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Spin morphologies and heat dissipation in spherical assemblies of magnetic nanoparticles
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Aggregates of magnetic nanoparticles (MNPs) exhibit unusual properties due to the interplay of small system
size and long-range dipole-dipole interactions. Using the micromagnetic simulation software OOMMF, we study
the spin morphologies and heat dissipation in micron-size spherical assemblies of MNPs. In particular, we
examine the sensitivity of these properties to the dipolar strength, manipulated by the interparticle separation.
As OOMMF is not designed for such a study, we have incorporated a novel scaling protocol for this purpose.
We believe that it is essential for all studies where volume fractions are varied. Our main results are as follows:
(i) Dense assemblies exhibit strong dipolar effects which yield local magnetic order in the core but not on the
surface, where moments are randomly oriented. (ii) The probability distribution of ground-state energy exhibits
a long high-energy tail for surface spins in contrast to small tails for the core spins. Consequently, there is a
wide variation in the energy of surface spins but not the core spins. (iii) There is strong correlation between
ground-state energy and heating properties on application of an oscillating magnetic field h(t) = ho cos 2πf t :
the particles in the core heat uniformly, while those on the surface exhibit a wide range from cold to intensely
hot. (iv) Specific choices of ho and f yield characteristic spatial heat distributions, e.g., hot surface and cold
core, or vice versa. (iv) For all values of ho and f that we consider, heating was maximum at a specific volume
fraction. These results are especially relevant in the context of contemporary applications such as hyperthermia
and chemotherapy, and also for novel materials such as smart polymer beads and superspin glasses.
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I. INTRODUCTION

Magnetic nanoparticles (MNPs) are attracting a lot of
attention due to their tremendous potential in a variety of chal-
lenging applications [1–6]. These encompass biotechnology
and biomedicine, therapeutics, engineering, material science,
magnetic recording media, smart materials, etc. [7–11]. The
main reason for their wide applicability is the ease with which
they can be detected and manipulated by the application
of an external magnetic field. They can be synthesized in
varying sizes to yield application-tailored response time.
Each application involves a unique exploitation of the MNPs
and their properties. In therapeutics, for instance, they are
targeted on malignant sites and subjected to an oscillating
magnetic field. The magnetic moments undergo hysteresis,
causing local warming. This effect is referred to as magnetic
hyperthermia in the medical literature [7,12–15] and makes
it possible to destroy cells or introduce a modest rise in
temperature to increase the efficacy of chemotherapy. Con-
sequently, recent years have evidenced intense investigations
to achieve targeted and controlled heating for combating
cancer.

Usually, MNPs with diameters �20 nm are single domain.
They typically contain 103–105 magnetic moments locked
together by the anisotropy energy to yield a supermagnetic
moment. The latter does not remain fixed in time, but un-
dergoes fluctuations as it rotates between the crystallographic
anisotropy axes even in the absence of an applied magnetic
field. As a result, the time-averaged magnetization is still
zero and the particle is superparamagnetic. When a large
number of MNPs get sufficiently close to one another, the
supermoments start interacting via dipole-dipole coupling. The
latter has varied effects on systemic properties [16,17]. In

some cases, the resulting dipolar field imparts a permanent
magnetic moment to the assembly and creates an effectual
ferromagnet. Further, these interactions are long range and
allow for both ferromagnetic and antiferromagnetic couplings.
So in some assemblies, these conflicting interactions cause
frustration of spins, modify energy barriers, and impart spin-
glass-like properties. Many studies have reported unconven-
tional spin morphologies especially when the system size is
smaller than the long range of dipolar interactions. Depending
on the lattice structure, there have been observations of mag-
netic vortices, antiferromagnetic states, checkerboard patterns,
etc. [18]. Consequently, they exhibit unusual ground-state and
relaxation characteristics.

Aggregates of MNPs abound in nature. They also occur
inadvertently in applications and are sometimes tailored to
achieve required features. We provide below a few prototypical
examples from distinct physical settings:

(a) Surprising concentrations of superparamagnetic mag-
netite (Fe3O4) nanoparticles (∼108) have been found in
honey bees, homing pigeons, and dolphins. Chitons and
magnetotactic bacteria also contain small magnetite particles,
and can navigate with their help to the surface or bottom of the
pools they live in [19,20]. It is natural to believe that these act
as biological compasses for navigation. There has been much
interest in them ever since their discovery.

(b) Lysosomes are the garbage disposal unit of a cell.
Therefore they capture the targeted MNPs which form large
compact aggregates containing 105–106 particles. When sub-
jected to an oscillating magnetic field, there is sufficient rise
in local temperature to permeabilize the lysosomal membrane,
release degradative enzymes, and eventually cause cell death or
apoptosis [21]. There is much to be understood in this recently
discovered lysosomal cell-death pathway.
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(c) Most conventional deposition techniques yield aggre-
gates of nanoparticles. Recent studies have revealed that such
assemblies exhibit superferromagnetism manifested in the
form of hysteresis loops, return point memory, and unusually
large heat dissipation [22–24]. A few others have observed a
super-spin-glass phase analogous to the classical spin glass
characterized by randomness and frustration [25,26].

(d) Smart polymer beads incorporating MNPs are being
used for biosensing, targeted drug delivery, magnetic hyper-
thermia, etc. [8,9,27]. Their magnetoresponse (e.g., relaxation
time, hysteresis, etc.) is closely related to the volume fraction
of the nanoparticles which manipulates the dipolar strength.

