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First-order phase transitions, classical or quantum, subject to randomness coupled to energylike variables
(bond randomness) can be rounded, resulting in continuous transitions (emergent criticality). We study perhaps
the simplest such model, the quantum three-color Ashkin-Teller model, and show that the quantum critical point
in (1 + 1) dimension is an unusual one, with activated scaling at the critical point and Griffiths-McCoy phase
away from it. The behavior is similar to the transverse random field Ising model, even though the pure system
has a first-order transition in this case. We believe that this fact must be attended to when discussing quantum
critical points in numerous physical systems.
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I. INTRODUCTION

The effect of quenched randomness on thermodynamic
properties could be varied. The systems that behave less
and less randomly at larger and larger length scales, i.e.,
the randomness averages out, are described by pure fixed
points. On the other hand, if the randomness is competitive
at all scales, the system is controlled by random fixed point
and the properties of the system are altered by rare spatially
localized active regions [1–3]. In the extreme limit, the fixed
point is captured by the infinite randomness fixed point: the
main features are a strong dynamical anisotropy and a broad
distribution of physical quantities which is manifest through
drastically different average and typical correlation functions.
Some examples of such systems are the quantum critical
point of random quantum Ising and Potts models [4–7], the
random singlet states of certain random antiferromagnetic
spin chains [8–12], quantum critical points separating random
singlet states and the Ising antiferromagnetic phase, or the
Haldane state in the random spin-1 Heisenberg chain [13].

In addition to the singularities of the thermodynamic
quantities at the quantum critical point, there is a whole
parameter range around the phase transition point in which
physical observables display singular and even divergent
behavior in spite of a finite correlation length [5,14–17].
Within this Griffiths-McCoy phase, there is a continuously
varying dynamical exponent, z, that relates the scale of
energy and length via ε ∝ ξ−z, with z diverging as z ∝ δ−ψν.

Here, δ is the deviation from the critical point, ψ is some
dimensionless positive constant, and ν is the correlation
length exponent. A signature of the existence of an infinite
randomness fixed point is the divergence of the dynamical
critical exponent z at the critical point, δ = 0. In that case, the
system exhibits activated dynamical scaling, ξτ ∝ econst×ξψ

,
where ξτ represents a characteristic time scale of the system.

Both quantum and classical first-order phase transitions
are ubiquitous in nature, because they do not require fine
tuning of a control parameter of the system. Understanding
the effect of quenched randomness that couples to energylike
variables on the thermodynamic properties of the systems that
exhibit a first-order phase transition has been a challenge of
experimental and theoretical studies for many years [18–28].

Here we investigate the effect of quenched disorder on the
quantum three-color Ashkin-Teller model in (1 + 1) dimen-

sion, which exhibits a first-order quantum phase transition
in the absence of impurities. We employ a discrete-time
quantum Monte Carlo method. Because there is no frustration
in this system, we are able to use highly efficient cluster
algorithms [22]. For this disorder-rounded quantum critical
point, we find activated scaling at criticality and the off-critical
region is characterized by Griffiths-McCoy singularities.

The outline of this paper is as follows: In the next section,
we introduce the N -color quantum Ashkin-Teller model. In
Sec. III, we explain how we find the critical point. We show
the evidence for activated scaling in Sec. IV. Our results for
correlation function and local susceptibility are presented in
Secs. V and VI. Lastly, in Sec. VII we provide a discussion of
our findings.

II. THE MODEL

The Hamiltonian of the N -color quantum Ashkin-Teller
model in (1 + 1) dimension is given by [18]

H = −
N∑

α=1

L∑
i=1

(
J2,iσ

z
α,iσ

z
α,i+1 + h1,iσ

x
α,i

)

−
N∑

α<β

L∑
i=1

(
J4,iσ

z
α,iσ

z
α,i+1σ

z
β,iσ

z
β,i+1 + h2,iσ

x
α,iσ

x
β,i

)
,

(1)
where L is the length of the lattice, Greek subindices denote
the colors, Latin subindices denote the lattice sites, and σ ’s are
the Pauli operators. The J2,i and J4,i are the random nearest-
neighbor coupling constants. The h1,i and h2,i are the random
transverse fields. The random coupling constants and the
transverse fields are taken from a distribution restricted to only
positive values. The model is self-dual, which amounts to the
invariance of the Hamiltonian in Eq. (1) under the transforma-
tion J2,i ↔ h1,i , J4,i ↔ h2,i , μx

α,i ↔ σ z
α,iσ

z
α,i+1, and σx

α,i ↔
μz

α,iμ
z
α,i+1, where μ’s are the dual Pauli operators. The pure

version of this model has been studied in the past. It is known
that for N � 3, J4,i/J2,i > 0, and h2,i/h1,i > 0, there is a
first-order phase transition from a paramagnetic to an ordered
state [29–32].

