∼J3, we expect these states to be inaccessible, thereby
making way for a Z3 transition. This condition is satisfied for
J3 � −3J1/2, where we find Tc � |J3|. When J3 � −3J1/2,
we find a broad maximum at some Tmax � |J3|. Thus there is a
tendency towards aZ3 transition; however, at this temperature,
other states are accessed by the system destroying the Z3

character. This is consistent with our expectation that there
should be no Z3 transition at J3 = 0.

VI. QUANTUM S = 1/2 LIMIT AT J2 = J1/2,J3 < 0

The J1-J2 problem has been extensively studied in the
quantum S = 1/2 limit [8,43,44]. We are interested in the
regime (J2 = J1/2,J3 < 0). Our calculations establish the
phase diagram and highlight several interesting features.
Hitherto, this regime has only been explored using self-
consistent spin-spin Green’s functions [45]—our results for
the phase diagram are qualitatively different.

A. Exact diagonalization

To study the S = 1/2 limit, we use Lanczos numerical
diagonalization in the Sz = 0 sector, making use of trans-
lational symmetries. We have performed the calculation on
L = 16, 20, 32, and 36 site clusters with periodic boundary
conditions—the clusters are chosen to be compatible with a
four site magnetic unit cell. The quantity of interest is the
magnetic order parameter in the ground state, defined as

m2
s (Q) = 1

L2

∑
i,j

〈Si .Sj 〉eiQ.(ri−rj ). (12)

For the Néel phase, we have Q = (π,π ). For the stripe phase,
we may have Q = (π,0) or Q = (0,π ). If the computed order
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FIG. 9. Finite size scaling of exact diagonalization data. (Top)
m2

s (π,π) plotted as a function of J3/J1 at J2/J1 = 0.5 for L = 16,
20, 32, and 36. The extrapolated results have been obtained by
extrapolating L = 20, 32, and 36 data to the thermodynamic limit.
(Bottom) Finite size scaling results for m2

s (π,π) as a function of
1/

√
L. The lines are least-squares fits for the data from L = 20, 32,

and 36 clusters with the Eq. (13).

parameter extrapolates to a positive value in the thermody-
namic limit, we infer that the ground state is ordered.

Lanczos results for m2
s (Q) at Q = (π,π ) with ferromagnetic

J3 are shown in Fig. 9(top). We clearly see that the Néel
moment increases with increasing (negative) J3. To see the
phase boundary between the disordered quantum paramag-
netic phase and the ordered Néel phase, we perform finite size
scaling of the Lanczos results. Curiously, the 16 site cluster
does not allow for good finite size scaling, as can be seen in
Fig. 9(top). This has been pointed out by Schulz et al. for
J2/J1 ∼ 1/2 and J3/J1 = 0 [43]; a possible reason is that the
16-site cluster at J2 = 0 corresponds to a hypercube in four di-
mensions. We have performed finite size scaling with data from
L = 20, 32, and 36 sites. The data for m2

s (π,π ) scale as [43,46]

M2
s (Q) = m2

s (Q) + const√
L

. (13)

The Néel moment extrapolated to the thermodynamic limit is
shown in Fig. 9(bottom). Our results suggest a nonmagnetic
quantum paramagnetic ground state for J3/J1 � −0.2 along
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the J2 = J1/2 line. We see clear evidence for Néel order for
J3/J1 < −0.2.