(e) Ultra-high-density magnetic recording media store data
as magnetization patterns in strips of densely packed single-
domain superparamagnetic grains [11]. The interparticle inter-
actions may impede the ability to address the single-particle
magnetic response. A careful choice of the density of these
grains is therefore required to obtain acceptable signal-to-noise
ratio.

The above examples illustrate the emergence of collective
behavior in closely packed superparamagnetic nanoparticles
due to dipole-dipole interactions. It is therefore essential to
identify parameters which manipulate these interactions in
order to tailor the equilibrium and nonequilibrium proper-
ties of such aggregates. This is the primary focus of our
work.

We consider spherical clusters of MNPs and study the
interplay of the magnetic anisotropy, dipolar interactions, and
packing fraction on spin morphologies and heating properties.
The particles are arranged on a cubic lattice (with lattice
constant a) inscribed in a sphere for simplifying the analysis.
It is convenient to define a ratio � = D/KV , where D is
the strength of dipolar energy, K is the anisotropy constant,
and V is the volume of the nanoparticle. The dipolar strength
D has a 1/a3 dependence and can be varied with ease by
changing the interparticle separation. We refer to � > 1 as
the strong dipolar regime and � � 1 as the weak dipolar
regime. Naturally, � = 0 implies noninteracting magnetic
spins. Our starting point is the Landau-Lifshitz (LL) equation
to describe the precessional motion of a supermoment in a
magnetic medium at T = 0. The coupled equations of motion
are solved by the open-source software OOMMF (Object Ori-
ented Micro Magnetic Framework) [28]. A scaling procedure
has been introduced to correctly implement the effects of
packing fraction in assemblies of MNPs. We have obtained
numerical results for the commonly used magnetite (Fe3O4)
nanoparticles, but we believe that our observations are generic
and hold for other kinds of MNPs as long as the value of
� is comparable. To study the heating properties, we apply
an oscillating magnetic field H (t) = Ho cos(2πf t), choosing
the frequency f = 107, 108, and 109 Hz and the amplitude
of the applied field Ho = 0.2, 0.4, and 0.6 T. These choices
yield well-saturated loops. The main results of our study are
as follows:

(1) In the strong dipolar regime (� � 1), the probability
distributions P (E) vs E of the ground-state energy of the
MNPs are broad and asymmetric and with long high-energy
tails. In the weak dipolar regime � < 1, the distributions are
peaked, symmetric, and have short tails. The average energy
per spin Ē increases monotonically with �.

(2) In the strong dipolar regime, the spins in the core exhibit
local magnetic order, but those at the periphery are randomly
oriented. In the weak dipolar regime, all moments are
randomly oriented. These impart unusual heating properties
to the assemblies.

(3) In the strong dipolar regime, assemblies exhibit nonuni-
form heating; at low frequencies (∼107 Hz), the energy
dissipated by the surface spins is nearly 40% more than by
those in the core. The surface of the sphere is therefore hotter
than the core. At the high frequencies (∼109 Hz), on the other
hand, the core is hotter than the periphery.

(4) For all values of f and Ho, the heat dissipation is
maximized at a critical interparticle separation ac.

To explain the above results, we analyze the interplay
between long-range dipolar interactions and system size, and
identify experimental parameters which are responsible for
it. In particular, our comprehension is useful to optimize
the specific absorption rate (SAR) for hyperthermia and
chemotherapy applications. Further, our observations made in
the context of spherical aggregates are generic for suspensions,
packed powders, and agglomerates of MNPs.

Many recent studies are emphasizing the need to include
interparticle interactions for accurate estimation of heat
dissipation and improved efficacy in hyperthermia proce-
dures [29–35]. The starting point for theoretical understanding
is a Hamiltonian incorporating dipole-dipole interactions. A
variety of analytical and numerical methods such as mean-field
approximation, linear response theory, kinetic Monte Carlo
simulations (kMCS), and micromagnetic simulations has been
used for analysis. An important piece of work in the context
of our study is that by Tan et al. [21]. They use kMCS to study
heating properties of iron-oxide nanoparticles in lysosomes.
The primary findings of this work are (i) distinct spatial varia-
tion of heat as a function of the particle concentration and (ii) a
nontrivial dependence of the specific absorption rate (SAR) on
concentration. A few other studies have also investigated the
role of dipolar interactions on SAR. Using a mean-field model,
Landi has demonstrated that dipolar interactions increase the
heating efficiency of soft magnetic particles but are detrimental
for hard magnetic particles [36]. Haase and Nowak used the LL
equation incorporating Langevin dynamics, and have reported
that SAR decreases with increasing interactions [37]. Their
observations agree with the more recent work of Ruta et al.,
who used kMCS [38]. In an earlier work by the same group,
Chantrell et al. studied the field-cooled and zero-field-cooled
magnetization studies using kMCS [39]. They observe a state
with short-range order at low temperatures in the assembly of
MNPs with evidence of a transition to the glassy state. Note
that the dipolar interactions are long range and fluctuate in
sign. As a result, the energy landscape has many local minima
separated by high barriers. These metastable states trap the
evolving system and impede the relaxation to the equilibrium
state. Our understanding of such complex systems therefore is
far from complete.

This paper is organized as follows. In Sec. II, we introduce
the model, the Landau-Lifshitz (LL) equation traditionally
used to study spin dynamics of a single nanoparticle, and
our adaptations to study interacting magnetic nanoparticle
assemblies. In Sec. III, we study the role played by dipolar
interactions on the organization of the supermoments and the
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consequence of resulting spin morphologies on heating. In
Sec. IV, we summarize our results and discuss them in the
context of contemporary applications.