To study the d-dimensional quantum Hamiltonian in
Eq. (1), we propose an effective classical model in (1 + 1)
dimension, where the extra imaginary time dimension is of size
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β ≡ 1/T and is divided up into Lτ ≡ β/�τ intervals each of
width �τ in the limit �τ → 0. We introduce disorder only in
the horizontal direction. This emulates a quenched disordered
quantum system whose disorder is perfectly correlated in the
imaginary time direction. Hence, we expect the behavior of
this system to be in the same universality class as the original
quantum Ashkin-Teller model in Eq. (1). This procedure is
the same as the McCoy-Wu random Ising model [4,10–12],
which is shown to be equivalent to the random transverse field
quantum spin- 1

2 Ising model in the large imaginary time limit.
The partition function is Z = lim�τ→0 Tre−S , with the

proposed effective action given by

S = −
∑
α,τ,i

JiSα,i(τ )Sα,i+1(τ )

−
∑
α,τ,i

J Sα,i(τ )Sα,i(τ + 1)

−
∑

α �=β,i,τ

KiSα,i(τ )Sβ,i(τ )Sα,i+1(τ )Sβ,i+1(τ )

−
∑

α �=β,i,τ

KSα,i(τ )Sα,i(τ + 1)Sβ,i(τ )Sβ,i(τ + 1), (2)

where the Si(τ ) = ±1 are classical Ising spins, the indices
α and β denote the colors, the index i runs over the sites
of the one-dimensional lattice, and τ = 1,2, . . . ,Lτ denotes
a time slice. For computational convenience, we set �τ = 1
and equivalently take the limit Lτ → ∞ implying T → 0.
The two- and four-spin couplings, Ji and Ki , are independent
of τ , because they are quenched random variables. We
independently take the couplings Ji and Ki from the following
rectangular distributions:

π (Ji) =
{

1, if J − �J

2 < Ji < J + �J

2
0, otherwise,

ρ(Ki) =
{

1, if K − �K

2 < Ki < K + �K

2
0, otherwise.

(3)

Suppose we keep one of the colors in Eq. (2) fixed, for
instance α = 1. Then, we can write Eq. (2) as

S = S1

−
∑
τ,i

⎛
⎝Ji +

∑
β �=1

KiSβ,i(τ )Sβ,i+1(τ )

⎞
⎠S1,i(τ )S1,i+1(τ )

−
∑
τ,i

⎛
⎝J +

∑
β �=1

KSβ,i(τ )Sβ,i(τ + 1)

⎞
⎠S1,i(τ )S1,i(τ + 1),

(4)

where the first term, S1, does not contain the color 1.
The second and third terms of Eq. (4) can be regarded
as the Ising model action with coupling constants Ji +∑

β �=1 KiSβ,i(τ )Sβ,i+1(τ ) in the spatial direction and J +∑
β �=1 KSβ,i(τ )Sβ,i(τ + 1) in the temporal direction. We can

implement any cluster Monte Carlo algorithm suited for the
Ising model. We use the generalization of the Swendsen-
Wang [33] cluster Monte Carlo algorithm suggested by
Niedermayer [34].

In our simulation on a square lattice of size L × Lτ we use
periodic boundary conditions in both spatial and imaginary
time directions. The equilibration “time” is estimated using
the logarithmic binning method, i.e., we compare the average
values of each observable over 2n Monte Carlo steps and
make sure that the last three averages are within each others
error bars. Each observable is obtained by averaging over
10 000 disordered configurations and for each disordered
configuration, 10 000 thermal averages are conducted. The
error bars are calculated using the Jacknife procedure [35–37].