B. Stabilization of Néel order in the classical stripe domain

Along the (J2 = J1/2, J3 < 0) line, the classical ground
state is highly degenerate encompassing Néel and stripe orders.
However, as we have shown at large S (Holstein Primakov
spin wave theory) and at S = 1/2 (exact diagonalization),
quantum fluctuations select Néel order. This indicates that
the Néel state has maximal energy lowering from quantum
fluctuations. If we increase J2 away from this line, we enter
the stripe domain in which the stripe phase has a lower
ground-state energy than the Néel state. However, when we
take into account quantum fluctuations, Néel order may win
over the stripe state as it has greater energy gain from quantum
fluctuations. By this reasoning, we expect that the Néel state
will be stabilized inside the stripe domain—at least within a
small window close to the (J2 = J1/2,J3 < 0) line. Indeed,
exact diagonalization results confirm this picture. Figure 10
shows the obtained values of Néel and stripe moments as a
function of J3 for different values of J2. We have plotted
the magnetic moments for different system sizes along with
the values extrapolated to the thermodynamic limit—we have
extrapolated the data for L = 20,32 to L → ∞. Interestingly,
we find that up to J2/J1 ≈ 0.53, the line J3/J1 � −0.2 is a
phase boundary between a disordered quantum paramagnetic
phase and the ordered Néel phase. We also observe that
for 0.5 < J2/J1 � 0.53, the Néel phase vanishes for large
negative J3 depending upon the J2/J1 ratios. For instance, at
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FIG. 10. Exact diagonalization results for staggered magnetiza-
tion at Q = (π,π ) and (π,0) as a function of J3/J1, for different
J2 values. Plots show data for L = 20 and 32 and the results ex-
trapolated to the thermodynamic limit. Néel order survives within the
classical stripe region in a small window around 0.5 < J2/J1 � 0.53.
Open and filled symbols represent stripe and Néel moment data,
respectively.
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FIG. 11. Phase diagram in the S = 1/2 limit, obtained by exact
diagonalization. The dashed line at J2 = J1/2 is the classical phase
boundary between Néel and stripe order. We cannot determine the
nature of the ground state within the blue region, based on our finite
size data.

J2/J1 = 0.51, we conclude that a paramagnetic phase exists
for 0 > J3/J1 > −0.2, Néel order arises for −0.2 > J3/J1 >

−2 and stripe order occurs for J3/J1 < −3.1. Due to finite size
constraints, for 0.5 < J2/J1 � 0.53, we cannot discern the
nature of the transition from Néel to stripe order. For example,
for L = 20 and 32 in Fig. 10, there is no consistent pattern
in the data points around the Néel to stripe transition. The
32 site cluster seems to indicate a direct first order transition
from Néel to stripe order; this may indeed hold true in the
thermodynamic limit. It is also conceivable that a spin liquid
phase may occur within a small window, intervening between
the two magnetically ordered phases. For J2/J1 � 0.54 and
J3/J1 < −0.2, we find a clear first order transition from the
quantum paramagnetic phase to the stripe phase.

Performing the same analysis at different J2 values, we
map out a quantum phase diagram in J2-J3 space as shown
in Fig. 11. For 0.3 < J2/J1 < 0.68 and 0 � J3/J1 � −0.2,
the ground state is a nonmagnetic quantum paramagnet (see
the red shaded region in Fig. 11) consistent with known J1-J2

model results. We cannot conclusively determine the nature
of the ground state within the blue shaded region shown in
Fig. 11. The most exciting aspect of this phase diagram is
the stabilization of Néel order within a small window in the
classical stripe domain—between the dashed line and the blue
shaded region in the figure.

C. Variational plaquette ansatz

The classical model and the quantum model at large-S both
possess a four site magnetic unit cell. This suggests that the
quantum disordered state at small S and weak J3 coupling may
also have a four-site unit cell. With this motivation, we study
the S = 1/2 limit with a plaquette-factorized variational wave
function:

|�var〉 ≡
∏
plaq.

|�plaq.〉. (14)
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FIG. 12. Variational wave-function results; for J3 � −0.065J1,
we have an s-wave plaquette-RVB state. Its spin gap is plotted with
open diamonds. For J3 � −0.065J1, we have a nonzero Néel moment
plotted with closed diamonds. The Néel moment arises exactly where
the spin gap closes in the singlet phase.

The product is over alternate squares—the shaded squares in
Fig. 3(right). As the Hilbert space of a single plaquette is
24 = 16 dimensional, we have 31 real variational parameters
after accounting for normalization. We determine |�plaq.〉
by minimizing the expectation value of the Hamiltonian
〈�var|HJ1,J2,J3 |�var〉 by simulated annealing. We denote the
minimum energy state by |�plaq.〉 ≡ |0〉.

For 0 > J3 � −0.065, the variational ground state is a
singlet with s-wave symmetry. When the strength of the J3

coupling is increased beyond J3 ∼ −0.065, Néel order starts
to develop as shown in Fig. 12. The Néel moment is defined as
mN = |S1 − S2 + S3 − S4|. The smooth increase of the Néel
moment is due |�plaq.〉 acquiring a triplet component, thus
falling within the paradigm of triplon condensation. To further
support the triplon condensation picture, we use a plaquette
operator approach to find the spin gap in the s-wave singlet
phase.