II. MODEL AND METHODOLOGY

Consider an assembly of N MNPs. Each particle has
magnetic moment �μi = μêi , i = 1,2, . . . ,N . The magnitude
μ = MsV , where Ms is the saturation magnetization and V

is the volume of the the nanoparticle. Further, we assume
the particle to have uniaxial anisotropy �K = Kk̂i , where
K is the anisotropy constant and k̂i is the direction of
the anisotropy or the easy axis. As the nanoparticles are
well separated, it is customary to assume that there is no
exchange interaction between them [17,29,40]. The energy
of such an assembly therefore includes contributions from
the resulting magnetocrystalline anisotropy energy and the
long-range dipole-dipole interactions [24,37]:

E = Ea + Ed = −KV

N∑
i=1

cos2 �i

− μoμ
2

4π

∑
i,j

3(μ̂i · ˆrij )(μ̂i · ˆrij ) − (μ̂i · μ̂j )

r3
ij

, (1)

where μo is the permeability of free space, cos �i = k̂i · êi

is the angle between the anisotropy axis and the direction of
the magnetic moment, rij is the distance between particles i

and j , and ˆrij is the vector along it. The radial dependence
1/r3

ij means that the dipolar interaction is long range in
nature and many more than nearest-neighbor interactions must
be taken into account. The angular dependence implies that
dipolar interaction can change sign, and hence the interaction
switches from ferromagnetic for angles close to the easy
axis to antiferromagnetic for intermediate angles (55◦ � θij �
125◦). Thus there are competing ferro- and antiferromagnetic
interactions.

Expressing the distance in units of the lattice parameter a,
Eq. (1) can be rewritten as

E = −KV

N∑
i=1

cos2 �i

−D
∑
i,j

3(μ̂i · ˆrij )(μ̂i · ˆrij ) − (μ̂i · μ̂j )

(rij /a)3
, (2)

where we define the dipolar constant D = μoμ
2/4πa3. The

behavior of such an assembly is governed by the relative
strengths of the anisotropy energy and the dipolar energy. It is
therefore convenient to define a ratio � = D/KV . Note that
for a given value of the latter, there can be many combinations
of (K,μ,a). Said differently, it is possible to tailor � by
choosing an appropriate triplet which can be manipulated in
experiments. For example, a change in size of the constituting
nanoparticles can alter V , replacing the magnetic material with
another can alter μ and K , and a variation of the volume
fraction can alter a. We emphasize, however, that the properties
of the assembly will be dictated by � rather than the precise
parameter values. In the rest of our discussion, we refer to

� > 1 as the strong dipolar regime and � � 1 as the weak
dipolar regime.

If an external magnetic field �H (t) is applied, there is an
additional contribution to Eqs. (1) and (2) given by [37]

EH = − �H ·
N∑

i=1

�μi = −MsV �H ·
N∑

i=1

êi . (3)

In hysteresis studies, an oscillating magnetic field is applied in
a suitable direction. In this case, H ≡ H (t) = Ho cos(2πf t),
where Ho is the amplitude and f is the frequency of the applied
field.

The precessional motion of the magnetic moment �μi in
a magnetic background is described by the Landau-Lifshitz
(LL) equation. It predicts the rotation of the magnetization in
response to torques and is given by [37,41]

d �μi

dt
= −γ �μi × �He

i − λ �μi × ( �μi × �He
i

)
, i = 1,2, . . . ,N,

(4)

where γ is the Landau-Lifshitz gyromagnetic ratio, λ =
γα/Ms is a phenomenological dimensionless damping fac-
tor representing all relaxational mechanisms, and �He

i =
−∂(E + EH )/∂ �μi is the effective field experienced by mag-
netic moment due to the surrounding magnetic medium. The
first term in Eq. (4) describes the precession of �μi around �He

i .
The second term describes a phenomenological dissipative
motion: the magnetic moment �μi precesses around �He

i , loses
energy to the environment in accordance with the damping
factor λ, and eventually (at t → ∞) aligns along the effective
field. The coupled differential equations in Eq. (4) are usually
solved using integrators such as OOMMF [42] or NMAG [43]
to obtain the (T = 0) ground-state morphology which yields
the organization of the supermoments in the assembly. In
these procedures, the simulated nanoparticle is comprised of
cells with, say, lateral dimension l. Each cell then represents
a magnetic moment μ = MsV , where the volume V = l3.
The center-to-center separation between moments is therefore
l ≡ a0.

At this juncture, it is useful to discuss the evaluation of
Ea , Ed , and EH in micromagnetic simulations. The discrete
forms in Eqs. (1)–(3) need to be rewritten for use in the LL
equation. In 1963, Brown suggested that instead of considering
individual magnetic moments, it is appropriate for this purpose
to use a continuous magnetization function M(r) representing
a local average [44]:

M(r) = 1

V (r,
r)

∑
i ∈ I(r,
r)

�μi, (5)

where V (r,
r) is a sphere of radius 
r placed at r andI(r,
r)
refers to the set of indices i which lie in this sphere. M(r) is
assumed to be continuous and differentiable. In terms of this
locally averaged magnetization density, the anisotropy energy
is [42,45]

Ea = −
∫

V

K(r)(k̂ · ê)2d3r. (6)
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Similarly, the dipolar energy or the demagnetization energy
can be expressed as [42,44–47]

Ed = −μo

2

∫
V

M(r) · Hd(r)d3r, (7)

where the demagnetization field �Hd at position r contains
components contributed from the divergence of magnetization
within the volume and surface poles,

Hd(r) = − 1

4π

∫
V

�∇ · M(r′)
r − r′

|r − r′|3 d3r ′

+ 1

4π

∫
S

n̂ · M(r′)
r − r′

|r − r′|3 d2r′, (8)

where n̂ is the surface normal. Finally, the Zeeman energy
becomes [42]

EH = −μo

2

∫
V

M · H(r)d3r. (9)

As M(r) is continuous and differentiable at least within each
cell, the discrete approximations can be recovered from a
Taylor expansion of the relevant equations keeping terms
up to the second order. Higher-order terms get incorporated
in Eq. (8) if dipole-quadrupole or quadrupole-quadrupole
interactions are significant. The details of these derivations
can be found in [42]. It should be noted that the dipolar energy
Ed involves long-range interactions and, in terms with M,
requires integration over V × V . Computationally, it is the
most expensive calculation.