III. CRITICAL POINT

We estimate the location of the quantum critical point along
the analysis of Rieger and Young [38] for the quantum spin
glass systems using the magnetic Binder cumulant [39]

Vm = 1 − [〈m4〉]
3[〈m2〉2]

, (5)

where

m = 1

LτL

[〈∑
α

|mα|
〉]

, (6)

with mα = ∑
τ,i Sα,i(τ ). The square and angular brackets,

[· · · ] and 〈· · · 〉, denote the disorder and thermal averages,
respectively. In the disordered phase, Vm ∝ L−d → 0 as
L → ∞ [40,41]. In the ordered phase, we have spontaneous
magnetization at ±m and Vm → 2/3 as L → ∞ [40,41].
Furthermore, in the paramagnetic phase, for small Lτ , the
system is disordered and effectively classical at a finite
temperature, therefore Vm → 0. For Lτ → ∞, the system
is quasi-one-dimensional in the imaginary time direction,
therefore Vm → 0 also. There exists an intermediate point
where Vm acquires a maximum value V max

m . This maxi-
mum value decreases as L increases if the system is in
the paramagnetic phase, whereas it increases as L increases
if the system is in the ferromagnetic phase. There is an
intermediate point at which the V max

m is a constant for all L

which is the quantum critical point (see Fig. 1(a)]. For our
model with the parameter set (K,�K,�J ) = (0.08,0.04,0.2),
we estimate the critical point to be Jc = 0.245 ± 0.001.

We also found the critical point of the system with the pa-
rameter set (K,�K,�J ) = (0.1,0.05,0.2), with Jc = 0.205 ±
0.002. Careful analyses of two parameter sets (K,�K,�J ) =
(0.08,0.04,0.2) and (0.1,0.05,0.2) yielded very similar results.
Henceforth, we will be reporting only on the former parameter
set in the rest of our paper.

IV. FINITE-SIZE SCALING

The Binder cumulant (5) has the finite-size scaling
form [39]

Vm = V
(

J − Jc

Jc

L1/ν,
Lτ

Lz

)
. (7)

As shown in Fig. 1(a), the value of V max
m at the critical point

is independent of the system size L and Lτ at the maximum
varies as Lz. Therefore, we naively would expect that a plot of
the Vm against Lτ/L

max
τ at the critical point should collapse the

data, but from Fig. 1(b) we see that it does not. In contrast, if we
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FIG. 1. Magnetic Binder cumulant Vm for the parameter set
(K,�K,�J ) = (0.08,0.04,0.2) at J = Jc = 0.245. (a) V max

m is L

independent indicating that the system is at the critical point.
(b) The horizontal axis is Lτ/L

max
τ ; Lmax

τ is the value of the Lτ at the
peak. The curves do not scale but get broader for larger system sizes,
indicating activated scaling. (c) Vm versus ln Lτ/L

ψ with ψ = 0.37.
The curves scale well and are consistent with activated scaling. The
actual value of ψ is quite uncertain, however, and can range between
0.3 and 0.5.

assume that the logarithm of the characteristic time scale is a
power of the length scale, as in the quantum spin- 1

2 Ising chain,

FIG. 2. A plot of the distribution of the equal-time correlation of
spins L/2 apart for the parameter set (K,�K,�J ) = (0.08,0.04,0.2)
at Jc = 0.245. One sees that the distribution gets broader and broader
as L increases. For this plot we used 105 realizations of disorder.
The values of Lτ are chosen such that Vm ≈ V max

m , namely, L × Lτ ∈
{8 × 9,16 × 16,32 × 37,64 × 106}.

the scaling variable should be ln Lτ/ ln Lmax
τ with ln Lmax

τ ∝
Lψ , for some positive constant ψ . As shown in the bottom of
Fig. 1(c), the data do collapse well for ψ = 0.37.

V. CORRELATION FUNCTION

The equal-time correlation function,

Cα,i(r) = [〈Sα,i(τ )Sα,i+r (τ )〉], (8)

is calculated at criticality for spins r = L/2 apart. As shown in
Fig. 2, the distribution of the correlation function, P (C(L/2)),
is getting broader and broader as L increases. This indicates
that the rare events dominate the critical properties of the
system.