Having found |0〉, the plaquette wave function that min-
imizes the variational energy, we construct the remaining
15 states of the plaquette Hilbert space. We carry out
a plaquette-operator analysis taking these 15 states to be
excitations that live on plaquette sites. We introduce a bosonic
representation with |�〉i ≡ b

†
i,�|−〉, where |−〉 represents an

unphysical vacuum state with no bosons. The bosonic operator
b
†
i,� creates the state indexed by � = 0, . . . ,15 at plaquette

i. The plaquette-factorized state is captured by taking the
� = 0 boson to be condensed. To determine the condensate
amplitude, we first consider the single occupancy constraint
required of a true representation of the plaquette Hilbert space:

15∑
�=0

b
†
i,�bi,� = 1. (15)

To satisfy this constraint on average, we choose the condensate

amplitude to be [47] bi,0 ∼ b
†
i,0 ∼

√
1 − ∑15

�=1 b
†
i,�bi,�.

Rewriting the Hamiltonian using these bosonic operators,
we have no linear terms as the ground state minimizes the

Hamiltonian. We keep only quadratic terms in the bosons,
assuming that the bosons are dilute and interactions can be
neglected. This is well justified in the s-wave singlet phase
which has a spin gap. Diagonalizing this quadratic Hamil-
tonian in each momentum sector, we find the quasiparticle
energies. We find that lowest quasiparticle energy (the spin
gap) occurs at k = 0 consistent with a low-lying Néel state.
This spin gap is plotted as a function of J3 in Fig. 12.
The spin gap closes at J3 ∼ −0.065J1 heralding triplon
condensation.

VII. DISCUSSION

Motivated by the elusive quantum disordered phase in the
square lattice J1-J2 model, we have explored the origin of this
phase by adding a tuning knob in the form of a J3 coupling.
In the classical model, (J2 = J1/2,J3 = 0) is a special point
at which the Hamiltonian can be written as a sum of squares.
This leads to a local constraint wherein the spins on each
square should sum to zero, giving rise to an infinite degeneracy.
Introducing a ferromagnetic J3 forces every alternate square
to have the same spin configuration. This brings down the
degeneracy to the number of configurations on a single square
with zero total spin.

Equivalently, the ground-state degeneracy can be under-
stood from the point of view of spiral states. At J2 =
J1/2,J3 = 0, the usual spiral ansatz tells us that all wave
vectors on the edges of the Brillouin zone minimize the energy.
The resulting classical ground-state manifold is composed of
two sectors: (i) single spiral states with wave vector anywhere
on the edge of the Brillouin zone, and (ii) coexisting spirals
formed from Q = (π,π ), (π,0) and (0,π ). These three spiral
wave vectors have the special property that they can coexist
to form a legitimate spin state with uniform spin length. Upon
adding a ferromagnetic J3, only Q = (π,π ), (π,0) and (0,π )
survive as minimum energy wave vectors. Interestingly, this
restricts the ground-state manifold to sector (ii) above. The
resulting ground-state manifold is equivalent to a four site
magnetic unit cell with repeating squares. With the J3 cou-
pling, we find that both classical and quantum fluctuations lead
to ordered states. We thus surmise that the quantum disordered
phase in the S = 1/2 limit is driven by the classical degeneracy
of sector (i) alone. This indicates that the square J1-J2 XY
model—which cannot support the noncoplanar coexistence
states of sector (ii)—must also have the same paramagnetic
phase as the Heisenberg model. Similar equivalence between
the Heisenberg and XY ground states has been recently argued
for the Kagome lattice [48].

With the J3 coupling, we have shown that classical
fluctuations lead to a threefold degeneracy with Néel and
two stripe states. Classical Monte Carlo simulations reveal
a clear thermal transition above which Z3 symmetry is
restored. Our results suggest an extremely interesting finite
temperature phase diagram with two crossovers. In the stripe
phase (J2 > J1/2,J3 < 0), it is well known that a Z2 transition
occurs due to twofold symmetric stripe order. As we approach
the J2 = J1/2 line, Néel order becomes degenerate with the
stripes, giving rise to a Z3 transition. If we move into the Néel
domain, (J2 < J1/2,J3 < 0), we expect no thermal transition
as spin rotational symmetry is restored at any infinitesimal
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temperature. Thus, as J2 is decreased from large values, we
expect crossovers from Z2 to Z3 transitions and from Z3

to no transition. This is an interesting direction for future
research.