The main goal of our work is to investigate the role played
by the dipolar-dipole interaction on morphologies and heating
of the magnetic nanoparticle assemblies. By our formulation
in Eq. (2), the strength of the dipolar interaction can be
manipulated by the center-to-center separation a of the MNPs.
Note, however, that with the protocol used in OOMMF, a
change in the center-to-center separation from a0 to aα , say, is
tantamount to changing the cell volume from V ≡ V0 (= a3

0)
to Vα (= a3

α). Consequently, the magnetic moment gets altered
to μα = MsVα , thereby modifying the magnetic properties
of the particles under study. This undesirable artifact in the
simulation needs to be overcome. We do so by a simple
rescaling of the saturation magnetization,

Mα
s = M0

s

V0

Vα

, (10)

where M0
s is the saturation magnetization for a particle of vol-

ume V0 = a3
0 . It is easy to see that now μ = M0

s V0 = Mα
s Vα ,

as desired. Corresponding changes need to be incorporated
in other related variables such as the coercive field Hc =
K/Ms [12] and the anisotropy field HK = 2K/Ms [12], which
play an important role in hysteresis and heat dissipation:

Hα
c = H 0

c

Vα

V0
, (11)

Hα
K = H 0

K

Vα

V0
. (12)

One signature of the correctness of the scaling protocol
described by Eqs. (10)–(12) is a master collapse of hysteresis
loops. We demonstrate this for Fe3O4 and Co nanoparticle

FIG. 1. (a) Schematic of the sphere of radius R containing cubic
MNPs with lateral dimension l arranged on a lattice with spacing a.
(b) Enlarged portion of the basic unit cell in (a).

assemblies in the forthcoming section. We also make com-
parisons with corresponding data from kMCS, the alternative
approach to study complex spin systems. A convergence
between them should reinforce the need for the variable scaling
introduced in Eqs. (10)–(12).

III. SIMULATION RESULTS

Consider the schematic in Fig. 1, which depicts a sphere of
radius R packed with MNPs. For simplicity, we assume that
they are cubes with a lateral dimension l and are arranged
on the vertices of a simple cubic lattice with spacing a.
The center-to-center separation between the particles is a,
while the edge-to-edge separation is a − l. Most applications
use Fe3O4, Co, and Fe2O3 nanoparticles. Table I provides
values of the saturation magnetization Ms and anisotropy
constant K for these materials [48]. We perform simulations
using OOMMF for the geometry depicted in Fig. 1 for cubic
particles with l = 10 nm and R = 200 nm using free boundary
conditions. Typically, the damping constant α lies in the
interval [0,1]. Without loss of generality, we choose α = 1.
The initial condition is chosen to be a random orientation of
magnetization and anisotropy axes of each packed particle. The
magnetic field H has been applied along the z direction. All
data have been averaged over 50 independent initial conditions.
Most of our results are for Fe3O4 nanoparticles. We have also
performed evaluations for Co and Fe2O3 nanoparticles, and for
other sets of l and R. Our simulations indicate that the results
remain qualitatively unchanged provided the value of � is the
same. A few words of caution are required for discretization
of noncuboid geometries such as spheres, cones, cylinders,
rings, etc. [49]. On the one hand, it should not be so fine that
the computational time becomes unreasonably large. On the

TABLE I. List of parameters used in numerical evaluations.

K (Fe3O4) 1.3 × 104 J m−3

K (Co) 4.10 × 105 J m−3

K (α − Fe2O3) 7.0 × 103 J m−3

Ms (Fe3O4) 4.77 × 105 A m−1

Ms (Co) 1.44 × 106 A m−1

Ms (α − Fe2O3) 2.39 × 103 A m−1
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other hand, it should not be so coarse grained that the system
exhibits incorrect physical behavior. To eliminate such doubts,
we converge on the optimal cell size only after comparing our
results with corresponding kinetic Monte Carlo outcomes from
the literature whenever possible. The rule of thumb is to ensure
that the fraction of moments on the surface is much smaller
than those in the bulk [49]. For example, when R = 200 nm
and l = 10 nm, the number of cells on the surface is ∼3700,
while that in the bulk is ∼30 000.

A. Checks for proposed scaling

We perform hysteresis loop calculations for assemblies of
(i) Fe3O4 and (ii) Co nanoparticles with l = 10 nm for five
values of the interparticle separation: a0 = 10, a1 = 14, a2 =
16, a3 = 20, and a4 = 50 nm.

Using the value of M0
s and K from Table I, the saturation

magnetization Mα
s for subsequent separations was obtained by

the scaling in Eq. (10). The corresponding Hα
c and Hα

K were
calculated using Eqs. (11) and (12), respectively. We chose Hα

o

to be � 4Hα
c to obtain well-saturated loops. The frequency of

the applied oscillating field f was chosen to be 107 Hz. The
assembly was allowed to undergo a few field cycles for the
transients to settle down.