As a result of the breadth of the distribution, the average and
typical quantities behave differently. The typical correlation
function is defined here as the exponential of the average of the
logarithm [42]. In Fig. 3, we show that the average correlation
function, Cavg(L/2), falls off as a power law, Cavg(r) ∝ r−η,
whereas the typical correlation, Ctyp(L/2), has a downward
curvature and falls off faster than the average value. Our result
is consistent with the existence of a stretched exponential
decay, Ctyp(r) ∝ e−const×rσ

, at the critical point.

VI. LOCAL SUSCEPTIBILITY

We now turn our attention to the off-critical region and
calculate the linear susceptibility, χl , in the disordered phase,
J < Jc. In the imaginary time formalism [38]

χl =
Lτ∑

τ=1

〈Sα,i(0)Sα,i(τ )〉. (9)

The dynamical exponent, z, can be calculated from the
probability distribution of linear local susceptibility. Away
from the critical point the distributions for different system
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FIG. 3. Average and typical correlations between spins L/2
apart at criticality, Jc = 0.245, for the parameter set (K,�K,�J ) =
(0.08,0.04,0.2) (see Fig. 2; number of disorder realization for the
size L × Lτ = 96 × 224 is 25 × 103). The average falls off with a
power law. The slope of the average correlation function data suggests
that η ≈ 0.15. The curvature of the data for the typical correlation
function shows that this falls off faster than a power law. The inset
shows the linear fit of the logarithm of the typical correlation function
against Lσ for the value of σ = 0.50.

sizes are well localized. Close to the critical point, however,
the probability distribution of ln χl gets broader with L as
shown in Fig. 4. This broadening of the probability distribution
is a strong support for the existence of strongly coupled rare
regions in the vicinity of the critical point.

We examine the behavior of the distribution of local
susceptibility following Refs. [15–17,43]. Given that the
probability distribution of logarithm of local susceptibility
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FIG. 4. Cumulative probability distribution of ln(χl) for the
parameter set (K,�K,�J ) = (0.08,0.04,0.2) at J = 0.232. The
distributions get broader as L increases. The slope, −d/z, is extracted
by performing a linear fit to the linear part of the largest calculated
system size, namely, for L = 64 within the region 1 � ln χl � 2.5.

0.228 0.232 0.236 0.240 0.244 0.248

J

0.0

0.5

1.0

1.5

2.0

2.5

z

FIG. 5. The dynamical exponent z, for different values of J

in the paramagnetic phase for the parameter set (K,�K,�J ) =
(0.08,0.04,0.2) for our largest lattice size L = 64. The blue vertical
dashed line is the location of the induced quantum critical point. The
horizontal dashed line corresponds to z = 1.

P (ln χl) has a power law tail with P (ln χl) ∝ χ
−d/z

l , then its
integral, Q(ln χl) = ∫ ∞

ln χl
P (ln χ ′

l )d ln χ ′
l , behaves similarly to

P (ln χl) with [38]

ln[Q(ln χl)] = −d

z
ln χl + const. (10)

It is more accurate to extract the exponent, z, from the cumula-
tive distribution, Q[ln(χl)]. In Fig. 4, we show the cumulative
distribution of the logarithm of local linear susceptibility.

From the conservation of the probability distribution,
we have

∫
P (ln χl)d ln χl = ∫

P̃ (χl)dχl . Therefore P̃ (χ ) =
χ−1

l P (ln χl) ∝ χ
−d/z−1
l and for the average local susceptibility

we get

χ
(avg)
l ∝

∫
dχlχlP̃ (χl) =

∫
dχlχ

−d/z

l . (11)

In Fig. 5, we show z as a function of J in the paramagnetic
phase. We see that the value of z is larger than 1 for a wide
range of J which indicates the divergence of the average local
susceptibility in this region; also z → ∞ as J → Jc ≈ 0.245,
compatible with activated dynamical scaling at the criticality.

VII. DISCUSSION

We studied the critical and off-critical properties of the
quenched disorder quantum three-color Ashkin-Teller model
in (1 + 1) dimension. Through finite-size scaling analysis
of the magnetic Binder cumulant at the quenched disorder
induced quantum critical point, we showed that the system
exhibits activated scaling. Furthermore, the calculation of the
equal-time correlation function showed that the rare events
dominate the critical properties of the system. This results in
a power law behavior of the average quantities, whereas the
typical quantities exhibit a stretched exponential decay. We
also calculated local susceptibility from which we extracted
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the dynamical critical exponent and showed the existence of
the Griffiths-McCoy phase away from the critical point.