Quantum fluctuations also play an interesting role in
this problem. Along J2 = J1/2,J3 < 0 line, they select Néel
order as we have shown using spin wave theory and exact
diagonalization. Quantum fluctuations favor the Néel state
so much that they stabilize Néel order inside the classical
stripe region. The quantum phase diagram may also host a
spin liquid phase that intervenes between Néel and stripe
orders. Pursuing a four-site variational ansatz for the quantum
S = 1/2 problem, we find an s-wave singlet phase stabilized
for small J3 values. The same state has been proposed for the
J1-J2 problem [1]. It is suggestive that we find this state when
we add a J3 coupling.

We have studied the fine-tuned parameter line of J2 = J1/2
in the square lattice antiferromagnet. However, our analysis
may be of some relevance to materials such as the iron
based superconductors, e.g., BaFe2As2, BaFe1.9Ni0.1As2, etc.
Similar spin models have been proposed for pnictides [49,50]
as well as iron chalcogenides, e.g., FeSe [51], both of which are
well known to have stripe order. A suitable perturbation, such
as pressure, may push these materials towards the J2 = J1/2
limit, thereby bringing the Néel state into close competition
with stripe order.

ACKNOWLEDGMENTS

We thank Ioannis Rousochatzakis, Yuan Wan, Daniel
Podolsky, Arnab Sen, and R. Shankar (Chennai) for useful
discussions. The simulations were carried out on the HPC
Nandadevi cluster at The Institute of Mathematical Sciences.

[1] L. Capriotti and S. Sorella, Phys. Rev. Lett. 84, 3173 (2000).
[2] S.-S. Gong, W. Zhu, D. N. Sheng, O. I. Motrunich, and M. P. A.

Fisher, Phys. Rev. Lett. 113, 027201 (2014).
[3] J.-F. Yu and Y.-J. Kao, Phys. Rev. B 85, 094407 (2012).
[4] R. R. P. Singh, M. P. Gelfand, and D. A. Huse, Phys. Rev. Lett.

61, 2484 (1988).
[5] M. P. Gelfand, R. R. P. Singh, and D. A. Huse, Phys. Rev. B 40,

10801 (1989).
[6] S. Sachdev and R. N. Bhatt, Phys. Rev. B 41, 9323 (1990).
[7] N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991).
[8] D. Poilblanc, E. Gagliano, S. Bacci, and E. Dagotto, Phys. Rev.

B 43, 10970 (1991).
[9] R. R. P. Singh, Z. Weihong, C. J. Hamer, and J. Oitmaa,

Phys. Rev. B 60, 7278 (1999).
[10] V. N. Kotov, J. Oitmaa, O. P. Sushkov, and Z. Weihong,

Phys. Rev. B 60, 14613 (1999).
[11] S. Morita, R. Kaneko, and M. Imada, J. Phys. Soc. Jpn. 84,

024720 (2015).
[12] A. Metavitsiadis, D. Sellmann, and S. Eggert, Phys. Rev. B 89,

241104 (2014).
[13] W.-J. Hu, F. Becca, A. Parola, and S. Sorella, Phys. Rev. B 88,

060402 (2013).
[14] L. Capriotti, F. Becca, A. Parola, and S. Sorella, Phys. Rev. Lett.

87, 097201 (2001).
[15] F. Mezzacapo, Phys. Rev. B 86, 045115 (2012).
[16] H.-C. Jiang, H. Yao, and L. Balents, Phys. Rev. B 86, 024424

(2012).
[17] P. Chandra, P. Coleman, and A. I. Larkin, Phys. Rev. Lett. 64,

88 (1990).
[18] H. D. Rosales, D. C. Cabra, C. A. Lamas, P. Pujol, and M. E.

Zhitomirsky, Phys. Rev. B 87, 104402 (2013).
[19] D. Yamamoto, G. Marmorini, and I. Danshita, Phys. Rev. Lett.

112, 127203 (2014).
[20] L. Seabra, P. Sindzingre, T. Momoi, and N. Shannon, Phys. Rev.

B 93, 085132 (2016).
[21] E. Manousakis, Rev. Mod. Phys. 63, 1 (1991).
[22] J. Villain, J. Phys. France 38, 385 (1977).
[23] J. B. Fouet, P. Sindzingre, and C. Lhuillier, Eur. Phys. J. B 20,

241 (2001).
[24] A. Mulder, R. Ganesh, L. Capriotti, and A. Paramekanti,

Phys. Rev. B 81, 214419 (2010).

[25] Z. Xiong and X.-G. Wen, arXiv:1208.1512.
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