The equilibrated hysteresis loops for (i) Fe3O4 and (ii)
Co MNP assemblies are presented in Fig. 2. The values of
Hα

o used for each value of aα are also specified. The x

axis has been scaled by the anisotropy field HK and the
y axis by the saturation magnetization Ms . The solid black
curve depicts the equilibrated hysteresis loop of a single
particle, i.e., when a = ∞. We have generated this data set
by performing kMCS for a single Fe3O4 particle subjected
to a time-varying field of frequency f = 107 Hz. The kMCS
procedure that we have used is described in detail in Ref. [21]
and is not reiterated here for the sake of brevity. The data
collapse is excellent for both sets of particles even when
they are closely spaced. For example, in the case of Fe3O4,
a separation of 14 nm exhibits a good collapse. From Table II,
it corresponds to � � 0.63, implying significant strength of

FIG. 2. Scaled hysteresis loops (refer to text) corresponding to
assemblies of Fe3O4 nanoparticles in blue (black) symbols and Co
nanoparticles in red (gray) symbols for indicated values of the lattice
spacing a and field strength Ho. The frequency of the applied field
f = 107 Hz. The solid black curve is for a = ∞ corresponding to a
noninteracting assembly of MNPs. This data has been obtained using
kMCS as detailed in the text.

TABLE II. Evaluation of the ratio � = D/KV as a function of
center-to-center interparticle separation a a for cubic particle of three
commonly used magnetic compositions. The lateral dimension of the
particle l = 10 nm in each case.

� = D/KV

a (nm) Fe3O4 Co α − Fe2O3

10 1.75 0.42 8.2 × 10−5

11 1.32 0.34 6.3 × 10−5

12 1.01 0.24 4.7 × 10−5

14 0.62 0.15 3.0 × 10−5

16 0.42 0.10 2.0 × 10−5

20 0.22 0.05 1.2 × 10−5

30 0.06 0.02 3.0 × 10−6

40 0.03 0.01 1.3 × 10−6

50 0.01 0.0034 6.5 × 10−7

100 0.001 0.0004 8.2 × 10−8

dipolar interactions. Our checks reveal that this agreement is
absent if the scaling protocol is not employed, lending credence
to Eqs. (10)–(12).

We emphasize that they are essential for the correct
implementation of OOMMF when probing the influence volume
fraction (and thereby dipolar effects) on the behavior of
assemblies of MNPs.

B. Ground-state morphologies

Next we study (T = 0) spin morphologies of the spherical
assemblies as a function of the interparticle separation. Fig-
ure 3 depicts the ground-state (T = 0) morphology for lattice
spacing of (a) a = 10 and (b) a = 20 nm. These correspond
to � � 1.75 and � � 0.22, respectively. The morphology
in Fig. 3(a) contains 33 496 MNPs, while that in Fig. 3(b)
contains 4186 MNPs. The corresponding slices taken at z = 0
in the xy plane are provided below in Figs. 3(c) and 3(d).
Notice that for the strong dipolar case, there is local magnetic
order. In the weak dipolar case, however, the moments are
oriented randomly, indicating absence of magnetic order. To
probe further, we plot the average values of the components
of the magnetic moment μx , μy , and μz as a function of
r/a, the distance from the center of the sphere in units of
the interparticle separation in Figs. 3(e) and 3(f). Note that
the averaging at the center is over a much fewer number
of moments. For example, in Fig. 3(e), when r = 10 nm,
there are 8 moments in the shell. So the corresponding data
points are averaged over 400 moments (8 neighbors, 50
initial conditions). The number of moments contributing to the
average increases rapidly as we move away from the center.
For example, for r = 20, 50, and 200 nm, the averaging is over
∼103, 104, and 105 moments, respectively. We have therefore
shown in the figures only those data points which have been
averaged over 103 values or more for reliability of results. In
Fig. 3(e), where � � 1.75, there is significant local magnetic
order in the interior of the sphere but not near the surface. In
Fig. 3(f), where � � 0.22, there are signs of weak ordering
in the interior which is rapidly destroyed as the surface of the
sphere is approached.
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FIG. 3. Typical ground-state morphologies of Fe3O4 nanoparti-
cles (l = 10 nm) assembled in a sphere of radius R = 200 nm on a
cubic lattice with spacing (a) a = 10 nm corresponding to � � 1.75
and (b) a = 20 nm corresponding to � � 0.21. The morphology in
(a) contains 33 496 MNPs, while that in (b) contains 4186 MNPs.
The slices in (c) and (d) are taken at z = 0 in the xy plane. The
average value of the component of the magnetic moment μi vs r for
(e) a = 10 nm and (f) a = 20 nm is also indicated. The data have
been averaged over ∼103 values for r = 20 nm and ∼105 values for
r = 200 nm.

One reason for surface effects in the strong dipolar regime
is the influence of the long-range nature of dipolar interactions.
In this context, it is useful to study Fig. 4 which depicts the
variation of � as a function of r/a for cubic Fe3O4 particles
with l = 10 nm. The two data sets are for a = 10 and 20 nm.
The integer values n = r/a can be interpreted as the nth
neighbor of the moment placed at r/a = 0. Note that � is
the largest when a = l, which corresponds to 10 nm in the
present case. The inset shows a magnified view for r/a � 5.
For � > 1, the dipolar effects continue to be significant at
large distance (r/a � 10). Therefore, the moments in the core
have a dipolar exchange with a large number of spins vis a
vis the surface spins, which have no neighbors at the outside.
Consequently, the interior spins are under the influence of an
effective mean dipolar field, while the surface spins experience
wide deviations from it.