Our fitted value of ψ is 0.37, but we cannot rule out a
range between 0.3 and 0.5, as already mentioned in the caption
of Fig. 1; in Ref. [24] ψ is the same as the strong disorder
renormalization group (SDRG), which is 0.5. However, our
calculated value of η is 0.15, while in Ref. [24] it is the SDRG
value of 0.38. This difference is so large and the linearity (see
Fig. 3) is so precise that it seems to be a real effect, not just
the sizes being too small in the numerics. Average correlations
dominantly come from the rare regions, which are locally
in the ordered phase and decay more slowly. Perhaps it is
reasonable that there is a much larger probability of being
locally in the ordered phase at a first-order phase transition.
This could be a reason for the smaller value of η. Further work
will be necessary to shed light on this issue. The calculation

of ν appeared to be computationally prohibitive, especially
because of the accuracy demands of our approach; note that
one has to calculate correlation function for many different
spatial separations and then fit the data.

In summary, the critical behavior of the disorder rounded
quantum first-order phase transition of the three-color Ashkin-
Teller model stands out as an example where the effect of
disorder in a system is quite complex and considerable care
must be exercised in analyzing quantum critical points where
material disorder is inevitable.
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[43] F. Iglói, R. Juhász, and H. Rieger, Phys. Rev. B 59, 11308 (1999).