To gain further understanding of the effects of long-range
dipolar interactions, we analyze the ground-state energy E for
the morphologies in Fig. 3. In Figs. 5(a) and 5(b), we plot
the corresponding probability distribution P (E) vs E. The
average energy E is also specified for comparison. Notice that
E for the strong dipolar case (a = 10 nm, � � 1.7) is an order
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Θ

5 6 7 8 9 10
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15
x 10−3
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 20 nm

FIG. 4. Variation of � = D/KV for cubic Fe3O4 nanoparticles
with l = 10 nm as a function of r/a, where r is the center-to-center
distance between two particles and a is the spacing of the underlying
lattice. The data sets are for a = 10 and 20 nm. The inset shows a
magnified view for r/a � 5, i.e., for the fifth neighbor and beyond.
For � > 1, the dipolar effects continue to be significant even beyond
r/a = 10 or the tenth neighbor. Note that � is the largest when a = l,
which corresponds to 10 nm in the present case.

of magnitude larger than that for the weak dipolar case (a =
20 nm, � � 0.2). In general, E increases monotonically with
�. In the strong dipolar regime, the distribution is asymmetric
with a long tail, indicating the presence of sites with magnetic
energy nearly five times the average. In the weak dipolar
regime, the distribution is well peaked and with a shorter tail.
To probe the connection between these distributions and the
spin morphologies, we show in Figs. 5(c) and 5(d) the energy
distributions Ps(E) vs E for MNPs in concentric spherical
shells of specified radii. It can be observed that for � � 1.7,
the outermost shell has a distinctly wide distribution with a
long tail. Checks of the variance indicated that the energy
of the majority of spins in the inner shells is close to the
average value Es . The influence of dipolar interactions on
surface spins is further reinforced in Figs. 5(e) and 5(f), where
we plot the variation of Es as a function of the shell radius.
The y axis is scaled by the maximum value Em (≡ max {Es})
to facilitate relative comparison of the energies of the different
shells. Clearly, for the � � 1.7 case, there are strong surface
effects. These have important implications for hysteresis and
heating, as we shall see in the forthcoming section.

C. Heat dissipation

To study heat dissipation, the morphologies in Fig. 3 were
subjected to an oscillating magnetic field H = Ho cos(2πf t).
We have used three different values of Ho: 0.2, 0.4, and
0.6 T; and three different values of f : 107, 108, and 109 Hz.
These parameters resulted in well-saturated hysteresis loops.
The assemblies were allowed to undergo a few field cycles
to remove the transients prior to obtaining well-equilibrated
loops. We then calculated heat dissipated by evaluating the
loop area Ei

H ≡ Ai = ∮
μi · dH , i = 1,2, . . . ,N . As before,

all the data that we present are averaged over 50 initial
conditions.

In Fig. 6, we present representative results of heat dis-
sipated by the MNPs subject to the following conditions:
a = 10 nm, Ho = 0.4 T, f = 107 Hz [Fig. 6(a)]; a = 10 nm,
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FIG. 5. Probability distributions P (E) vs E of the ground-state energy for Fe3O4 MNPs packed in a sphere of radius R = 200 nm for
lattice spacing (a) a = 10 nm and (b) a = 20 nm. These values of a correspond to � � 1.7 and 0.2, respectively. (c),(d) The corresponding
probability distribution of energy Ps(E) vs E for MNPs in concentric spherical shells of specified radii. (e),(f) The variation of the average
energy of a nanoparticle in the shell Es vs r . The y axis has been scaled by the maximum value Em to enable comparisons. Clearly, there are
strong surface effects for the � � 1.7 case.

Ho = 0.4 T, f = 109 Hz [Fig. 6(b)]; a = 20 nm, Ho = 0.4 T,
f = 107 Hz [Fig. 6(c)], and a = 20 nm, Ho = 0.4 T, f =
109 Hz [Fig. 6(d)]. The corresponding 2-d slices are indicated
in Figs. 6(e)–6(h), respectively. The color charts are a measure
of the heat dissipated in J m−3. Notice that the compact,
strongly interacting assembly (a = 10 nm = l, � � 1.7) in
Fig. 6(a) exhibits nonuniform heating, with the surface
significantly warmer than the core.

Before examining spatially distributed heating in detail, we
demonstrate the convergence between results obtained from
OOMMF and kMCS. Figure 7 shows the probability distribution
P (EH ) vs EH of the heat dissipated in spherical assemblies
of Fe3O4 MNPs with 10 and 20 nm separations using
(a) OOMMF (blue symbols) and (b) kMCS (red symbols). The
axes have been scaled by the average energy EH and both data
sets have been averaged over 50 initial conditions. There is
good qualitative agreement between the two data sets. Recall
that evaluations in OOMMF are at T = 0, unlike the kMCS
which are at T 
= 0. At this juncture, a few words about the

phenomenological rate constant λ in Eq. (4) are also in order.
It represents the coupling of the magnetic moment �μ to a heat
bath. According to Brown, it can be interpreted as a statistical
average of the rapidly fluctuating random forces due to thermal
agitation [44,50]. Thus although λ captures the effects of
temperature, the form of the relationship is unknown in the
LL formulation. However, at sufficiently high temperatures,
close to the ferromagnetic-paramagnetic transition, thermal
effects can be precisely taken into account using the Langevin
dynamics [50–52].

To systematically analyze the nonuniform heating in
morphologies, we plot in Figs. 8(a)–8(d) the corresponding
probability distribution Ps(EH ) vs EH of the MNPs in different
shells of specified radius. The Figs. 8(e) and 8(f) indicate the
variation of the average energy of a particle as a function
of the shell radius Es/Em vs r . Recall that all data near the
surface of the sphere are averaged over 105 values. So our
numerics at the periphery are very accurate. The distinct spatial
heat distribution for each parameter set is captured well in
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(a) (e)

(b) 

(d) 

(c) 

(f) 

(g) 

(h) 

FIG. 6. Heat dissipated in MNP spheres on application of the
oscillating field H = Ho cos 2πf t indicated by corresponding color
charts in J m−3. The interparticle separation in the left panel is 10 nm,
while that in the right panel is 20 nm. The distinct parameters are (a)
a = 10 nm, Ho = 0.4 T, f = 107 Hz; (b) a = 10 nm, Ho = 0.4 T,
f = 109 Hz; (c) a = 20 nm, Ho = 0.4 T, f = 107 Hz; and (d) a =
20 nm, Ho = 0.4 T, f = 109 Hz. The corresponding 2-d slices are
indicated, respectively, in (e)–(h).
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FIG. 7. Probability distribution P (EH ) vs EH of heat dissipated
by MNPs for a = 10 and 20 nm from OOMMF in blue (black) symbols
and kMCS in red (gray) symbols. The field strength Ho = 0.2 T and
the frequency f = 107 Hz.

Fig. 9, which is the pictorial representation of Figs. 8(a)–8(d).
The innermost shell has been left uncolored because the
corresponding data have been averaged over lesser values
(<103).

The important conclusions that can be drawn from Figs. 8
are the following: (i) In the strong dipolar regime (� � 1.7)
for lower frequencies (f ∼ 107), the heat dissipated by surface
spins is spread across four orders of magnitude, ranging from
0 to 104 J m−3. Locally, there are a few scattered intensely hot
spots. Globally, the peripheral surface is hotter than the core by
approximately 40%. (ii) For higher frequencies (f ∼ 109), the
distributions Ps(EH ) vs EH are well peaked and symmetric.
The peak of the distribution and the mean value Es of the
outermost shell is the smallest. This surface behavior yields
a cooler periphery than the core by approximately 8%. (iii)
In the weak dipolar regime (� � 0.2), Ps(EH ) vs EH is well
peaked with the same qualitative form for all the shells. These
assemblies exhibit uniform heating at all values of frequency
and field.

In the context of the above observations, we mention that
Tan et al. also observed spatially distributed heating in lyso-
somes containing iron-oxide nanoparticles for an applied field
of frequency f = 105 Hz and amplitude Ho = 0.04 T [21].
They used kMCS performed at T = 300 K. A hot surface
and cold core were observed for a high-volume fraction (3%
or more) and vice versa for those with low-volume fractions
(�0.6%). Our results are in qualitative agreement with these
observations for the dense-packing and low-frequency case
of Fig. 6(a) and the corresponding schematic in Fig. 9(a).
We cannot compare the other cases because the study by Tan
et al. and other studies as well have not probed the frequency
dependence of heating. The spatially distributed heating is
therefore a robust property observed at T 
= 0 in aggregates of
MNPs for a suitable choice of field parameters.

Finally, in Fig. 10, we show the variation of the hysteresis
loop area as a function of a. The latter is varied from
10 nm, corresponding to dipolar strength � � 1.7, to 100 nm,
corresponding to � � 0. The amplitude Ho of the applied
field is 0.2 T [Fig. 10(a)], 0.4 T [Fig. 10(b)], and 0.6 T
[Fig. 10(c)]. Each set contains evaluations for three values of
the frequency f = 107, 108, and 109 Hz. As before, the scaling
forms in Eqs. (10)–(12) were used to obtain correct values
of Ms , Hc, and HK . All data clearly indicate that maximum
heat dissipation occurs at a critical separation a∗ and not at
a = l which maximizes �. Our results are in agreement with
observations made by Tan et al. [21], Haase and Nowak [37],
and Ruta et al. [38], but not with that of Landi [36].

IV. DISCUSSION AND CONCLUSION

The nonequilibrium relaxation in complex spin systems
can be interpreted in terms of a phenomenological model with
a complicated free-energy surface having several metastable
minima [53,54]. They differ from each other by small groups
of spins and are separated by randomly distributed barriers. In
the absence of an external field, there is a distribution of barrier
heights (
) and a corresponding distribution of escape (relax-
ation) times from these minima (τe ∼ eβ
). As a consequence,
there is frequent trapping of the system in local minima. When
an oscillating magnetic field H (t) = Ho cos(2πf t) is applied,
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FIG. 8. Probability distribution of heat dissipation Ps(EH ) vs EH for MNPs in concentric spherical shells of specified radii for
(a) a = 10 nm, Ho = 0.4 T, f = 107 Hz; (b) a = 20 nm, Ho = 0.4 T, f = 107 Hz; (c) a = 10 nm, Ho = 0.4 T, f = 109 Hz; and (d)
a = 20 nm, Ho = 0.4 T, f = 109 Hz. (e)–(h) Corresponding variation of Es vs r . The y axis has been scaled by Em for comparison.
Note that the data points at the periphery are averaged over 105 values and are very accurate.

the response of the system is delayed, leading to hysteresis.
The nature of the response is determined by the competition
between experimental time scales (measured by the inverse
frequency of the applied perturbation) and the relaxation time
scale. Typically, τe � f −1 corresponds to the low-hysteresis
limit, as the spins readjusts to the applied field before it
changes substantially. For magnetic field strengths Ho � 
,
we expect that the escape times which are relevant to spin
dynamics in an oscillatory magnetic field satisfy f −1 > τe.
If Ho � 
, the dipolar effects are dominant and temporal
evolution occurs primarily through thermally activated barrier
hopping.