094408-5

http://dx.doi.org/10.1088/0022-3719/7/9/009
http://dx.doi.org/10.1088/0022-3719/7/9/009
http://dx.doi.org/10.1088/0022-3719/7/9/009
http://dx.doi.org/10.1088/0022-3719/7/9/009
http://dx.doi.org/10.1103/PhysRevLett.57.2999
http://dx.doi.org/10.1103/PhysRevLett.57.2999
http://dx.doi.org/10.1103/PhysRevLett.57.2999
http://dx.doi.org/10.1103/PhysRevLett.57.2999
http://dx.doi.org/10.1103/PhysRevB.61.1160
http://dx.doi.org/10.1103/PhysRevB.61.1160
http://dx.doi.org/10.1103/PhysRevB.61.1160
http://dx.doi.org/10.1103/PhysRevB.61.1160
http://dx.doi.org/10.1103/PhysRevB.36.536
http://dx.doi.org/10.1103/PhysRevB.36.536
http://dx.doi.org/10.1103/PhysRevB.36.536
http://dx.doi.org/10.1103/PhysRevB.36.536
http://dx.doi.org/10.1103/PhysRevLett.69.534
http://dx.doi.org/10.1103/PhysRevLett.69.534
http://dx.doi.org/10.1103/PhysRevLett.69.534
http://dx.doi.org/10.1103/PhysRevLett.69.534
http://dx.doi.org/10.1103/PhysRevLett.76.3001
http://dx.doi.org/10.1103/PhysRevLett.76.3001
http://dx.doi.org/10.1103/PhysRevLett.76.3001
http://dx.doi.org/10.1103/PhysRevLett.76.3001
http://dx.doi.org/10.1103/PhysRevLett.78.1783
http://dx.doi.org/10.1103/PhysRevLett.78.1783
http://dx.doi.org/10.1103/PhysRevLett.78.1783
http://dx.doi.org/10.1103/PhysRevLett.78.1783
http://dx.doi.org/10.1103/PhysRevLett.43.1434
http://dx.doi.org/10.1103/PhysRevLett.43.1434
http://dx.doi.org/10.1103/PhysRevLett.43.1434
http://dx.doi.org/10.1103/PhysRevLett.43.1434
http://dx.doi.org/10.1103/PhysRevB.22.1305
http://dx.doi.org/10.1103/PhysRevB.22.1305
http://dx.doi.org/10.1103/PhysRevB.22.1305
http://dx.doi.org/10.1103/PhysRevB.22.1305
http://dx.doi.org/10.1103/PhysRev.176.631
http://dx.doi.org/10.1103/PhysRev.176.631
http://dx.doi.org/10.1103/PhysRev.176.631
http://dx.doi.org/10.1103/PhysRev.176.631
http://dx.doi.org/10.1103/PhysRev.188.982
http://dx.doi.org/10.1103/PhysRev.188.982
http://dx.doi.org/10.1103/PhysRev.188.982
http://dx.doi.org/10.1103/PhysRev.188.982
http://dx.doi.org/10.1103/PhysRev.188.1014
http://dx.doi.org/10.1103/PhysRev.188.1014
http://dx.doi.org/10.1103/PhysRev.188.1014
http://dx.doi.org/10.1103/PhysRev.188.1014
http://dx.doi.org/10.1103/PhysRevLett.79.3254
http://dx.doi.org/10.1103/PhysRevLett.79.3254
http://dx.doi.org/10.1103/PhysRevLett.79.3254
http://dx.doi.org/10.1103/PhysRevLett.79.3254
http://dx.doi.org/10.1103/PhysRevB.51.6411
http://dx.doi.org/10.1103/PhysRevB.51.6411
http://dx.doi.org/10.1103/PhysRevB.51.6411
http://dx.doi.org/10.1103/PhysRevB.51.6411
http://dx.doi.org/10.1103/PhysRevB.54.3328
http://dx.doi.org/10.1103/PhysRevB.54.3328
http://dx.doi.org/10.1103/PhysRevB.54.3328
http://dx.doi.org/10.1103/PhysRevB.54.3328
http://dx.doi.org/10.1103/PhysRevB.53.8486
http://dx.doi.org/10.1103/PhysRevB.53.8486
http://dx.doi.org/10.1103/PhysRevB.53.8486
http://dx.doi.org/10.1103/PhysRevB.53.8486
http://dx.doi.org/10.1103/PhysRevLett.72.4137
http://dx.doi.org/10.1103/PhysRevLett.72.4137
http://dx.doi.org/10.1103/PhysRevLett.72.4137
http://dx.doi.org/10.1103/PhysRevLett.72.4137
http://dx.doi.org/10.1103/PhysRevLett.100.015703
http://dx.doi.org/10.1103/PhysRevLett.100.015703
http://dx.doi.org/10.1103/PhysRevLett.100.015703
http://dx.doi.org/10.1103/PhysRevLett.100.015703
http://dx.doi.org/10.1103/PhysRevLett.103.197201
http://dx.doi.org/10.1103/PhysRevLett.103.197201
http://dx.doi.org/10.1103/PhysRevLett.103.197201
http://dx.doi.org/10.1103/PhysRevLett.103.197201
http://dx.doi.org/10.1016/j.physa.2009.12.066
http://dx.doi.org/10.1016/j.physa.2009.12.066
http://dx.doi.org/10.1016/j.physa.2009.12.066
http://dx.doi.org/10.1016/j.physa.2009.12.066
http://dx.doi.org/10.1103/PhysRevB.86.214204
http://dx.doi.org/10.1103/PhysRevB.86.214204
http://dx.doi.org/10.1103/PhysRevB.86.214204
http://dx.doi.org/10.1103/PhysRevB.86.214204