What happens to the above scenario in the small spherical
aggregates of MNPs? At T = 0, the moments align along
the local effective field he

i = −∂E/∂μi , where E = Ea + Ed

from Eq. (1). The dipole-dipole interactions, however, intro-
duce frustrations in the moments, which lead to deep valleys
separated by barriers in the energy function. The approach to
the ground state is impeded by the local minima and the system
then opts for a metastable state. Now consider the application
of the oscillating field H (t) = Ho cos(2πf t). Because our
simulations are performed at T = 0, there is no thermal
activation over the barriers on experimental time scales.
Instead, the barriers can be overcome only due to increase
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FIG. 9. Pictorial representation of Figs. 8(a)–8(d) showing the
average heat dissipation in concentric spherical shells for (a) a =
10 nm, Ho = 0.4 T, f = 107 Hz; (b) a = 20 nm, Ho = 0.4 T, f =
107 Hz; (c) a = 10 nm, Ho = 0.4 T, f = 109 Hz; and (d) a = 20 nm,
Ho = 0.4 T, f = 109 Hz. The innermost shell with averaging <103

has been left blank in each of the pictographs.

or decrease of the applied field. A magnetic moment becomes
unstable when | H (t) |>| he

i | as the field is varied slowly.
Our results, presented in Figs. 3 and 5, have demonstrated
that the core moments and surface moments have distinct
morphological features and ground-state energy distributions.
The core spins experience a magnetic environment well
captured by the mean-field approximation [13,14]. We can
imagine these moments to be under the influence of a local
mean effective field hMF . For the peripheral moments, on the
other hand, the energy and the corresponding local field he

i

exhibit a wide variation spanning three orders of magnitude.
We do not expect the mean-field approximation to be valid
here. Therefore, while the core spins will become unstable at
|H (t)| > |hMF |, there is no such threshold for the moments
at the periphery. Rather, a few isolated sites on (and near) the
surface are likely to become unstable at any value of H (t).

To conclude, we have studied spherical assemblies of
MNPs by solving Landau-Lifshitz (LL) equations using the
open-source software OOMMF [28]. Our main interest was
to study spin morphologies and heat dissipation in these
aggregates as a function of the dipolar strength. The latter
in our formulation was manipulated by the interparticle
separation, the strength being maximum for particles in
contact. As OOMMF is intrinsically not designed for such a
study, we adapted the procedure by introducing a scaling
protocol to correctly produce the effects due to variation
of the interparticle separation (or the dipolar strength). It
yields physical insights on aggregates of MNPs, which are in
agreement with corresponding results in the literature obtained
using alternative procedures such as the kinetic Monte Carlo
simulations (kMCS). The role of dipole-dipole interactions
in aggregates of MNPs is being increasingly emphasized in
recent studies. We therefore believe that our adaptation will
be very valuable. The interplay between the small system size

FIG. 10. Variation of the hysteresis loop area as a function
of center-to-center interparticle separation a for cubic particles
(l = 10 nm) of Fe3O4 assembled in a sphere (R = 200 nm). The
rescaled amplitude Ho of the applied field is (a) 0.2, (b) 0.4, and (c)
0.6 T. Each set contains evaluations for three values of the frequency
f = 107, 108, and 109 Hz. All data have been averaged over 50
initial conditions. Maximum heat dissipation is observed at a critical
separation a∗ and not at a = l which maximizes the dipolar strength.

and the long-range dipole-dipole interactions imparts different
features to the core and the peripheral magnetic moments
of the assemblies. As a consequence, they exhibit novel
morphologies, multiple relaxation time scales, and spatially
dependent heating.

Our primary observations are as follows: (a) Dense assem-
blies exhibit strong dipolar effects which yield local magnetic
order in the core but not on the surface, where moments
are randomly oriented. (b) The probability distribution of
the ground-state energy of surface spins exhibits a long
high-energy tail, in contrast to small tails for the core spins.
(c) There is a strong correlation between ground-state energy
and heating on application of an oscillating magnetic field
h(t) = ho cos 2πf t : the particles in the core heat uniformly,
while those on the surface exhibit a wide range, from cold
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to intensely hot. (d) Specific choices of ho and f yield
characteristic spatial heating, e.g., hot surface and cold core, or
vice versa, uniform, etc. (e) For all values of ho and f that we
considered, heating was maximum at a specific interparticle
separation or dipolar strength. We have compared our results
with a few recent works emphasizing the role of dipole-dipole
interactions. These studies are at T 
= 0, so the dynamics is also
via thermally activated escape over the barrier. Our analysis of
morphologies and spatial distribution of ground-state energies
is novel. It provides a basis to understand the repartitioning of
heat observed by us and by Tan et al. [21].

Analytical frameworks to describe dipolar systems are few
and far between, and numerical simulations do not yield
ground states due to the trapping of the system in deep local
minima. Therefore the nonequilibrium dynamics with multiple
relaxation time scales has not been captured satisfactorily so

far by theoretical and computational methods. Our understand-
ing of these small systems with long-range interactions is
hence far from complete. We hope that the observations and
ideas presented in this paper will motivate great interest by the
wide community of scientists, technologists, and therapists
in furthering our understanding of the ubiquitous magnetic
nanoparticle aggregates.
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