http://dx.doi.org/10.1103/PhysRevLett.109.155701
http://dx.doi.org/10.1103/PhysRevLett.109.155701
http://dx.doi.org/10.1103/PhysRevLett.109.155701
http://dx.doi.org/10.1103/PhysRevLett.109.155701
http://dx.doi.org/10.1016/j.aop.2015.03.026
http://dx.doi.org/10.1016/j.aop.2015.03.026
http://dx.doi.org/10.1016/j.aop.2015.03.026
http://dx.doi.org/10.1016/j.aop.2015.03.026
http://dx.doi.org/10.1088/0031-8949/2015/T165/014040
http://dx.doi.org/10.1088/0031-8949/2015/T165/014040
http://dx.doi.org/10.1088/0031-8949/2015/T165/014040
http://dx.doi.org/10.1088/0031-8949/2015/T165/014040
http://dx.doi.org/10.1103/PhysRevB.19.3580
http://dx.doi.org/10.1103/PhysRevB.19.3580
http://dx.doi.org/10.1103/PhysRevB.19.3580
http://dx.doi.org/10.1103/PhysRevB.19.3580
http://dx.doi.org/10.1103/PhysRevLett.62.2507
http://dx.doi.org/10.1103/PhysRevLett.62.2507
http://dx.doi.org/10.1103/PhysRevLett.62.2507
http://dx.doi.org/10.1103/PhysRevLett.62.2507
http://dx.doi.org/10.1007/BF02096933
http://dx.doi.org/10.1007/BF02096933
http://dx.doi.org/10.1007/BF02096933
http://dx.doi.org/10.1007/BF02096933
http://dx.doi.org/10.1103/PhysRevLett.62.2503
http://dx.doi.org/10.1103/PhysRevLett.62.2503
http://dx.doi.org/10.1103/PhysRevLett.62.2503
http://dx.doi.org/10.1103/PhysRevLett.62.2503
http://dx.doi.org/10.1103/PhysRevB.24.6508
http://dx.doi.org/10.1103/PhysRevB.24.6508
http://dx.doi.org/10.1103/PhysRevB.24.6508
http://dx.doi.org/10.1103/PhysRevB.24.6508
http://dx.doi.org/10.1103/PhysRevLett.53.1967
http://dx.doi.org/10.1103/PhysRevLett.53.1967
http://dx.doi.org/10.1103/PhysRevLett.53.1967
http://dx.doi.org/10.1103/PhysRevLett.53.1967
http://dx.doi.org/10.1103/PhysRevLett.55.453
http://dx.doi.org/10.1103/PhysRevLett.55.453
http://dx.doi.org/10.1103/PhysRevLett.55.453
http://dx.doi.org/10.1103/PhysRevLett.55.453
http://dx.doi.org/10.1088/0305-4470/24/12/021
http://dx.doi.org/10.1088/0305-4470/24/12/021
http://dx.doi.org/10.1088/0305-4470/24/12/021
http://dx.doi.org/10.1088/0305-4470/24/12/021
http://dx.doi.org/10.1103/PhysRevLett.58.86
http://dx.doi.org/10.1103/PhysRevLett.58.86
http://dx.doi.org/10.1103/PhysRevLett.58.86
http://dx.doi.org/10.1103/PhysRevLett.58.86
http://dx.doi.org/10.1103/PhysRevLett.61.2026
http://dx.doi.org/10.1103/PhysRevLett.61.2026
http://dx.doi.org/10.1103/PhysRevLett.61.2026
http://dx.doi.org/10.1103/PhysRevLett.61.2026
http://arxiv.org/abs/arXiv:1210.3781
http://dx.doi.org/10.1214/aos/1176350142
http://dx.doi.org/10.1214/aos/1176350142
http://dx.doi.org/10.1214/aos/1176350142
http://dx.doi.org/10.1214/aos/1176350142
http://dx.doi.org/10.1103/PhysRevLett.72.4141
http://dx.doi.org/10.1103/PhysRevLett.72.4141
http://dx.doi.org/10.1103/PhysRevLett.72.4141
http://dx.doi.org/10.1103/PhysRevLett.72.4141
http://dx.doi.org/10.1103/PhysRevB.30.1477
http://dx.doi.org/10.1103/PhysRevB.30.1477
http://dx.doi.org/10.1103/PhysRevB.30.1477
http://dx.doi.org/10.1103/PhysRevB.30.1477
http://dx.doi.org/10.1103/PhysRevB.34.1841
http://dx.doi.org/10.1103/PhysRevB.34.1841
http://dx.doi.org/10.1103/PhysRevB.34.1841
http://dx.doi.org/10.1103/PhysRevB.34.1841
http://dx.doi.org/10.1103/PhysRevLett.47.693
http://dx.doi.org/10.1103/PhysRevLett.47.693
http://dx.doi.org/10.1103/PhysRevLett.47.693
http://dx.doi.org/10.1103/PhysRevLett.47.693
http://dx.doi.org/10.1007/BF01293604
http://dx.doi.org/10.1007/BF01293604
http://dx.doi.org/10.1007/BF01293604
http://dx.doi.org/10.1007/BF01293604
http://dx.doi.org/10.1103/PhysRevB.58.14397
http://dx.doi.org/10.1103/PhysRevB.58.14397
http://dx.doi.org/10.1103/PhysRevB.58.14397
http://dx.doi.org/10.1103/PhysRevB.58.14397
http://dx.doi.org/10.1103/PhysRevB.59.11308
http://dx.doi.org/10.1103/PhysRevB.59.11308
http://dx.doi.org/10.1103/PhysRevB.59.11308
http://dx.doi.org/10.1103/PhysRevB.59.11308



